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Abstract

Recently, there has been a renewed interest in the machine learning
community for variants of a sparse greedy approximation procedure for
concave optimization known as the Frank-Wolfe (FW) method. In par-
ticular, this procedure has been successfully applied to train large-scale
instances of non-linear Support Vector Machines (SVMs). Specializing
FW to SVM training has allowed to obtain efficient algorithms but also
important theoretical results, including convergence analysis of training
algorithms and new characterizations of model sparsity.

In this paper, we present and analyze a novel variant of the FW method
based on a new way to perform away steps, a classic strategy used to
accelerate the convergence of the basic FW procedure. Our formulation
and analysis is focused on a general concave maximization problem on the
simplex. However, the specialization of our algorithm to quadratic forms
is strongly related to some classic methods in computational geometry,
namely the Gilbert and MDM algorithms.

On the theoretical side, we demonstrate that the method matches the
guarantees in terms of convergence rate and number of iterations obtained
by using classic away steps. In particular, the method enjoys a linear
rate of convergence, a result that has been recently proved for MDM on
quadratic forms.

On the practical side, we provide experiments on several classification
datasets, and evaluate the results using statistical tests. Experiments
show that our method is faster than the FW method with classic away
steps, and works well even in the cases in which classic away steps slow
down the algorithm. Furthermore, these improvements are obtained with-
out sacrificing the predictive accuracy of the obtained SVM model.



1 Introduction

In this paper we present a novel variant of the Frank-Wolfe (hereafter FW)
method [23] B3], designed to deal with large-scale instances of the following
problem:

maximize g(a) subject to a € S := {a cR™: Z a=1,a; > O} . (1)

This problem encompasses several models used in machine learning [13], 28],
including hard-margin Support Vector Machines (SVMs) [36] and Lo-loss SVMs
(L2-SVMs) for binary classification, regression and novelty detection [58), [59].

FW Methods and Focus of this Paper It has been noted by researchers in
different fields that approximate solutions to problem can be obtained using
quite simple iterative procedures. In [64], for instance, Yildirim presents two
iterative algorithms for the task of approximating the Minimum Enclosing Ball
(MEB) of a set of points. In [I], Ahipasaoglu et al. propose similar methods
to solve Minimum Volume Enclosing Ellipsoid problems. In [66], Zhang studies
similar techniques for convex approximation and estimation of mixture models.
All these methods are nowadays identified as variants of a general approximation
procedure for maximizing a differentiable concave function on the simplex, which
traces back to Frank and Wolfe [23] [62] 27] and has been recently analyzed by
Clarkson [I3] and Jaggi [33] under a modern perspective.

In a nutshell, each iteration of the FW method moves the solution towards
the direction along which the linearized objective function increases most rapidly
but is still feasible. The procedure is related to the idea of coreset, coined in
the context of computational geometry and denoting a subset of data C. which
suffices to obtain an approximation to the solution on the whole dataset up to
a given precision . Clarkson’s framework unifies diverse results regarding the
existence of small coresets for different instances of problem (1). These ideas
were used in [28] to characterize the sparsity of SVMs and the convergence
properties of training algorithms for geometric formulations of the problem.

The algorithm studied in this paper is obtained by incorporating a new type
of away step into the basic FW method. Loosely speaking, instead of moving
the solution towards a direction along which the linearized objective function
increases, an away step moves the solution away from a direction along which the
linearized objective function decreases. This strategy was suggested by Wolfe in
[62] to improve the convergence rate of the FW method, leading to a variant of
the original algorithm called Modified Frank-Wolfe method (hereafter MFW).
It has been demonstrated that MFW is linearly convergent under some general
assumptions on the properties of problem . However, we have found in [20]
that classic away steps do not improve significantly the running times of the
FW method on machine learning problems. A similar conclusion was obtained
by Ouyang and Gray in [44]. In contrast, our approach experimentally improves
on other FW methods and shows theoretical guarantees (e.g. convergence rate)
at least as good as those of MFW.



Applications to SVM Learning Training non-linear SVMs on large datasets
is challenging [16]. Effective Interior Point Methods can be devised under
some special circumstances, such as kernels which admit low-rank factoriza-
tions [I8, 63]. However, these methods are not suitable for large-scale problems
in a general scenario, mainly due to memory constraints: a general interior point
method needs O(m?) memory and O(m3) time for matrix inversions, and both
are prohibitive even for medium-scale problems. Among the traditional methods
devised to cope with this problem, Active Set methods [49, 34 50] and Sequen-
tial Minimal Optimization (SMO) [45] [I6] are well-known alternatives among
practitioners. Indeed, these are the algorithms of choice in the widely known
libraries SVMLight [35] and LIBSVM [12], respectively. For the linear kernel
case, Stochastic Gradient Descent (SGD) [7l []], specialized sub-gradient meth-
ods like Pegasos [54] and Stochastic Dual Coordinate Ascent (SDCA) [3T], 55]
have lately gained popularity in the community as approximate but efficient
alternatives to the classic solutions on large-scale problems [65].

In the non-linear case, effective methods to deal with large datasets have
been recently devised by focusing on formulations which fit problem and
then applying FW methods. The first work to specialize a variant of the FW
method to SVM training is probably due to Tsang et al. [58]. Given a labelled
set of examples {(x;,y;) : x; € X,y; € {+1,—1},i € I}, where X denotes
the input space and Z = {1,...,m} an index set, they adopt the so-called Lo-
SVM formulation, where the model is built by solving the following optimization
problem

maximize g(a) = —a’Ka  subject to Z a;=1,a; >0, (2)

where K; ; = yiy;k(xi, x;) +y:y; + 6, ;/C, k : X x X — R is the kernel function
used in the SVM model and C is the regularization parameter [58| 19, 20].
Problem clearly fits problem . This formulation is adopted mainly because
of efficiency: by using the functional of Eqn. (2)), it is possible to exploit the
framework introduced in [58], and further developed in [I3], to solve the learning
problem more easilyﬂ Note also that in problem K is positive definite E| for
0 < C < oo and thus g(+) is strictly concave.

Borrowing a coreset-based algorithm from computational geometry [10], the
authors obtain that the total number of iterations needed to identify a coreset,
i.e. an approximation to the L,-SVM model up to an arbitrary precision e,
is bounded by O(1/¢), independently of the size of the dataset. From the
iterative structure the algorithm, it follows easily that the size of the coreset is
also bounded by O(1/e). A similar result regarding linear SVMs trained with
SDCA has been recently demonstrated in [55].

IStrictly speaking, [58] is a special case of a FW method which does not address the
general form of problem , as a normalization constraint on the quadratic form is required
(see Sections and .

2This is easily seen by writing K as the sum of two positive semi-definite matrices and a
multiple of the identity, K = yyL ® K+ vyl + %I, where y is the column vector whose
components are the labels y;, K is the Gram matrix I~(” = k(x;,%;) and © is the Hadamard
or componentwise product.



The latter properties imply in particular that the size of the set of examples
required to represent the (approximate) solution, i.e. the number of support
vectors in the model, is also independent from the size of the dataset, an im-
provement on previous lower bounds for the support set size, such as those in
[56], where the bound grows linearly in the size of the dataset. The obtained
training algorithm also exhibits linear running times in the number of examples.
These are remarkable results in the context of non-linear SVM models, where
the support set needs to be explicitly stored in memory to implement predic-
tions and determines the cost of a classification decision in terms of testing time.
In addition, a combination of this procedure with certain sampling techniques
allows to obtain sub-linear time approximation algorithms [58| 19]ﬁ In practice,
the method was found to be competitive with most well-known SVM software
using non-linear kernels [58] [59].

Several other papers have recently stressed the efficiency of FW and coreset-
based methods in machine learning. In [I9] and [2T] the authors investigate the
direct application of the FW method to large-scale non-linear SVM training,
demonstrating that running times of [58] can be significantly improved as long
a minor loss in accuracy is acceptable. Variations of the algorithm based on
geometrical reformulations of the learning problem [38] 28], stochastic variants
of the method [44], and applications to SVM training on data streams [61], [47]
and structural SVMs [39] have also been proposed.

Contributions We present a FW method endowed with a new type of op-
timization step devised to overcome the difficulties observed with the classic
MFW approach, while preserving the intuition and benefits behind the intro-
duction of away steps. On the theoretical side, we formulate and analyze the
algorithm for the general case of problem , demonstrating that the method
matches the guarantees in terms of convergence rate and number of iterations
obtained by using classic away steps. In particular, we show that the method
converges linearly to the optimal value of the objective function, and achieves
a predetermined accuracy e (primal-dual gap) in at most O(1/e) iterations.
Focusing on quadratic objectives, it turns out that the method is strongly re-
lated to the Gilbert and Mitchell-Demnyanov-Malozemov (MDM) algorithms,
two classic methods in computational geometry [26] [42]. Such methods are
well-known in machine learning and their properties, in particular their rate of
convergence, have been the focus of recent research [40, [41].

On the practical side, we specialize the algorithm to SVM training and per-
form detailed experiments on several classification problems. We conclude that
our algorithm improves the running times of existing FW approaches without
any statistically significant difference in terms of prediction accuracy. In par-
ticular, we show that the method is faster than the FW and MFW methods,
while MFW is not statistically faster than FW. In addition, we show that the

3To be rigorous, the probability of identifying a good point in a given iteration depends on
the size of the sampling. A sub-linear procedure guaranteeing a constant success probability
is studied in [I4], though it seems that results on the non-linear case are provided only for
some kernels.



method is faster than or equal to the FW method when MFW is significantly
slower, i.e. when classic away steps fail. In addition, the method is competitive
with MFW when FW is significantly slower, i.e., if classic away steps work,
our algorithm works as well. Thus, the method represents a robust alternative
to implement away steps, enjoying strong theoretical guarantees and providing
significant improvements in practice.

Organization The paper is organized as follows. In Section 2 we give an
overview of FW methods and introduce the basic concepts required for their
analysis. In Section 3 we present the new method, including a minor variant,
and provide some details about its specialization to SVMs. The analysis of
convergence is provided in Section 4. In Section 5, we discuss the relation of the
proposed method to some classic geometric approaches for a quadratic objective.
Experiments on SVM problems are presented in Section 6. Finally, Section 7
closes the paper with some concluding remarks. In addition, some technical
results required for the proofs of Section 4 are reported in the Appendix.

Notation An optimal solution for problem is denoted a*. A sequence
of approximations «g, a1, ...,a; to a solution of problem is abbreviated
{ak}r. The set of indices 1,2,...,m is denoted [m]. The face Sz of the unit
simplex .S corresponding to a set of indices Z C [m] is the subset of points & € S
such that a; = 0Vj ¢ Z. The term active face indicates the face corresponding
to the non-zero indices, Zj, of the current solution a;. The term optimal face,
denoted by S*, indicates the face corresponding to an optimal solution a*. The
vector e; denotes the i-th vector of the canonical basis.

2 Frank-Wolfe Methods

The FW method computes a sequence of approximations {ay}i to a solution
of problem by iterating until convergence the following steps. First, a linear
approximation of ¢g(-) at the current iterate ay, is performed in order to find an
ascent direction djVV = (u; — o), with

uy, € argggaxwk(u) = g(ar) + (u — o) Vg(aw). (3)
u
Since uy lies in S, it is easy to see that the linear approximation step re-
duces to uy = e;+ where i* is the largest coordinate of the gradient, i.e.
i* € argmax,; Vg(ay);. The iterate oy is then moved towards e;-, seeking
for the best feasible improvement of the objective function. The procedure is
summarized in Algorithm [I| In the rest of this paper we refer to e;« € S as the
ascent verter used by the method.
As discussed below, the procedure can be stopped when g(ay) is “close
enough” to the optimum.



Algorithm 1: FW method for problem .

