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Abstract

Purpose—To assess the relationship between radiation dose and change in a set of mathematical 

intensity- and texture-based features and to determine the ability of texture analysis to identify 

patients who develop radiation pneumonitis (RP).

Methods and Materials—A total of 106 patients who received radiation therapy (RT) for 

esophageal cancer were retrospectively identified under institutional review board approval. For 

each patient, diagnostic computed tomography (CT) scans were acquired before (0–168 days) and 

after (5–120 days) RT, and a treatment planning CT scan with an associated dose map was 

obtained. 32- × 32-pixel regions of interest (ROIs) were randomly identified in the lungs of each 

pre-RT scan. ROIs were subsequently mapped to the post-RT scan and the planning scan dose 

map by using deformable image registration. The changes in 20 feature values (ΔFV) between pre- 

and post-RT scan ROIs were calculated. Regression modeling and analysis of variance were used 

to test the relationships between ΔFV, mean ROI dose, and development of grade ≥2 RP. Area 

under the receiver operating characteristic curve (AUC) was calculated to determine each feature’s 

ability to distinguish between patients with and those without RP. A classifier was constructed to 

determine whether 2- or 3-feature combinations could improve RP distinction.

Results—For all 20 features, a significant ΔFV was observed with increasing radiation dose. 

Twelve features changed significantly for patients with RP. Individual texture features could 

discriminate between patients with and those without RP with moderate performance (AUCs from 

0.49 to 0.78). Using multiple features in a classifier, AUC increased significantly (0.59–0.84).
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Conclusions—A relationship between dose and change in a set of image-based features was 

observed. For 12 features, ΔFV was significantly related to RP development. This study 

demonstrated the ability of radiomics to provide a quantitative, individualized measurement of 

patient lung tissue reaction to RT and assess RP development.

Introduction

Radiation-induced lung injury is the major dose-limiting factor in thoracic radiation therapy 

(RT). High doses of radiation delivered to healthy lung tissue result in alveolar damage, 

which presents acutely as symptomatic radiation pneumonitis (RP) (1). RP symptoms 

include cough, dyspnea, and fever, which affect patient quality of life and, in severe cases, 

may result in patient mortality or termination of further cancer treatment (2).

Research of thoracic RT-induced toxicity has aimed at determining factors that contribute to 

RP development. Because of the observed relationship between RP incidence and dose to an 

irradiated lung volume, many studies correlate measurements derived from radiation dose 

maps, such as mean lung dose (MLD) or percent of lung volume irradiated above a specified 

threshold dose (Vdose), with RP development (3, 4). Although several metrics have appeared 

promising, results vary across institutions (3), indicating that lung sensitivity to RT may be 

highly variable across patient populations.

Rather than assume that radiation-induced lung injury will be uniform across patients, 

imaging-based methods have been developed to measure each patient’s individual reaction 

to radiation. Several groups have observed a relationship between radiation dose and 

computed tomography (CT) scan density change following RT (5, 6). Hart et al (7) 

demonstrated a relationship between uptake of 18F-labeled fluorodeoxyglucose (FDG) in 

positron emission tomography (PET) scans and both radiation dose and RP development. 

These studies demonstrated that thoracic imaging can facilitate quantitative measurement of 

tissue changes following RT, indicating the presence of lung tissue damage and likelihood 

of RP development.

In this study, we developed a method for quantitative analysis of lung tissue reaction in the 

CT scans of patients who were treated with RT for esophageal cancer. Rather than measure 

only density changes in post-RT scans, changes were described by mathematical intensity 

and texture-based features that characterize image appearance based on pixel values and 

spatial relationships among pixels (8). This radiomics-based approach, in which quantitative 

imaging features are extracted from medical images (9) thus facilitated higher-order 

characterization of complex changes in lung parenchyma due to radiationinduced damage. 

Several groups have used CT scan–based texture analysis to quantify complex lung disease 

patterns (10–12). Mattonen et al (13) recently demonstrated the utility of texture analysis for 

RT treatment assessment by using first-order and co-occurrence matrix features to 

distinguish radiation-induced fibrosis from tumor recurrence. In the present work, the 

change in texture feature values (ΔFV) between pre- and post-RT CT scans was calculated 

to facilitate patient-specific characterization of radiation-induced damage. The goal was to 

assess the relationship between radiation dose and texture change and determine the utility 

of texture analysis to identify patients who developed RP.
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Methods and Materials

Patient database

The retrospective database consisted of CT scans from each of 115 patients who received 

curative radiation doses (median: 50.4 Gy) for esophageal cancer at MD Anderson Cancer 

