
Time Prediction Based on Process Mining

W.M.P. van der Aalst, M.H. Schonenberg, and M. Song

Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{w.m.p.v.d.aalst}@tue.nl

Abstract. Process mining allows for the automated discovery of pro-
cess models from event logs. These models provide insights and enable
various types of model-based analysis. This paper demonstrates that
the discovered process models can be extended with information to pre-
dict the completion time of running instances. There are many scenarios
where it is useful to have reliable time predictions. For example, when
a customer phones her insurance company for information about her
insurance claim, she can be given an estimate for the remaining pro-
cessing time. In order to do this, we provide a configurable approach to
construct a process model, augment this model with time information
learned from earlier instances, and use this to predict e.g. the comple-
tion time. To provide meaningful time predictions we use a configurable
set of abstractions that allow for a good balance between “overfitting”
and “underfitting”. The approach has been implemented in ProM and
through several experiments using real-life event logs we demonstrate its
applicability.

1 Introduction

More and more information about processes is recorded by information systems
in the form of so-called “event logs”. A wide variety of Process-Aware Informa-
tion Systems (PAISs) [12] is recording excellent data on actual events as they
are taking place. ERP (Enterprise Resource Planning), WFM (WorkFlow Man-
agement), BPM (Business Process Management), CRM (Customer Relationship
Management), SCM (Supply Chain Management), and PDM (Product Data
Management) systems are examples of such systems. Despite the omnipresence
and richness of these event logs, most software vendors use this information for
answering only relatively simple questions under the assumption that the pro-
cess is fixed and known, e.g., the calculation of simple performance metrics like
utilization and flow time for a well-known process. However, in many domains
processes are evolving and people typically have an oversimplified and incorrect
view of the actual business processes. Therefore, process mining techniques at-
tempt to extract non-trivial and useful information from event logs. One aspect
of process mining is control-flow discovery, i.e., automatically constructing a pro-
cess model (e.g., a Petri net or BPMN model) describing the causal dependencies
between activities [3,5–7,9,31,32]. The basic idea of control-flow discovery is very
simple: given an event log containing a set of traces, automatically construct a

suitable process model “describing the behavior” seen in the log. Such discov-
ered processes have proven to be very useful for the understanding, redesign,
and continuous improvement of business processes [2].

As process mining techniques are getting more mature, there is the desire to
use the discovered models in an operational setting. This means that the PAIS is
using results from process mining at runtime. An example is the recommendation
service presented in [26]. This service, which is implemented in the process min-
ing tool ProM, gives advice on the best possible next activity. Unlike the fixed
routing in a workflow management system which is strictly enforced, the rec-
ommendation service merely gives an advice what to do next. Another example
is the prediction service presented in [11]. This service is using non-parametric
regression to predict the completion time of partially executed process instances.
Using the same regression technique it is also estimated whether activities will
be executed in the future and, if so, the time it takes to reach them.

The goal of the approach presented in this paper is similar to the prediction
service described in [11]. However, we want to overcome some of the limitations
of this earlier approach and therefore use a completely new approach to time
prediction. Unlike existing approaches, the problem is not reduced to a simple
heuristic (e.g., always estimating half of the average flow time or the average
flow time minus the already elapsed time) or a regression model. Instead an
annotated transition system is generated that represents an abstraction of the
process with time annotations.

annotated
transition
system

event
log

operational
business

processes

process
discovery

prediction
enginepartial case

prediction

information
system

Fig. 1. Overview of our approach.

Figure 1 shows an overview of the approach. There is an information sys-
tem supporting some operational process. Events that take place in this process
are recorded (e.g., starting some activity). This recorded information is used
to derive a process model. In the process mining field, many process discovery
algorithms have been proposed. Here we use a variant of the approach described
in [3], i.e., using various abstractions a transition system is derived. This transi-
tion system is annotated with information about elapsed times (e.g., the average

time to reach a particular state), sojourn times (e.g., the average time spent in
a particular state), and remaining times (e.g., the average time to reach the end
from this state). The annotated transition system can be used to predict the
remaining flow time of all or some of the running cases (i.e., process instances).
In our approach, we heavily rely on the transition system generation and corre-
sponding abstractions presented in [3]. This allows us to find a balance between
a transition system that is too specific (overfitting) and one that is too general
(underfitting) with respect to the log and thus provide better predictions. As will
be demonstrated, our approach performs much better than simple heuristics and
also outperforms regressions models in terms of efficiency and precision.

The approach can be easily extended to predict other features of a case. For
example, the transition system can also be annotated with information about
the occurrence of particular event or the time until a particular event. This
can lead to predictions such as: “there is a 90% probability that your claim
will be rejected”, “there is 90% probability that this activity will be conducted
in the next three days”, and “the expected time until the submission of some
intermediate report is 11 days”. Although these additional features can easily
be added, we focus here on predicting the completion of a case.

The approach presented in this paper has been implemented in ProM, cf.
www.processmining.org. ProM serves as a testbed for our process mining re-
search [1] and has been applied in various domains, e.g., hospitals (AMC and
Catherina hospitals), banks (ING), several municipalities (Heusden, Alkmaar,
etc.), high-tech system manufacturers (ASML and Philips Medical Systems),
software repositories for open-source projects, etc. To show the applicability of
our results, we present an experimental evaluation using a simulation model and
two real-life case studies. In these case studies, we use our techniques to predict
the completion time of cases in two different Dutch municipalities.

The remainder of this paper is organized as follows. Related work is discussed
in Section 2. Section 3 introduces process mining and shows that a transition
system can be derived after (potentially) making some abstractions. Section 4
presents the main idea of time prediction based on annotated transition systems.
The implementation in ProM is described in Section 5. Section 6 discusses
various ways of defining and measuring the quality of predictions. The approach
has been validated and tested using several (real-life) examples. The results of
our evaluation are given in Section 7. Section 8 concludes the paper.

2 Related Work

Since the mid-nineties several groups have been working on techniques for pro-
cess mining [3,5–7,9,15,31,32], i.e., discovering process models based on observed
events. In [4] an overview is given of the early work in this domain. The idea
to apply process mining in the context of workflow management systems was
introduced in [6]. In parallel, Datta [9] looked at the discovery of business pro-
cess models. Cook et al. investigated similar issues in the context of software
engineering processes [7]. Herbst [16] was one of the first to tackle more compli-

cated processes, e.g., processes containing duplicate tasks. Most of the classical
approaches have problems dealing with concurrency. The α-algorithm [5] was
the first technique taking concurrency as a starting point. However, this sim-
ple algorithm has problems dealing with complicated routing constructs and
noise (like most of the other approaches described in literature). In the con-
text of the ProM framework [1] more robust techniques have been developed.
The heuristics miner [31] and the fuzzy miner [15] can deal with incomplete,
unbalanced, and/or noisy events logs. The two-phase approach presented in [3]
allows for various abstractions to obtain more useful models. The first step in [3]
is used as a basis for the work in this paper and will be elaborated later. It
is impossible to give a complete review of process mining techniques here, see
www.processmining.org for more pointers to literature.

The approaches mentioned above focus on control-flow discovery. However,
when event logs contain time information, the discovered models can be extended
with timing information. For example, in [29] it is shown how timed automata
can be derived. In [23] it is shown how any Petri net discovered by ProM can
be enriched with timing and resource information.

The above approaches all focus on discovering process models based on his-
toric information and do not support users at run-time. The recommendation
service of ProM learns based on historic information and uses this to guide the
user in selecting the next work-item [26]. This is related to the use of case-based
reasoning in workflow systems [30]. Most related to our work is the prediction
service presented in [11]. This service predicts the completion time of cases by
using non-parametric regression [8,11]. In [10] different techniques are compared
using a case study including various heuristics and the prediction service pre-
sented in [11]. In [25] it is shown that the interaction between cases and the
availability of resources are important factors when predicting the remaining
time until completion. The topic of time prediction was also discussed in [20],
but no concrete prediction technique was proposed. Instead the problem of hav-
ing cross-trained resources (i.e., resources that are more flexible to perform also
other tasks) on performance prediction was highlighted. Eder et al. [13, 14] also
looked into time management in workflow systems. However, the focus of their
work is more on scheduling and escalation and like in [10,20] assuming that the
workflow is known beforehand and stable. Also related is the prediction engine of
Staffware [25,28] which is using simulation to complete audit trails with expected
information about future events. This particular approach is rather unreliable
since it is based on one run through the system using a copy of the actual engine.
Hence, no probabilities are taken into account and there is no means of “learn-
ing” to make better predictions over time. A more refined approach focusing on
the transient behavior (called “short-term simulation”) is presented in [24].

The approach presented in this paper differs from existing approaches in
various ways. First of all, an explicit process model (i.e., the annotated transi-
tion system) is constructed (unlike heuristics or simple regression models) and
this model is used for predictions. Second, the degree of abstraction can be ad-
justed based on the questions at hand and the volume of historic information.

Note that the process model can become more fine-grained once more data is
available. Third, the approach allows for better diagnostics (unlike for example
the non-parametric regression approach [11]). Finally, the approach has a better
performance compared to approaches based on simulation or regression (both in
terms of quality of prediction and computation time).

3 Transition System Generation Using Abstractions

This section describes the basis for our prediction approach. We first show how
to construct a transition system based on an event log. In Section 4, we annotate
this transition system and use it to predict e.g. completion times.

3.1 Preliminaries

To explain the different strategies for constructing transition systems from event
logs, we need the following notations.

f ∈ A→ B is a function with domain A and range B . f ∈ A 7→ B is a partial
function, i.e., the domain of f may be a subset of A.

A multi-set (also referred to as bag) is like a set where each element may
occur multiple times. For example, [a, b2, c3, d , d , e] is the multi-set with nine
elements: one a, two b’s, three c’s, two d ’s, and one e.

IB(A) = A → N is the set of multi-sets (bags) over a finite domain A, i.e.,
X ∈ IB(A) is a multi-set, where for each a ∈ A, X (a) denotes the number of times
a is included in the multi-set. For example, if X = [a, b2, c3, d], then X (b) = 2
and X (e) = 0. The sum of two multi-sets (X + Y), the difference (X −Y), the
presence of an element in a multi-set (x ∈ X), and the notion of subset (X ≤ Y)
are defined in a straightforward way. For example, [a, b2, c3, d] + [c3, d , e2, f 3] =
[a, b2, c6, d2, e2, f 3]. Moreover, we also apply these operators to sets, where we
assume that a set is a multi-set in which every element occurs exactly once. The
operators are also robust with respect to the domains of the multi-sets, i.e., even
if X and Y are defined on different domains, X + Y , X − Y , and X ≤ Y are
defined properly by extending the domain where needed. | X |=

∑
a∈A X (a) is

the cardinality of some multi-set X over A. set(X) transforms a bag X into a
set, i.e., set(X) = {a ∈ X | X (a) > 0}.
P(A) is the powerset of A, i.e., P(A) = {X | X ⊆ A}.
For a given set A, A∗ is the set of all finite sequences over A. A finite se-

quence over A of length n is a mapping σ ∈ {1, . . . ,n} → A. Such a sequence is
represented by a string, i.e., σ = 〈a1, a2, . . . , an〉 where ai = σ(i) for 1 ≤ i ≤ n.
hdk (σ) = 〈a1, a2, . . . , ak min n〉, i.e., the sequence consisting of the first k el-
ements (if possible). Note that hd0(σ) is the empty sequence and for k ≥ n:
hdk (σ) = σ. tlk (σ) = 〈a(n−k+1) max 1, ak+2, . . . , an〉, i.e., the sequence composed
of the last k elements (if possible). Note that tl0(σ) is the empty sequence and
for k ≥ n: tlk (σ) = σ. σ ↑ X is the projection of σ onto some subset X ⊆ A, e.g.,
〈a, b, c, a, b, c, d〉 ↑ {a, b} = 〈a, b, a, b〉 and 〈d , a, a, a, a, a, a, d〉 ↑ {d} = 〈d , d〉.

For any sequence σ over A, the Parikh vector par(σ) maps every element a
of A onto the number of occurrences of a in σ, i.e., par(σ) ∈ IB(A) where for
any a ∈ A: par(σ)(a) =| σ ↑ {a} |. Later, we will use the Parikh vector to count
the number of times an activity occurs in a log trace.

3.2 Event logs

The goal of process mining is to extract knowledge about a particular (business)
process from event logs, i.e., process mining describes a family of a-posteriori
analysis techniques exploiting the information recorded in audit trails, transac-
tion logs, databases, etc. Typically, these approaches assume that it is possible
to sequentially record events such that each event refers to an activity (i.e., a
well-defined step in the process) and is related to a particular case (i.e., a process
instance). Furthermore, some mining techniques use additional information such
as the performer or originator of the event (i.e., the person / resource executing
or initiating the activity), the timestamp of the event, or data elements recorded
with the event (e.g., the size of an order). Today, many information systems
record such information. To explain the kind of input needed for process mining
and our prediction approach, we first define the concept of an event.

Definition 1 (Event, Property). Let E be the event universe, i.e., the set of
all possible events identifiers, and T the time domain. We assume that events are
characterized by various properties, e.g., an event has a timestamp, corresponds
to an activity, is executed by a particular person, has associated costs, etc. We
do not impose a specific set of properties, however, given the focus of this paper,
we assume that one of these properties is the timestamp of the event, i.e., there
is a function propT ∈ E → T assigning timestamps to events. As a shorthand,
we denote e = propT (e), i.e., the time of an event e ∈ E.

So an event e is described by some unique identifier and can have sev-
eral properties. In this paper, we focus on the timestamp of an event e =
propT (e). However, other properties such as the person executing the event
(propresource(e)), the name of the corresponding activity (propA(e)), the cost of
an event (propcost(e)), etc. can be used both for process discovery and prediction
techniques presented in thus paper.

An event log is simply a set of events. Each event in the log is linked to a
particular trace and globally unique, i.e., the same event cannot occur twice in
a log. Note that a trace in a log represents a particular process instance also
referred to as “case” (e.g., a customer order, the treatment of a patient, or an
insurance claim). Moreover, time should be non-decreasing within each trace in
the log.

Definition 2 (Trace, Event log). A trace is a finite sequence of events σ ∈ E∗
such that each event appears only once and time is non-decreasing, i.e., for
1 ≤ i < j ≤| σ |: σ(i) 6= σ(j) and σ(i) ≤ σ(j). C is the set of all possible
traces (including partial traces). An event log is a set of traces L ⊆ C such
that each event appears at most once in the entire log, i.e., for any σ1, σ2 ∈ L:
set(par(σ1)) ∩ set(par(σ2)) = ∅ or σ1 = σ2.

Note that σ(i) ≤ σ(j) means that time is non-descending (i.e., propT (σ(i)) ≤
propT (σ(j)) if i occurs before j). In the expression “set(par(σ1))∩set(par(σ2))”
traces are converted into multi-sets using par which in turn are converted into
sets using set. This is done to ensure that events are globally unique and do not
appear in multiple traces.

Table 1 shows a fragment of some event log. Only two traces are shown,
both containing 4 events. Each event has a unique id and several properties. For
example event 35654423 is an instance of activity A that occurred on December
30th at 11.10, was executed by John, and costed 300 euros. The second trace
starts with event 35655526 and also refers to an instance of activity A.

Table 1. A fragment of an event log.

event id properties
timestamp activity resource cost . . .

35654423 30-12-2008:11.10 A John 300 . . .
35654424 30-12-2008:15.21 B John 400 . . .
35654425 30-12-2008:15.35 C John 100 . . .
35654426 30-12-2008:15.55 D John 400 . . .

35655526 29-12-2008:16.15 A Ann 300 . . .
35655527 30-12-2008:16.05 C John 450 . . .
35655528 30-12-2008:16.25 B Pete 350 . . .
35655529 31-12-2008:10.55 D Ann 300 . . .

.

3.3 Constructing a Transition System

One of the goals of process mining is to extract process models from logs such
as the one depicted in Table 1. In this paper, we partly use the approach pre-
sented in [3]. We first define a transition system. A transition system is a triplet
(S ,E ,T) where S is the state space (i.e., possible states of the process), E is
the set of event labels (i.e., transition labels), and T ⊆ S × E × S is the transi-
tion relation describing how the system can move from one state to another. A
transition (s1, e, s2) ∈ T describes that the process can move from state s1 to s2

by an event labeled e. This is often denoted as s1
e→ s2. A transition system has

some initial state and set of final states. The set of behaviors possible according
to a transition system is given by all “walks” from the initial state to some final
state. Hence a trace is possible according to the transition system if it corre-
sponds to such a “walk” in the transition system. So the goal is to come up with
a transition system that given an event log, characterizes the observed behaviors
well. Typically, one aims at a model that allows for most of the behavior in the

log and not “too much” additional behavior. Before discussing the delicate bal-
ance between “overfitting” en “underfitting”, we first provide the general idea
of extracting a transition system from an event log.

It is natural to assume that at any point in time a process instance is in some
state and that this state depends on its history. Hence, any prefix of a trace in
the log should be mapped onto some state. The state representation function
takes care of this.

Definition 3 (State representation). A state representation function lstate

is a function that, given a (partial) trace σ produces some representation. For-
mally, lstate ∈ C → R where C is the set of possible traces and R is the set of
possible (state) representations (e.g., sequences, sets, or bags over one or more
event properties).

Assume that σ is the partial trace consisting of the first two events in Table 1.
One possibility is that function lstate maps σ on the last activity, i.e., the activity
name property of the last event in σ. So lstate(σ) = B . Another possibility is
that function lstate maps σ onto the set of resources that have worked on the
process instance, i.e., lstate(σ) = {John}. Note that these two examples use
abstractions, e.g., only the last activity is relevant or only the people that have
worked on the case are relevant. It is also possible to have no abstractions, i.e.,
lstate(σ) = σ. However, as we will see later, it is impossible to make predictions
without some form of abstraction.

Just like we need to label the states in the transition system, we also need to
label events. Note that any event e in the log extends a partial trace σ1 into a
longer trace σ2 = σ1; 〈e〉, i.e., σ1 concatenated with the sequence just containing
event e. In the transition system there should be a transition connecting state
lstate(σ1) to state lstate(σ2). This transition has an event label levent(e), based
on some event representation function levent.

Definition 4 (Event representation). An event representation function levent

is a function that, given an event e produces some representation. Formally,
levent ∈ E → R where E is the set of possible events and R is the set of possible
(event) representations (e.g., the corresponding activity name).

Based on particular lstate and levent functions, we can define the transition
system. The approach is very simple. The states in the transition system cor-
respond to prefixes in the log mapped to the desired representation using a
particular state representation function lstate. Moreover, the transition relation
is computed by “replaying” the traces on the transition system while using the
event representation function levent.

Definition 5 (Transition system). Let L ⊆ C be an event log. Given a state
representation function lstate and an event representation function levent, we
define a labeled transition system TS = (S ,E ,T) where S = {lstate(hdk (σ)) |
σ ∈ L ∧ 0 ≤ k ≤| σ |} is the state space1, E = {levent(σ(k)) | σ ∈ L ∧
1 Recall that hdk (σ) is a prefix of σ, i.e., the sequence consisting of the first k elements

of σ (cf. Section 3.2).

1 ≤ k ≤| σ |} is the set of events labels, and T ⊆ S × E × S with T =
{(lstate(hdk (σ)), levent(σ(k + 1)), lstate(hdk+1(σ))) | σ ∈ L ∧ 0 ≤ k <| σ |} is
the transition relation. S start = {lstate(〈〉)} is the singleton set of initial states.
S end = {lstate(σ) | σ ∈ L} is the set of final states.