1 Compute an initial estimate ay.

2 Set Io = {Z BEeT R 75 O}

3 for k=0,1,... do

Search for i* € argmax; Vg(ay); and define dkFW = e — O.
Perform a line-search to find Ay € argmax,c( 1) g(cu + AEW).
Update the iterate by ag1 = ay + \edEW = (1 — M)y + Aei.
Set 41 = Iy U {Z*}

N 0 o s

2.1 Optimality Measures and Stopping Condition

It can be shown that the FW method is globally convergent under rather weak
assumptions on the properties of the objective function [27, 23], which are guar-
anteed to hold for the SVM problem [64, 20]. In addition, it can be shown
that the iterates of this procedure satisfy

40,

A(a) = gla”) = glow) < %

(4)

where Cj is a constant related to the second derivative of g [I3]. This con-
vergence rate is slow compared to other methods. However, the simplicity of
the procedure implies that the amount of computation per iteration is usually
very small. This kind of tradeoff can be favorable for large-scale applications,
as testified for example by the widespread adoption of the SMO method in the
context of SVMs [45] [16].

When g(a) is continuously differentiable, the Wolfe dual of problem is

minimize w(a) , with w(a) = g(a) + max Vg(a); —a’Vgla). (5)

(a7

As shown in [I3], the strong duality condition
g9(a) < g(a”) = w(a") < w(a) (6)

holds for any feasible c«t. Thus, another reasonable measure of optimality for
the Frank-Wolfe iterates is the so-called primal-dual gap

A'(@) = w(a) — g(or) = max Vg(er); — o’ Vg(a) . (7)

Up to a multiplicative constant (4C), the primal-dual gap in Eqn. and
the primal measure of approximation in Eqn. (4)) are the metrics employed in
[13] to analyze the convergence of Algorithm [1} The advantage of A?(ay,) with
respect to AP(ey;) is that the former does not depend on the optimal value of
the objective function. Therefore, A%(c;) can be explicitly monitored during
the execution of the algorithm and can be adopted to implement a stopping



condition for Algorithm [I] In this paper, we adopt this measure to stop the FW
method and any of its variants. That is, the algorithms are terminated when

Ad(ak) = miang(ak)i — a{Vg(ak) <eg, (8)

where € > 0 is a given tolerance parameter. Note that the strong duality con-
dition implies AP(a;) < A%(ay). Therefore, if the algorithm stops at iteration
k we also have AP(ay,) < e.

Note also that Eqn. implies that the FW method finds a solution fullfiling
AP(a) < € in at most K ~ O(1/e) iterations. Clarkson has recently shown
that we also have A%(a) < ¢ after at most K ~ O(1/¢) iterates [I3]. Thus, the
solution found by the FW method using the stopping condition is guaranteed
to be “close” to the optimum both primally and dually after O(1/¢) iterations.

In the analysis presented in this paper, we make use of the following notion
of approximation quality introduced in [I].

Definition 1. A feasible solution « to problem is said a A-approximate
solution if

Ala) < A (9)

and Af(a):=Vg(a); —a’Vg(a) > A, Vi:a; >0 . (10)

The first condition guarantees that a A-approximate solution is “close” to the
optimum both primally and dually. In addition, the second condition ensures
that —A < Af(a) < A for the active face, that is, the primal-dual gap computed
on each active coordinate 7 : a; > 0 is not far from the largest gap computed
among all the coordinates of the gradient. This implies also that the solution
ay, is “almost” optimal in the face of the simplex defined by the non-zero indices.

2.2 Sparsity of the FW solutions and Coresets

On of the main points of interest for the FW method is the sparsity of the
solutions it finds. It should be observed that, in contrast to other methods
such as projected or reduced gradient methods, Algorithm [I] modifies only one
coordinate of the previous iterate at each step. If the starting solution has K
non-zero coordinates, iterate o, has at most K+ k non-zero entries. Therefore,
our previous remarks about the convergence of the FW method show that there
exist solutions with space-complexity Ko+ O(1/¢) that are good approximations
for problem , even if m (the dimensionality of the feasible space and the
number of data points in SVM problems) is much larger.

The above properties are essential for in the context of training non-linear
SVMs. In this case, each non-zero coordinate in o, represents a support train-
ing example (a document, image or protein profile) that needs to be explicitly
stored in memory during the execution of the algorithm. In addition, the test
complexity of non-linear SVMs is proportional to the number of non-zero coor-
dinates in oy, which determines the cost of each iteration in training time, and
the cost of a classification decision in testing time.



Existence of sparse approximate solutions for problem can be linked to
the idea of e-coreset, first described for the MEB and other geometrical problems
[64]. For € > 0, an e-coreset P’ C P has the property that if the smallest ball
containing P’ is expanded by a factor of 1 + ¢, then the resulting ball contains
P. That is, if the problem is solved on P’, the solution is “close” to the solution
on P. The existence of e-coresets of size O(1/¢) for the MEB problem was
first demonstrated by Badoiu and Clarkson in [9, [10]. Note that in large-scale
applications 1/e can be much smaller than the cardinality of P.

In [13], Clarkson provides a definition of coreset that applies in the general
setting of problem . Basically, a e-coreset for problem is a subset of indices
spanning a face of S on which we can compute a good approximate solution.
The existence of small e-coresets implies the existence of sparse solutions which
are optimal in their respective active faces. The practical consequence of this
result would be the possibility of solving large instances of working with a
small set of variables of the original problem.

Definition 2. An e-coreset for problem (/1) is a set of indices Z C [m] such that
the solution a7 to the reduced problem

maximize g(a) subjectto a€Sz:={a€S:a;=0,Yi¢ T} . (11)
(e

satisfies A(ak) < e.

As discussed in [I3], the FW method is not guaranteed to find a e-coreset
after O(1/¢) iterations for problem (). It has been demonstrated that FW
is able to find such a coreset in some special cases, e.g., in polytope distance
problems [28]. However, in general, O(1/£?) iterations may be required. Instead,
the computationally intensive modification presented in Algorithm [2 generally
known as the fully corrective variant of FW, does the job.

Algorithm 2: Fully-corrective FW method for problem .

1 Compute an initial estimate ay.

2 Set IO = {’L Qg 7é 0}

3 for k=0,1,... do

4 Search for i* € argmax; Vg(ay); -

5 Set Ty41 = Iy U {7,*}

6 Solve the reduced problem with 7 = 7.

Note that Algorithm [2| needs to solve an optimization problem of increas-
ing size at each iteration. This can be considered a generalized version of the
well-known Badoiu-Clarkson (BC) method to compute MEBs in computational
geometry and, up to our knowledge, corresponds to the first variant of the FW
method applied to SVM problems [58].



2.3 Boosting the Convergence using Away-steps

It is well-known that the FW method often exhibits a tendency to stagnate
near the solution o, resulting in a slow convergence rate [27]. As discussed
in [64, 20], this problem can be explained geometrically. Near the solution,
the gradient at o has a tendency to become nearly orthogonal to the face of
the simplex spanned by Z, (the non-zero coordinates of o). Therefore, very
little improvement can be achieved by moving oy towards the ascent vertex
u;. However, since the solution is not optimal, it is reasonable to think that
the solution can be improved working on the face spanned by Z. Actually,
Algorithm [2| works on Z; until approximate optimality before exploring the
next ascent direction.

It can be shown that the convergence of the FW method can be boosted by
introducing a new type of optimization step. In short the idea is that, instead of
moving towards the point u; maximizing the local linear approximation () of
g(+), we can move away from the point of the current face vj minimizing ¥ (-).
At each iteration, a choice between these two options is made by determining
which of the directions (moving towards uy or moving away from vy) is more
promising.

Since the point v, must lie in the current active face, it is easy to see that
the linear approximation step reduces to vi = e;-, where j* is the smallest
active coordinate of the gradient, i.e., j* € argmin; 7, Vg(a)j. The whole
procedure, known as the Modified Frank-Wolfe (MFW) method, is summarized
in Algorithm 3] In the rest of this paper, we refer to e;- € S and dj = (ax—e;-)
as the descent vertex and the away direction used by the method respectively.

Algorithm 3: MFW method for problem .

1 Compute an initial estimate ay.

2 Set I() = {Z Qg 7é 0}

3 for k=0,1,... do

4 Search for i* € argmax; Vg(ay); and define dkFW =ep — ay, .

5 Search for j* € argmin;c7, Vg(auy); and define di = a; —ej .
6 if Vg(ap)TdE'" > Vg(ay)Tdi then

7

8

9

Perform a line-search to find A, € argmax,¢(o 1) 9(ax + AEWY).
Perform the FW step a1 = ag + Ap, (€5 — at).
Update Zy, by Zy4+1 = I U {Z*}
10 else
11 Perform a line-search to find A,.., € argmax,c( 1] g(cu + ).
12 Clip the line-search parameter,
Aawaye = MAX(Ayyvay, Wk, 5+ /(1 — g j+))
13 Perform the AWAY step a1 = 0 + Auvays (O — €5+).
14 Set Tp11 = I U {i*}.
15 | I Moy = s T = Ziyr \ {77}




In contrast to the FW method, for which only a sub-linear rate of convergence
can be expected in general [27, [64], it has been shown that MFW asymptotically
exhibits linear convergence to the solution of problem under some assump-
tions on the form of the objective function and the feasible set [27, 64, 1]. In
addition, the MF'W algorithm has the potential to compute sparser solutions in
practice, since in contrast to the FW method it allows reducing the coordinates
of o, at each step.

2.4 Adaptations to SVMs

In the context of SVM learning, the work of Tsang et al. in [58] was arguably
the first to point out the properties of the algorithms than can be obtained by
applying FW methods to formulations fitting problem . Their work relies
on the equivalence between the SVM problem and a MEB problem, which
holds under a normalization assumption on the kernel function employed in the
model [58] 59]. Exploiting this equivalence, and adapting the Badoiu-Clarkson
algorithm for computing a MEB to the problem of training non-linear SVMs,
an algorithm called Core Vector Machine (CVM) is obtained, which enjoys
remarkable theoretical properties and competitive performance in practice [58].

First, the number of support vectors of the model obtained by the CVM is
Ko+ O(1/e) where K is a constant and e is the tolerance parameter of the
method. Therefore, the space complexity of the model is independent of the
size and dimensionality of the training set. Second, the number of iterations
of the algorithm before termination is also O(1/¢), independent of the size and
dimensionality of the training set. To determine the overall time complexity of
this method, we note that Algorithm [2| requires a search for the point ¢* repre-
senting the best ascent direction in the current approximation of the objective
function, an operation that is also performed by the FW and MFW methods.
Searching among all of the m training points requires a number of kernel evalu-
ations of order O(q? + maqx) = O(mqy,), where g, is the cardinality of Zj. Since
the cardinality of Z is bounded as O(1/¢) (the worst-case number of iterations),
we obtain that the CVM has an overall time complexity (measured as the total
number of kernel evaluations) of O(1/¢) x O(m/e) = O(m/e?), linear in the
number of examples, improving on the super-linear time complexity reported
empirically for popular methods like SMO to train SVMs [45] [16].

If m is very large, however, the complexity per iteration can still become
prohibitive in practice. A sampling technique, called probabilistic speedup, was
proposed in [52] to overcome this obstacle. This technique was also used to im-
plement the CVM in [58, 57] leading to SVM training algorithms with an overall
time complexity which is independent of the number of training examples. In
practice, the index i* is computed just on a random subset ¢(S’) C ¢(S) of
coordinates, with |S’| < |S| = constant. The overall complexity per iteration
is thereby reduced to order O(q? + qx) = O(g}), a major improvement on the
previous estimate, since we generally have ¢, < m. Refer to [51] or [58] for
details about this speed-up technique.