Center between April 2004 and March 2013. Patients were selected under institution review 

board approval from over 300 patients because they met the selection criteria. Specifically, 

each patient underwent 2 high-resolution diagnostic CT scans, the first acquired before RT 

and the second acquired no more than 4 months (120 days) after RT and prior to any 

surgical intervention. Diagnostic CT scans were reconstructed using lung convolution and 

smoothing kernels. If multiple CT scans met these criteria, the 2 scans acquired closest to 

the RT treatment dates were selected. Nine patients were not included for further analysis 

due to failure of lung segmentation that resulted from indistinct lung boundaries due to 

either lung compression or alternate pathology. For each of the remaining 106 patients 

(Table 1), a treatment planning CT scan with an associated dose map was collected. Dose 

maps were generated during treatment planning using heterogeneity corrections, using either 

Pinnacle (Philips Medical Systems, Andover, MA) for photon RT or Eclipse treatment 

planning system (Varian Medical Systems, Palo Alto, CA) for proton RT. Patients were 

monitored clinically for at least 6 months after RT. RP incidence was determined 

retrospectively through consensus of 3 clinicians using all available patient records and 

imaging from 6 months up to 1 year following RT. RP grade was scored using Common 

Toxicity Criteria for Adverse Events, version 4, based on the grade at first presentation, with 

grade ≥2 indicating symptomatic RP development.

CT scan preprocessing

To facilitate quantitative analysis of lung tissue, semi-automated lung segmentation was 

performed on all planning (14) and diagnostic (15) CT scans. Lung segmentation results 

were reviewed by an experienced thoracic CT researcher (A.C.) and modified manually if 

necessary. The segmented lungs of each post-RT and planning scan were registered to the 

lungs of the pre-RT scan by using open source software (version 1.5.12-beta; Plastimatch) 

(16) for demons deformable registration (17). Each registration generated a displacement 

vector field that allowed for identification of matched anatomic locations among CT scans.

Measurement of feature change

Nonoverlapping 32- × 32-pixel regions of interest (ROIs) were randomly placed in the lungs 

of each patient’s pre-RT scan by using a fully automated method (Fig. 1a) (17). A maximum 

of 10 ROIs were placed in each axial section. A previously developed approach was used to 

identify ROIs in the post-RT scan that were anatomically matched with the pre-RT scan 

ROIs, facilitating texture analysis on original nondeformed scans (18). Specifically, the 

center pixel of each ROI was mapped to the post-RT scan using the displacement vector 

field output by deformable registration, and then a 32- × 32-pixel ROI centered at this 

mapped center pixel was formed (Fig. 1b). Through deformable registration, all pre-RT scan 

ROIs were also associated with anatomically corresponding ROIs in the planning scan (and 

thus the associated dose map) (Fig. 1c) (19). Within each ROI, the average planned physical 

radiation dose (ie, not the biologically equivalent dose) was calculated.
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Twenty texture- and intensity-based features distributed among first-order, fractal, Laws’ 

filter, and gray level co-occurrence matrix (GLCM) classes were calculated in the ROIs of 

all pre- and post-RT CT scans. These features were selected from over 140 features because 

they had been shown previously to vary minimally in the absence of pathologic change (18, 

20). First-order features were derived from the gray-level histogram of a region (21, 22). 

Fractal features characterize the self-similarity of a region at different scales and relate to 

region detail (22, 23). Laws’ filters emphasize region microstructure, specifically spot, 

wave, ripple, edge, and level surfaces (24). GLCM features quantify the spatial relationship 

of gray-level values in a region (25). The absolute ΔFV from pre-RT to post-RT scan ROI 

was calculated.

Statistical analysis

A linear regression model was developed using the lmer package in Revolution R version 

6.1 software (Revolution Analytics, Mountain View, CA) to test the individual contribution 

of several factors (patient, mean dose, and RP status) on ΔFV. ΔFV was modeled for each of 

the 20 features

(Equation 1)

where Patienti represents patient-specific random effects for each patient; MeanDosej is the 

mean radiation dose to the ROI; RPStatusk represents whether the patient developed RP 

(grade ≥ 2); and εijkl represents residual error. First, a model was constructed to consider 

only interpatient variability (Patienti). Mean dose and RP status were then consecutively 

included in the model. Analysis of variance (ANOVA) was used to determine whether 

inclusion of each of these 2 terms significantly improved model fit. To maintain a family-

wise error rate of α = 0.05, p values for individual tests were modified using the Bonferroni 

approach (p<0.0025). The effects of treatment modality (photon intensity modulated RT, 

photon 3D-conformal RT, or proton therapy) and time to post-RT scan on ΔFV were also 

tested by adding each term individually into the full model (Equation 1) and then performing 

ANOVA. Statistical analyses were also repeated with grade ≥3 RP considered as an 

alternative end point. Because a previous study (19) indicated that registration errors 

between planning and diagnostic CT scans might result in average dose errors of 1 to 7 Gy, 

analyses were also repeated using a subset of ROIs (86% of ROIs) that were located in 

regions with low-dose variability (ie, standard deviation of <5 Gy).