The set of states of the transition system is determined by the range of func-
tion lstate when applied to the log data. The transitions in the transition system
have a label based on function levent. The naive algorithm for constructing a
transition system is straightforward: for every trace σ, iterating over k (i.e. 0 6
k 6| σ |), we create a new state lstate(hdk (σ)) if it does not exist yet. Then the

traces are scanned for transitions lstate(hdk (σ))
levent(σ(k+1))−→ lstate(hdk+1(σ))

and these are added if they do not exist already. So given concrete functions
lstate and levent, it is possible to automatically build a transition system.

past

current state

unknown
future

partial trace

history

full traces

predictprocess
discovery

annotated
transition
system

unknown
completion

time

predicted
completion

time

Fig. 2. Illustrating the approach using an example trace with a known past and an
unknown future.

Figure 2 shows an example of a trace represented as a sequence of ac-
tivity names 〈A,B ,C ,D ,C ,D ,C ,D ,E ,F ,A,G ,H ,H ,H , I 〉. After the prefix
〈A,B ,C , D ,C ,D ,C ,D ,E 〉 is executed it is in principle unknown that the “fu-
ture” is 〈F ,A,G ,H ,H ,H , I 〉 and that the process instance ends at a particular
time. However, based on the event log consisting of full traces executed in the
past, one can construct a transition system as sketched in Figure 2. Moreover,
based on the prefix 〈A,B ,C ,D ,C ,D ,C ,D ,E 〉 and lstate, one can determine the
current state in the transition system. Based on this a prediction is made as will
be elaborated later.

3.4 Abstraction

Based on a log L and the lstate and levent functions, a transition system is de-
fined. The key element is to select the right lstate and levent functions. In the
extreme case, lstate(σ) = σ and levent(e) = e for any prefix σ and event e. In
this case, there are no abstractions and all states (except the initial state) are
visited only once when replaying the event log. Hence, every new process in-
stance will be unique and one cannot learn form earlier instances. Clearly, this
is undesirable and some degree of abstraction is needed. Therefore, we consider
an example where some form of abstraction is used. Assume we have an event
log and we are only interested in activity names. Suppose that propA ∈ E → A
is a function mapping events onto the corresponding activity names. Figure 3
refers to such a log without showing the complete log, i.e., just a few traces
are shown. Also note that per event only the activity name is shown and other
properties and the event’s id are not shown. The first line in the log shown in
Figure 3 could refer to the first event in Table 1. Since we are only interested
in activity names, it makes sense to choose the event representation function
such that levent(e) = propA(e). Now assume that we let states only depend on
the occurrences of earlier activities, i.e., the order is not important. Moreover,
we do not distinguish between the single execution of an activity and multiple
executions of this activity. This corresponds to the state representation func-
tion lstate1 (σ) = {propA(e) | e ∈ σ} (for σ ∈ L or some prefix). Alternatively,
one could argue that the order is important and choose the state representation
function lstate2 (σ) = 〈propA(σ(1)), propA(σ(2)), . . . , propA(σ(| σ |))〉 (for σ ∈ L).
Figure 3 shows the result of applying these two state representation functions.
Note that the transition system in Figure 3(b) is more precise than Figure 3(a),
i.e., a weaker abstraction is used. For example, lstate2 distinguishes between ac-
tivity sequences 〈A,B ,C 〉 and 〈A,C ,B〉 while lstate1 does not.

Note that both transition systems provided in Figure 3 can replay the log,
i.e., any trace corresponds to a walk in the transition system starting in a initial
state and ending in a final state. This shows that the transition system indeed
reflects the behavior seen in the log. In Figure 3, initial and final states are
denoted using “small dangling arcs” going into respectively out of the respective
nodes.

When building a transition system, we aim at a balance between “overfitting”
and “underfitting”. Therefore, we elaborate on these two notions. Let L be a log
and TS be a transition system.

– TS is overfitting L if TS does not generalize and is sensitive to particularities
in L. In an extreme case, TS could merely be a representation of the log
without any inference. A mining algorithm is producing overfitting models
if the removal or addition of a small percentage of the process instances in
L would lead to a remarkably different model. In a complex process with
many possible paths, most process instances will follow a path not taken by
other instances in the same period. Therefore, it is undesirable to construct
a model that allows only for the paths that happened to be present in the
log as this is only a fraction of all possible paths. If one knows that only

ABCD
ACBD
AED
ABCD
ABCD
AED
ACBD
...

{}
A

{A} {A,C}
C

{A,B}

B

{A,B,C}
C

{A,B,C,D}
D

{A,E} {A,D,E}
D

E

(a) transition system based on sets

B

<>
A

<A> <A,E>
E

<A,E,D>
D

<A,B>

B

<A,B,C>
C

<A,B,C,D>
D

<A,C> <A,C,B>
B

<A,C,B,D>
D

C

(b) transition system based on sequences

Fig. 3. Two example transition systems extracted from the same log us-
ing (a) lstate1 (σ) = {propA(e) | e ∈ σ} and (b) lstate2 (σ) =
〈propA(σ(1)), propA(σ(2)), . . . , propA(σ(| σ |))〉 as state representation functions.

a fraction of the possible event sequences are in the log, the only way to
avoid overfitting is to generalize and have a model TS that allows for more
behavior than recorded in L.

– TS is underfitting L if TS allows for “too much behavior” that is not sup-
ported by L. This is also referred to as “overgeneralization”. It is very easy
to construct a model that allows for the behavior seen in the log but also
completely different behavior. For example, assume a log L consisting of 1000
cases. For each case A is followed by B and there are no cases where B is
followed by A. Obviously, one could derive a causal dependency between A
and B . However, one could also create a model TS where A and B are in
parallel (i.e., all interleavings are included). The latter would not be “wrong”
in the sense that the behavior seen in the log is possible according to the
model. However, it is very unlikely and therefore one could argue that this
TS is underfitting L.

Note that the notions of overfitting and underfitting are orthogonal to “non-
fitting”. A model is non-fitting if the observed traces are not possible according
to the model. An overfitting log that merely encodes all observed traces is still
fitting in the sense that the log could have been produced by the model. An
underfitting log that allows for any trace over a given alphabet is also still fitting
because it does not exclude the observed behavior. There are various ways of
quantifying these notions [21]. This is, however, outside the scope of this paper.

3.5 Examples

To conclude this section, we give some examples of possible abstractions and
illustrate the importance of such abstractions using a real-life example.

Let us first consider abstractions with respect to event names. As indicated
earlier, the event representation function levent(e) = e does not provide any ab-
straction and will result in arcs in the transition system that are taken only once
when relaying a log. A typical abstraction is levent(e) = propA(e), i.e., mapping
the event onto the name of the activity. This was used in Figure 3. Of course other
properties or combinations of properties can be used, e.g., levent(e) = propcost(e)
or levent(e) = (propA(e), propresource(e)). Note that it is also possible to use a
rather rigorous abstraction such as levent(e) = null . Now all events are labeled
null and it becomes impossible to distinguish activities, etc.

Abstractions with respect to states are more involved because they are not
based on a single event but on a sequence of events. Below, we informally discuss
some of the abstraction mechanisms for states.

Abstraction 1: Maximal horizon The basis of the state calculation can
be the complete prefix of some partial prefix. In the latter case, only a subset
of the trace is considered. For example, instead of taking the complete prefix
〈A,B ,C ,D ,C ,D ,C ,D ,E 〉 shown in Figure 2, only the last four (h = 4) events
could be considered: 〈D ,C ,D ,E 〉. In a partial prefix, only the h most recent
events are considered as input for the state calculation. Taking a complete prefix
corresponds to h =∞.

Abstraction 2: Filter The second abstraction is to filter the (partial) prefix,
i.e., certain events are simply not considered when calculating the current state.
For example filtering could be used to project the horizon onto a set of activities
X , i.e., only events that correspond to some activity in X are considered in lstate.
For example, if X = {C ,D}, then the prefix 〈A,B ,C ,D ,C ,D ,C ,D ,E 〉 shown
in Figure 2 is reduced to 〈C ,D ,C ,D ,C ,D〉. Note that the filtering is applied to
the sequence resulting from the horizon. The occurrence of some activity a ∈ X
is considered relevant for the state of a case. If a 6∈ X , then the occurrence of a
is still relevant for the process (i.e., it may appear on the arcs in the transition
system) but is assumed to be irrelevant for determining the state. If a is not
relevant at all, it should be filtered out before and should not appear in L.

Note that the above two abstractions can be swapped. However, the order
influences the result.

Abstraction 3: Sequence, bag, or set The first two abstractions yield a
sequence. The third abstraction mechanism optionally removes the order or fre-
quency from the resulting trace. For the current state it may be less interesting
to know when some activity a occurred and how many times a occurred, i.e.,
only the fact that it occurs within the scope determined by the first three ab-
stractions is relevant. In other cases, it may be relevant to know how many times

a occurred or it may be essential to know whether a occurred before b or not.
This suggests that there are three ways of representing knowledge about the
past:

– sequence, i.e., the order of activities is recorded in the state,
– multi-set of activities, i.e., the number of times each activity is executed

ignoring their order, and
– set of activities, i.e., the mere presence of activities.

Consider again the prefix 〈A,B ,C ,D ,C ,D ,C ,D ,E 〉. The above three possibil-
ities result in 〈A,B ,C ,D ,C ,D ,C , D ,E 〉 (sequence), [A,B ,C 3,D3,E] (multi-
set), or {A,B ,D ,E} (set).

The notations introduced in Section 3.1 can be used to formalize the abstrac-
tions mentioned above. For example, let α(σ) = 〈propA(σ(1)), propA(σ(2)), . . .
, propA(σ(| σ |))〉 be a prefix based on activity names. Then state representation
lstate1 (σ) = set(par(α(σ))) uses the set abstraction without filtering and an in-
finite horizon. lstate2 (σ) = α(σ) uses the sequence abstraction without filtering
and an infinite horizon. lstate3 (σ) = par(tl4(α(σ))) uses the multi-set abstraction
without filtering and finite horizon (h = 4). lstate4 (σ) = par(α(σ) ↑ {a, b, c})
uses the multi-set abstraction after filtering. lstate5 (σ) = set(par(tl10(α(σ)) ↑
{a, b, c})) uses various abstractions, i.e., the state based on a prefix is deter-
mined by which of the activities a, b, and/or c occurred in the last 10 events.

So far, we only used rather academic examples to illustrate issues related to
abstraction and the need to balance between overfitting and underfitting. How-
ever, it is important to realize that these issues are of the utmost importance
when applying process mining in a real-life setting. We have been applying pro-
cess mining in a wide variety of organizations and were often confronted with
spaghetti-like models when applying classical process mining approaches. These
models where typically the result of overfitting, i.e., the models were a correct
reflection of reality, but not very useful.

To illustrate this we show some results based on an event log of a municipality
of about 40.000 citizens in the south of The Netherlands. The event log is based
on the process “Bezwaar WOZ”. Later we will use the same log in one of the
case studies used to evaluate our prediction approach.

The “Bezwaar WOZ” process handles objections (i.e., appeals) against the
real-estate property valuation or the real-estate property tax. We used an event
log with data on 1982 objections handled by the municipality. The log contains
12726 events. Because the actual activity names are not relevant for our discus-
sion here (and because of reasons of confidentiality), we anonymized the process
and replaced names by letters. (The resulting models are not intended to be
readable anyway.)

Figure 4 shows two transition systems generated using our approach. The
larger model was obtained by applying assuming that the state of a case is deter-
mined by the set of activities that have taken place, i.e., lstate(σ) = set(par(α(σ))).
Figure 4(a) shows the whole model and the selected part in a bit more detail.
This model is able to reproduce the event log, i.e., all observed traces can be re-
produced and the model does not allow for any traces not present in the original

1010

(a) only a set
abstraction is

used

(b) only a horizon of one is considered

Fig. 4. Two models discovered using an event log of a Dutch municipality. Although
both models are based on the same log and provide information on the same set of
activities, they are very different. The larger model is clearly overfitting, difficult to
interpret, and, therefore, not very useful. The smaller model is obtained after applying
a more rigorous abstraction (setting the horizon h = 1). This more simple model
provides better insights.

event log. So the model is definitely “correct” but not very useful as it does not
give much insight into the Municipality’s appeal process. The second (smaller)
transition system (cf. Figure 4(b)) was obtained based the same log but now
using a more rigorous abstraction. It uses the abstraction that the state of a
case is determined by only the last activity that has taken place (if any), i.e.,
lstate(σ) = tl1(α(σ)). This simpler model is also able to reproduce the event log,
i.e., all observed traces can be generated by the net. However, the model also
allows for many traces not present in the original log. Note that the two transi-
tion systems in Figure 4 are not supposed to be readable and are only shown to
illustrate the effect of abstraction.

It should be noted that both models in Figure 4 provide information on
identical sets of activities, i.e., the scope is not changed. Both models are able to
reproduce the initial log and no noise or infrequent behavior have been removed
for the smaller model. Therefore, Figure 4 nicely illustrates the relevance of
abstraction. By using an appropriate state representation function lstate and
an appropriate event representation function levent, one can balance between
underfitting and overfitting.

4 Time Prediction

In the previous section, we showed how a transition system can be generated on
the basis of an event log. In this section, we show how this transition system
can be annotated and used for prediction purposes. In Figure 2, we already
showed an overview of the overall approach. Based on the event log, an annotated
transition system is generated. Whenever we want to predict the completion time
of some process instance, we take its partial trace (i.e., the sequence of events
executed thus far) and use the state representation function lstate to map the
partial trace onto a state in the transition system. Here we can learn from the
information collected for earlier process instances that visited the same state.
Using this information, a prediction is made, e.g., based on the average time to
completion for earlier process instances in a similar state.

In this section, we first show how to construct the annotated transition sys-
tem. Then, we show how it can be used for predictions.

4.1 Constructing an Annotated Transition System

The goal is to attach predictive information to the states of the transition system,
e.g., “In this state the average time until completion is 6.5 days”. In order to do
so, we annotate the states with measurements. For example, we scan the history
and for each situation were an instance was in a state s, we annotate the state
with the remaining time until completion. This way states are annotated with
multi-sets of measurements that are used as a basis for predictions.

Table 2. An example log. Each line corresponds to a trace represented as a sequence
of activities with timestamps.

1 〈A00,B06,C 12,D18〉
2 〈A10,C 14,B26,D36〉
3 〈A12,E22,D56〉
4 〈A15,B19,C 22,D28〉
5 〈A18,B22,C 26,D32〉
6 〈A19,E28,D59〉
7 〈A20,C 25,B36,D44〉

As a running example, we use the event log shown in Table 2. Each line
corresponds to a process instance, e.g., the first trace 〈A00,B06,C 12,D18〉 refers
to a process instance where activity A was executed at time 0, activity B was
executed at time 6, activity C was executed at time 12, and activity D was
executed at time 182. For simplicity, execution durations are not considered in
2 Note that we use a more compact representation here, e.g., we assume that the only

two relevant properties are (a) the activity name and (b) the timestamp, and we do
not attach unique id’s to events. As discussed in Section 3.2, events can have many
more properties and are uniquely identifiable.

this example and we assume that each instance starts with the execution of its
first event.

Suppose we use a state representation function lstate that represents partial
traces by the set of activities that have been executed. Now consider all prefixes
of the first trace 〈A00,B06,C 12,D18〉. The empty prefix 〈 〉 maps onto state ∅ and
has a remaining time of 18 time units.3 Therefore, we add 18 to the annotation
of state ∅. The prefix 〈A00〉 maps onto state {A} and also has a remaining
time of 18. Therefore, we add 18 to the annotation of state {A}. The prefix
〈A00,B06〉 maps onto state {A,B} and has a remaining time of 18 − 6 = 12
time units. Therefore, we add 12 to the annotation of state {A,B}. The prefix
〈A00,B06,C 12〉 results in the addition of annotation “6” to state {A,B ,C} and
finally prefix 〈A00,B06,C 12,D18〉 results in the addition of annotation “0” to
state {A,B ,C ,D}. This process is repeated for all other traces. Consider for
example the third trace 〈A12,E 22,D56〉. The empty prefix 〈 〉 maps onto state
∅ and has a remaining time of 56 − 12 = 44 time units. Therefore, we add 44
to the annotation of state ∅. The prefix 〈A12〉 maps onto state {A} and also
has a remaining time of 44. Therefore, we add 44 to the annotation of state
{A}. The prefix 〈A12,E 22〉 maps onto state {A,E} and has a remaining time of
56−22 = 34 time units. Therefore, we add 34 to the annotation of state {A,E}.
Etc. After we have followed this procedure for the whole log in Table 2, then state
∅ is annotated with a bag containing seven elements: [18, 26, 44, 13, 14, 40, 24].
State {A,E} is annotated with a bag containing two elements: [34, 31]. State
{A,B ,C} is annotated with a bag containing five elements: [6, 10, 6, 6, 8]. State
{A,B ,C ,D} is also annotated with a bag containing five elements: [0, 0, 0, 0, 0].

The following definition formalizes the way of annotating states described
before. Each full trace is split into a prefix σ1 (“the part that already took
place”) and the postfix σ2 (“the part that still needs to happen”). Based on
this a measurement lmeasure(σ1, σ2) is generated that can be attached to the
corresponding state. Note that it is crucial that we have full historic information,
i.e., although we only consider σ1 to determine the corresponding state lstate(σ1),
we can use both the “past” σ1 and “future” σ2 to generate a measurement.

Definition 6 (Measurement). A measurement function lmeasure is a function
that, given a prefix trace σ1 and a postfix trace σ2 produces some measurement
lmeasure(σ1, σ2), e.g., the remaining time until completion. Formally, lmeasure ∈
(C × C) →M where C is the set of possible traces and M is the set of possible
measurement values (e.g., some time duration).

In principle, different measurement functions can be used. Thus far, we fo-
cused on the remaining time until completion. If this is the thing we want to
predict, the following measurement function should be used:

3 This is the best guess we can make as the first event is at time 0 and the last one is
at time 18.

lmeasureremaining(σ1, σ2) =

0 if σ2 = 〈〉
maxT (σ2)−minT (σ2) if σ1 = 〈〉 and σ2 6= 〈〉
maxT (σ2)−maxT (σ1) if σ1 6= 〈〉 and σ2 6= 〈〉

where maxT (σ) = max{e | e ∈ σ} and minT (σ) = min{e | e ∈ σ}. To illus-
trate lmeasureremaining consider the first trace in Table 2 after executing the first two
activities. The full trace (〈A00,B06,C 12,D18〉) is split into σ1 = 〈A00,B06〉 and
σ2 = 〈C 12,D18〉. For this particular situation lmeasureremaining(σ1, σ2) = maxT (〈C 12,D18〉)−
maxT (〈A00,B06〉) = 18− 6 = 12.