More recently, several authors have explored the adaptation of the original

10



FW methods to the task of training SVMs. The advantage of Algorithms[l]and
over Algorithm [2|is that they rely only on analytical steps. As a result, each
training iteration becomes significantly cheaper than a CVM iteration and does
not depend on any external numerical solver. In practice, the training algorithm
might probably require more iterations in order to obtain a solution within
the predefined tolerance criterion €, but the work per iteration is significantly
smaller. Such a trade-off has been shown to be worthwhile when dealing with
large-scale applications [45], 16, [T9].

In |19, 20] the authors show that adopting Algorithms [If and 3| the running
times of [58] can be significantly improved as long a minor loss in accuracy
is acceptable. From the analysis presented in [13], it is possible to conclude
that this approach enjoys similar theoretical guarantees, namely, linear time in
the number of examples and a number of iterations which is independent of
the number of examples. The sampling technique to speed-up the computation
of ix introduced above can be used with these methods as well, in order to
obtain overall time complexities which are independent of the number of training
patterns.

In a closely related work [38], Kumar and Yildirim present a specialization
of the MFW method to SVM problems, adopting the geometrical formulation
studied in [6]. This approach reformulates the SVM problem as a minimum
polytope distance problem. The obtained method and its properties are also
strongly related to the work of Gartner and Jaggi [28], in which the authors in
which the authors show (theoretically) that the FW method as well as the core-
set framework introduced in [I3] can be applied to all the currently most used
hard and soft margin SVM variants, with arbitrary kernels, to obtain approx-
imate training algorithms needing a number of iterations independent of the
number of attributes and training examples. In [44], Ouyang and Gray propose
a stochastic variant of FW methods for online learning of Lo-SVMs, obtaining
comparable and sometimes better accuracies than state-of-the-art batch and
online algorithms for training SVMs. A similar technique has recently been
proposed in [29] to allow smooth and general online convex optimization with
sub-linear regret bounds [63]. Variants of the method proposed in [58] have
been introduced in [61] and [47] for training SVMs on data streams. In [39] the
authors adapted the FW method to train SVMs with structured outputs like
graphs and other combinatorial objects [60, B], obtaining an algorithm which
outperforms competing structural SVM solversﬂ

3 The SWAP Method

We have described in the previous sections how the basic FW method can be
modified in order to avoid stagnation near a solution, in this way obtaining an
algorithm with a guaranteed rate of convergence. Our previous remarks about
the MFW method suggest that this algorithm should terminate faster and find

4To be precise, the block-coordinate FW in [39], when applied on the binary SVM as a
special case of the structured SVM, becomes a variant of dual coordinate ascent [31].
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sparser solutions. In practice however, the MFW method is not always as fast
as one could expect from the theory. For instance, the experimental results
reported in [64] and [I] for the MEB and Minimum Volume Enclosing Ellipsoid
problems respectively, show that very tight improvements, if any, are obtained
using the enhanced method (MFW) with respect to the basic approach. As
concerns the problem of training SVMs, results in [20] confirm using statistical
tests that MFW is not systematically better than FW. Indeed it may sometimes
be slower. Similarly, the authors of [44] argue that the use of away steps does
not provide a clear advantage with respect to the standard FW method.

A possible interpretation of these results can be given by looking at the way
in which MFW implements the away steps to keep feasibility, i.e., to ensure the
constraint ) . oy = 1 is satisfied. The basic idea in the MFW approach is to
include the alternative of getting away from a descent vertex of the current face
e;-, decreasing the j*-th weight in o, instead of going toward an ascent vertex
e;~, which would increase the i*-th weight in a;. The choice is mutually exclu-
sive. If the algorithm decides to work around j*, it may lose the opportunity to
explore a promising direction of the feasible space, and vice-versa.

On the other hand, if an away step is performed, the weights of the active
vertices i € T are uniformly scaled by (1+)) to keep feasibility. This scheme not
only does considerably perturb the current approximation, since all the weights
are modified, but, more importantly, can increase the weights of vertices which
do not belong to the optimal face S*. Away steps in the MFW method are thus
prone to increase the need of further away steps to eliminate such “spurious
points” (i € Zy, but i ¢ S*).

Here, we introduce a new type of away step devised to circumvent these
problems while preserving the advantages of MFW. We discuss two variants of
the method, obtained by using first and second order approximations of the
objective function at each iteration, respectively.

3.1 Main Construction

Our method is obtained as follows. As in the previous FW methods, we find,
at each iteration, an ascent verter e;-, as

i* € argmax Vg(ayg)i , (12)

and a descent vertex e;« on the face spanned by the current solution oy, as

J* € argmax —Vg(ay); = argmin Vg(o); - (13)
JEL JE€TLk

However, instead of considering the update a1 = oy + A (o — €;+) for
the away step, we propose a step of the form

apy1 = o+ A(e —ej-) (14)
where A is determined by a line-search. That is, instead of exploring the away

direction d}'"V = () — ej+), our algorithm explores the direction dj"*" =
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(e~ —ej«). A sketch is included in Figure . This scheme for implementing
away steps provides the following conceptual advantages.

1. This away step perturbs the current solution o only locally, in the sense
that the weight of any vertex other than e;- and e;- is preserved.

2. This away step does not increase the weight of vertices e; of the active
face corresponding to descent vertices. These points may correspond to
spurious points that need to be removed from the active face to reach the
optimal face of the problem.

3. This away step moves the current solution in the away direction and simul-
taneously in the direction of a toward step. That is, it moves away from
the descent vertex e;-, but also gets closer to the ascent vertex e;- in the
same iteration. The step can actually be written as the superposition
of two separate steps,

1
apy1 = = (g + A(e» —ay)) toward step
? (15)

1
+ 3 (o + X (o, —ej+)) away step ,

where the first term of the right-hand side o + A (€5 — ai) represents
the standard toward step in the FW method and the second term, oy +
A (o, — e+ ), the away step considered in the MFW approach. Note that
the term Ao disappears in the sum, so that only the components corre-
sponding to i* and j* are updated, leaving the rest of the current solution
unchanged.

The new type of away step is called a SWAP step and substitutes the MFW
away steps in Algorithm [3] The procedure is summarized in Algorithm [4] Note
that we deliberately include some steps which do not represent computational
tasks but definitions which simplify the convergence analysis of the next section.

So as to choose the type of step to perform, the MFW criterion cannot be
employed in our method. The MFW method employs a first order approxima-
tion of g(-) at the current iterate to predict the value of the objective function
at the next iterate. That is, if d denotes the search direction,

Yp(ag +Ad) = g(ag) + AT Vg(ay). (16)

is computed. The step which gives the largest value of v is selected. However,
a SWAP step always gives a larger value of 1, than the value obtained using a
toward step. Indeed, the value of ¢, using a SWAP step is

Vi (o + Mawap) = glar) + A (e — e;-)" Vg(ay)
= g(ag) + AVg(ag)i — AVg(ay)- . (17)

13



Algorithm 4: The SWAP algorithm for problem .

1 Set k= 0.
2 Compute an initial estimate ay.
3 Set IO = {Z BT R 75 0}
4 for k=0,1,... do
5 Search for i* € argmax; Vg(ay); (ascent direction).
6 Search for j* € argmin;,,, o Vg(ar); (descent direction).
7 Perform a line-search to find
Aswap € AIGMAX [0 1] 9 () + A(€x — €5+ ).
8 Perform a line-search to find Ay, € argmax,cg 1) g (e + A€ — o))
9 Compute 0uyap = g () + Awap (€55 — €54)) — glag) (improvement of a
SWAP step).
10 Compute g, = g (g + A (€16 — i) — g(ax) (improvement of a
toward step).
11 Compute 0 = max (§,uap, Or) (the best improvement).
12 if 0; = 6.uup then
13 Clip the line-search parameter, A, . » = max(Awap, W jx)
14 If Aivapx = 0 j« mark the iteration as a SWAP-drop step.
15 If Avapx = Aswap mark the iteration as a SWAP-add step.
16 Perform the SWAP step a1 = Qi + Awaps (€1 — €5).
17 Set Tp41 = Iy U {Z*}
18 If a SWAP-drop step was performed, Zy+1 = Zp+1 \ {7*}.
19 else
20 Mark the iteration as a FW step.
21 Perform the FW step a1 = ag + Ap, (€56 — ).
22 Set Tiy1 =2Zp U {’L*}

The value of vy, using a toward step is

Uil + Myw) = glow) + A (e — ap)” V(o)
g(ou) + AVg(ag)i — Aoy Vg(ay) . (18)

Since a} Vg(ay) is always larger than Vg(ay,);«, a SWAP step would always be
preferred using first-order information to predict the objective function value.
To address this problem, we observe that the MFW method computes an ex-
act line-search for the search direction selected using ¥;. We thus formulate our
method computing the line-search before deciding the type of step to perform.
This design requires to perform two line-searches instead of one. However, the
estimation of the objective function value at the next iterate is more accurate.
As we will discuss in the section regarding the adaptation of the procedure
to the SVM problem, this computation is particularly simple for the objective
function in problem . All the computations are analytical. Furthermore,
the exact computation of d;, and d.,., involve terms already computed in the
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Figure 1: A sketch of the search directions used by FW, MFW and SWAP
methods. In this representation, e;« = ez (ascent vertex wrt the current iterate)
and ej« = e; (descent vertex wrt the current iterate). The search directions
explored by the algorithms (solid lines along the updates) are d*V = (e3 — o),
d"™W = (ay — e1) and d°V*" = (e3 — e;) respectively. Note that MEW and
SWAP are more effective than FW in reducing the weight of the descent vertex
e;. However, if e, is also a descent vertex, the MFW update has the side effect
of increasing the weight of another descent vertex. This is avoided by the SWAP
update, which only increases the weight corresponding to the best ascent vertex.
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line-searches and therefore does not represent an additional overhead for the
algorithm.

3.2 A Variant using Second Order Information

Algorithm 5: The SWAP-20 algorithm for problem ().
1 Proceed as in Algorithm 4l but modify step |§| as follows:

i € argmax —(V9@0)i — Vg(an),)’

. (19)
jene =2 (Vi ;. —2VZ +V3))

All the FW methods introduced previously make use of first-order approx-
imations of the objective function in order to determine the direction toward
which the current iterate should be moved. Here, we consider the possibility of
using second-order information. If we assume that the objective function is twice
differentiable, the second-order Taylor approximation of g(-) in a neighborhood
of oy, is

1
g (o +Ad) = g(ou) + A\Vg(au)"d + §>\2dTV29(ak~)d : (20)

where the Hessian matrix V2g(a) is negative semi-definite. Finding the best
ascent direction would thus require the computation of the quadratic form
d?"V2g(ay)d. Since the matrix V2g(a;) may be highly dense, which is usually
the case in SVM applications, employing a first order relaxation as in Frank-
Wolfe methods makes sense in order to obtain lighter iterations. However, we
note that the search direction for a SWAP step d.,., = €;+ — e;~ yields a par-
ticularly simple expression

g(ak + Adyap)
1
~glow) + AVg(ar)" (e —ej-) + 5N (eir —e;-) " Vg(an)(e —ej2) (a1
1
=g(ow) + A (Vg(aw)ir = Vglow)j) + 5A* (Vi jo = 2VE 5o + VI 50)

where V7, = V?g(au)i ;.

In order to determine the best pair e;-,e;~ we thus need to evaluate three
entries of the Hessian matrix. However this is still a computationally hard task
for each iteration, since we would need to consider m|Zy| pairs of points in order
to take a step. We thus adopt the strategy used in the second-order version of
SMO proposed in [16]. We fix the ascent index i* as in the first-order SWAP, and
search for the index j* in the active set which maximizes the improvement of the
second order approximation . We call the obtained procedure second-order
SWAP and we denote it as SWAP-20 in the next Sections.

16



It is worth to note that this approximation is exact for quadratic objective
functions, which is the case for the SVM problem . Note also that in this
case the line-search along the ascent direction dj defined by ¢* and j* has a
closed-form solution. Indeed,

(Vg(ak)i- — Vglag);-) .
(V24 o —2VE . + V2. .)

* gk
7

Ao = — (22)

From the negative semi-definiteness of V2g(a,) it follows that A, is non-negative.
Substituting this step-size in , the improvement in the objective function
becomes

(Vg(aw)i- = Vglaw);-)*
+ A>|<(iswa - =
g(ak ») — g(ou) ) (v?*’i* — QV?*J* T v?*,j*)

) (23)

which again, from the negative semi-definiteness of V2g(ay,), is non-negative.
Naturally, we need to restrict the value of A, to the interval [0,1] in order to
obtain a feasible solution for the next step. We thus modify Algorithm [4] as
specified in Algorithm

3.3 Notes on the Adaptation to SVM Training

Here we provide analytical expressions for all the computations required by
Algorithm {4 and Algorithm [5 applied to the the SVM problem . Similar
expressions follow for any quadratic objective function.

For problem , the gradient and Hessian at given iterate o take particu-
larly simple expressions:

Vg(ak) = —2Kak, Vgg(ak) = 2K. (24)

Notice that af Vg(ay) = 2g(au). Therefore, the line-searches in Algorithm
[ or Algorithm [5§] can be performed analytically as follows. For FW steps,

Vglag)i —2g9(ag)

Afw = .
2 (K- + Vg(ag)i- — glag))

(25)

Note that the quantity Vg(ay )i« has been already computed to find the ascent
vertex ¢*. For SWAP steps,
Vg(ar)i — Vglag);

Aswap = : 26
2 (K — 2K j- + Kj- j) (26)

Again, the quantity Vg(og);« has been already computed to choose the descent
vertex j*.

The improvement in the objective function can also be calculated analyti-
cally. For FW steps,

_ (Vglow)i — 2g(ar))?
= IR + Vglan) —g(ar)) 27)

)
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All the terms involved here have already been computed to perform the line-
search. Similarly, for SWAP steps,

_ (Vglaw)i- — Vg(aw);-)’
Oawap = . (28)
4 (K- o = 2Kiv j» + K- j+)

With the exception of the term Kj- ;-, all the computations have already
been performed to compute d;, and to choose the descent vertex j7*. We conclude
that, compared with MFW procedure, the SWAP method adapted for problem
involves the computation of just one additional term, which is an entry of
the kernel matrix K defining the SVM problem.

The objective function value g(ay) can be computed recursively from the
relationshi}ﬂ g(aks1) = g(ag) + 0. Finally, we observe that the stopping
criterion of Eqn. takes the form

Aay) = Vglow)ix — 2g(o) < e, (29)

which involves the same already computed terms.

4 Convergence Analysis of the SWAP Method

In this section we study the convergence of the SWAP method on problem ,
of which the Ly-SVM problem is a particular instance.

We start by demonstrating the global convergence of the SWAP method.
Then, we analyze its rate of convergence towards the optimum. For this pur-
pose we will adapt the analysis presented by Ahipasaoglu et al. in [I]. Using
this framework and using a set of observations concerning the improvement in
the objective function after an iteration of the SWAP method, we will be able
to prove that the algorithm converges linearly to the optimal value of the ob-
jective function. From a theoretical point of view, these results show that the
SWAP enjoys the same mathematical properties of the ME'W method. Finally,
we provide bounds on the number of iterations required to fulfill the stopping
condition of Eqn. . We demonstrate that the algorithm stops in at most
O(1/e) iterations independently of the number of variables m, which coincides
with the number of training examples in the SVM problem .

Here we only provide proofs for the first-order SWAP method, described in
Algorithm [4] However all the convergence results follow easily for the second-
order variant as well. The statements and proofs of some of the technical results
used in this section can be found in the Appendix.

We develop our analysis under the following assumptions:

B1. g is twice continuously differentiable;

B2. There is an optimal solution a* of the optimization problem satisfying the
strong sufficient condition of Robinson in [48].

5 A similar recursive equation can be derived to handle the case of SWAP-drop steps.
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This is the same set of hypotheses imposed by Yildirim in [64] and Ahipasaoglu
et al. in [I] to study the convergence of Frank-Wolfe methods for the MEB
problem and the Minimum Volume Enclosing Ellipsoid problem, respectively.

Remark 1. Robinson’s condition is a general version of the classical second
order sufficient condition for a solution a*® to be an isolated local extremum,
i.e. locally unique [I7]. Referring to the case of a constrained maximization
problem for a concave objective g(), this result requires two conditions to be
fulfilled:

e a* is a KKT point [I7].

e The Hessian of the Lagrangian function at a* behaves as a negative defi-
nite matrix (positive definite for minimization problems) along the direc-
tions belonging to the critical cone of the KKT point [43]. Specialized to
a quadratic problem on the simplex, i.e. a problem with the form of ,
this condition assumes the form:

yI'Ky >0

for all y # 0 such that afy; = 0 Vis.t. uf > 0, afy; > 0 Vist. of =
0and uf =0, Y, y; = 0 (where u* is the vector of Lagrange multipliers
at a* corresponding to inequality constraints, which is unique since the
constraints are linear and linearly independent).

The additional analysis in [48|, which plays a key role in our convergence
analysis, essentially describes the conditions under which the stationary points
of a small perturbation of the problem lie in a neighborhood of the solution of
the original problem. This is also the key step in the proofs of linear convergence
provided in [64] and [I] for the MFW method.

In [27], Guélat and Marcotte analyzed the convergence properties of FW
and MFW methods under the following alternative hypotheses:

Al. Vg is Lipschitz-continuous on the feasible set;
A2. g(av) is strongly concave;

A3. Let a* be optimal for and 7™ be the smallest face of the feasible set
containing a*. Then

(a—a*)'Vg(a*) =0 < a € T* (strict complementarity).

However, this set of assumptions can be difficult to satisfy in practice. In par-
ticular, A3 is a quite strong assumption and cannot be guaranteed in general.
Note that assumption Bl implies Al, as from the mean value theorem it
follows that
Vg(x) = Vg(y)ll < Llx -yl (30)
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for any x,y in the unit simplex, where L is the largest eigenvalue (in modulus)
of the matrix V2g(z) for z in the unit simplex. In addition, B1 holds most of
the times in machine learning problems.

It can also be shown that, if problem is strongly concave, the strong
sufficient condition of Robinson holds, i.e. A2 implies B2 [I]. In particular, this
is satisfied by the Wolfe dual of the Lo-SVM problem. This fact has been used
by Kumar and Yildirim in [38] to demonstrate the linear convergence of the
MFW method on SVM problems which match with quadratic objectives.
The convergence of the FW method specialized to a quadratic program (arising
from a linear system) has been also studied in [4]. An implicit assumption
to demonstrate linear convergence is that the Gram matrix involved in the
quadratic form is positive definite. From Remark it is easy to see that, for
quadratic objectives and linear constraints, this implies the Robinson condition.
Recently, the linear convergence of some variants of the FW method for convex
optimization on polytopes has been demonstrated in [25]. The key ingredient
in the proof is A2.

It is worth noting that the Robinson condition is not only weaker than A2
in the sense that A2 implies B2, but also in the sense that it is a local property
of the objective function at the solution, instead than a global condition on g.

4.1 Global Convergence

Proposition 1. Suppose hypothesis A1 is satisfied. Starting from any feasible
Qo, Algorithmpmduces a series of iterates { oy }i such that g(a) converges to
g(a®), where a* is a solution of problem . If a* is unique, {ay}r converges
to o*.

Proof. The key observation is that both FW and SWAP search directions dj in
Algorithm [4] satisfy
g(e”) — glar) < di Vg(au) , (31)
where dj, = (e, — ay,) for FW steps and dj, = (e;, — ej,) for SWAP steps. In
the case of FW steps, the result was stated in [27]. However, it is not hard to
see that
(e —e5x)" Vg(aw) > (ein — ar)” Vg(ou) , (32)
and thus Eqn. also holds for SWAP steps. The rest of the proof (see [2])

follows easily by replicating the strategy used to demonstrate Theorem 1 in [27].
O

Note that this result holds in particular under our set of hypotheses, since,
as stated above, B1 implies A1l.

4.2 Analysis of the Rate of Convergence

We now prove a linear convergence result for the SWAP algorithm. In the proof,
we make use of the following technical Lemma.
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Lemma 1. Suppose B1 holds. After any iteration marked as SWAP-add or
FW in Algorithm [J, the iterate oy, is a A-approzimate solution with A =

max (2\/L5k , 25k)-

Proof. Tt follows immediately from reordering Eqns. and in the Ap-
pendix. O

Note that this result holds for the SWAP algorithm and not for the FW
method, since Eqn. requires the SWAP steps.

Note also that for convergence analysis purposes we can assume that §; < L
for k sufficiently large. This follows from the fact that Algorithm [4] converges
globally and that an iterate a; generated by the algorithm is always feasible.
From the first fact it follows that g(a*) — g(a) becomes arbitrarily small for a
sufficiently large k. From the second fact it follows that g(a*) > g(ay). Since
0k is the improvement in the objective function at each iteration of Algorithm
[] this quantity will be, from some iteration onwards, lower than any predefined
constant, in particular L. Note now that, if §; < L, then

25k < 24/ L(Sk . (33)

Thus, Lemma [1| states that for sufficiently large k the iterate oy, produced by a
SWAP-add or FW step is a A-approximate solution with A = 2y/Ldy.

Proposition 2. Suppose hypotheses B1 and B2 hold. Let o* be the solution of
problem . Then, for sufficiently large k, any iteration marked as SWAP-add
or FW in Algorithm[]) produces an iterate cvy, satisfying the inequality

go*) - glaws) |
gla) = glan) = <1 - M) (34

for some constant M > 1.

Proof. Lemma (1| shows that for sufficiently large k the iterate ay produced
by Algorithm [4 after a SWAP-add or FW step is a A-approximate solution,
with A = 24/Ld;. In addition, since the SWAP is globally convergent, &z can
be chosen to be arbitrarily small. Thus, for k£ large enough, the conditions of
Lemma [5| hold with A, = 2v/Ld. From Eqn. , we then have that there
exists a constant N such that

2
g(a*) — g(a) < Nm (2 L5k) = ANmL6}, , (35)

where m > 1 is the dimensionality of «, IV is a Lipschitz constant depending
on the problem, and L is the largest eigenvalue (in modulus) of the Hessian
matrix of g(a) on the simplex. Now, for a SWAP-add or a FW step we have,
by definition of dy,

g(ary1) —glar) = 0 . (36)
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Note that the latter is not true for SWAP-drop steps because the real improve-
ment in the objective function differs from the value computed to decide the
type of step to perform. Thus,

g(a@®) = glar) < M (g(axt1) — g(aw)) , (37)

with M = 4NmL. Adding and subtracting Mg(a*) to the right-hand side
produces

g(@®) —glag) <M (g(a”) — g(ak)) — M (g(a”) — g(ags1)) - (38)
Equivalently,
M (g(a”) — glakt1)) < M (g(”) — glaw)) — (9(@”) — g(a))
1 (39)
o)~ gfann) < (1= 57 ) afe) ~ sfan)
Thus,
g(a®) —g(agi1) _ L
st ot < (1= 37) (10
O

This result is analogous to the linear convergence theorems obtained in [I]
and [64] for the MFW algorithm.

Proposition 3. At any iteration of Algorithm [}, the number of SWAP-drop
steps does not exceed a half of the total number of steps T made by the algorithm,
plus a finite constant.