As mentioned before, different measurement functions can be used. For ex-
ample the function that considers the time that has already elapsed:

lmeasureelapsed (σ1, σ2) =
{

0 if σ1 = 〈〉
maxT (σ1)−minT (σ1) if σ1 6= 〈〉

Note that this function has no predictive value. It is merely added to show
another example. The total time can be measured as follows:

lmeasuretotal (σ1, σ2) =
{

0 if σ1; σ2 = 〈〉
maxT (σ1; σ2)−minT (σ1; σ2) if σ1; σ2 6= 〈〉

It is easy to see that lmeasuretotal (σ1, σ2) = lmeasureelapsed (σ1, σ2)+ lmeasureremaining(σ1, σ2). One
can also measure the time spent in a particular state:

lmeasuresojourn (σ1, σ2) =
{

0 if σ1 = 〈〉 or σ2 = 〈〉
minT (σ2)−maxT (σ1) if σ1 6= 〈〉 and σ2 6= 〈〉

Note that lmeasuresojourn (σ1, σ2) is included in lmeasureelapsed (σ1, σ2).
The functions listed above are all related to the duration of a process instance.

It is also possible to provide completely other measurement functions using the
principle of knowing both the past σ1 and the future σ2 of earlier instances.

– One can define a function that determines whether some activity x will take
place in the future. Such as measurement function can be used to predict
the probability of certain desirable or undesirable effects.

– One can define a function that measures the time until a particular activity
x is executed. This is useful if the process has so-called milestones and one
is interested in the moment the milestone will be reached.

– One can have functions associated to costs, e.g., “What will the total cost
of a case be?”.

– One can have functions related to service level agreements, e.g., “Will the
case be finished in four weeks?”.

– One can have functions related to resources, e.g., “Will a particular resource
be used for this case?”.

– Etc.

The above examples show that our approach allows for all kinds of measure-
ments and that there are many interesting application scenarios. However, in
the remainder we focus on lmeasureremaining , i.e., the time until completion.

Using a log, a transition system, and a measurement function lmeasure, we
can annotate the transition system as described before.

Definition 7 (Annotated transition system). Let L ⊆ C be an event log
and TS = (S ,E ,T) a transition system obtained based on a state representa-
tion function lstate and an event representation function levent. For a particular
measurement function lmeasure ∈ (C × C) → M, we construct an annotation
A ∈ S → IB(M) where for any s ∈ S:4

A(s) =
∑
σ ∈ L

∑
0 ≤ k ≤| σ |

s = lstate(hdk (σ))

[
lmeasure(hdk (σ), tl|σ|−k (σ))

]

(S ,E ,T ,A) is an annotated transition system parameterized by L, lstate, levent,
and lmeasure.

Function A attaches a bag of measurements to each state, i.e., A(s) is a
multi-set. Note that the two

∑
operators range over all prefixes that correspond

to a particular state s. Then for each prefix that maps onto s, a measurement
lmeasure(hdk (σ), tl|σ|−k (σ)) is added to corresponding multi-set.

ABCD
ACBD
AED
ABCD
ABCD
AED
ACBD

{}
A

{A} {A,C}
C

{A,B}

B

{A,B,C}
C

{A,B,C,D}
D

{A,E} {A,D,E}
D

E

B

Fig. 5. The annotated transition system based on the log shown in Table 2 using
lmeasureremaining .

Figure 5 shows an annotated transition system. It is based on the log shown
in Table 2. Some example annotations are: A(∅) = [18, 26, 44, 13, 14, 40, 24],

4 Note that
[
lmeasure(hdk (σ), tl|σ|−k (σ))

]
denotes a multi-set containing precisely one

element (a particular measurement). Using the two
∑

operators multi-sets are joined
into larger multi-sets to collect all relevant measurements for a particular state s.

A({A,E}) = [34, 31], A({A,B ,C}) = [6, 10, 6, 6, 8], and A({A,B ,C ,D}) =
[0, 0, 0, 0, 0]. Note that the annotated transition system is completely deter-
mined by choosing L, lstate, levent, and lmeasure. The annotated transition sys-
tem Figure 5, is completely parameterized by (a) the log shown in Table 2, (b)
lstate(σ) = set(par(α(σ))), (c) levent(e) = propA(e), and (d) lmeasure(σ1, σ2) =
lmeasureremaining(σ1, σ2).

4.2 Predictions

Next we show how an annotated transition system (like the one in Figure 5)
can be used for making predictions. Consider a new case N that did not yet
finish. The partial trace observed so far is σN = 〈A85,E 95〉 (using the shorthand
notation also used in Table 2), i.e., activity A occurred at time 85 and E occurred
at time 95. lstate(σN) = {A,E}. For this state we have two earlier measurements:
31 and 34 (A(lstate(σN)) = [34, 31]). Hence, the best prediction for the remaining
time until completions seems to be the average of 31 and 34, i.e., 32.5. Therefore,
it can be predicted that the completion time will be 95 + 32.5 = 127.5. This
example shows that we need a prediction function that converts a multi-set of
measurements into a single value.

Definition 8 (Prediction function). A prediction function is a function that,
given a bag a measurements produces some prediction, e.g., the average. For-
mally, predict ∈ IB(M)→M, i.e., for some bag of measurements b, predict(b)
returns some prediction.

An obvious choice for predict is simply taking the average. However, be-
fore defining prediction functions we stress that the bag b = A(s) for a par-
ticular state s should be seen as a sample. In statistics, a sample is a (hope-
fully) representative subset of an unknown population. Let us assume that
b = [b1, b2, . . . , bn], i.e., the n measurements linked to state s are taken as a
sample. The sample mean is defined as follows: b =

∑n
i=1 bi

n . The sample mean
is a good estimator of the population mean, i.e., b is the best guess for real
expected value. Based on this we define predictaverage(b) = b as a prediction
function.

If the sample b = [b1, b2, . . . , bn] is taken as a population, the sample variance

is s2
n =

∑n
i=1(bi−b)2

n . If s2
n is small, then the values in the sample are closer

together. If s2
n is large, then the values in the sample are further apart. s2 =∑n

i=1(bi−b)2

n−1 is an unbiased estimator of the population variance, i.e., it is the
best guess for the real variance knowing that we have only seen a subset of the
whole population. Note that s2

n and s2 converge for larger values of n.
The square root of the variance, called the standard deviation, has the same

unit as the original variable and, for this reason, is easier to interpret. Therefore,
predictstdev (b) =

√
s2 is another example of a prediction function.

Other prediction functions can be used for the measurements, for example
predictmin(b) = min{b1, b2, . . . , bn} or predictmax (b) = max{b1, b2, . . . , bn}.

Note that these are not really estimators for the whole population, but only
for the sample. Nevertheless, these functions provide interesting information,
especially if many measurements are linked to the states. Based on a particular
prediction function predict, we can define the notion of a prediction.

Definition 9 (Prediction). Let L ⊆ C be an event log and (S ,E ,T ,A) an an-
notated transition system parameterized by L, lstate, levent, and lmeasure. More-
over, let predict ∈ IB(M) →M be a prediction function. For any partial trace
σN , the predicted value is predict(A(lstate(σN))) if lstate(σN) ∈ S.

As the above definition shows, a prediction for a running instance is made
by looking up the state corresponding to the partial trace σN . For this state
there have been a number of measurements and using an appropriate prediction
function a prediction is made. Note that it is only possible to make a meaning-
ful prediction if the calculated state is in the annotated transition system (i.e.
lstate(σN) ∈ S) and there are a reasonable number of measurements for this
state.

{}
A

{A} {A,C}
C

{A,B}

B

{A,B,C}
C

{A,B,C,D}
D

{A,E} {A,D,E}
D

E

B

[18,26,44,13,
14,40,24]

[34,31] [0,0]

[0,0,0,0,0][6,10,6,6,8]

[22,19]

[12,9,10]

[18,26,44,13,
14,40,24]

average: 25.75
st. dev.: 12.25
min: 13
max: 44

average: 25.75
st. dev.: 12.25
min: 13
max: 44

average: 0
st. dev.: 0
min: 0
max: 0

average: 0
st. dev.: 0
min: 0
max: 0

average: 32.5
st. dev.: 2.12
min: 31
max: 34

average: 20.5
st. dev.: 2.12
min: 19
max: 22

average: 10.33
st. dev.: 1.53
min: 9
max: 12

average: 7.2
st. dev.: 1.79
min: 6
max: 10

Fig. 6. The annotated transition system showing per state: the average, standard de-
viation, minimum, and maximum remaining time until completion.

Figure 6 shows per state predictions based on predictaverage , predictmin ,
predictmax , predictstdev . For example, process instances that have completed
activities A, B , and C (but not yet D) have an expected remaining processing
time of 7.2. At the start, when no information is available yet, the predicted
remaining processing is 25.75.

5 Implementation

The work presented in this paper is supported by various plug-ins of our process
mining tool ProM [1, 2, 21]. The first version of ProM was released in 2004.
The initial goal of ProM was to unify process mining efforts at Eindhoven
University of Technology and other cooperating groups [4]. Traditionally, most
analysis tools focusing on processes are restricted to model-based analysis, i.e.,
a model is used as the starting point of analysis. Such analysis is only useful if
the model reflects reality. Process mining techniques use event logs as input, i.e.,
information recorded by systems ranging from information systems to embedded
systems. Hence the starting point is not (only) some model, but the “observed
reality”. Since predictions are also based on observations, like other process
mining techniques, ProM is a good basis to implement the ideas presented in
this paper.

ProM is open source and uses a plug-able architecture, e.g., people can
add new process mining techniques by adding plug-ins without spending any
efforts on the loading and filtering of event logs and the visualization of the
resulting models. One of the first plug-ins was the plug-in implementing the α-
algorithm [5], i.e., a technique to automatically derive Petri nets from event logs.
Currently, ProM provides 274 plug-ins.5 To facilitate a basic understanding of
the scope and architecture of ProM, we briefly describe the six types of plug-ins
supported by ProM:

– Mining plug-ins implement some mining algorithm, e.g., the α-miner to dis-
cover a Petri net, the FSM miner to discover a transition system, or the
social network miner to discover a social network.

– Export plug-ins implement some “save as” functionality for specific objects
in ProM. For example, there are plug-ins to save Petri nets, EPCs, social
networks, YAWL models, spreadsheets, etc. often also in different formats
(PNML, CPN Tools, EPML, AML, etc.).

– Import plug-ins implement an “open” functionality for specific objects, e.g.,
load instance-EPCs from ARIS PPM or BPEL models from WebSphere.

– Analysis plug-ins which typically implement some property analysis on some
mining result. For example, for Petri nets there is a plug-in which constructs
place invariants, transition invariants, and a coverability graph. However,
there are also analysis plug-ins to compare a log and a model (i.e., confor-
mance checking) or a log and an LTL formula. Moreover, there are analysis
plug-ins related to performance measurement (e.g., projecting waiting times
onto a Petri net).

– Conversion plug-ins implement conversions between different data formats,
e.g., from EPCs to Petri nets or from Petri nets to BPEL.

– Log filter plug-ins implement different ways of “massaging” the log before
applying process mining techniques. For example, there are plug-ins to select

5 This paper uses the ProM Nightly Build of 9-1-2009. ProM can be downloaded
from www.processmining.org.

different parts of the log, to abstract from infrequent behavior, clean the log
by removing incomplete cases, etc.

In this paper we do not elaborate on the architecture and implementation frame-
work for plug-ins (for this we refer to earlier papers [1, 2, 21]). Instead we focus
on the new prediction functionality.

First of all, ProM provides the so-called FSM Miner plug-in [3] to extract
a transition system from an event log. The FSM Miner is an example of mining
plug-in in the classification given above. The basic functionality of this plug-in
is to create a transition system based on an event log, i.e., it implements Def-
inition 5 and supports the abstractions presented in Section 3.5. In fact, even
more abstractions and perspectives are supported, e.g., also data elements, re-
sources, transactional information, etc. can be used to build a transition system.
As shown in [3], the FSM Miner can be used for various purposes. For example,
using the Theory of Regions, the transition system can be converted into a Petri
net or some other higher-level representation. However, the FSM Miner does not
provide any functionality directly related to prediction.

For this paper, we implemented another plug-in called the FSM Analyzer
which takes a transition system and an event log as input. The output of the FSM
Analyzer is a transition system extended with information useful for predictions.
For example, the FSM Analyzer can produce results such as shown Figure 6. The
FSM Analyzer is an example of an analysis plug-in in the classification given
earlier. Figure 7 shows a screenshot of the FSM Analyzer.

Fig. 7. Screenshot of the FSM Analyzer showing some results for the log described in
Table 2.

The FSM Analyzer visualizes the transition system and by default shows
information about elapsed times (i.e., the average time to reach a particular
state based on lmeasureelapsed), sojourn times (i.e., the average time spent in a par-
ticular state based on lmeasuresojourn), and remaining times (i.e., the average time to
reach the end from this state lmeasureremaining). The user can select the time unit, the
measurement function, and the coloring function. The measurement function
is the implementation of predict (cf. Definition 8) and currently average, vari-
ance, minimum, maximum, frequency, sum, standard deviation, and median are
supported. The coloring function determines the coloring of arcs and nodes. In
Figure 7 the colors are based on the remaining time until completion. The nodes
indicated in red represent states from which the predicted time until completion
is long. The nodes indicated in blue represent states from which the predicted
time until completion is short. The nodes that are yellow correspond to states
which fall in-between these two categories. A similar coloring is applied to arcs,
e.g., if it typically takes a long time to move from one node to another, then
the corresponding arc is colored red. The coloring can be customized by setting
thresholds, etc.

The result of the FSM Analyzer can be used to make predictions at run-
time. For this we use the same approach as the recommendation service [26] and
the earlier prediction service [11]. The basic idea is that some run-time environ-
ment supplies a partial trace and waits for a recommendation or prediction as
described in Definition 9. Note that this only requires a lookup in the result pro-
vided by the FSM Analyzer. To realize this, the link between Declare [19] and
ProM described in [26] can be used. Declare is a workflow management sys-
tem providing more flexibility than the traditional systems by supporting various
declarative languages (DecSerFlow, ConDec, etc.) rather than some fixed proce-
dural language [19]. In [26] it is shown how ProM can be used to recommend the
next step based on the analysis of historic data. Although the recommendation
service described in [26] is a very specific application using predictions, a similar
interface can be used for the broad spectrum of predictions based on the output
of the FSM Analyzer (also see [8]).

In this paper, we do not elaborate on the link between ProM and Declare.
Instead we refer to [8,26]. Moreover, we would like to stress that the idea and im-
plementation are not specific for Declare. Any workflow management system
can be taken and extended with prediction functionality based on the FSM An-
alyzer. The only functionality required is that the workflow management system
stores event logs and is able to supply a partial trace when it needs a prediction.

To further illustrate the functionality of the FSM Analyzer, we revisit our
running example. Figure 8 shows two transition systems derived from Table 2
using ProM’s FSM Miner. These are the same transition systems as shown in
Figure 3, but now automatically generated by ProM. Figure 8(a) is based on
the set abstraction and Figure 8(b) uses the sequence abstraction. Both only
consider the activity names and no other properties. The FSM Analyzer has
been applied to both transition systems resulting in the two diagrams depicted

[[A, C]]
 sojourn = 11.5
 elapsed = 4.5

 remaining = 20.5

[[A, D, E]]
 sojourn = 0.0

 elapsed = 42.0
 remaining = 0.0

[[A]]
 sojourn = 6.0
 elapsed = 0.0

 remaining = 25.5714285

[[A, B, C]]
 sojourn = 7.2

 elapsed = 11.8
 remaining = 7.2

[[A, B]]
 sojourn = 4.33333333
 elapsed = 4.66666666

 remaining = 10.3333333

[[A, B, C, D]]
 sojourn = 0.0

 elapsed = 19.0
 remaining = 0.0

[[]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 25.5714285

[[A, E]]
 sojourn = 32.5
 elapsed = 9.5

 remaining = 32.5

D
complete

D
complete

A
complete

C
complete

B
complete

E
complete

B
complete

C
complete

(a) Predictions based on the set ab-
straction

[{0=C, 1=B, 2=A}]
 sojourn = 6.0
 elapsed = 9.0

 remaining = 6.0

[{0=C, 1=A}]
 sojourn = 11.5
 elapsed = 4.5

 remaining = 20.5

[{0=D, 1=E, 2=A}]
 sojourn = 0.0

 elapsed = 42.0
 remaining = 0.0

[{0=A}]
 sojourn = 6.0
 elapsed = 0.0

 remaining = 25.5714285

[{0=D, 1=C, 2=B, 3=A}]
 sojourn = 0.0

 elapsed = 15.0
 remaining = 0.0

[{0=B, 1=C, 2=A}]
 sojourn = 9.0

 elapsed = 16.0
 remaining = 9.0

[{0=B, 1=A}]
 sojourn = 4.33333333
 elapsed = 4.66666666

 remaining = 10.3333333

[{0=D, 1=B, 2=C, 3=A}]
 sojourn = 0.0

 elapsed = 25.0
 remaining = 0.0

[{}]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 25.5714285

[{0=E, 1=A}]
 sojourn = 32.5
 elapsed = 9.5

 remaining = 32.5

A
complete

E
complete

C
complete

B
complete

B
complete

C
complete

D
complete

D
complete

D
complete

(b) Predictions based on the sequence ab-
straction

Fig. 8. Two transition systems with prediction information based on the same event
log.

in Figure 8. Now let us assume that we have a new process instance N for
which we want to make a prediction. The partial trace observed so far is σN =
〈A20,B30,C 40〉 (using the shorthand notation also used in Table 2). Based on
Figure 8(a) the predicted remaining time is 7.2 while based on Figure 8(b) the
predicted remaining time is 6.0. So using the set abstraction, the predicted end
time is 47.2, while using the sequence abstraction, the predicted end time is 46.0.
This example nicely illustrates that the prediction depends on the abstractions
selected when generating the transition system. Both predictions are “correct”,
however, Figure 8(a) assumes that the order of past activities does not matter,
while Figure 8(b) assumes that the order is relevant. Note that the predictions
after just executing 〈A20〉 or 〈A20,B30〉 are identical for both transition systems
because A is always first no matter which abstraction is chosen.

The fact that different predictions are possible based on the abstraction se-
lected, illustrates the need to assess the quality of predictions.

6 Quality of Predictions

As shown thus far, our approach allows for the prediction of various things in-
cluding the remaining time until completion. Depending on the abstraction cho-
sen, different predictions are possible. Moreover, under certain circumstances one
prediction may be less reliable than another. Therefore, this section elaborates
on the quality of predictions.

Intuitively, the quality of the prediction depends on the number of mea-
surements per state. If there are only few observations, the predictive value is
limited. Moreover, if the individual measurements are very different, then the
predictive value seems less than in the situation were all measurements are simi-
lar. As indicated in Section 4.2, the bag of measurements A(s) associated to some
state s can be seen as a random sample. Let A(s) = b = [b1, b2, . . . , bn], i.e., n
observations have been made: b1, b2, . . . , bn . Now we need to predict the next
observation bn+1 based on b1, b2, . . . , bn . Let br

n+1 be the real value and bp
n+1 be

the predicted value. Clearly the goal is to minimize the error | br
n+1 − bp

n+1 |.
We will look at the quality of predictions from different angles. First, we

try to compute a confidence interval for the true average. Second, we compute
a confidence interval for the real value assuming that we know the true aver-
age. Finally, we discuss cross-validation as a means to assess the quality of a
prediction in an experimental setting.

6.1 Predicting the Average Right

Let A(s) = b = [b1, b2, . . . , bn] be the bag of measurements and let us assume
that these are all sampled from some random variable. We assume that these
samples are independent, i.e., bi does not depend on bj , and the next realiza-
tion br

n+1 does not depend on earlier samples. Based on b1, b2, . . . , bn , the best
estimator for br

n+1 is b, i.e., the sample mean. However, if there are only a few
measurements, then b may be very different than the true expected value µ of
br
n+1. Therefore, we first try to establish a confidence interval for the true ex-

pected value of br
n+1. There are various ways of calculating such a confidence

interval. Here, we sketch two of the most basic approaches.
First, let us assume that we have many measurements (say n ≥ 30). Because

b is the average of a large number of independent measures, we can assume that
b is approximately normally distributed (cf. law of large numbers). From this
fact, we deduce the probability that the true expected value µ lies within a so-
called confidence interval. Given the sample mean b and the sample standard
deviation s, the real value µ conforms with confidence (1 − α) to the following
equation: b− s√

n
z (α2) < µ < b + s√

n
z (α2) where z (α2) is defined as follows. If Z

is a standard normally distributed random variable, then IP[Z > z (x)] = x . The
value α represents the unreliability, that is the chance that µ does not conform
to the equation. Some example values for the z function: z (0.001) = 3.090,
z (0.005) = 2.576, z (0.01) = 2.326, z (0.05) = 1.645, and z (0.1) = 1.282. The

interval
[
b − s√

n
z (α2), b + s√

n
z (α2)

]
is also called the (1−α)-confidence interval

for the estimated value µ.
If there are fewer measurements, then the above approach cannot be used

because it depends on the law of large numbers. Therefore, we mention a second
approach that can still be applied if there are just a few observations. However,
for this approach it needs to be assumed that the original distribution is normally
distributed. In this case the Student’s t-distribution can be used to calculate
the confidence intervals. Let [b1, b2, . . . , bn] be again the bag of measurements
with a sample mean b, sample deviation s. For confidence (1− α) the following
confidence interval can be deduced:

[
b − s√

n
tn−1(α2), b + s√

n
tn−1(α2)

]
where

tv (x) is the critical value of a Student’s t-distribution, also called t-distribution,
with v degrees of freedom.

In our running example, there are only a few observations. Therefore, we ap-
ply the second approach. As Figure 6 shows there are only 5 measurements linked
to state {A,B ,C}: A({A,B ,C}) = b = [6, 10, 6, 6, 8]. Hence, n = 5, b = 7.2 and
s = 1.79. Let us assume that we are interested in a 90% confidence interval, i.e.,
α = 0.1. By simply applying the formula, we get

[
b − s√

n
tn−1(α2), b + s√

n
tn−1(α2)

]
=
[
7.2− 1.79√

5
t5−1(0.05), 7.2 + 1.79√

5
t5−1(0.05)

]
. Since t4(0.05) = 2.13, the 90%

confidence interval for the completion time in state {A,B ,C} is [5.5, 8.9]. So,
assuming a normal distribution, the expected flow time for partial cases in state
{A,B ,C} is with 90% confidence between 5.5 and 8.9. This simple example
shows that by making some basic assumptions, the quality of the predicted av-
erage can be quantified.

6.2 Estimating the Quality of a Prediction

We just showed that under certain assumptions, we can establish a confidence
interval for the true expected value of br

n+1. However, even if the confidence
interval is very narrow, the error | br

n+1 − bp
n+1 | may still be substantial.

Suppose that b1, b2, . . . , bn are mutually independent and sampled from a
probability distribution with mean µ and variance σ2 and that the next real-
ization will be sampled from the same probability distribution. As n becomes
larger, the confidence interval will become more narrow with upper and lower
bounds close to µ. However, the expected average error | br

n+1 − bp
n+1 | remains

roughly σ.
Note that in general we do not know µ and σ2. However, when we have

sufficient measurements, we can approximate them as described in Section 6.1.
Moreover, let us assume that the b1, b2, . . . are mutually independent and sam-
pled from a normal distribution with mean µ and variance σ2. Under these
assumptions we can state that with probability 0.683 the next measurement will
be between [µ−σ, µ+σ], with probability 0.954 the next measurement will be
between [µ−2σ, µ+2σ], and with probability 0.997 the next measurement will
be between [µ−3σ, µ+3σ]. This illustrates that for a known distribution, it is

possible to not only supply a prediction but also provide information about the
quality of the prediction.

6.3 Cross-Validation

In the previous subsections, we made assumptions about the underlying proba-
bility distribution. For example, we assumed that the measurements are indepen-
dent and that the shape of the distribution is known (e.g., normal distribution).
However, it is possible to measure the quality in a more direct manner. One
way would be to simply take the log, derive the annotated transition system
and predictions and then in a second run compare the predicted values with
the real values. The term Mean Squared Error (MSE) is used to quantify the
difference between the predicted and real values. Suppose that for a particular
state s with A(s) = b = [b1, b2, . . . , bn], we predict predict(b). The MSE for this
state is MSE =

∑n
i=1(bi−predict(b))2

n . We can also take the Root Mean Squared
Error (RMSE), by taking the square root of MSE.

Although the principle described above is appealing, there is one problem.
The same data set is used both for making the predictions and evaluating the
quality of the predictions. This is undesirable. For example, if n = 1, then
MSE = 0 by definition. This is why cross-validation is needed. Cross-validation
is the statistical practice of partitioning a sample data set into two subsets such
that the analysis is initially performed on one subset (the “training set”) while
the other subset is used for validation (the “test set”).

The most basic form of cross-validation, holdout validation, is to randomly
select samples to form the test set, and the remaining observations are retained
as the training data. More involved is K-fold cross-validation where the whole
data set is partitioned into K sets of equal size. Of the K sets, one set is selected
as test set, while the union of the other K − 1 sets is used as training set. The
cross-validation process is then repeated K times (the folds), with each of the
K sets used exactly once as the validation data. The K results from the folds
then can be averaged (or otherwise combined) to produce a single estimation.
The advantage of this method is that all observations are used for both training
and validation, and that it is possible to get insight into the reliability of the
validation itself. A commonly used value for K is 10.

Note that for cross validation, there is no need to make assumptions about the
underlying distribution. ProM supports this kind of cross validation through
the so called FSM Evaluator. This plug-in takes (a) a transition system with
predictions based on one log and (b) another event log, and then calculates the
MSE and other statistics for each state. We will use this plug-in in the next
section to evaluate our approach.

7 Experiments

In this section, we demonstrate the applicability of our approach using a syn-
thetic logs obtained via simulation and two real-life case studies. For the case
studies we use two different processes within two different Dutch municipalities.

7.1 Synthetic Example

For our first experiment we use an event log of a reviewing process. This log
was obtained through simulation. We first use this synthetic log to allow for a
controlled experiment where it is clear what the desired outcome should be. This
way we can validate our approach.

Using CPN Tools [17] we have modeled the reviewing process in terms of
a so-called colored Petri net. From ProM it is possible to generate CPN models
[22] and from CPN Tools it is possible to generate event logs for ProM [18].
Hence, there is a bidirectional coupling of CPN Tools and ProM.

The stimulated reviewing process starts with inviting reviewers. Then the re-
viewers can return their reviews. However, some reviewers may not return their
review resulting in a time-out event. After a while the reviews are collected and
a decision is made. Based on the decision, the paper is accepted or rejected.
For internal activities such as inviting reviewers, making decisions, and accept-
ing/rejecting papers, we record a start and complete event. For external activities
such as reviewing, we can only see the completion. The CPN model also contains
information about timing and resources, e.g., the various internal activities are
done by particular people having distinct roles. The external activities are done
by a large pool of reviewers.

decide

decide
complete

decide
start

collect reviews

collect reviews
complete

collect reviews
start

invite reviewers

invite reviewers
complete

invite reviewers
start

accept

accept
start

accept
complete

reject

reject
start

reject
complete

t:1

time-out 2
complete

get review 2
complete

time-out 3
complete

get review 3
complete

get review 1
complete

time-out 1
complete

Fig. 9. Petri net discovered by ProM using the α-algorithm.

Based on the CPN model described above, we generated two event logs: a
training set L1 and a test set L2. Both event logs have information about 200
process instances, i.e., submitted papers. To provide some insight into the process
we use the α-algorithm [5] to discover a Petri net based on L1 (i.e., the event
log holding the training set). The discovered model indeed matches the model
constructed using CPN Tools (cf. Figure 9). Note that the model indicates start
and complete events by grouping two transitions in a single box.

It is important to note that we only show the Petri net representation of the
process to provide the reader with some insight into the process. Our approach
does not need a process model in terms of a Petri net or any other notation and
it is not necessary to use process discovery algorithms such as the α-algorithm.

Based on L1, we can use the FSM Miner of ProM to extract a transition
system using a particular abstraction. Using the FSM Analyzer we can extend

Fig. 10. Screenshot of ProM’s FSM Analyzer while making a prediction model based
on an event log of 200 cases.

this transition system with predictive information as shown before. Figure 10
shows a screenshot of an annotated transition system based on L1 while using
a set abstraction based on all activities. For example, Figure 10 shows the state
[[invite reviewers-complete, invite reviewers-start]].6 As indicated in Figure 10,
the predicted time until completion is 21.605 days, i.e., after completing the
invitations it takes on average three weeks to complete the reviewing process.
Figure 10 also shows information about the average/expected sojourn time for
this state (1.53 days) and the average/expected elapsed time (2.51 days). For
state {collect reviews-start, get review 1-complete, get review 2-complete, get re-
view 3-complete, invite reviewers-complete, invite reviewers-start} the predicted
time until completion is 11.87 days (not visible in Figure 10). This means that
for cases where all reviews are sent back in time, it takes on average 12 days to
make the decision, inform the author, and complete the reviewing process. For
the empty state, the predicted remaining time until completion is 24.12 days.
Note that this is the average total time to handle reviews from begin to end.

The screenshot shown in Figure 10 is based on the set abstraction. However,
as described in Section 3.5 various abstractions are possible. Figure 11 shows four
transition systems obtained using four different abstractions. Figure 11(a) shows
the set abstraction already used in Figure 10. Figure 11(b) shows an abstraction
where the six “time out” and “get review” activities are ignored, but the order

6 This is the way the FSM Analyzer represents the set containing two events related to
the start and completion of activity invite reviewers, i.e., [[invite reviewers-complete,
invite reviewers-start]] denotes {invite reviewers-complete, invite reviewers-start}.

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 2-complete]]
 sojourn = 0.0

 elapsed = 24.2777777
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, reject-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.11111111
 elapsed = 19.4444444

 remaining = 2.11111111

[[get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 4.78125
 elapsed = 8.40625

 remaining = 15.21875

[[get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 2.56521739
 elapsed = 5.26086956

 remaining = 17.8260869

[[get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 3.33333333
 elapsed = 4.66666666

 remaining = 11.4444444

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 2.3

 elapsed = 23.7
 remaining = 2.3

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 21.6666666
 remaining = 0.0

[[get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 2.75

 elapsed = 4.83333333
 remaining = 22.0

[[get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.58333333
 elapsed = 9.20833333

 remaining = 12.4166666

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 1-complete]]
 sojourn = 0.0

 elapsed = 24.1333333
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start]]
 sojourn = 0.0

 elapsed = 21.2727272
 remaining = 0.0

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 2.35714285
 elapsed = 20.4285714

 remaining = 2.35714285

[[collect reviews-complete, collect reviews-start, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 4.12903225
 elapsed = 16.8064516

 remaining = 10.6451612

[[invite reviewers-complete, invite reviewers-start]]
 sojourn = 1.53
 elapsed = 2.51

 remaining = 21.605

[[collect reviews-complete, collect reviews-start, decide-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 2.66666666

 elapsed = 18.5
 remaining = 6.61111111

[[collect reviews-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 2.17391304
 elapsed = 12.3478260

 remaining = 10.6086956

[[get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 2.5

 elapsed = 6.875
 remaining = 16.0

[[collect reviews-complete, collect reviews-start, decide-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 1.68181818

 elapsed = 18.0
 remaining = 7.77272727

[[collect reviews-complete, collect reviews-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 1.77777777
 elapsed = 15.1851851

 remaining = 8.70370370

[[invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 3.33333333
 elapsed = 6.11111111

 remaining = 16.4444444

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 1.91666666
 elapsed = 20.6666666

 remaining = 1.91666666

[[collect reviews-complete, collect reviews-start, decide-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 2.40625

 elapsed = 17.71875
 remaining = 5.90625

[[collect reviews-complete, collect reviews-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 2.52173913
 elapsed = 12.2608695

 remaining = 9.69565217

[[get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 3.09523809
 elapsed = 6.09523809

 remaining = 19.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 0.86956521
 elapsed = 19.8260869

 remaining = 3.13043478

[[get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 3.0

 elapsed = 5.65384615
 remaining = 17.8461538

[[get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 2.02040816
 elapsed = 4.02040816

 remaining = 20.7346938

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-start, time-out 2-complete]]
 sojourn = 2.55555555
 elapsed = 21.7222222

 remaining = 2.55555555

[[get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 3.11111111
 elapsed = 5.37037037

 remaining = 17.2222222

[[get review 1-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 1.86666666
 elapsed = 3.73333333

 remaining = 18.7666666

[[get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 3.13043478
 elapsed = 9.21739130

 remaining = 13.7391304

[[invite reviewers-start]]
 sojourn = 2.51
 elapsed = 0.0

 remaining = 24.115

[[collect reviews-complete, collect reviews-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 1.63636363
 elapsed = 16.3636363

 remaining = 9.40909090

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 0.0

 elapsed = 25.5833333
 remaining = 0.0

[[get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 5.55555555
 elapsed = 8.44444444

 remaining = 16.6666666

[[invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 1.92857142
 elapsed = 7.28571428

 remaining = 17.7857142

[[collect reviews-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 2.88888888
 elapsed = 12.2962962

 remaining = 11.5925925

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 2.5

 elapsed = 21.0833333
 remaining = 2.5

[[get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 4.40909090
 elapsed = 9.86363636

 remaining = 15.9090909

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.8

 elapsed = 18.8666666
 remaining = 2.8

[[]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 24.115

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-start, time-out 1-complete]]
 sojourn = 2.93333333

 elapsed = 21.2
 remaining = 2.93333333

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-start]]
 sojourn = 2.54545454
 elapsed = 18.7272727

 remaining = 2.54545454

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 25.0
 remaining = 0.0

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-ou
 sojourn = 0.0

 elapsed = 24.4
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 1.44444444
 elapsed = 17.0555555

 remaining = 8.05555555

[[collect reviews-start, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.67741935
 elapsed = 14.1290322

 remaining = 13.3225806

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 25.2
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, invite reviewers-complete, invite reviewers-start, reject-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.125

 elapsed = 28.1875
 remaining = 2.125

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 23.5714285
 remaining = 0.0

[[invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.53846153
 elapsed = 6.92307692

 remaining = 22.3076923

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 2.04347826
 elapsed = 17.6956521

 remaining = 4.26086956

[[collect reviews-complete, collect reviews-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 1.96875
 elapsed = 15.75

 remaining = 7.875

[[collect reviews-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 2.17391304
 elapsed = 10.0869565

 remaining = 11.8695652

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 1.25925925
 elapsed = 19.8888888

 remaining = 4.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 0.95833333

 elapsed = 18.125
 remaining = 3.5

[[invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 1.67647058
 elapsed = 4.44117647

 remaining = 20.6764705

[[collect reviews-complete, collect reviews-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 1.41666666
 elapsed = 14.5833333

 remaining = 7.04166666

[[collect reviews-complete, collect reviews-start, decide-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 3.17391304
 elapsed = 16.6521739

 remaining = 6.30434782

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 3.125

 elapsed = 21.875
 remaining = 3.125

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 1.03125
 elapsed = 20.125
 remaining = 3.5

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 1.41935483
 elapsed = 23.4193548

 remaining = 4.03225806

[[get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 2.83333333
 elapsed = 6.77777777

 remaining = 16.2777777

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, reject-start, time-out 3-complete]]
 sojourn = 2.9

 elapsed = 22.3
 remaining = 2.9

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 2.14285714
 elapsed = 21.4285714

 remaining = 2.14285714

[[collect reviews-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 2.09090909
 elapsed = 14.2727272

 remaining = 11.5

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 0.0

 elapsed = 23.5833333
 remaining = 0.0

[[invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 2.21052631
 elapsed = 3.63157894

 remaining = 20.4736842

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 3.58333333

 elapsed = 22.0
 remaining = 3.58333333

[[get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 3.07407407
 elapsed = 9.22222222

 remaining = 14.6666666

[[collect reviews-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 2.5625

 elapsed = 13.1875
 remaining = 10.4375

[[get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 4.13043478
 elapsed = 5.95652173

 remaining = 16.0

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 3.13333333
 elapsed = 21.2666666

 remaining = 3.13333333

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 0.0

 elapsed = 26.0
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 30.3125
 remaining = 0.0