Proof. Let F be the number of FW steps, S the number of SWAP-add steps,
C' the number of SWAP-drop steps and A the number of steps that include
points to the coreset Z,. We have A < F 4 S, because only FW steps and
SWAP-add steps can add points to the coreset. Sometimes they include new
points, sometimes they do not. Clearly, T = F'+S+C. Thus, from the previous
inequality we have T' > A 4+ C. Now, the number of steps C' that drop points
from the coreset cannot be greater than the number of steps that add points to
the coreset plus the number of points I in the coreset just after initialization,
that is, A4+1 > C'. Combining the last two inequalities leads T+ A+1 > A+2C,
that is, T'4+ I > 2C'. Therefore C' < % + %, which concludes the proof. U

Proposition states that there exist a subsequence of the iterates {ay }x pro-
duced by Algorithmsuch that {g(a)}x converges linearly to the optimal value
g(a*) of the objective function in problem . This subsequence is obtained by
dropping from {ay } the iterates corresponding to SWAP-drop steps, for which
we can only say that the objective function value does not decrease. Thanks
to Proposition [] we know that these steps do not affect the overall complexity
bound on the number of iterations needed to achieve a given accuracy.
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4.3 Iteration Complexity Bounds
We start by proving the following lemma.

Lemma 2. Suppose B1 holds. By using the stopping condition of Eqn. (@, any
iteration marked as SWAP-add or FW in Algorithm[] produces an improvement
in the objective function
. (&% €
5k 2> min Ea 5 ) (4]‘)

where € is the tolerance parameter.

Proof. If the algorithm enters the loop after checking the stopping condition of

Equ. (8),
qn. (8) o o \
gla)ic — ap Vg(ay) > ¢ . (42)

From Eqn. we obtain
max (2 Loy zak) >e, (43)

which leads to the result E[ O

Note that the converse is not true. The algorithm can stop even if the
improvement in the objective function in the last iteration was greater than

min (%, %) This happens because the proposed termination criterion funda-

mentally looks at the possible improvement with standard FW steps.

Proposition 4. Let K be the number of iterations performed by Algorithm
until the stopping condition of Eqn. (@ is fulfilled. Then, under the hypotheses
of Lemma[3,

M
€
where Q, M are constants independent of m and €.

Proof. Let k(0) denote the number of iterations of Algorithm [4| from the first
iterate such that the primal-dual gap satisfies A% < § until the first that satisfies
A? < §/2. Since the total improvement in the objective function cannot be
greater than ¢ and the improvement in the objective function given by a SWAP-
add or a FW step is at least that of Lemma [2| with € = §/2, we can bound k()

as followd}

) 16L  32L
< —_— _—

where the multiplying factor 2 comes from the fact that the total number of
iterations is at most two times the number of SWAP-add and FW iterations

SNote that the previous proof is based on the minimal improvement of a FW step. The
results holds in general because a SWAP step is performed if and only if the unconstrained
SWAP yields a larger improvement.

"We assume, for the sake of simplicity, that € < L/2. Otherwise the proof can be adapted.
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plus a finite constant (see the discussion in the proof of Proposition . Now,
let K (g) the number of iterations from the first iterate such that the primal-dual
gap satisfies A? < 1 until the first that satisfies A? < ¢. Clearly, K < K(e).
Now, it is not hard to see that [log, 1/e] — 1 is the smallest positive integer p
such that 1/27 < 2e. Therefore, we can bound K (¢) as:

K(s)gk(1)+k<;)+k<i>...+k<2“0g211/d_1)

K(e) < 32L (1+2+4...+2“0g21/ﬂ*1) (46)
< 32L (Qﬂogz 1/el _ 1) < %
€

Set M = 64L and @ to the number of iterations required to obtain an iterate
satisfying A? < 1 (which is finite and independent of €) to obtain the result. [

It is also possible to provide a logarithmic bound in 1/e. However, in this
case, both the multiplicative and additive constants depend on m. Thus, from
such result alone we cannot infer the important property that the overall com-
plexity of the algorithm can be bounded independently from the problem size.
Furthermore, if m is comparable to or larger than 1/e (which is often the case
in large-scale applications), there is no guarantee that the obtained bound is
tighter than the one given by Eqn. (44). The proof of this result, which we
state below for completeness, can be found in [2].

Proposition 5. Suppose B2 holds. Let K be the number of iterations performed
by Algom'thm until the stopping condition of Eqn. (@ is fulfilled. Then, there
exists g9 > 0 such that, if € < g,

K < Q+ Mlog, (i) , (47)

where Q and M are constants independent of € but dependent on m. In partic-
ular, M o< m.

5 Relation of the SWAP to Geometric Algorithms,
SMO and Other Results

In the last years, a number of authors have proposed training SVMs by first
reducing the task to a computational geometry problem, and then applying a
dedicated algorithm to obtain an exact or approximate solution. Some of these
approaches are indeed specialized versions of FW methods. For instance, the
so-called Gilbert method [26] can be used to train SVMs by approaching the
task as a Minimum Norm Problem (MNP) or a Nearest Point Problem (NPP)
[36]. It has been noted in [28] that the FW method is equivalent to the Gilbert
method on these geometric problems. Thus, up to some implementation details,
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specializations of the FW and Gilbert methods to the SVM problem coincide.
Similarly, the Biadoiu-Clarkson algorithm [9] can be used to train SVMs which
admit a reduction to a Minimum Enclosing Ball (MEB) problem [58]. Nowadays
is well-understood that this algorithm is nothing else than the fully corrective
FW method (Algorithm [2) applied to the MEB [13]. Finally, the algorithms
proposed in [38] are direct applications of the FW and MFW methods to SVM
models which admit an interpretation as an NPP, and the algorithms proposed
in [20] are the corresponding application to SVM problems which admit an
interpretation as an MNP.

Recently, in [40], the Mitchell-Demnyanov-Malozemov (MDM) algorithm
[42], another classic geometric algorithm to solve MNPs and NPPs, was found
to be essentially equivalent to the SMO algorithm [45] [T6] devised specifically
for SVMs and similar quadratic programs [37]. In this section, we show that the
method proposed in this paper is closely related to the Gilbert and MDM algo-
rithms when applied to MNPs or NPPs. Indeed, on these specific problems, the
SWAP can be considered a Gilbert method with the possibility of performing
MDM steps.

Polytope Problems and SVMs Problem can be cast as an instance
of the MNP, which consists in finding the point in a polytope nearest to the
origin: minimize, ||z]|? subject to z € Z. In this case, the polytope Z is the
convex hull of a finite set of points Z = {z1,2s,...,2Z,} in a dot product space
and the MNP admits the following formulation

mgnei%},ilze %aTZTZa subject to a; > 0, ZZ a; =1, (48)
where Z is the matrix with the points z; arranged in the columns. Any fea-
sible solution a for problem yields a feasible solution z to the original
problem by setting z = Za. The feasible space in problem corresponds
to the unit simplex and the objective function is convex. Thus, the MNP
is an instance of the more general problem studied in this paper, with
g(a) = =2 a”Z"Za =: gq(a). Furthermore, it is not hard to see that
is an instance of the SVM problem with K = ZTZ. Similarly, (2)) is an
instance of in the space spanned by the points z; = (y;é(x;)T, yi, ﬁeiT)T,
where ¢(x;) corresponds to any feature map associated to the kernel used by the
SVM. Therefore, algorithms devised to solve MNPs may be adapted to train
Lo-SVMs and vice-versa. This equivalence was first pointed out and used to
build a training algorithm in [36].

Other SVM formulations admit similar geometric interpretations (see [13]
and Table 1 in [28]). For instance, hard-margin SVMs have been shown to be
equivalent to an NPP, i.e. the problem of computing the pair of nearest points
between two polytopes Z1, Z3: minimize,, ,, |z1—22||? subject to z; € 21,25 €
Z5. Some variants of the Ly-SVM considered here can be transformed into a
classic hard-margin SVM and thus admit an NPP interpretation [36] 24]. Soft
margin L1-SVMs and v-SVMs are essentially NPPs with additional constraints
of the form «; < « [B, II]. The authors of [28] use all these equivalences to
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characterize the sparsity of the solutions and show the existence of linear time
training algorithms for all the currently most used SVM variants.

The Gilbert and MDM Algorithms Two classic iterative methods used
to solve MNPs are the Gilbert algorithm [26] and the Mitchell-Demnyanov-
Malozemov (MDM) algorithm [42]. These methods can be easily adapted to
solve NPPs by means of the so called Minkowski difference trick [28]. An it-
eration of the Gilbert algorithm for problem can be written as zpy1 =
(1 — Mk)zk + A2+, where )y is chosen by performing an exact line-search to
minimize ||zj1]|?, and
z;- € argmin(z z;) . (49)
z, €72

It can be shown that the specializations of the Gilbert algorithm and the
FW method for problem coincide. Note that Vgg(ax) = —Z7 Zay, and
Vyc(a); = —2zF Zay,. Therefore, applied to , an iteration of the FW
method can be written as a1 = (1A )+ e withi* € argmax;(—z! Zay,).
By setting z, = Zay, this iteration translates into zx11 = (1 — \k)zk + ApZi,
where Ay is obtained by a line search and i* € argmin,(z} z), which is exactly
what the Gilbert method does.

As the Gilbert method, the MDM algorithm updates z; towards the direction
given by the point z;-. However, the search direction is determined using an
additional point of the polytope Z corresponding to

T
Zi-~ € argmax(ziy z,) -
; o2 (21 25) (50)

An iteration of the MDM algorithm can be written as zy41 = zi+ g (2 — 2+ ),
where Ay is computed by a line search. It has been recently shown in [40] that
the well-known SMO algorithm [45] [16], 7], devised to train SVMs and to solve
similar quadratic programs, is essentially equivalent to MDM considering SVMs
which reduce to NPPs. The key difference is that, on NPPs, MDM chooses z;-
and z;- on the same polytope, which correspond to a class of the SVM problem.
SMO instead can choose z;- and z;- from different classes. This difference
however disappears in applications of MDM to MNPs; since in that case the
geometric problem involves only one polytope.

Relation of Gilbert, MDM and SMO to SWAP From the previous dis-
cussion we have that the ascent direction explored by the Gilbert method is
given by (z;+ — zy), with

i* € argmax Vgg(au); < i° € argr_nax(—z?Zak) &it e argr_nin(z;‘rzk) . (51)
From here, it is straightforward to see that

J" € argmin Vgg(ax); < j" € argr_nin(—ijZak) <4t e argmax(z]-Tzk) v (52)
3 i J
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which corresponds to the away vertex used by the SWAP method. Thus, the
MDM algorithm updates the current iterate using the same vertices of the poly-
tope that would be considered by a specialization of SWAP to problem or to
the equivalent SVM problem : z;« and z;«. If SWAP goes for a toward step, it
is identical to the FW method on that iteration. From the equivalence between
the FW and Gilbert methods, we conclude that the SWAP is identical to Gilbert
at iteration k if it decides to not explore the away direction. Otherwise, the
search direction used by the SWAP on the simplex is (e;+ — e;«), which trans-
lates to dSWAF = (z;» — z,;+) for an MNP. The update a1 = ax+ A (e« — €j+)
for problem (1) corresponds to updating zy as zx41 = 2z + Ag (zi+ — 2;+) and
computing A\; by a line search. This is exactly the same direction and procedure
to set the step size used by MDM.

We conclude that, applied to polytope problems, the SWAP is equivalent
to a Gilbert method with the possibility of performing MDM steps. In this
sense, the SWAP is a kind of hybrid Gilbert-MDM which is presented and
analyzed for problems beyond the MNP and NPP. Considering the equivalence
between MDM and the SMO on SVM problems, we can also state that on these
problems the SWAP is a FW method with the possibility of performing SMO
steps. However, again, our presentation and analysis is not limited to quadratic
forms. The minor variant of the method, using second order information, uses
essentially the same criterion proposed in [16] to improve on the original Platt’s
SMO [45].