[[collect reviews-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 3.05555555

 elapsed = 14.0
 remaining = 11.1111111

[[invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 4.25806451
 elapsed = 9.87096774

 remaining = 17.5806451

[[collect reviews-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.79166666
 elapsed = 11.7916666

 remaining = 9.83333333

[[collect reviews-complete, collect reviews-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 2.13043478
 elapsed = 14.5217391

 remaining = 8.43478260

[[invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 1.74074074
 elapsed = 3.66666666

 remaining = 21.2222222

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 22.0
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 2.91304347
 elapsed = 14.7826086

 remaining = 7.17391304

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 21.5555555
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 3.09090909
 elapsed = 19.6818181

 remaining = 6.09090909

[[collect reviews-complete, collect reviews-start, decide-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 2.92592592
 elapsed = 16.9629629

 remaining = 6.92592592

[[collect reviews-complete, collect reviews-start, decide-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.125
 elapsed = 16.0

 remaining = 5.625

[[get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 3.25
 elapsed = 6.15

 remaining = 21.1

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 0.0

 elapsed = 22.7857142
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 0.94444444
 elapsed = 21.1666666

 remaining = 3.94444444

[[collect reviews-complete, collect reviews-start, decide-start, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.48387096
 elapsed = 20.9354838

 remaining = 6.51612903

[[get review 2-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 1.92682926
 elapsed = 4.39024390

 remaining = 18.8048780

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, reject-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 2.44444444
 elapsed = 19.5555555

 remaining = 2.44444444

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 0.0

 elapsed = 22.5833333
 remaining = 0.0

decide-start
complete

get review 3-complete
complete

reject-start
complete

reject-complete
complete

get review 1-complete
complete

time-out 1-complete
complete

collect reviews-start
complete

reject-start
complete

time-out 2-complete
complete

accept-start
complete

get review 3-complete
complete

accept-start
complete

get review 3-complete
complete

time-out 1-complete
complete

get review 2-complete
complete

accept-start
complete

time-out 2-complete
complete

collect reviews-start
complete

accept-complete
complete

collect reviews-complete
complete

collect reviews-start
complete

get review 3-complete
complete

accept-complete
complete

decide-start
complete

time-out 2-complete
complete

decide-complete
complete

decide-start
complete

get review 1-complete
complete

get review 1-complete
complete

collect reviews-start
complete

accept-complete
complete

time-out 1-complete
complete

reject-start
complete

collect reviews-start
complete

get review 1-complete
complete

time-out 1-complete
complete

invite reviewers-start
complete

accept-complete
complete

accept-complete
complete

reject-complete
complete

decide-start
complete

get review 3-complete
complete

time-out 3-complete
complete

time-out 2-complete
complete

accept-complete
complete

get review 2-complete
complete

get review 2-complete
complete

reject-start
complete

collect reviews-complete
complete

reject-start
complete

get review 3-complete
complete

decide-complete
complete

time-out 3-complete
complete

decide-start
complete

decide-complete
complete

time-out 1-complete
complete

time-out 3-complete
complete

reject-complete
complete

get review 1-complete
complete

get review 2-complete
complete

decide-complete
complete

reject-start
complete

collect reviews-complete
complete

collect reviews-complete
complete

time-out 1-complete
complete

reject-start
complete

time-out 3-complete
complete

get review 3-complete
complete

accept-complete
complete

time-out 3-complete
complete

accept-start
complete

get review 3-complete
complete

accept-complete
complete

reject-complete
complete

time-out 1-complete
complete

collect reviews-complete
complete

get review 1-complete
complete

time-out 2-complete
complete

collect reviews-complete
complete

time-out 2-complete
complete

collect reviews-start
complete

accept-start
complete

decide-complete
complete

time-out 3-complete
complete

accept-start
complete

reject-start
complete

time-out 1-complete
complete

collect reviews-complete
complete

get review 1-complete
complete

reject-complete
complete

time-out 3-complete
complete

get review 2-complete
complete

get review 3-complete
complete

decide-complete
complete

time-out 3-complete
complete

get review 2-complete
complete

decide-complete
complete

accept-start
complete

time-out 1-complete
complete

collect reviews-complete
complete

get review 1-complete
complete

get review 2-complete
complete

decide-start
complete

reject-complete
complete

reject-complete
complete

accept-start
complete

collect reviews-start
complete

time-out 2-complete
complete

invite reviewers-complete
complete

decide-complete
complete

time-out 2-complete
complete

collect reviews-start
complete

time-out 2-complete
complete

decide-start
complete

get review 2-complete
complete

get review 1-complete
complete

reject-complete
complete

time-out 3-complete
complete

decide-start
complete

(a) Set abstraction based on all activities

[{0=reject-start, 1=decide-complete, 2=decide-start, 3=collect reviews-complete, 4=collect reviews-start, 5=invite reviewers-complete, 6=invite reviewers-start}]
 sojourn = 2.65

 elapsed = 22.04
 remaining = 2.65

[{0=decide-start, 1=collect reviews-complete, 2=collect reviews-start, 3=invite reviewers-complete, 4=invite reviewers-start}]
 sojourn = 2.545
 elapsed = 17.55

 remaining = 6.565

[{0=accept-start, 1=decide-complete, 2=decide-start, 3=collect reviews-complete, 4=collect reviews-start, 5=invite reviewers-complete, 6=invite reviewers-start}]
 sojourn = 2.53

 elapsed = 21.01
 remaining = 2.53

[{0=invite reviewers-start}]
 sojourn = 2.51
 elapsed = 0.0

 remaining = 24.115

[{0=reject-complete, 1=reject-start, 2=decide-complete, 3=decide-start, 4=collect reviews-complete, 5=collect reviews-start, 6=invite reviewers-complete, 7=invite reviewers-start}]
 sojourn = 0.0

 elapsed = 24.69
 remaining = 0.0

[{0=collect reviews-start, 1=invite reviewers-complete, 2=invite reviewers-start}]
 sojourn = 2.555

 elapsed = 12.785
 remaining = 11.33

[{0=decide-complete, 1=decide-start, 2=collect reviews-complete, 3=collect reviews-start, 4=invite reviewers-complete, 5=invite reviewers-start}]
 sojourn = 1.43

 elapsed = 20.095
 remaining = 4.02

[{0=collect reviews-complete, 1=collect reviews-start, 2=invite reviewers-complete, 3=invite reviewers-start}]
 sojourn = 2.21

 elapsed = 15.34
 remaining = 8.775

[{}]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 24.115

[{0=accept-complete, 1=accept-start, 2=decide-complete, 3=decide-start, 4=collect reviews-complete, 5=collect reviews-start, 6=invite reviewers-complete, 7=invite reviewers-start}]
 sojourn = 0.0

 elapsed = 23.54
 remaining = 0.0

[{0=invite reviewers-complete, 1=invite reviewers-start}]
 sojourn = 2.56875
 elapsed = 5.32625

 remaining = 18.78875

get review 1-complete
complete

get review 3-complete
complete

reject-complete
complete

accept-start
complete

decide-complete
complete

invite reviewers-start
complete

time-out 1-complete
complete

collect reviews-complete
complete

time-out 2-complete
complete

accept-complete
complete

invite reviewers-complete
complete

reject-start
complete

time-out 3-complete
complete

decide-start
complete

get review 2-complete
complete

collect reviews-start
complete

(b) Sequence abstraction based on activ-
ities while filtering out the “time out”
and “get review” activities

[{Anne=2}]
 sojourn = 2.59793814

 elapsed = 5.25
 remaining = 18.9458762

[{Anne=1, Mike=4, Wil=2}]
 sojourn = 3.19354838
 elapsed = 18.8709677

 remaining = 3.19354838

[{Anne=6, Wil=2}]
 sojourn = 0.0

 elapsed = 22.5833333
 remaining = 0.0

[{Anne=1, Mike=2}]
 sojourn = 2.38461538
 elapsed = 13.0961538

 remaining = 12.1730769

[{Anne=4, Wil=2}]
 sojourn = 1.61363636
 elapsed = 19.3636363

 remaining = 3.84090909

[{}]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 24.115

[{Anne=4, Mike=1, Wil=2}]
 sojourn = 2.35
 elapsed = 21.6

 remaining = 2.35

[{Anne=4, Wil=1}]
 sojourn = 2.15909090
 elapsed = 17.2045454

 remaining = 6.0

[{Anne=3}]
 sojourn = 2.54545454
 elapsed = 12.4318181

 remaining = 10.7727272

[{Mike=1}]
 sojourn = 2.46601941

 elapsed = 0.0
 remaining = 24.0388349

[{Anne=3, Mike=2, Wil=2}]
 sojourn = 2.45614035
 elapsed = 22.0701754

 remaining = 2.45614035

[{Anne=2, Mike=3, Wil=2}]
 sojourn = 2.72916666
 elapsed = 23.1458333

 remaining = 2.72916666

[{Anne=5, Wil=2}]
 sojourn = 2.125

 elapsed = 20.4583333
 remaining = 2.125

[{Mike=6, Wil=2}]
 sojourn = 0.0

 elapsed = 23.9
 remaining = 0.0

[{Mike=4, Wil=2}]
 sojourn = 1.05882352
 elapsed = 18.8039215

 remaining = 3.98039215

[{Anne=4}]
 sojourn = 2.22727272
 elapsed = 14.9772727

 remaining = 8.22727272

[{Mike=4}]
 sojourn = 1.72549019
 elapsed = 14.4509803

 remaining = 8.33333333

[{Anne=2, Mike=4, Wil=2}]
 sojourn = 0.0

 elapsed = 24.3797468
 remaining = 0.0

[{Anne=2, Mike=2, Wil=2}]
 sojourn = 1.53333333
 elapsed = 21.0285714

 remaining = 4.11428571

[{Anne=2, Mike=2}]
 sojourn = 2.43809523
 elapsed = 15.9238095

 remaining = 9.21904761

[{Mike=5, Wil=2}]
 sojourn = 2.5

 elapsed = 21.4
 remaining = 2.5

[{Mike=4, Wil=1}]
 sojourn = 2.62745098
 elapsed = 16.1764705

 remaining = 6.60784313

[{Mike=3}]
 sojourn = 2.29411764
 elapsed = 12.1568627

 remaining = 10.6274509

[{Anne=2, Mike=2, Wil=1}]
 sojourn = 2.66666666
 elapsed = 18.3619047

 remaining = 6.78095238

[{Anne=1}]
 sojourn = 2.55670103

 elapsed = 0.0
 remaining = 24.1958762

[{Mike=2}]
 sojourn = 2.54126213
 elapsed = 5.39805825

 remaining = 18.6407766

[{Anne=4, Mike=2, Wil=2}]
 sojourn = 0.0

 elapsed = 24.3766233
 remaining = 0.0

[{Anne=2, Mike=1}]
 sojourn = 2.98113207
 elapsed = 13.3773584

 remaining = 11.6415094

reject-start
complete

get review 1-complete
complete

accept-complete
complete

collect reviews-start
complete

accept-start
complete

time-out 3-complete
complete

get review 2-complete
complete

decide-start
complete

reject-start
complete

time-out 3-complete
complete

collect reviews-complete
complete

reject-start
complete

time-out 2-complete
complete

accept-complete
complete

invite reviewers-complete
complete

reject-complete
complete

accept-start
complete

collect reviews-complete
complete

accept-start
complete

reject-start
complete

collect reviews-complete
complete

decide-complete
complete

time-out 2-complete
complete

time-out 1-complete
complete

get review 3-complete
complete

invite reviewers-complete
complete

reject-complete
complete

get review 3-complete
complete

decide-complete
complete

collect reviews-start
complete

accept-start
complete

accept-complete
complete

invite reviewers-start
complete

reject-complete
complete

accept-start
complete

reject-start
complete

collect reviews-complete
complete

accept-complete
complete

collect reviews-start
complete

time-out 1-complete
complete

decide-complete
complete

reject-complete
complete

collect reviews-start
complete

decide-start
complete

reject-complete
complete

get review 1-complete
complete

invite reviewers-start
complete

get review 2-complete
complete

reject-start
complete

accept-complete
complete

decide-start
complete

accept-complete
complete

reject-complete
complete

accept-start
complete

(c) Bag abstraction based on the three
key resources

[]
 sojourn = 2.00958333
 elapsed = 11.0595833

 remaining = 13.0554166

invite reviewers-start
complete

time-out 1-complete
complete

time-out 2-complete
complete

collect reviews-complete
complete

invite reviewers-complete
complete

time-out 3-complete
complete

decide-start
complete

accept-complete
complete

reject-start
complete

get review 1-complete
complete

get review 3-complete
complete

get review 2-complete
complete

collect reviews-start
complete

decide-complete
complete

reject-complete
complete

accept-start
complete

(d) Complete abstraction: lstate(σ) = ∅

Fig. 11. Four transition systems with prediction information based on the same event
log but using different abstractions. Note that the labels are not intended to be read-
able. The goal is to merely show the size and shape of each transition system.

of the remaining activities is taken into account. This results in a simpler model.
The transition system can be based on all kinds of properties of events, i.e.,
the data and resource perspectives can also be used. Figure 11(c) only looks
at the resource perspective. In this particular transition system, the state of a
paper is determined by which resources have worked on it. Here only the three
key resources working in the editorial office are taken into account. Moreover,
since a bag abstraction is used, the order is not important, but the frequency
is. This results in a completely different transition systems with nodes such
as [Anne2,Mike2,Wil1] indicating that Anne has performed two events, Mike
has performed two events, and Wil has performed one event. For this state the
predicted time until completion is 6.78 days. Figure 11(d) uses a full abstraction,
i.e., lstate(σ) = ∅ meaning that all prefixes are mapped onto the same state.
This is an interesting abstraction as it serves as a benchmark. This benchmark
abstraction assumes that one knows nothing and simply takes the average over
all events in the past. When the transition system shown in Figure 11(d) is used,
the prediction for the remaining time until completion is always 13.06 days. This
value is obtained by simply taking the average of all remaining times in the whole
log L1. Note that 13.06 is more than half of the average total time (which is 24.12
days). In the beginning of the process there are more events than at the end.
Therefore, the average remaining time until completion is more than half of the
average total time.

The four transition systems shown in Figure 11 can be used to make concrete
predictions for individual cases. Suppose that the set abstraction is used (i.e.,
Figure 11(a)), then initially the predicted remaining time is 24.12 days. After
the reviewers have been invited (i.e., the prefix is mapped onto state {invite
reviewers-complete, invite reviewers-start}), then the predicted remaining time
is reduced to 21.6 days, etc.

As discussed in Section 6, it is important to be able to asses the quality of a
prediction. ProM’s FSM Analyzer provides metrics such as standard deviation,
etc. to determine the quality of a prediction. The standard deviation in the initial
state of Figure 11(a) is 10.3. The standard deviation in state {collect reviews-
start, get review 1-complete, get review 2-complete, get review 3-complete, in-
vite reviewers-complete, invite reviewers-start} is 8.3. The standard deviation
steadily decreases as the process progresses. This means that towards the end of
the process the predictions become more reliable.

To truly evaluate the quality of the predictions and to compare the four
transition systems shown in Figure 11, we use cross validation. To keep things
simple, we do not perform a K-fold validation and merely test L2 (the test
set) on the model learned using L1 (the training set). Hence, we take the four
models depicted in Figure 11 and compare the predicted times with the real
times for the papers in L2. Earlier we already mentioned the terms Mean Squared
Error (MSE =

∑n
i=1(bi−b)2

n , with b = predict(b)) and Root Mean Squared Error
(RMSE =

√
MSE). For our evaluation we also use the Mean Absolute Error

(MAE = 1
n

∑n
i=1 | bi−b |) and the Mean Absolute Percentage Error (MAPE =

1
n

∑n
i=1

|bi−b|
bi

).

Fig. 12. Screenshot of ProM’s FSM Evaluator while analyzing the quality of the
prediction on the test set L2.

Figure 12 shows ProM’s FSM Evaluator while cross validating the results us-
ing the second event log L2. For state {invite reviewers-complete, invite reviewers-
start}, MSE equals 49.923 (see graph on left-hand-side of Figure 12). The other
metrics for this state are shown in tabular form (see right-hand-side of fig-
ure): MAE=5.857, RMSE=7.0656, and MAPE=45.252. Recall that the predicted
time until completion from this state is 21.605 days, hence an average error of
5.857 days is quite acceptable. Figure 12 also shows that this state was eval-
uated 200 times. Let us now consider a later state: {collect reviews-start, get
review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-
complete, invite reviewers-start}. For this state we obtain the following quality
metrics: MSE=19.134, MAE=3.888, RMSE=4.3742, and MAPE=49.676. As can
be expected the average error decreases when a paper is further in the process.
The relative error (MAPE) increases slightly because the absolute times get
smaller. The various quality metrics can also be given for the whole process, i.e.,
all states. In order to do this, each state is weighted by the number of times it is
visited. For the set abstraction based on all activities (i.e., the transition system
shown in Figure 11(a)), the overall values are MAE=4.079, RMSE=4.917, and
MAPE=56.21.

Table 3 compares the four transition systems shown in Figure 11 using cross
validation. All four models are learned using L1 and evaluated using L2. It shows
that the first three models perform comparable, e.g., the average error is around
3 days. However, the fourth model does not perform as good. The average error
is much higher: more than 7 days. The average time it takes to complete the

Table 3. Some results

Abstraction MAE RMSE MAPE

Set abstraction based on all activities (cf. Fig-
ure 11(a))

4.079 4.917 56.21

Sequence abstraction based on activities while fil-
tering out the “time out” and “get review” activ-
ities (cf. Figure 11(b))

4.119 4.984 56.68

Bag abstraction based on the three key resources
(cf. Figure 11(c))

4.139 4.997 56.89

Complete abstraction: lstate(σ) = ∅ (cf. Fig-
ure 11(d))

7.239 8.635 120.87

Simple heuristic: half of average total flow time
(12 days)

7.053 8.479 110.98

process is about 24 days. Hence, a naive approach would be to always guess
24/2 = 12 days. If this is done, then the performance is comparable to the
complete abstraction shown in Figure 11(d) (which always guesses 13.06 days).
The last row in Table 3 shows the results for this heuristic.

Therefore, we can conclude that the findings in Table 3 support our approach
and show that a proper abstraction easily outperforms simple heuristics. Please
note that our approach does not require an a-priori model; the predictions are
just learned from the training set L1.

7.2 Case Study I: WMO Process of a Municipality

In the previous subsection, it was shown that the average error using our pre-
diction method is much smaller than using a simple heuristic. However, this
analysis was based on event logs generated by simulation. A valid question is
whether we can achieve the same performance for real-life logs. Therefore, we
also tested our approach using an event log from the Dutch municipality of Hard-
erwijk. Harderwijk is a municipality and a small city in the eastern part of the
Netherlands.

The event log of Harderwijk used for cross-validation contains information
about 796 cases. Each case corresponds to a request to the municipality in
the context of the so-called “Wet Maatschappelijke Ondersteuning” (WMO).
WMO is a Dutch law regulating how municipalities should support their citizens.
The purpose of WMO is to support elderly people, people having a chronic ill-
ness, handicapped citizens, etc. Through WMO citizens can request wheelchairs,
household help, etc. The particular log chosen for this evaluation only concerns
citizens asking for household help.

The 796 requests for household help, triggered 5187 events that were recorded
over a period of 1.5 years (2007-2008). In this process 8 different types of ac-
tivities were used and the average time it takes to handle a request from begin
to end is 117 days with some cases taking longer than one year. See Figure 13
for the distribution of total flow times for all cases. The x-axis shows the 796

Fig. 13. The distribution of the total flow time of cases extracted using ProM. Note
that some cases almost take 400 days.

cases and the y-axis shows the duration in days. Given the long flow times, it is
interesting to predict the overall time.

Slotfase
complete

Administratieve verwerking
complete

Wachten terugmelding zorgaanb.
complete

Verzending\dossiervorming
complete

Toetsen en beslissen
complete

Rapportage & beschikking
complete

Aanvraag registratie
complete

Fig. 14. A simplified representation of the process obtained by ProM.

To provide some insight into the structure of the process, we have used the
heuristics miner of ProM to extract a Petri net from the event log (cf. Fig-
ure 14). Note that in this model infrequent activities have been removed and
only the main flows are shown. The black transitions in the Petri net represent
the skipping of activities. In this paper, we do not discuss the WMO process in
detail, instead we focus on the quality of our predictions.

Figure 15 shows three transition systems extended with prediction informa-
tion. These are all based on only half of the event log, i.e., the original log with
796 requests for household help is split into a log L1 with 400 requests and a
log L2 with 396 requests. Event log L1 is used as the training set and log L2

is used as a test set. Hence, the three transition systems shown in Figure 15
are based on L1. Figure 15(a) was obtained using the set abstraction based on
all activities, i.e., a state is determined by the set of activities that have been
conducted. Figure 15(b) uses the same abstraction, but now only uses two activ-
ities: “Administratieve verwerking” and “Wachten terugmelden zorgaanbieder”.

[[Aanvraag registratie, Rapportage & beschikking, Retour, Toetsen en beslissen, Verzending\dossiervorming, Wachten terugmelding zorgaanb.]]
 sojourn = 51.5555555
 elapsed = 99.0555555

 remaining = 51.5567129

[[Aanvraag registratie, Rapportage & beschikking]]
 sojourn = 11.2139303
 elapsed = 5.51990049

 remaining = 108.315652

[[]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 113.458472

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 0.00182291
 elapsed = 122.7625

 remaining = 0.00182291

[[Aanvraag registratie, Rapportage & beschikking, Retour]]
 sojourn = 0.0
 elapsed = 8.0

 remaining = 101.067592

[[Aanvraag registratie, Rapportage & beschikking, Slotfase, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 0.0

 elapsed = 9.72549019
 remaining = 0.0

[[Aanvraag registratie, Rapportage & beschikking, Retour, Slotfase, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 0.0
 elapsed = 4.6

 remaining = 0.0

[[Aanvraag registratie, Rapportage & beschikking, Toetsen en beslissen]]
 sojourn = 3.36760925
 elapsed = 17.4575835

 remaining = 97.1282401

[[Aanvraag registratie, Rapportage & beschikking, Retour, Toetsen en beslissen]]
 sojourn = 5.6

 elapsed = 16.8181818
 remaining = 91.4916666

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Retour, Slotfase, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 0.0

 elapsed = 60.0
 remaining = 0.0

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Slotfase, Toetsen en beslissen, Verzending\dossiervorming, Wachten terugmelding zorgaanb.]]
 sojourn = 0.0

 elapsed = 157.615496
 remaining = 0.0

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Retour, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 0.33333333
 elapsed = 59.6666666

 remaining = 0.33333333

[[Aanvraag registratie, Rapportage & beschikking, Toetsen en beslissen, Verzending\dossiervorming, Wachten terugmelding zorgaanb.]]
 sojourn = 61.3482905
 elapsed = 95.5384615

 remaining = 62.7854789

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Retour, Toetsen en beslissen, Verzending\dossiervorming, Wachten terugmelding zorgaanb.]]
 sojourn = 0.00115740
 elapsed = 150.611111

 remaining = 0.00115740

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Slotfase, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 0.0

 elapsed = 122.764322
 remaining = 0.0

[[Aanvraag registratie]]
 sojourn = 5.525
 elapsed = 0.0

 remaining = 113.458472

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Toetsen en beslissen, Verzending\dossiervorming, Wachten terugmelding zorgaanb.]]
 sojourn = 0.00127215
 elapsed = 157.614224

 remaining = 0.00127215

[[Aanvraag registratie, Rapportage & beschikking, Retour, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 51.0740740
 elapsed = 22.6296296

 remaining = 86.6304012

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Retour, Slotfase, Toetsen en beslissen, Verzending\dossiervorming, Wachten terugmelding zorgaanb.]]
 sojourn = 0.0

 elapsed = 150.612268
 remaining = 0.0

[[Aanvraag registratie, Rapportage & beschikking, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 54.356

 elapsed = 20.7306666
 remaining = 93.1623240

Retour
complete

Wachten terugmelding zorgaanb.
complete

Administratieve verwerking
complete

Slotfase
complete

Slotfase
complete

Slotfase
complete

Retour
complete

Toetsen en beslissen
complete

Slotfase
complete

Toetsen en beslissen
complete

Wachten terugmelding zorgaanb.
complete

Verzending\dossiervorming
complete

Slotfase
complete

Retour
complete

Wachten terugmelding zorgaanb.
complete

Rapportage & beschikking
complete

Retour
complete

Administratieve verwerking
complete

Verzending\dossiervorming
complete

Administratieve verwerking
complete

Toetsen en beslissen
complete

Aanvraag registratie
complete

Verzending\dossiervorming
complete

Verzending\dossiervorming
complete

Rapportage & beschikking
complete

Slotfase
complete

Verzending\dossiervorming
complete

Toetsen en beslissen
complete

Administratieve verwerking
complete

(a) Set abstraction based on all activities

[[Administratieve verwerking, Wachten terugmelding zorgaanb.]]
 sojourn = 6.31944444
 elapsed = 157.110631

 remaining = 6.31944444

[[Administratieve verwerking]]
 sojourn = 0.01247577
 elapsed = 118.372940

 remaining = 0.01247577

[[]]
 sojourn = 13.8702764
 elapsed = 8.96543778

 remaining = 99.5002320

[[Wachten terugmelding zorgaanb.]]
 sojourn = 60.6488095
 elapsed = 95.7896825

 remaining = 61.9834242

Administratieve verwerking
complete

Wachten terugmelding zorgaanb.
complete

Slotfase
complete

Slotfase
complete

Aanvraag registratie
complete

Verzending\dossiervorming
complete

Slotfase
complete

Verzending\dossiervorming
complete

Rapportage & beschikking
complete

Administratieve verwerking
complete

Wachten terugmelding zorgaanb.
complete

Retour
complete

Toetsen en beslissen
complete

(b) Set abstraction based on just two activities (“Administratieve verwerking” and
“Wachten terugmelden zorgaanbieder”)

[]
 sojourn = 15.0875627
 elapsed = 43.9924830

 remaining = 76.9736420

Toetsen en beslissen
complete

Administratieve verwerking
complete

Aanvraag registratie
complete

Verzending\dossiervorming
complete

Slotfase
complete

Rapportage & beschikking
complete

Wachten terugmelding zorgaanb.
complete

Retour
complete

(c) Complete abstraction

Fig. 15. Three transition systems with prediction information based on the same event
log but using different abstractions.

These two activities have been chosen because they are expected to be rele-
vant for the time until completion. Figure 15(c) completely abstracts from all
information and this extreme abstraction is again used as a benchmark.

Let us consider some example predictions based on Figure 15(a). For the
initial state ∅, the predicted remaining time until completion is 113 days.7 The
first activity is always “Aanvraag registratie” and the second activity is always
“Rapportage & beschikking”. On average 5 days are spent in the state in-between
these two activities, so after “Aanvraag registratie” the predicted remaining
time until completion is 108 days. Note that after these first two steps, the
process is less structured. (Recall that Figure 14 abstracts from less frequent
paths/activities.)

Table 4. Some results for the municipality’s WMO process

Abstraction MAE RMSE MAPE

Set abstraction based on all activities (cf. Fig-
ure 15(a))

63.805 74.947 680.43

Set abstraction based on just two activities (cf.
Figure 15(b))

67.329 79.034 648.80

Complete abstraction (cf. Figure 15(c)) 83.469 98.158 85444.9

Simple heuristic: half of average total flow time
(56.73 days)

80.823 101.342 62969.0

Let us now compare the three prediction models shown in Figure 15. We
use L2 to evaluate and compare the quality of the three models. The first two
models perform better than the benchmark model. Set abstractions based on all
activities or the two key activities lead to an average error of roughly 65 days. If
we completely abstract from the history of a case, the average error is more than
80 days. If one takes half of the average flow time for each prediction, the average
error is similar as for the model in Figure 15(c) (see last row in Table 4). Hence,
also for this real log, we can conclude that simple abstractions outperform simple
heuristics.

Moreover, it is interesting to note that for some states the mean average
error is very small. For example, after executing “Aanvraag registratie”, “Ad-
ministratieve verwerking”, “Rapportage & beschikking”, “Toetsen en beslissen”,
“Verzending dossiervorming”, “Wachten terugmelding zorgaanb.” the mean av-
erage error of predictions based on the annotated transition system in Fig-
ure 15(c) is only 0.00163.

Note that the average error over all activities is still substantial for all mod-
els. This is due to the huge variations in flow time. Note that some cases take
more than one year to be handled while other just take a few days. Hence, one
cannot expect a better performance for this process with so little information.
We expect that in most processes, the variation is smaller thus allowing for bet-

7 Note that this number is based on L1 while the average of 117 was based on L1 +L2.

ter predictions. Moreover, in most processes more data is available that can be
exploited by our prediction techniques.

7.3 Case Study II: WOZ Process of Another Municipality

As a second case study, we revisit the process mentioned in Section 3.5. This
case study is based on a log from another municipality and another process that
deals with objections (i.e., appeals) against the real-estate property valuation
or the real-estate property tax. This municipality is located in the south of
the Netherlands and has a similar size as the municipality involved in the first
case study (more than 40.000 inhabitants). The municipality is using eiStream
workflow (formerly known as Eastman Software and today named Global 360).

Fig. 16. The distribution of the total flow time of cases extracted using ProM. Note
that some cases almost take 250 days.

This process considered in this case study is called “Bezwaar WOZ”, where
WOZ (“Waardering Onroerende Zaken”) refers to the particular law describing
regulations related to real-estate property valuation by municipalities. We used
an event log with data on 1882 objections handled by the municipality. The log
contains 11985 events and the average total flow time is 107 days while some
cases take more than 200 days. Figure 16 shows the distribution of total flow
times. The x-axis shows the 1882 cases and the y-axis shows the duration in days.
Note that some cases take a very short time while others take much longer, thus
making it difficult to predict the remaining time for cases in the system. As
before we split the log into a training set (log L1) and a test set (log L2). Log
L1 contains 982 cases and log L2 contains 900 cases.

Figure 17 shows four transition systems extended with prediction informa-
tion based on log L1. The first transition system (Figure 17(a)) uses the set