It is well known from its introduction that, in general, the Gilbert method
converges sub-linearly, that is, the specialization of the FW method to the
quadratic program in does not improve its rate of convergence [26] [41].
However, it has been recently shown that the MDM algorithm converges linearly
under some assumptions about the structure of problem , which include
the positive definiteness of the matrix Z7Z [41]. In this paper, the analysis
addresses a general maximization problem on the simplex and the results rely
on hypotheses slightly more general than those used in [41], in the sense that
asking for a positive definite matrix Z7 Z is equivalent to asking for a positive
definite Hessian and this in turn implies the Robinson condition used in our
analysiﬁﬁ

6 Experiments

In this section, we present several experiments conducted on benchmark clas-
sification datasets to evaluate the performance of the proposed methods and
related approaches in practice.

Datasets The datasets used in this section are listed in Table [[l and can be
found in several public repositories [12], 22]. In order to provide the reader with
an idea of the size of each problem, we specify the size m of the training set, the

8See Remark As we have only linear constraints, the Hessian of the Lagrangian coincides
with the Hessian of the objective.
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number of features n, and the number of classes K. We denote by ¢ the number
of test examples, set aside to evaluate the expected accuracy of the computed
classifier.

In the case of multi-category classification problems, we adopt a one-versus-
one approach (OVO) [3()ﬂ Note that in these cases the number of examples
m does not necessarily reflect the complexity of the training problems to be
addressed. For example, according to m, the MINIST and Web w8a datasets
have a similar size. However, the MINIST problem has 10 classes and the
largest binary problem to solve in the OVO scheme has around 13.000 training
examples. The Web w8a problem is, in contrast, binary, and thus the whole
dataset needs to be handled simultaneously. For this reason, we also report in
Table [1] the size mpyax of the largest binary subproblem and the size myi, of
the smallest binary subproblem in the OVO decomposition.

Initialization and Parameters For the initialization of the CVM, FW,
MFW and SWAP methods, that is, the computation of a starting solution,
we adopted the method proposed for the CVM in [58]. In this approach, the
starting solution is obtained by solving problem on a random subset Zy of
p training patterns. The indices of ag corresponding to other data points are
set to zero. We used p = 20 points for initialization and € = 107° for all the
algorithms.

In all but the last experiment described in this section, SVMs were trained
using a RBF (Gaussian) kernel

X1 — X 2
k(1. x2) = exp (—20') | (53)

with scale parameter 2. For the relatively small datasets Pendigits and
USPS, parameter o2 was determined together with parameter C' of SVMs us-
ing 10-fold cross-validation on the logarithmic grid [271°,2%] x [27°,215], where
the first collection of values corresponds to parameter o2 and the second to
parameter C.

For the large-scale datasets, o2 was determined using the default method
employed for CVM in [58], i.e. it was set to the average squared distance among
training patterns. Parameter C' was determined on the logarithmic grid [2°, 212]
using a validation set consisting in a randomly computed 30% of the training-set.

We emphasize that the aim of this paper is not to determine optimal param-
eter values by fine-tuning each algorithm to seek for the best possible accuracy.
Our aim is to compare the performance of the presented methods and analyze
their behavior in a manner consistent with our theoretical analysis. Therefore,
it is necessary to perform the experiments under the same conditions on a given
dataset. That is to say, the optimization problem to be solved should be the
same for each algorithm. For this reason, we deliberately avoided using different

9This was the method used in [58] to extend the CVM beyond binary classification, and
according to [32] it usually outperforms other approaches both in terms of accuracy and
training time.
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training parameters when comparing different methods. Specifically, parame-
ters 02 and C were tuned using the CVM method and the obtained values were
used for all the algorithms discussed in this paper (CVM, FW, MFW and SWAP
methods).

Caching We also adopted the LRR caching strategy designed in [57] for the
CVM to avoid the computation of recently used kernel values.

Dataset m t K Mmax Mmin n
USPS 7291 2007 10 2199 1098 256
Pendigits 7494 3498 10 1560 1438 16
Letter 15000 5000 26 1213 1081 16
Protein 17766 6621 3 13701 9568 357
Shuttle 43500 14500 7 40856 17 9
IJCNN 49990 91701 49990 49990 22

MNIST 60000 10000
USPS-Ext 266079 75383

o

13007 11263 780
266079 266079 676

KDD-10pc 395216 98805 390901 976 127
KDD-Full 4898431 311029 4898431 4898431 127
Reuters 7770 3299 7770 7770 8315
Adult ala 1605 30956 1605 1605 123
Adult a2a 2265 30296 2265 2265 123
Adult a3a 3185 29376 3185 3185 123
Adult ada 4781 27780 4781 4781 123
Adult a5a 6414 26147 6414 6414 123

Adult a6a 11220 21341
Adult a7a 16100 16461

11220 11220 123
16100 16100 123

NN NNNNNNNDNDNDDNDNDDNDDNDNDNDIUN =N

Web wla 2477 47272 2477 2477 300
Web w2a 3470 46279 3470 3470 300
Web w3a 4912 44837 4912 4912 300
Web w4a 7366 42383 7366 7366 300
Web wba 9888 39861 9888 9888 300
Web w6a 17188 32561 17188 17188 300
Web wT7a 24692 25057 24692 24692 300
Web w8a 49749 14951 49749 49749 300

Table 1: Features of the selected datasets.

Assessed Algorithms, Notation and Statistics In this paper we have
introduced two variants of the FW method: the SWAP, and the second-order
SWAP. The acronyms used to denote these algorithms in the figures will be
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SW and SW-2o0, respectively. We will compare these methods against the CVM
algorithm [58], the FW method and the MFW method.

In the next sections we report test accuracies, training times and model
sizes obtained on the classification problems of Table [[] By test accuracy we
intend the fraction of correctly classified test instances. Training time is the
time in seconds required to obtain a model from the training set. When times
differ by more than one order of magnitude among the different methods, we
use a logarithmic scale to present figures. Model size is the number of training
examples with non-zero weights at the end of the training process, that is, the
number of support vectors in the model.

To obtain a more detailed comparison, we compute the speed-ups obtained
by the Frank-Wolfe based algorithms with respect to the CVM method. The
speed-up of the FW method with respect to CVM will be measured as s1 = /1
where g is the training time of the CVM algorithm and ¢; is the training time
of the FW method, both measured in seconds. Similarly, the speed-up of the
MFW, SWAP and SWAP-20 methods with respect to CVM is measured as
89 = to/ta, s3 = to/ts, sS4 = to/ts respectively, where t5 is the training time of
the MFW method, t3 is that of SWAP, and ¢4 that of SWAP-20. In addition,
we quantify the difference in testing performance with respect to the CVM
method. If we denote by ag the accuracy of CVM and by a; the accuracy of
the FW method, the relative difference in accuracy incurred by FW will be
quantified as d; = (ag — a1)/ag. Similarly, differences in testing performance
corresponding to the methods MFW, SWAP and SWAP-20 will be measured
as do = (ag — az)/ao, d3 = (ap — as)/ag and dy = (ag — a4)/ag, where az, as
and a4 are the testing accuracies of the MFW, SWAP and SWAP-20 methods
respectively.

Computational Environment The experiments were conducted on a per-
sonal computer with a 2.66GHz Quad Core CPU and 4 GB of RAM, running
64bit GNU/Linux. The algorithms were implemented based on the C++ source
code available at [57].

6.1 Experiments on the Web Dataset Collection

The Web Dataset Collection is a series of classification problems extracted from
a webpage categorization dataset, first appeared in Platt’s paper on Sequential
Minimal Optimization for training SVMs [45]. The number of training patterns
in each instance of the collection grows approximately as m; = 1.4'myg, i =
1,...,8, where myg is the number of training patterns in the first dataset. This
scheme makes the series amenable for studying performance and scalability of
different training algorithms.

Figures a), a) and a) report test accuracies, training times and model
sizes (number of support vectors) obtained in this collection. Note that times
are depicted in a logarithmic scale. From Figure a) and Figure a) we confirm
that all the Frank-Wolfe based methods are slightly less accurate than CVM but
exhibit running times that scale considerably better as the number of training
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patterns increases. Each of them is faster than CVM on all the 8 datasets of
the collection.

Figure a) illustrates one of the main points of this paper: the theoretical
advantages of the MFW method over the basic FW routine often do not corre-
spond to an improvement in practical performance. This collection of problems
is actually an extreme case, in which MFW is always significantly slower than
FW. In contrast the proposed methods are faster than MFW and competitive
with the FW method.

From Figure a), we can observe that the speed-ups of the FW method seem
to increase monotonically as the number of training patterns increases, ranging
from 12.6x faster up to ~ 106x faster than CVM. Speed-ups corresponding
to the MFW method are in contrast significantly more limited. The SWAP
algorithm is clearly more competitive than MFW, with a speed-up of ~ 250x
on the largest dataset.

Both MFW and SWAP endow the basic Frank-Wolfe procedure with away-
steps, and both, in contrast to FW, offer a guarantee on the rate of conver-
gence. However, the away steps implemented by SWAP and SWAP-20 work
significantly better on this collection of datasets. SWAP-20 however does not
perform better than SWAP in this series. We argue that standard away steps do
not provide any significant advantage on this particular problem, as proved by
MFEFW resulting to be the slowest algorithm. Since SWAP-20 invests more time
in finding a good away direction, finding a solution takes more time in com-
parison with the simpler SWAP, which seems to provide a better compromise
between away and toward steps.

As regards accuracy, MFW is slightly more accurate than SWAP, which in
turn is slightly more accurate than FW most of the time. SWAP-20 very often
outperforms the other three methods, approaching the accuracy of CVM. Note
however that all the relative differences in testing accuracy are most of the time
below 0.5%. Note finally that FW is the less accurate among the Frank-Wolfe
based methods.

As concerns model sizes, note that the additional computational time in-
curred by the MFW and SWAP-20 methods is not compensated by an improved
ability to find smaller models. Figure (a) actually shows that the two faster
methods, SWAP and FW, obtain most of the time smaller models. Finally,
the size of the models found by CVM is significantly larger than that of the
proposed methods. In addition, the percentage of training data used by this
method to build the model does not seem to decrease significantly as the series
progresses.

6.2 Experiments on the Adult Dataset Collection

The Adult Dataset Collection is a series of problems derived from the 1994
US Census database. The goal is to predict whether an individual’s income
exceeded 50000USS$ /year, based on personal data. Like the Web datasets, this
collection was designed with the purpose of analyzing the scalability of SVM
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methods. The number of training patterns grows approximately with the same
rate, i.e. it increases by a factor of ~ 1.4 each time [45].

Figures[2(b), [(b) and [4[b) depict accuracies, running times and model sizes
(number of support vectors) obtained on this collection. Times are depicted
in a logarithmic scale. These results confirm that all the Frank-Wolfe based
methods tend to be faster than the CVM algorithm as the number of examples
becomes larger. Figure b) shows that SWAP, MEFW and SWAP-20 always run
faster than CVM, reaching speed-ups of 27x, 20x and 15X respectively. Figure
a) shows in addition that most of the times the Frank-Wolfe based methods
achieve a testing performance greater or equal than CVM.

Note that the speed-ups obtained by the FW method in this experiment are
significantly smaller than those obtained in the Web collection. The largest
speed-up achieved by the algorithm is 3.6x on the sixth dataset of the collec-
tion. In contrast, the methods investigated in this paper, SWAP and SWAP-2o0,
always show speed-ups larger than 10x, running faster than FW in all cases. If
we compute the median speed-up among all the datasets of this collection, the
results for SWAP and SWAP-20 are 15.5%x and 20.5% respectively. In contrast,
the FW method achieves a median of just 1.45x. We conclude that the pro-
posed methods are one order of magnitude faster than the basic FW method in
this experiment.