[[A, B, C, D, H, L, M, Q]]
 sojourn = 15.9668
 elapsed = 109.719

 remaining = 16.5769

[[A, B, C, D, G, Q]]
 sojourn = 44.5182
 elapsed = 57.4977

 remaining = 46.3944

[[A, B, D, G, I, Q]]
 sojourn = 2.21766
 elapsed = 175.941

 remaining = 3.09860

[[A, B, C, D, H, L]]
 sojourn = 1.08781
 elapsed = 82.1325

 remaining = 13.3837

[[A, B, C, G, I]]
 sojourn = 1.57714
 elapsed = 199.080

 remaining = 5.23029

[[A, B, C, F, H, L, M, N]]
 sojourn = 0.04186
 elapsed = 147.810

 remaining = 0.33653

[[A, B, C, H, L, M, N]]
 sojourn = 15.9448
 elapsed = 119.503

 remaining = 17.4980

[[A, B, D, E, G]]
 sojourn = 0.0

 elapsed = 59.7911
 remaining = 0.0

[[A, B, D, H, L, Q]]
 sojourn = 0.80608
 elapsed = 131.953

 remaining = 1.05758

[[B, C, D, G, I, Q]]
 sojourn = 1.90109
 elapsed = 153.962

 remaining = 4.50341

[[A, B]]
 sojourn = 17.3307
 elapsed = 3.73798

 remaining = 119.430

[[A, B, G, I, L, N, O, P]]
 sojourn = 0.41059
 elapsed = 177.595

 remaining = 0.41059

[[A, B, H, L, M, N, O, P, Q]]
 sojourn = 0.0

 elapsed = 130.972
 remaining = 0.0

[[D, H, L]]
 sojourn = 1.63855
 elapsed = 68.6798

 remaining = 11.8171

[[A, B, D, G, I, L, M, Q]]
 sojourn = 0.02953
 elapsed = 178.840

 remaining = 0.19945

[[A, B, H, L, M, N, O, P]]
 sojourn = 0.67465
 elapsed = 122.696

 remaining = 0.67465

[[A, B, H, L]]
 sojourn = 2.15080
 elapsed = 104.194

 remaining = 23.5126

[[D, G, I, L, M]]
 sojourn = 0.37651
 elapsed = 162.225

 remaining = 1.84165

[[B, C, Q]]
 sojourn = 6.29152
 elapsed = 32.1955

 remaining = 48.7338

[[A, G, I, L]]
 sojourn = 0.67876
 elapsed = 171.099

 remaining = 2.14128

[[A, H, L, N]]
 sojourn = 41.8339
 elapsed = 68.0265

 remaining = 42.0059

[[A, B, C, H, L, M]]
 sojourn = 4.20908
 elapsed = 115.294

 remaining = 21.7071

[[A, B, G, I, L, M, N, Q]]
 sojourn = 0.04224
 elapsed = 209.729

 remaining = 0.16928

[[A, B, D, Q]]
 sojourn = 26.6797
 elapsed = 64.4499

 remaining = 48.6793

[[A, B, D, G]]
 sojourn = 50.0508
 elapsed = 60.8574

 remaining = 51.5606

[[A, D, G, I, L, M, N, O]]
 sojourn = 0.12693
 elapsed = 197.045

 remaining = 2.61953

[[A, B, C, F, H]]
 sojourn = 0.00158
 elapsed = 147.008
 remaining = 1.1386

[[A, B, D, H, Q]]
 sojourn = 0.81833
 elapsed = 131.135

 remaining = 1.87591

[[B, C, D, G, Q]]
 sojourn = 30.5418
 elapsed = 55.1687

 remaining = 31.6015

[[A, B, G, I, L, N, O]]
 sojourn = 0.12753
 elapsed = 177.057

 remaining = 0.94871

[[A, B, C, D, E, H]]
 sojourn = 46.9368
 elapsed = 139.879

 remaining = 47.5258

[[A, B, H, L, M, N, O, Q]]
 sojourn = 0.17156
 elapsed = 130.801

 remaining = 0.17156

[[A, B, C, D, H, L, Q]]
 sojourn = 1.26602
 elapsed = 108.453

 remaining = 17.8429

[[A, B, C, D, H]]
 sojourn = 4.15672
 elapsed = 82.6531

 remaining = 16.1559

[[A, B, H, L, M, N, O]]
 sojourn = 0.15580
 elapsed = 121.875

 remaining = 1.07579

[[D, G, I, L]]
 sojourn = 1.36351
 elapsed = 160.943

 remaining = 3.16424

[[D, G]]
 sojourn = 55.9269
 elapsed = 5.26854

 remaining = 57.5829

[[A, B, C, F, H, L, M]]
 sojourn = 0.02893
 elapsed = 147.781

 remaining = 0.36547

[[A, G, I]]
 sojourn = 0.92465
 elapsed = 170.174

 remaining = 3.06593

[[G, I, L, M, N, O, P]]
 sojourn = 0.36645
 elapsed = 145.730

 remaining = 0.36645

[[A, B, Q]]
 sojourn = 10.9637
 elapsed = 41.8586

 remaining = 68.7446

[[A, B, G, I, L, M, Q]]
 sojourn = 0.02196
 elapsed = 209.707

 remaining = 0.19125

[[A, B, D]]
 sojourn = 9.28023
 elapsed = 49.8785

 remaining = 55.5840

[[A, D, G, I, L, M, N]]
 sojourn = 0.03170
 elapsed = 198.506

 remaining = 1.99635

[[A, B, H]]
 sojourn = 1.33727
 elapsed = 103.586

 remaining = 23.6123

[[A, B, C, G, H]]
 sojourn = 4.64015
 elapsed = 211.915

 remaining = 5.40071

[[B, Q]]
 sojourn = 8.32876
 elapsed = 27.9144

 remaining = 67.2690

[[A, H, L]]
 sojourn = 3.17959
 elapsed = 64.8469

 remaining = 45.1855

[[A, B, C, H, L]]
 sojourn = 0.98963
 elapsed = 114.305

 remaining = 22.6967

[[A, B, C, D, G, I, L, M, N, O, Q]]
 sojourn = 0.12676
 elapsed = 179.856

 remaining = 0.17259

[[D, H, L, N, O]]
 sojourn = 0.17216
 elapsed = 82.0232

 remaining = 0.17216

[[A, B, C, D, E, G, I, L, M, N]]
 sojourn = 0.0

 elapsed = 227.965
 remaining = 0.0

[[A, B, D, G, Q]]
 sojourn = 31.7557
 elapsed = 91.8674

 remaining = 32.5303

[[D]]
 sojourn = 9.11147

 elapsed = 0.0
 remaining = 63.4979

[[A, B, C, F]]
 sojourn = 18.4115
 elapsed = 141.730

 remaining = 18.6393

[[A, B, D, E]]
 sojourn = 0.43228
 elapsed = 59.1430

 remaining = 0.64803

[[A, B, G, I, L, N]]
 sojourn = 0.04244
 elapsed = 177.014

 remaining = 0.99115

[[H, L, M, N, O, P]]
 sojourn = 9.61690
 elapsed = 30.1272

 remaining = 9.61690

[[A, B, G, Q]]
 sojourn = 154.018
 elapsed = 52.8121

 remaining = 157.086

[[A, B, H, L, M, N, Q]]
 sojourn = 20.3048
 elapsed = 110.496

 remaining = 20.4764

[[A, B, C, D, H, Q]]
 sojourn = 14.6631
 elapsed = 93.7906

 remaining = 32.5060

[[A, B, D, H, L, M, N, O, P]]
 sojourn = 5.02045
 elapsed = 89.5090

 remaining = 7.82242

[[A, B, C, D, G, I, L, M, N, O, P]]
 sojourn = 0.64614
 elapsed = 207.572

 remaining = 0.64614

[[A, B, D, H, L, M, N]]
 sojourn = 6.27059
 elapsed = 83.1119

 remaining = 14.8201

[[A, D, G, I]]
 sojourn = 2.20199
 elapsed = 201.624

 remaining = 4.31563

[[A, B, H, L, M, N]]
 sojourn = 14.8187
 elapsed = 107.056

 remaining = 15.8945

[[D, G, I]]
 sojourn = 1.58750
 elapsed = 160.373

 remaining = 4.55397

[[A, B, D, H, L, N, O, P]]
 sojourn = 0.0

 elapsed = 45.6705
 remaining = 0.0

[[A, B, G, I, L, M, N, O]]
 sojourn = 0.14211
 elapsed = 186.229

 remaining = 2.12036

[[A, B, C, F, H, L]]
 sojourn = 0.77153
 elapsed = 147.010

 remaining = 1.13701

[[A, G]]
 sojourn = 68.5426
 elapsed = 40.8002

 remaining = 70.0756

[[A, B, C, H]]
 sojourn = 8.07530
 elapsed = 115.214

 remaining = 29.3219

[[D, E, L]]
 sojourn = 13.9925
 elapsed = 33.0829

 remaining = 27.9146

[[A, B, F, G]]
 sojourn = 0.0

 elapsed = 132.370
 remaining = 0.0

[[A, B, C, D, G, I, L, M, N, Q]]
 sojourn = 0.02802
 elapsed = 173.538

 remaining = 0.14309

[[D, H, L, N]]
 sojourn = 33.7626
 elapsed = 48.2606

 remaining = 33.9347

[[G, I, L, M, N, O]]
 sojourn = 0.14676
 elapsed = 145.214

 remaining = 0.65622

[[A, B, G, I, L, Q]]
 sojourn = 2.25558
 elapsed = 207.452

 remaining = 2.44684

[[A, B, G, H]]
 sojourn = 0.0

 elapsed = 118.058
 remaining = 0.0

[[A, B, C, D, E, G, I, L, M]]
 sojourn = 0.83767
 elapsed = 227.127

 remaining = 0.83767

[[A, D, G, I, L, M]]
 sojourn = 0.25860
 elapsed = 200.900

 remaining = 1.85568

[[Q]]
 sojourn = 12.7617

 elapsed = 0.0
 remaining = 80.9294

[[A, B, D, G, I, L, M, N, O, P]]
 sojourn = 0.28259
 elapsed = 190.733

 remaining = 0.35785

[[A, H]]
 sojourn = 1.50219
 elapsed = 64.8467

 remaining = 45.1857

[[H, L, M]]
 sojourn = 6.39916
 elapsed = 1.84382

 remaining = 30.6215

[[D, E, G, L]]
 sojourn = 0.0

 elapsed = 60.9976
 remaining = 0.0

[[A, B, C, D, G, I, L, M, N, O, P, Q]]
 sojourn = 0.03055
 elapsed = 176.001

 remaining = 0.03055

[[D, H, L, N, O, P]]
 sojourn = 0.0

 elapsed = 82.1953
 remaining = 0.0

[[A, B, C, D, E]]
 sojourn = 3.23453
 elapsed = 121.327

 remaining = 74.1903

[[A, B, H, L, M, Q]]
 sojourn = 3.58412
 elapsed = 106.912

 remaining = 24.0605

[[A, B, H, Q]]
 sojourn = 0.08359
 elapsed = 105.843

 remaining = 25.1290

[[A, B, C, D, G, I, L, M, N, O]]
 sojourn = 0.14811
 elapsed = 206.474

 remaining = 1.11732

[[A, B, D, H, L, M]]
 sojourn = 1.24136
 elapsed = 73.1319

 remaining = 13.9443

[[A, B, F]]
 sojourn = 6.81952
 elapsed = 125.551

 remaining = 6.81952

[[A, B, C, D, H, L, N, O, P]]
 sojourn = 0.0

 elapsed = 136.234
 remaining = 0.0

[[H, L, M, N, O]]
 sojourn = 0.16973
 elapsed = 19.7936

 remaining = 12.6717

[[G, I, L, M, N]]
 sojourn = 0.03955
 elapsed = 145.389

 remaining = 0.68014

[[G, I, L]]
 sojourn = 1.75773
 elapsed = 143.905

 remaining = 2.46304

[[A, B, G, I, Q]]
 sojourn = 0.62166
 elapsed = 206.830

 remaining = 3.06850

[[D, E, G]]
 sojourn = 25.5566
 elapsed = 25.7844

 remaining = 25.9724

[[A, Q]]
 sojourn = 17.9502
 elapsed = 31.1331

 remaining = 83.3987

[[A, B, C, D, E, G]]
 sojourn = 155.035
 elapsed = 71.8545

 remaining = 156.111

[[A, B, D, H, L, M, N, O]]
 sojourn = 0.18214
 elapsed = 89.3825

 remaining = 8.54956

[[A, D, G, I, L]]
 sojourn = 0.68068
 elapsed = 200.219

 remaining = 2.53637

[[A, B, H, L, M]]
 sojourn = 4.96419
 elapsed = 102.092

 remaining = 20.8587

[[A, B, G, I, L, M, N, O, P]]
 sojourn = 1.42617
 elapsed = 188.508

 remaining = 1.48127

[[A, B, D, H, L, N, O]]
 sojourn = 0.14967
 elapsed = 45.5209

 remaining = 0.14967

[[A, B, G, I, L, M, N]]
 sojourn = 0.03980
 elapsed = 186.189

 remaining = 2.16017

[[A, B, D, G, I, L, M, N, O]]
 sojourn = 0.13484
 elapsed = 191.548

 remaining = 0.57639

[[H, L]]
 sojourn = 1.71968
 elapsed = 0.12414

 remaining = 32.3412

[[A, B, C, D, E, G, Q]]
 sojourn = 0.0

 elapsed = 217.924
 remaining = 0.0

[[A, B, C, D, E, Q]]
 sojourn = 45.8863
 elapsed = 132.159

 remaining = 85.7646

[[A, B, C, D, G, I, L, M, Q]]
 sojourn = 0.97961
 elapsed = 172.559

 remaining = 1.12270

[[D, H, L, M, N, O, P]]
 sojourn = 0.01303
 elapsed = 78.8924

 remaining = 0.01303

[[B, C, D, H, L, M, N, O, P, Q]]
 sojourn = 0.0

 elapsed = 67.1377
 remaining = 0.0

[[A, B, C, D, E, G, I, L]]
 sojourn = 0.16919
 elapsed = 226.958

 remaining = 1.00686

[[A, B, C, D, H, L, M, N, O, P]]
 sojourn = 0.79123
 elapsed = 92.5850

 remaining = 1.32723

[[A, B, C, G, I, L, M, N, O]]
 sojourn = 0.15140
 elapsed = 200.076

 remaining = 2.44221

[[A, B, C, D, H, L, N, O]]
 sojourn = 0.12674
 elapsed = 136.108

 remaining = 0.12674

[[H, L, M, N]]
 sojourn = 11.5506
 elapsed = 8.24299

 remaining = 24.2223

[[A, B, C, D, G, I]]
 sojourn = 1.37938
 elapsed = 218.097

 remaining = 3.70198

[[G, I]]
 sojourn = 1.13898
 elapsed = 142.766

 remaining = 3.60203

[[A, B, C, D, G, H, L, M, N]]
 sojourn = 0.04236
 elapsed = 68.8259

 remaining = 0.16942

[[A, B, H, L, Q]]
 sojourn = 0.98490
 elapsed = 105.927

 remaining = 25.0454

[[A, B, C, D, G, I, L, M, N]]
 sojourn = 0.02871
 elapsed = 213.776

 remaining = 0.78849

[[A, B, D, H, L, N]]
 sojourn = 8.45357
 elapsed = 15.3361

 remaining = 8.52840

[[A, B, G, I, L, M]]
 sojourn = 0.01697
 elapsed = 186.172

 remaining = 2.17715

[[A, B, C, G, H, L, M, N, O]]
 sojourn = 0.12737
 elapsed = 191.842

 remaining = 0.12737

[[D, E, G, I, L, M, N, O, P]]
 sojourn = 0.0

 elapsed = 135.050
 remaining = 0.0

[[A, B, C, D, G, I, L, Q]]
 sojourn = 1.24813
 elapsed = 171.311

 remaining = 2.37083

[[G, I, L, M]]
 sojourn = 0.04097
 elapsed = 145.663

 remaining = 0.70530

[[D, E]]
 sojourn = 11.6285
 elapsed = 13.8122

 remaining = 35.3671

[[B, C, D, H, L, M, Q]]
 sojourn = 8.53835
 elapsed = 58.4275

 remaining = 8.71022

[[A, B, C, G, I, L, M, N]]
 sojourn = 0.03975
 elapsed = 200.755

 remaining = 2.41013

[[B, C, D, G, I, L, M, N, O, P, Q]]
 sojourn = 0.0

 elapsed = 132.322
 remaining = 0.0

[[A, B, D, G, I, L, M, N]]
 sojourn = 0.02411
 elapsed = 202.632

 remaining = 0.35347

[[A, B, D, H, L, M, N, O, Q]]
 sojourn = 0.12836
 elapsed = 132.809

 remaining = 0.20202

[[A, B, C, D, E, G, H]]
 sojourn = 0.0

 elapsed = 232.777
 remaining = 0.0

[[H]]
 sojourn = 8.64672

 elapsed = 0.0
 remaining = 38.0478

[[A, B, C, D, G]]
 sojourn = 49.1433
 elapsed = 68.2379

 remaining = 50.4962

[[A, B, C, F, G]]
 sojourn = 0.0

 elapsed = 163.424
 remaining = 0.0

[[D, H, L, M, N, O]]
 sojourn = 0.14493
 elapsed = 80.1250

 remaining = 0.15960

[[B, C, D, H, L, M, N, O, Q]]
 sojourn = 0.12900
 elapsed = 67.0087

 remaining = 0.12900

[[A, B, C, D, H, L, M, N, O, P, Q]]
 sojourn = 0.0

 elapsed = 126.296
 remaining = 0.0

[[A, B, D, G, I, L, M, N, O, P, Q]]
 sojourn = 0.0

 elapsed = 179.039
 remaining = 0.0

[[A, B, C, D, E, G, I]]
 sojourn = 0.06877
 elapsed = 226.889

 remaining = 1.07563

[[A, B, C, D, H, L, M, N, O]]
 sojourn = 0.99964
 elapsed = 95.4690

 remaining = 2.11456

[[A, B, C, G, I, L, M, N, O, P]]
 sojourn = 1.36209
 elapsed = 202.175

 remaining = 2.65135

[[D, G, I, L, M, N, O, P]]
 sojourn = 2.56445
 elapsed = 158.894

 remaining = 2.56455

[[A, B, C, G, H, L, M, N]]
 sojourn = 0.04257
 elapsed = 191.800

 remaining = 0.16994

[[A, G, I, L, M, N, O]]
 sojourn = 0.12686
 elapsed = 171.829

 remaining = 1.41131

[[A, B, C, D, H, L, N]]
 sojourn = 0.04251
 elapsed = 136.065

 remaining = 0.16925

[[G]]
 sojourn = 68.9769

 elapsed = 0.0
 remaining = 70.7172

[[A, B, C, D, G, H, L, M]]
 sojourn = 0.01509
 elapsed = 68.8108

 remaining = 0.18451

[[E]]
 sojourn = 2.97950

 elapsed = 0.0
 remaining = 65.6498

[[A, B, C, E]]
 sojourn = 11.3159
 elapsed = 52.9310

 remaining = 175.034

[[A, B, C, D, G, I, L, M]]
 sojourn = 0.34157
 elapsed = 219.660

 remaining = 0.91294

[[A, B, D, H, L]]
 sojourn = 1.13813
 elapsed = 50.9771

 remaining = 13.1130

[[A, B, G, I, L]]
 sojourn = 1.71961
 elapsed = 184.600

 remaining = 3.79485

[[A, B, C, H, L, M, N, O, P]]
 sojourn = 0.71309
 elapsed = 137.353

 remaining = 0.84301

[[A, B, C, D, G, J]]
 sojourn = 6.83795
 elapsed = 62.9295

 remaining = 6.83795

[[A, B, C, G, H, L, M, N, O, P]]
 sojourn = 0.0

 elapsed = 191.970
 remaining = 0.0

[[A, B, D, G, I]]
 sojourn = 2.13651
 elapsed = 204.418

 remaining = 4.44978

[[B, C, D, G, I, L, M, Q]]
 sojourn = 0.05404
 elapsed = 158.326

 remaining = 0.13885

[[D, E, G, I, L, M, N, O]]
 sojourn = 0.29664
 elapsed = 134.753

 remaining = 0.29664

[[A, B, C, D, G, I, Q]]
 sojourn = 2.63241
 elapsed = 168.678

 remaining = 5.00325

[[B, C, F, G, Q]]
 sojourn = 0.0

 elapsed = 64.3837
 remaining = 0.0

[[A, B, C, D, E, H, L, M, N]]
 sojourn = 0.04183
 elapsed = 141.818

 remaining = 0.21508

[[D, H, L, M, N]]
 sojourn = 1.73613
 elapsed = 78.3889

 remaining = 1.89573

[[B, C, D, H, L, Q]]
 sojourn = 0.95100
 elapsed = 57.4765

 remaining = 9.66122

[[A, B, C, D, H, L, M, N, O, Q]]
 sojourn = 0.56761
 elapsed = 125.729

 remaining = 0.56761

[[A, B, D, G, I, L, M, N, O, Q]]
 sojourn = 0.12733
 elapsed = 178.912

 remaining = 0.12733

[[A, B, C, D, H, L, M, N]]
 sojourn = 8.92448
 elapsed = 86.5445

 remaining = 11.0390

[[A, B, C, G, I, L, M]]
 sojourn = 0.04825
 elapsed = 202.895

 remaining = 2.32449

[[D, G, I, L, N]]
 sojourn = 0.0

 elapsed = 165.897
 remaining = 0.0

[[A, B, C, F, H, L, M, N, O, P]]
 sojourn = 0.0

 elapsed = 148.147
 remaining = 0.0

[[B, C, D, G, I, L, M, N, O, Q]]
 sojourn = 0.12711
 elapsed = 132.195

 remaining = 0.12711

[[A, G, I, L, M, N]]
 sojourn = 0.04208
 elapsed = 171.787

 remaining = 1.45339

[[A, B, D, G, I, L, M]]
 sojourn = 0.57090
 elapsed = 207.324

 remaining = 0.83840

[[A, B, D, H, L, M, N, O, P, Q]]
 sojourn = 0.03682
 elapsed = 132.974

 remaining = 0.03682

[[A, B, D, H, L, M, N, Q]]
 sojourn = 0.04201
 elapsed = 132.767

 remaining = 0.24403

[[A, B, C, D]]
 sojourn = 15.2864
 elapsed = 54.7078

 remaining = 61.2724

[[A, B, C, D, G, H, L]]
 sojourn = 0.66679
 elapsed = 68.1440

 remaining = 0.85130

[[A, B, C, D, Q]]
 sojourn = 18.9642
 elapsed = 62.6724

 remaining = 55.2332

[[A, B, G, I, L, M, N, O, P, Q]]
 sojourn = 0.0

 elapsed = 209.898
 remaining = 0.0

[[A]]
 sojourn = 5.26360

 elapsed = 0.0
 remaining = 122.664

[[A, B, C, D, E, H, L, M, N, O, P]]
 sojourn = 0.02366
 elapsed = 142.009

 remaining = 0.02366

[[A, D, G, H]]
 sojourn = 0.0

 elapsed = 211.795
 remaining = 0.0

[[A, B, C, D, G, I, L]]
 sojourn = 1.56621
 elapsed = 218.386

 remaining = 2.45344

[[B, C, D, H, L, M, N, Q]]
 sojourn = 0.04286
 elapsed = 66.9659

 remaining = 0.17186

[[A, D, G]]
 sojourn = 61.9657
 elapsed = 52.0821

 remaining = 63.6920

[[A, B, C, D, G, I, L, N]]
 sojourn = 0.0

 elapsed = 230.036
 remaining = 0.0

[[]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 107.138

[[A, B, G, I]]
 sojourn = 1.87488
 elapsed = 182.725

 remaining = 5.66974

[[A, B, H, L, N, O]]
 sojourn = 0.16523
 elapsed = 134.878

 remaining = 0.30124

[[D, G, I, L, M, N, O]]
 sojourn = 0.16623
 elapsed = 154.650

 remaining = 4.56243

[[A, B, C, G, H, L, M]]
 sojourn = 0.03114
 elapsed = 191.768

 remaining = 0.20108

[[A, G, I, L, M, N, O, P]]
 sojourn = 0.64222
 elapsed = 172.598

 remaining = 0.64222

[[A, H, L, N, O, P]]
 sojourn = 0.0

 elapsed = 110.032
 remaining = 0.0

[[D, E, G, I, L, M, N]]
 sojourn = 0.04255
 elapsed = 134.710

 remaining = 0.33920

[[D, E, G, I, L]]
 sojourn = 0.86116
 elapsed = 133.812

 remaining = 1.23768

[[A, B, C, D, E, H, L, M]]
 sojourn = 0.01029
 elapsed = 141.808

 remaining = 0.22537

[[D, H]]
 sojourn = 5.53926
 elapsed = 63.1406

 remaining = 17.3563

[[B, C, D, H, Q]]
 sojourn = 0.01826
 elapsed = 57.4583

 remaining = 9.67948

[[A, B, D, G, I, L, Q]]
 sojourn = 0.68148
 elapsed = 178.158

 remaining = 0.88093

[[A, B, D, H]]
 sojourn = 0.51030
 elapsed = 46.2188

 remaining = 12.5306

[[B, C, D, G, I, L, M, N, Q]]
 sojourn = 0.02833
 elapsed = 147.759

 remaining = 0.11307

[[A, B, C, H, L, M, N, O]]
 sojourn = 0.73823
 elapsed = 135.448

 remaining = 1.55320

[[A, B, D, G, I, L]]
 sojourn = 1.53738
 elapsed = 205.787

 remaining = 2.37578

[[A, B, D, L]]
 sojourn = 0.0

 elapsed = 28.7749
 remaining = 0.0

[[A, B, D, H, L, M, Q]]
 sojourn = 0.00745
 elapsed = 132.759

 remaining = 0.25149

[[B, C, D, G, I, L, Q]]
 sojourn = 2.46346
 elapsed = 155.863

 remaining = 2.60231

[[A, B, C, D, E, H, L, M, N, O]]
 sojourn = 0.12590
 elapsed = 141.860

 remaining = 0.17324

[[B, C, F, Q]]
 sojourn = 0.01974
 elapsed = 64.3640

 remaining = 0.01974

[[A, D, H]]
 sojourn = 93.8720
 elapsed = 117.923

 remaining = 93.8720

[[A, B, C, D, G, H, L, M, N, O, P]]
 sojourn = 0.0

 elapsed = 68.9954
 remaining = 0.0

[[D, H, L, M]]
 sojourn = 5.31331
 elapsed = 73.0756

 remaining = 7.20905

[[A, B, C, D, H, L, M, N, Q]]
 sojourn = 0.04250
 elapsed = 125.686

 remaining = 0.61011

[[A, B, D, G, I, L, M, N, Q]]
 sojourn = 0.04258
 elapsed = 178.869

 remaining = 0.16991

[[A, B, C, D, H, L, M]]
 sojourn = 3.18734
 elapsed = 78.8165

 remaining = 13.3064

[[A, B, H, L, N]]
 sojourn = 21.8510
 elapsed = 113.027

 remaining = 22.1523

[[D, G, I, L, M, N]]
 sojourn = 0.01793
 elapsed = 159.360

 remaining = 1.95351

[[A, B, C, G, I, L]]
 sojourn = 1.37939
 elapsed = 201.516

 remaining = 3.70388

[[A, B, C, G, H, L]]
 sojourn = 0.68125
 elapsed = 191.087

 remaining = 0.88233

[[A, B, C, F, H, L, M, N, O]]
 sojourn = 0.29467
 elapsed = 147.852

 remaining = 0.29467

[[A, G, I, L, M]]
 sojourn = 0.00912
 elapsed = 171.778

 remaining = 1.46251

[[D, E, G, I]]
 sojourn = 0.84165
 elapsed = 132.970

 remaining = 2.07934

[[A, B, C]]
 sojourn = 57.7437
 elapsed = 5.42723

 remaining = 122.777

[[A, B, C, D, G, H]]
 sojourn = 4.74372
 elapsed = 107.802

 remaining = 4.95655

[[A, B, C, Q]]
 sojourn = 3.58990
 elapsed = 58.2794

 remaining = 55.1409

[[A, B, G, I, L, M, N, O, Q]]
 sojourn = 0.12704
 elapsed = 209.771

 remaining = 0.12704

[[G, H]]
 sojourn = 0.0

 elapsed = 93.8725
 remaining = 0.0

[[A, D]]
 sojourn = 9.42368
 elapsed = 46.7735

 remaining = 75.0019

[[A, D, G, I, L, M, N, O, P]]
 sojourn = 1.49556
 elapsed = 198.702

 remaining = 1.49556

[[A, B, H, L, N, O, P]]
 sojourn = 0.11901
 elapsed = 138.896

 remaining = 0.11901

[[A, B, G]]
 sojourn = 100.934
 elapsed = 43.6649

 remaining = 105.002

[[B, C, D, Q]]
 sojourn = 18.4040
 elapsed = 37.3619

 remaining = 44.2868

[[A, H, L, N, O]]
 sojourn = 0.17200
 elapsed = 109.860

 remaining = 0.17200

[[D, E, G, I, L, M]]
 sojourn = 0.03731
 elapsed = 134.673

 remaining = 0.37651

[[A, B, C, D, E, H, L]]
 sojourn = 0.95271
 elapsed = 140.855

 remaining = 1.17809

[[A, B, C, G]]
 sojourn = 86.6687
 elapsed = 60.0423

 remaining = 89.8772

[[A, B, C, D, G, H, L, M, N, O]]
 sojourn = 0.12706
 elapsed = 68.8683

 remaining = 0.12706

H
complete

L
complete

O
complete

P
complete

P
complete

D
complete

L
complete

O
complete

D
complete

I
complete

I
complete

N
complete

O
complete

L
complete

N
complete

P
complete

G
complete

N
complete

N
complete

N
complete

O
complete

E
complete

M
complete

G
complete

P
complete

G
complete

H
complete

P
complete

L
complete

N
complete

A
complete

M
complete

L
complete

G
complete

M
complete

L
complete

H
complete

Q
complete

M
complete

O
complete

D
complete

N
complete

L
complete

O
complete

N
complete

O
complete

L
complete

P
complete

I
complete

P
complete

N
complete

P
complete

D
complete

M
complete

N
complete

P
complete

L
complete

G
complete

O
complete

P
complete

E
complete

M
complete

O
complete

M
complete

B
complete

B
complete

P
complete

E
complete

O
complete

P
complete

G
complete

L
complete

F
complete

H
complete

N
complete

M
complete

N
complete

I
complete

C
complete

H
complete

P
complete

O
complete

N
complete

L
complete

L
complete

L
complete

O
complete

G
complete

O
complete

O
complete

P
complete

L
complete

M
complete

P
complete

O
complete

M
complete

L
complete

O
complete

P
complete

L
complete

G
complete

G
complete

H
complete

G
complete

O
complete

O
complete

P
complete

M
complete

D
complete

N
complete

I
complete

O
complete

G
complete

I
complete

L
complete

Q
complete

B
complete

N
complete

G
complete

I
complete

N
complete

B
complete

G
complete

L
complete

N
complete

G
complete

P
complete

M
complete

O
complete

O
complete

O
complete

O
complete

N
complete

N
complete

G
complete

Q
complete

H
complete

O
complete

O
complete

F
complete

G
complete

E
complete

N
complete

O
complete

H
complete

M
complete

L
complete

M
complete

O
complete

D
complete

N
complete

P
complete

E
complete

M
complete

G
complete

P
complete

O
complete

P
complete

D
complete

H
complete

L
complete

O
complete

P
complete

O
complete

N
complete

O
complete

O
complete

L
complete

I
complete

D
complete

M
complete

J
complete

M
complete

N
complete

Q
complete

N
complete

P
complete

O
complete

M
complete

H
complete

P
complete

N
complete

L
complete

P
complete

D
complete

D
complete

F
complete

M
complete

H
complete

M
complete

N
complete

L
complete

G
complete

O
complete

P
complete

P
complete

N
complete

I
complete

P
complete

G
complete

O
complete

L
complete

E
complete

L
complete

N
complete

G
complete

C
complete

O
complete

L
complete

O
complete

I
complete

M
complete

M
complete

M
complete

M
complete

N
complete

H
complete

P
complete

O
complete

P
complete

O
complete

P
complete

H
complete

B
complete

O
complete

L
complete

I
complete

P
complete

D
complete

G
complete

D
complete

I
complete

O
complete

P
complete

L
complete

N
complete

N
complete

P
complete

C
complete

O
complete

O
complete

M
complete

I
complete

N
complete

I
complete

P
complete

G
complete

M
complete

L
complete

O
complete

M
complete

O
complete

O
complete

P
complete

O
complete

P
complete

P
complete

N
complete

L
complete

G
complete

Q
complete

N
complete

B
complete

O
complete

D
complete

H
complete

O
complete

P
complete

N
complete

G
complete

G
complete

O
complete

P
complete

M
complete

D
complete

H
complete

H
complete

G
complete

G
complete

L
complete

O
complete

N
complete

O
complete

(a) Set abstraction based on all activities

[[B]]
 sojourn = 16.3629
 elapsed = 7.86427

 remaining = 112.792

[[]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 107.138

[[C]]
 sojourn = 51.9436
 elapsed = 9.94651

 remaining = 115.056

[[O]]
 sojourn = 0.45839
 elapsed = 159.219

 remaining = 1.73753

[[J]]
 sojourn = 13.6759
 elapsed = 56.0915

 remaining = 13.6759

[[H]]
 sojourn = 7.09205
 elapsed = 87.5322

 remaining = 24.6030

[[P]]
 sojourn = 1.26478
 elapsed = 155.082

 remaining = 1.69408

[[N]]
 sojourn = 3.60209
 elapsed = 155.972

 remaining = 5.26848

[[L]]
 sojourn = 1.43620
 elapsed = 157.379

 remaining = 7.93469

[[E]]
 sojourn = 4.31920
 elapsed = 51.3724

 remaining = 53.6329

[[F]]
 sojourn = 13.2145
 elapsed = 128.014

 remaining = 13.3569

[[M]]
 sojourn = 1.83842
 elapsed = 161.461

 remaining = 6.16146

[[Q]]
 sojourn = 11.8378
 elapsed = 26.5137

 remaining = 75.7916

[[G]]
 sojourn = 59.7765
 elapsed = 47.9646

 remaining = 61.6373

[[A]]
 sojourn = 5.26360

 elapsed = 0.0
 remaining = 122.664

[[I]]
 sojourn = 1.57712
 elapsed = 188.213

 remaining = 4.43585

[[D]]
 sojourn = 12.8837
 elapsed = 40.6624

 remaining = 59.6669

Q
complete

L
complete

G
complete

I
complete

G
complete

H
complete

D
complete

P
complete

D
complete

C
complete

H
complete

E
complete

M
complete

D
complete

H
complete

G
complete

F
complete

B
complete

Q
complete

G
complete

G
complete

B
complete

G
complete

G
complete

H
complete

O
complete

E
complete

B
complete

L
complete

D
complete

L
complete

Q
complete

H
complete

H
complete

O
complete

D
complete

D
complete

F
complete

J
complete

N
complete

G
complete

N
complete

E
complete

A
complete

H
complete

(b) Set abstraction with a horizon of 1

[[B],[I]]
 sojourn = 15.3332
 elapsed = 4.27168

 remaining = 202.780

[[],[I]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 192.649

[[],[]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 63.4624

[[E],[I]]
 sojourn = 8.25098
 elapsed = 26.4655

 remaining = 155.042

[[G],[]]
 sojourn = 0.17968
 elapsed = 51.7855

 remaining = 0.25572

[[C],[I]]
 sojourn = 50.5984
 elapsed = 6.55942

 remaining = 204.546

[[O],[]]
 sojourn = 0.45839
 elapsed = 159.219

 remaining = 1.73753

[[J],[]]
 sojourn = 13.6759
 elapsed = 56.0915

 remaining = 13.6759

[[D],[]]
 sojourn = 15.0304
 elapsed = 41.2688

 remaining = 19.4577

[[H],[]]
 sojourn = 7.09205
 elapsed = 87.5322

 remaining = 24.6030

[[P],[]]
 sojourn = 1.26478
 elapsed = 155.082

 remaining = 1.69408

[[C],[]]
 sojourn = 52.5662
 elapsed = 11.5144

 remaining = 73.6310

[[N],[]]
 sojourn = 3.60209
 elapsed = 155.972

 remaining = 5.26848

[[L],[]]
 sojourn = 1.43620
 elapsed = 157.379

 remaining = 7.93469

[[E],[]]
 sojourn = 3.53284
 elapsed = 56.3538

 remaining = 33.3511

[[F],[]]
 sojourn = 13.2145
 elapsed = 128.014

 remaining = 13.3569

[[B],[]]
 sojourn = 16.8129
 elapsed = 9.43436

 remaining = 73.4641

[[Q],[]]
 sojourn = 12.1739
 elapsed = 28.1960

 remaining = 65.5129

[[M],[]]
 sojourn = 1.83842
 elapsed = 161.461

 remaining = 6.16146

[[G],[I]]
 sojourn = 145.761
 elapsed = 42.4520

 remaining = 150.197

[[A],[I]]
 sojourn = 4.88454

 elapsed = 0.0
 remaining = 207.543

[[Q],[I]]
 sojourn = 8.98153
 elapsed = 12.2141

 remaining = 163.160

[[A],[]]
 sojourn = 5.45194

 elapsed = 0.0
 remaining = 80.4937

[[I],[]]
 sojourn = 1.57712
 elapsed = 188.213

 remaining = 4.43585

[[D],[I]]
 sojourn = 7.47458
 elapsed = 39.1344

 remaining = 160.984

D
complete

B
complete

O
complete

G
complete

Q
complete

B
complete

B
complete

H
complete

B
complete

L
complete

D
complete

E
complete

G
complete

H
complete

B
complete

O
complete

G
complete

J
complete

D
complete

F
complete

G
complete

D
complete

N
complete

Q
complete

D
complete

B
complete

G
complete

D
complete

D
complete

A
complete

switch start state

D
complete

H
complete

Q
complete

I
complete

L
complete

E
complete

N
complete

H
complete

G
complete

Q
complete

P
complete

G
complete

E
complete

C
complete

C
complete

G
complete

D
complete

M
complete

Q
complete

D
complete

Q
complete

F
complete

L
complete

G
complete

A
complete

D
complete

H
complete

G
complete

G
complete

G
complete

H
complete

E
complete

H
complete

G
complete

(c) Set abstraction with a horizon of 1
and knowledge about the case

[]
 sojourn = 14.5942
 elapsed = 69.9587

 remaining = 62.0593

P
complete

E
complete

A
complete

D
complete

F
complete

L
complete

B
complete

G
complete

M
complete

Q
complete

O
complete

H
complete

J
complete

C
complete

I
complete

N
complete

(d) Complete abstraction

Fig. 17. Four transition systems with prediction information based on the same event
log but using different abstractions.

abstraction over all activities. The second one (Figure 17(a)) uses the same ab-
straction but now with horizon 1, i.e., only the last activity is considered. Note
that these first two transition systems correspond to the ones already shown in
Figure 4. The third transition system uses knowledge about the property of the
case, i.e., based on this knowledge it is known whether a particular task (labeled
“I”) needs to be executed. Figure 17(c) shows the resulting transition system.
Note that it extends Figure 17(b) with additional knowledge about the occur-
rence of task “I”. The last abstraction (Figure 17(d)) is again the extreme case
where no historic information is used. This is again used as a benchmark.

Table 5. Some results for the municipality’s WOZ process

Abstraction MAE RMSE MAPE

Set abstraction based on all activities (cf. Fig-
ure 17(a))

41.648 47.513 1505.07

Set abstraction based on last activity (cf. Fig-
ure 17(b))

43.080 49.666 1818.49

Set abstraction based on last activity and addi-
tional information related to the occurrence of “I”
(cf. Figure 17(c))

17.129 23.550 900.07

Complete abstraction (cf. Figure 17(d)) 63.391 74.965 7169.55

Simple heuristic: half of average total flow time
(53.57 days)

61.750 75.505 6188.04

Table 5 shows the results for the four annotated transition systems shown in
Figure 17. The last row shows again the results for simply predicting half of the
average flow time. Note that the transition systems are constructed based on
L1 while the error rates in Table 5 are based on L2. Again simple abstractions
such as shown in figure 17(a) and 17(b) outperform simple heuristics. Note that
the the complete abstraction and simple heuristic have a MAE of more than
60 days while set abstractions based on all activities or just the last activity
have a MAE of just above 40 days. The third row of Table 5 shows the spec-
tacular performance of the annotated transition system shown in Figure 17(c).
The MAE drops to 17 days. This illustrates that additional information can be
very valuable. Note that the average total flow time is about 107 days. More-
over, as shown in Figure 16 there is a huge variation in flow times. Hence, it
is quite remarkable that we can predict the remaining time until completion so
accurately.

8 Conclusion

In this paper, we presented a new method for predicting the “future of a run-
ning instance”. Given a running case, our prediction approach allows answering
questions like “When will this case be finished?”, “How long does it take before

activity A is completed?”, “How likely is it that activity B will be performed
in the next two days?”, etc. In this paper, we mainly focused on the remain-
ing time until completion. However, our approach can easily be used for other
types of predictions. The basic idea of the approach is to build an annotated
transition system. This transition system is learned from past executions using
an appropriate abstraction mechanism.

The approach is fully implemented in ProM. Using the FSM Miner a tran-
sition system is learned. The FSM Analyzer extends this transition system with
predictive information. This information can be used to make predictions at
run-time. Currently, we only support a link between the workflow management
system Declare and our prediction tools in ProM. However, it is easy to extend
the same toolset to other workflow management systems. To support experiments
and to cross validate results, our FSM evaluator can be used to measure standard
quality metrics such as MSE, RMSE, MAE, and MAPE.

In this paper, we evaluated our approach using a synthetic event log and
two real-life event logs. Both experiments show that our approach outperforms
simple heuristics. This is quite remarkable as we do not use a-priori knowledge.
Note that we learn the model from past executions. The model can be used for
predictions, but also has a value by itself as it shows where in the process the
bottlenecks are.

As future work we plan to work more on the automation of abstractions, i.e.,
now the user still needs to select an abstraction based on the characteristics of
the process and log. For example, when there are fewer process instances, then a
more abstract transition system is desirable. It seems possible to automatically
refine or aggregate states based on the quality metrics already gathered. Such
approaches are not only interesting for predictions but also for process discovery,
i.e., the parts of the process where there is more certainty are depicted in more
detail and the more “fuzzy” parts of the process are simplified. For predictions
all measures are considered to be of equal importance, while there could be
correlations between activities. For example, after the occurrence of some activity
it is very unlikely that some other activity will occur. In this case it does not
make sense to (fully) use measures from traces that contain that latter activity
for predicting an instance where the former activity has already been exectued.
Correlations can be mined from the log [27] and be used to select or to weigh the
state prediction measures. An assumption in our approach is the independency
of the samples, i.e., the bag of measurements. However, the interaction between
cases and the availability of resources are important factors when predicting the
remaining time until completion [25]. These interactions should be incorporated
into the predictions.

9 Acknowledgements

This research is supported by EIT, NWO-EW, SUPER, and the Technology
Foundation STW. We would like to thank the many people involved in the
development of ProM. In particular we would like to thank Eric Verbeek for

implementing the FSM Miner, and Boudewijn van Dongen en Ronald Crooy for
their work on the regression-based prediction service.

References

1. W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves
de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M.
Weijters. ProM 4.0: Comprehensive Support for Real Process Analysis. In J. Kleijn
and A. Yakovlev, editors, Application and Theory of Petri Nets and Other Models of
Concurrency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Science,
pages 484–494. Springer-Verlag, Berlin, 2007.

2. W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K.
Alves de Medeiros, M. Song, and H.M.W. Verbeek. Business Process Mining: An
Industrial Application. Information Systems, 32(5):713–732, 2007.

3. W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and C.W. Günther.
Process Mining: A Two-Step Approach to Balance Between Underfitting and Over-
fitting. Software and Systems Modeling, 2009.

4. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

5. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

6. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

7. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

8. R. Crooy. Predictions in Information Systems: A process mining perspective. Mas-
ter’s thesis, Eindhoven University of Technology, Eindhoven, 2008.

9. A. Datta. Automating the Discovery of As-Is Business Process Models: Proba-
bilistic and Algorithmic Approaches. Information Systems Research, 9(3):275–301,
1998.

10. S.N. den Hertog. Case prediction in BPM systems: Research to the predictability
of the remaining time of individual cases. Master’s thesis, Eindhoven University
of Technology, Eindhoven, 2008.

11. B.F. van Dongen, R.A. Crooy, and W.M.P. van der Aalst. Cycle Time Prediction:
When Will This Case Finally Be Finished? In R. Meersman and Z. Tari, editors,
Proceedings of the 16th International Conference on Cooperative Information Sys-
tems, CoopIS 2008, OTM 2008, Part I, volume 5331 of Lecture Notes in Computer
Science, pages 319–336. Springer-Verlag, Berlin, 2008.

12. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

13. J. Eder, E. Panagos, and M. Rabinovich. Time Constraints in Workflow Systems.
In M. Jarke and A. Oberweis, editors, Proceedings of the 11th International Confer-
ence on Advanced Information Systems Engineering (CAiSE ’99), volume 1626 of
Lecture Notes in Computer Science, pages 286–300. Springer-Verlag, Berlin, 1999.

14. J. Eder and H. Pichler. Probabilistic Calculation of Execution Intervals for Work-
flows. In Proceedings of the 12th International Symposium on Temporal Representa-
tion and Reasoning, pages 183–185, Washington, DC, USA, 2005. IEEE Computer
Society.

15. C.W. Günther and W.M.P. van der Aalst. Fuzzy Mining: Adaptive Process Sim-
plification Based on Multi-perspective Metrics. In G. Alonso, P. Dadam, and
M. Rosemann, editors, International Conference on Business Process Management
(BPM 2007), volume 4714 of Lecture Notes in Computer Science, pages 328–343.
Springer-Verlag, Berlin, 2007.

16. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pages 183–194. Springer-Verlag, Berlin, 2000.

17. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools
for Modelling and Validation of Concurrent Systems. International Journal on
Software Tools for Technology Transfer, 9(3-4):213–254, 2007.

18. A.K. Alves de Medeiros and C.W. Günther. Process Mining: Using CPN Tools
to Create Test Logs for Mining Algorithms. In K. Jensen, editor, Proceedings of
the Sixth Workshop on the Practical Use of Coloured Petri Nets and CPN Tools
(CPN 2005), volume 576 of DAIMI, pages 177–190, Aarhus, Denmark, October
2005. University of Aarhus.

19. M. Pesic, H. Schonenberg, and W.M.P. van der Aalst. DECLARE: Full Support
for Loosely-Structured Processes. In M. Spies and M.B. Blake, editors, Proceed-
ings of the Eleventh IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2007), pages 287–298. IEEE Computer Society, 2007.

20. H. A. Reijers. Case Prediction in BPM Systems: A Research Challenge. Journal
of the Korean Institute of Industrial Engineers, 33:1–10, 2006.

21. A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based
on Monitoring Real Behavior. Information Systems, 33(1):64–95, 2008.

22. A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering Col-
ored Petri Nets From Event Logs. International Journal on Software Tools for
Technology Transfer, 10(1):57–74, 2008.

23. A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering Simulation
Models. Information Systems, 34(3):305–327, 2009.

24. A. Rozinat, M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge.
Workflow Simulation for Operational Decision Support Using Design, Historic and
State Information. In M. Dumas, M. Reichert, and M.C. Shan, editors, Interna-
tional Conference on Business Process Management (BPM 2008), volume 5240 of
Lecture Notes in Computer Science, pages 196–211. Springer-Verlag, Berlin, 2008.

25. B. Schellekens. Cycle Time Prediction in Staffware. Master’s thesis, Eindhoven
University of Technology, Eindhoven, 2009.

26. H. Schonenberg, B. Weber, B.F. van Dongen, and W.M.P. van der Aalst. Support-
ing Flexible Processes Through Recommendations Based on History. In M. Dumas,
M. Reichert, and M.C. Shan, editors, International Conference on Business Pro-
cess Management (BPM 2008), volume 5240 of Lecture Notes in Computer Science,
pages 51–66. Springer-Verlag, Berlin, 2008.

27. M.H. Schonenberg, N. Sidorova, W.M.P. van der Aalst, and K. vans Hee. History-
dependent stochastic petri nets. In Perspectives of Systems Informatics, 7th In-
ternational Andrei Ershov Memorial Conference, PSI 2009, Novosibirsk, Russia,
June 15-19, 2009., Lecture Notes in Computer Science. Springer-Verlag, Berlin,
June 2009.

28. Staffware. Staffware Process Suite Version 2 – White Paper. Staffware PLC,
Maidenhead, UK, 2003.

29. S.E. Verwer, M.M. de Weerdt, and C. Witteveen. Efficiently learning timed models
from observations. In L. Wehenkel, P. Geurts, and R. Maree, editors, Benelearn,
pages 75–76. University of Liege, 2008.

30. B. Weber, W. Wild, and R. Breu. CBRFlow: Enabling Adaptive Workflow Manage-
ment Through Conversational Case-Based Reasoning. In Advances in Case-Based
Reasoning, volume 3155 of Lecture Notes in Computer Science, pages 434–448.
Springer-Verlag, Berlin, 2004.

31. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151–162, 2003.

32. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik.
Process Discovery using Integer Linear Programming. In K. van Hee and R. Valk,
editors, Proceedings of the 29th International Conference on Applications and The-
ory of Petri Nets (Petri Nets 2008), volume 5062 of Lecture Notes in Computer
Science, pages 368–387. Springer-Verlag, Berlin, 2008.