The previous remark suggests that away steps are very useful to speed up
the algorithm towards an optimal face in this problem. We confirm this obser-
vation by examining the performance of the MEW method in this experiment.
Figure [3[(b) shows that the MFW method is always faster than FW. This re-
sult contrasts with our previous experiment in which MFW was always slower
than FW. We conclude that in this experiment all the algorithms incorporating
away steps are significantly faster the algorithms which do not. Note that the
proposed methods SWAP and SWAP-20 always run faster than MFW.

As regards testing accuracy, the CVM is most of the time slightly less accu-
rate than Frank-Wolfe methods in this experiment. SWAP always obtains an
accuracy greater or equal than FW and in all but one case an accuracy greater
or equal than MFW. SWAP-20 is most of the time as accurate as MEW. We con-
clude that the additional running time incurred by the CVM and FW methods
is not compensated by a better accuracy in this series of datasets.

Figure [4{b) shows that the model sizes obtained by the different methods
are quite similar.

6.3 Experiments on Other Medium-scale and Large-scale
Datasets

Results of Figures [f] to [0 show the accuracies, times, speed-ups and model sizes
obtained in the other datasets of Table[[] A detailed description of these datasets
can be found in [20] or in the public repositories [12] and [22].

To simplify the presentation and further analysis, datasets were separated
into two groups: medium-scale and large-scale datasets. A dataset was in-
cluded in the first group if the largest binary subproblem (see column my,ax of
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Table [1)) to be addressed was lower than 15.000 training examples, and was in-
cluded in the second group otherwise. According to this criterion, datasets Let-
ter, Pendigits, USPS, Reuters and MNIST were put together in the first
group and datasets Shuttle, IJCNN, USPS-Ext, KDD-10pc and KDD-
Full were included in the second group. Results for dataset Protein were
presented/analyzed independently because accuracies and training times were
significantly different from other results in the medium-scale group. Note again
that most of the problems using in this experiment have been already used to
compare CVM against other algorithms to train SVMs [58]. Times and model
sizes are depicted in a logarithmic scale.

By examining Figure[5] we again observe a slight advantage of CVM in terms
of testing accuracy. In addition, we confirm that the accuracy of the SWAP and
SWAP-20 methods tends to be the closest to the best observed performance.
The FW method is very often the least accurate among the Frank-Wolfe based
algorithms. Note that if we compute the difference in accuracy with respect to
CVM we always obtain results lower than 2%.

Results in Figure[9show that the FW, MFW, SWAP and SWAP-20 methods
are most of the time faster than CVM. The speed-up achieved by these methods
becomes more significant as the size of the training set grows, with peaks of
around 100x and 25x on the largest datasets. Differences among the Frank-
Wolfe methods depend on the size of the problem. Among the medium-scale
datasets all the methods achieve running times of the same order of magnitude.
Speed-ups in the large-scale group are clearly more significant, with medians of
27.3x, 15.0x, 30.7x, 29.5x for FW, MFW, SWAP and SWAP-20 respectively.

The advantage of the methods explored in this paper against standard FW
routines can be summarized as follows. The FW and MFW methods can some-
times be faster than SWAP and SWAP-20, but in that case the advantage is
very tight. Often, however, our methods can improve on FW and MFW with
more significant speed-ups. MFW in particular tends to be significantly outper-
formed in the cases where the FW works better. In those cases the performance
of our methods tends to be competitive or better. On medium-scale problems
all the methods are evenly matched in performance, with a slight advantage for
SWAP-20 and MFW. In the large-scale group, SWAP and SWAP-20 tend to
outperform FW and MFW more significantly.

Results on the Protein dataset deserve a particular comment. This is a
dataset of around 18.000 examples distributed into 3 classes, which leads to bi-
nary subproblems of around 10000 examples. According to this size, the problem
should be included in the group of medium-scale datasets on which we have seen
that the Frank-Wolfe algorithms obtain fairly similar and small speed-ups. On
the Protein problem however the methods obtain peculiar results. The FW
method achieves here a speed-up of 20.8x against CVM. However the standard
MFW runs here 123.5x faster than the CVM and 5.95x faster than FW. This
suggests that in this problem, away steps significantly help the algorithm to find
the solution to the SVM problem more quickly. Since our methods tend to be
better when aways steps work, we should observe important improvements on
the CVM using the proposed methods. Indeed, the respective speed-ups for the
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SWAP and SWAP-20 methods on this datasets are 157.3x and 358.0x. This
means that SWAP runs 17.25x faster than FW and 1.27x faster than MFW.
SWAP-20 runs 7.58x faster than FW and 2.90x faster than MFW.

Note finally that Figure [7] suggests that there are no significant differences
among the sizes of the models built by the different methods.

6.4 Statistical Tests

In this section, we perform some statistical tests to assess the significance of the
experimental results reported in this paper. To this end we adopt the guidelines
suggested in [I5]. We first conduct a multiple test to determine whether the
hypothesis that all the algorithms perform equally can be rejected or not. Then,
we conduct separate binary tests to compare the performances of each algorithm
against each other. For the binary tests we adopt the Wilcoxon Signed-Ranks
Test method. For the multiple test we use the non-parametric Friedman Test.
In [I5], Demsar recommends these tests as safe alternatives to the classical
parametric t-tests to compare classifiers over multiple datasets.

From the multiple test, we conclude that there is indeed a statistically sig-
nificant difference among the running times and accuracies of all the algorithms
(p-values were lower than 0.001 in both cases).

We then conduct a binary test on each pair of algorithms. The main hy-
pothesis of this paper is that the SWAP method outperforms the MFW and
FW methods in terms of training time without significant differences in terms
of predictive accuracy. In contrast, we claim that no significant differences be-
tween the MFW and FW methods are observed in practice (although MFW
seems to be slightly more accurate). We have also observed that the SWAP
method significantly outperforms CVM, sometimes at the expense of a little
test accuracy. Finally, we have observed that the SWAP-20 usually exhibits
larger running times than the SWAP method but outperforms the other FW
based methods in terms of predictive power. As regards the comparison of the
proposed methods, there is no apparent advantage in terms of running time of
one against the other. We thus conduct a two-tailed test for the running times
but adopt a one-tailed test for testing accuracy. Considering all the observations
above, our design for the binary tests is that of Table [2]

In Table [2, we also report the p-values corresponding to each tes@ For
reproducibility concerns, p-values were computed using the statistical software
R [46]. For the Wilcoxon Signed-Ranks Test, the exact p-values were preferred to
the asymptotic ones. The Pratt method to handle ties is employed by default.
In the case of the Friedman test, the Iman and Davenport’s correction was
adopted, as suggested in [15].

We now point out some of the conclusions which can be obtained from Table
At commonly used significance levels (10%, 5%, 1% or lower), the hypothesis

10In some cases we implement one-sided alternative hypotheses, and in others two-sided
tests. If a two-sided test is preferred to a one-sided alternative, it’s enough to double the
p-value reported here. Vice versa, if a one-sided test is preferred to a two-sided test, it’s
enough to halve the p-value reported here.
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Hj : Both equally fast

H; : Different accuracies

Hy : Both equally fast 1.526e-05

Hy : Both equally fast 5.528e-06 | Hp : Both equally accurate

H, : Different accuracies

1.873e-04

H; : Different times H; : Different accuracies

Hj : Both equally accurate 0.01071

H; : Different times

Hy : Both equally fast 1.087e-04 | Hy : Both equally accurate 0.01634

Hy : Both equally fast 4.47e-08 | Hp : Both equally accurate 2.25e-04

Hj : Both equally accurate 1.418e-03

Hi : SWAP faster

Table 2: Null hypotheses, alternative hypotheses and p-values for the binary
statistical tests. The conclusion of the test adopting a significance level of 5%
is highlighted in blue.

that FW and MFW are equally fast cannot be rejected. Adopting a significance
level of 5%, the running times of SWAP method are found to be significantly
different from those of all the baseline methods (FW, MFW and CVM), so
the null hypothesis is rejected in favor of the alternative hypothesis than the
SWAP method is faster. At the same significance level, or better, the hypotheses
than the SWAP-20 method is as fast as MFW or CVM are rejected in favor of
the conclusion that the SWAP-20 method is faster. Empirical data is however
insufficient to reject the hypothesis that the SWAP-20 method is as fast as the
FW or the SWAP methods. As regards the testing accuracy, FW, MFW and
SWAP are found to be equally as accurate at reasonable significance levels (10%,
5%, 1% or lower). In contrast, the hypothesis that the SWAP-20 method has
similar accuracies to FW, MFW and SWAP is rejected in favor of the conclusion
that SWAP-20 is more accurate.
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(a) Web collection (b) Adult collection
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Figure 2: Testing accuracies in the Web and Adult collections.
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(a) Web collection (b) Adult collection
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Figure 3: Running times in the Web and Adult collections. The column on the left
shows speed-ups with respect to CVM.
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(a) Web collection (b) Adult collection
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Figure 4: Model sizes in the Web and Adult collections. The column on the left
shows the percentage of the total number of examples.
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(a) Medium-scale datasets (b)Large-scale datasets
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Figure 5: On the left, testing accuracies in the medium-scale datasets: Letter,
Pendigits, USPS, Reuters, MINIST. On the right, testing accuracies in the large
dataset collection: Shuttle, IJCNN,x USPS-Ext, KDD-10pc, KDD-Full.
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Figure 6: On the left, testing accuracies in the Protein dataset. On the right, model
sizes in the Protein dataset.
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(a) Medium-scale datasets (b)Large-scale datasets
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Figure 7: On the left, model sizes in the medium-scale datasets Letter, Pendigits,
USPS, Reuters, MNIST. On the right, model sizes in the large dataset collection:
Shuttle, IICNN, USPS-Ext, KDD-10pc, KDD-Full.
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Figure 8: Running times in the Protein dataset.
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Figure 9: On the left, running times in the medium-scale datasets: Letter, Pendig-
its, USPS, Reuters, MNIST. On the right, running times in the large dataset
collection: Shuttle, IJICNN, USPS-Ext, KDD-10pc, KDD-Full.
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6.5 Experiments with Non-Normalized Kernels

Solving a classification problem using SVMs requires to select a kernel function.
Since the optimal kernel for a given application cannot be specified a priori, the
capability of a training method to work with any (or the widest possible) family
of kernels is an important feature.

In order to illustrate that the proposed methods can obtain effective models
even if the kernel does not satisfy the conditions required by CVM, we conduct
experiments using the homogenous second order polynomial kernel k(x;,x;) =
(fyxiij)z. Here, parameter ~ is estimated as the inverse of the average squared
distance among training patterns [58].

Figures and summarize the results obtained in some of the datasets
used in this section. We can see that both test accuracies and training times are
comparable to those obtained using the Gaussian kernel. It should be noted that
the CVM algorithm cannot be used to train an SVM using the kernel selected
for this experiment, thus we only incorporate the Frank-Wolfe based methods in
the figures. These results demonstrate the capability of our methods to be used
with kernels other than those satisfying the normalization condition imposed by
CVM.

7 Conclusions

The main contribution of this paper is twofold. On the theoretical side, we pro-
posed a new variant of the FW method for the general problem of maximizing a
concave function on the unit simplex, introducing a novel way to perform away
steps in the FW method devised to boost its convergence. On the practical side,
we demonstrated that our approach is very effective in improving the perfor-
mance of state-of-the-art SVM learners for large datasets, further expanding on
the research about FW methods for Machine Learning problems.

We presented two variants of the procedure, SWAP and SWAP-2o0, for which
we provided a thorough theoretical analysis. First, we demonstrated that they
converge globally. Second, we showed that SWAP and SWAP-20 asymptotically
exhibit a linear rate of convergence, which is, as in the case of the MFW method,
the main additional property with respect to the standard FW method. Finally,
we proved that they achieve a primal-dual gap lower than a given tolerance ¢ in
O(1/e) iterations, independently of m, the dimensionality of the feasible space
and the number of examples in SVM problems.

We then carried out an extensive set of performance evaluation experiments
for both variants of the algorithm. The obtained results demonstrated that,
in contrast to the MFW method, our approach provides a useful and robust
alternative to the FW method for training SVMs.

Most often, the proposed methods SWAP and SWAP-20 improved on the
performance of MFW. The SWAP method was faster than MFW on all the
datasets of the Adult collection, the Web collection and the Protein problem.
In the large-scale group of Figure |§|(b) SWAP outperformed MFW on 4 (out of
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Figure 10: On the left, testing accuracies obtained with the polynomial kernel in the
datasets of the Web collection, wia, w2a, w3a, wja, wsa, wba, w7a and w8a. On the
right, the corresponding running times.
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Figure 11: On the left, model sizes obtained with the polynomial kernel in the datasets
of the Web collection. On the right, testing accuracies, running times and coreset sizes
obtained in the Shuttle and Reuters datasets.
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5) datasets. In the medium-scale problems of Figure @(a) SWAP was slightly
slower.

The SWAP-20 method was faster than MFW on all the datasets of the Adult
collection, 6 (out of 8) datasets in the Web collection and 4 (out of 5) datasets
in the large-scale group of Figure @(b) SWAP-20 was also faster in the Protein
problem and slightly faster on the medium-scale problems of Figure @(a).

The conclusion that SWAP and SWAP-20 are faster than MFW was found
statistically significant at significance levels of 1% or better. Often, the SWAP
method improved on MFW by one order of magnitude and sometimes by two
orders of magnitude. In addition, in the cases in which MFW was faster, the ad-
vantage was less significant than the improvements of our techniques on MFW.

The proposed methods were also faster than the basic FW method several
times. For example, SWAP ran in median 15 times faster than FW in the Adult
collection and SWAP-20 ran 20 times faster. Similar results were observed in
the Shuttle and Protein datasets. We found that the conclusion that SWAP
is faster than FW is statistically significant at a critical value of around 4%. In
contrast, we were not able to reject the hypothesis that MEFW and FW lead to
similar training times. Similarly, we cannot conclude that FW and SWAP-20
have different running times.

Another important conclusion of our experimental results arises after an
analysis of the cases in which either FW or MFW fail in improving running
times of CVM by a significant amount.

e In some cases, away steps of MFW significantly speed-up the FW method.
Some examples were the Adult collection, the Shuttle and Protein
datasets. In those cases, the SWAP method is competitive with or faster
than MFW and significantly faster than FW.

e In some other cases, classic away steps fail. MFW achieves in those cases
noticeably worse running times. For instance, we observed this behavior in
the Web collection, the USPS-Ext and KDD-10pc datasets. In those
cases, the SWAP method is clearly faster than MFW. In addition, it is
competitive with the fastest algorithm (FW).

We conclude that the SWAP method can be expected to be faster than MFW
in those cases in which classic away steps effectively boost the convergence of
the FW method but also very competitive against FW when away steps fail.
Thus, SWAP is a robust alternative to FW, MFW or CVM. From this point
of view, the SWAP-20 method is less appealing. Even if SWAP-20 outperforms
more significantly the standard FW when away steps are useful, this technique
seems to fail very often in the same cases in which MFW fails. If we knew that
away steps were going to be useful for a given problem, SWAP-20 would be the
algorithm of choice. However, since we cannot predict that in advance, MFW
and SWAP-20 are less reliable in practice.

Finally, our experiments have demonstrated that the improvements in run-
ning time that we obtain on FW or MFW do not come at the expense at the
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expense of testing accuracy. Most of the time SWAP is slightly more accurate
than FW and as accurate as MFW.

A Technical Results

Here we report statements and proofs of a number of technical results, which
are used in the theoretical analysis of Section 4.

A.1 Perturbation Analysis

We follow the analysis presented in [I], which is in turn based on the pertur-
bation method of Robinson [48]. Consider the following perturbed variant of

(I
maximize w(a) = g(a) -z’ a
o (54)
subject to 17a = 1, a>0,

where z € R™ is perturbation vector.
Now, suppose we have a A, -approximate solution a, € R™. We are aimed

to show that a is the solution of a perturbed problem with a certain z. We
define z = z(a, A,) by

A* if Ay = 0,
2 = T . (55)
Vg(as)i —a, Vglay) if g > 0.
Note first that if a,; # 0
zi = Vglay)i — alVg(a,) > —A
g9(ow) « V(o) x (56)

2z = Vg(a)i — a Vg(au) < +A,

because o, is a A -approximate solution. If ay; = 0, 2; = A, by construction.
Then,

Iz))* = |z <mA?. (57)
Note in addition that

alz = Za*izi = Z iz = ol Vgla,) — (aIVg(a*)) af1=0, (58)
[ Bi0uy; £0

because o, is feasible for . Note finally that
Vw(a) =Vyg(a) — z . (59)

Thus, from Eqn. we obtain that the following stationarity condition is
fulfilled
aI'vVu(a,) = al'Vy(a,) —alz=alVg(a,) . (60)

The following lemma follows easily from the previous remarks.
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Lemma 3. If a, is a A,-approximate solution, then oy is optimal for problem

with z = z(a,, Ay) as defined in Eqgn. .

Proof. 1t follows from the concavity of problem and the remarks above.
See [1], Lemma 3.3 for details. O

The next lemma is the basis of the analysis of the rate of convergence for
the modified Frank-Wolfe methods.

Lemma 4. Let a* be the solution of problem and o, a Ag-approximate
solution. Then,

g9(e) = gla) < |lz]l[la” — |l < VmAJa™ — o] . (61)

Proof. The vector a* is feasible for the perturbed problem with z
z(ay,A,). Since ay is optimal for this problem, we have g(a*) — zla* <
g(a) — zTa,. This demonstrates the first inequality. The other follows from
Eqn. (57). O

From here, the following lemma follows easily.

Lemma 5. Suppose condition B2 holds. Let o be the solution of problem
and o, a A, -approximate solution, where A, is sufficiently small. Then,

g(e’) — gla) < NmAZ (62)
for some Lipschitz constant N.

Proof. See [1] to see how from the Robinson condition it follows that there exists
a Lipschitz constant N such that, for sufficiently small A,, |[o* —a || < N||z|| <
Ny/mA,. Combining this result with the previous lemma yields the result. [

Now, since g is twice differentiable, the Taylor expansion for g(ay + Ad) as
a function of A is

1 -
g (ar +Ad) = g(ar) + A\Vg(ax)"d + 5A2<1Tv29(a)d , (63)

where & is some point on the line between o, + Ad and ay. Since g is concave,
the Hessian matrix g(&) is negative semi-definite, so the last term is always
non-positive. To obtain a bound for g (ay + Ad) — g(ex), we need a bound L
on the norm of V2g(a) over the simplex. We can set L to the largest absolute
value of an eigenvalue of this matrix. We therefore obtain the following bound:

1
g (e +Ad) — g(ax) > AVg(ew)"d — SALI|d|” . (64)

We now exploit the previous bound to analyze the improvement in the ob-
jective function &, after a standard FW step, and the improvement 9., after
a SWAP step in Algorithm [4]
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A.2 Objective Function Improvement after Frank-Wolfe
Steps

Under hypothesis B1, we now derive a lower bound for the improvement in the
objective function g(ay + Adg) — g(ax) in the case a FW step is performed.
For a FW step we have dy, = e;, — aj.. Thus,

dew = g (o + Meiw — ar)) — glaw)

L (65)
> A (Vg(an)i = Vglan) ) = 53 fless — auell” -

But both e;, and e, lie in the simplex. Hence ||e;, — o ||> < 2. This leads to

Sew > g (ar + Mew — ag)) — g(ax)

(66)
> A (Vg(ak)z* — Vg(ak)Tak) — L/\2 .
The maximum of the right-hand side is obtained for
N = Yolon)i — Vg(ow) o (67)

2L

If A}, <1, the improvement in the objective function after an iteration marked
as a FW step in Algorithm []is bounded by

_ (Vglen)is — Vglaw) )’ (68)

0
fw 4L )

and by reordering we obtain

Vg(a)is — Vg(ar) ay < 24/Léy, < 2v/Loy (69)

where the latter inequality follows from the definition of 6 = max (ds,, Oswap)-
Now, if A}, > 1, we cannot use this step-size. In that case we use the step-size
A =1. But A} > 1 implies

Vg(ar)i — Vglaw) oy > 2L . (70)

Thus, using Eqn. with A\ = 1 and exploiting the inequality above, the
improvement in the objective function for a FW step can be bounded in this
case as

L T
5. > (v.g(ak)z* QVQ(ak) ak) ’ (71)
which leads to
Vg(ak)i* — Vg(ak)Tak S 25fw S 26k . (72)

In any case, we have the following bound for the improvement of the objective
function:

5o > min ((Vg(ak)i* —4Zg(ak)Tak)2 | (Vg(ar)is —2V9(ak)Tak)) ’ (73)
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which guarantees that for any &
Vy(ar)ix — Vg(ak)Tak < max (2\/L5fw , 26fw) < max (2\/ Lég , 26k) . (74)

Now, since Vg(ay); < Vg(ag)ix Vi, the following inequality is guaranteed at
each iteration of Algorithm [4] for any i:

Vg(ar): — af Vg(ax) < max (2 Léy, 25k) . (75)

A.3 Objective Function Improvement after SWAP Steps

We now bound the improvement obtained by SWAP steps. In this case, d =
€i« — €j,. Thus,

Oowap = g (0tk + A€ix — €jx)) — g(owk)

> A (Vglan)i — Volen)) — 5 X llews — e - "
But |le;x — ej.||* = 2. Thus,
Sawap > A (Vg(ar)in — Vglau)js) — AL . (77)
The maximum of the right-hand side is obtained for
o Vg(ar)ic — Vg(ak) s ' (78)

swap ~ 2L

If AL, < 1, the improvement in the objective function for an unconstrained

SWAP step, that is, an iteration marked as SWAP-add in Algorithm is
bounded as

(Vg(ar)in — Vg(a)ju)? (79)
4L '

Note now that a%Vg(ak) < Vg(ayg )« because Vg(ag)ix = max; Vg(ay); and

afl = 1. This observation leads to

6swap Z

2
5 (e V() — V(o)) (80)
e 4L '
By reordering, we obtain the following inequality,
aj Vg(ouw) — Vglag)T, < 2y/L., <2/ L (81)

where we have used the definition of d;. Now, if Y, > 1, we cannot use this
step-size. In that case we use the step-size A = 1. Recall that we are supposing
to be performing a SWAP-add step. In a way analogous to the Frank-Wolfe

case, A%, > 1 implies

Vg(ar)i — Vglau)s > 2L . (82)

Thus, the improvement in the objective function is bounded in this case by

o ol Valow) ~ Volou),. (83)

swap 2 )
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which leads to

aj V(o) — Vg(ag)js < 26, < 20 . (84)
In any case, we have the following bounds for the SWAP case
Oewap = min ((a?Vg(ak)4_ng(ak)j*)2 ’ (a{vg(ak); vg(ak)j*)> , o (89)

which leads to
aTVg(ar) — Vg(ar);» < max (2\/L5swap , 255wap) < max (2\/L5k , 25k) . (86)

Note now that the definition of j* can be rearranged as

j* € argmin Vg(ay,); — ai Vg(oy,) = argmax alVg(ay) — Vg(ag); . (87)

JEL JELL

Thus, we obtain that the following inequality is guaranteed at each iteration of
Algorithm [4] Vi such that ay; > 0:

oI'Vg(ay) — Vg(ay); < max (2 Loy z(sk) . (88)

Remark 2. After a swap-drop step in Algorithm [4] we cannot bound the im-
provement in the objective function, because the clipped value of the step-size
Aawap May be arbitrarily small. However, it is not hard to show that the objec-
tive function value does not decrease.
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