Receiver operating characteristic (ROC) analysis (26) was performed to test the ability of 

each feature to distinguish between patients with and without grade ≥2 RP at various dose 

levels. For each feature, a patient-specific average ΔFV was calculated in 3 dose regions: 0 

to 10 Gy (low dose), 10 to 30 Gy (medium dose), and ≥30 Gy (high dose), allowing for the 

effects of RP status on ΔFV to be considered independently from the effects of dose. These 

dose regions were defined based on previous research indicating differences in radiologic 

and/or symptomatic changes across these dose ranges (27, 28). The slope of the dose versus 

ΔFV plot fitted using least squares (fitted slope) was also calculated. For each of these 4 

dose-dependent measurements, area under the ROC curve (AUC) was calculated using the 

pROC package in Revolution R software.
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RP patient classification

A logistic regression–based classifier was constructed to determine whether combined 

information from multiple features could improve identification of patients with grade ≥2 

RP. Classifier training and testing were performed using 1000 repetitions of random 

subsampling, with 75% of the RP and non-RP cases randomly selected for classifier training 

and the remaining 25% retained for testing. The mean AUC across all repetitions was 

calculated. Each of the 190 possible 2-feature combinations and each of the 1140 3-feature 

combinations was tested for classifier development. ANOVA and Tukey’s honest significant 

difference tests (29) were performed to test whether the number of features used to construct 

the classifier (1, 2, or 3 features) and the dose-dependent measurement (low, medium, or 

high dose or fitted slope) affected AUC values.

Results

Between 319 and 1014 ROIs were identified in the lungs of each patient’s pre-RT CT scan. 

Of these ROIs, 6% were discarded because they were subsequently mapped to locations that 

were not fully contained within the lungs of the post-RT scan, resulting in 268 to 995 (mean: 

703) ROI pairs per patient. Most ROIs received mean low-dose radiation, whereas 4474 

ROIs (6%) were located in high-dose regions (Table 2).

Linear modeling demonstrated a significant relationship between ΔFV and mean ROI dose 

for all 20 features and between ΔFV and grade ≥2 RP for 12 features (Table 3). When grade 

≥3 RP was considered as an alternative endpoint, 5 features remained significant (Table 3). 

For 17 features, which excluded fractal-based features, a positive relationship existed 

between dose and ΔFV. The effect of time to post-RT scan or treatment modality on ΔFV 

was not significant. When the analysis was repeated with ROIs located exclusively in 

regions with dose standard deviations of <5 Gy, the same 12 features demonstrated 

significant differences between patients with and without RP, and the increase in ΔFV with 

increasing dose remained significant for all features. Plots of ΔFV versus dose for 2 

representative features demonstrated a monotonic increase or decrease in ΔFV with 

increasing dose up to 45 Gy and a larger magnitude of ΔFV across all dose ranges for 

patients with RP (Fig. 2).

AUC values ranged from 0.49 to 0.78 when single features were used to separate RP 

patients from non-RP patients (Table 3). When multiple features were combined in a 

classifier, mean AUC values increased by 0.01 to 0.04 (Table 4). AUC was significantly 

different among all dose-dependent measurements and increased significantly from 1 to 2 

features (Table 4). The change in AUC from 2 to 3 features was not significant.

Discussion

This study demonstrated that a relationship exists between radiation dose and change in 

image-based features, using pre- and post-RT CT scans for an esophageal cancer patient 

cohort. Furthermore, RP patients can be differentiated from patients without clinically 

significant RP, based on ΔFV. All 20 features investigated demonstrated a significant 

increase or decrease in ΔFV with increasing dose. Twelve features demonstrated significant 
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increases in dose-dependent FV change for patients with grade ≥2 RP (Table 3). AUC 

values were highest using measurements derived from high-dose regions and dose-

dependent feature changes (fitted slope). Although AUC was lower in low- and medium-

dose regions, AUC values (Table 3) indicated that differences between RP and non-RP 

patients existed even in regions where the magnitude of visible change was likely to be low 

(27, 28). When features were combined in a classifier, AUC values increased significantly 

using 2 features but showed no additional increase when a third feature was included (Table 

4). Due to the small number of positive cases (n=20), inclusion of more than 2 features may 

have led to overfitting during classifier training, resulting in no significant improvements in 

classifier performance (30, 31). Although all feature combinations were tested, we could not 

conclusively determine an optimal feature set and model due to the small number of RP 

cases. In a larger database, patients could be subdivided into 3 cohorts for feature selection, 

classifier training, and classifier testing, facilitating identification of a small set of features. 

Although this study demonstrates that texture analysis can distinguish between patients with 

and without symptomatic RP, the choice of features and model coefficients remains to be 

determined using a larger database and/or an independent database.

Combined features were able to classify RP and non-RP patients with moderate performance 

(AUC values from 0.59 to 0.84). Inclusion of MLD and V20 information in classifiers 

resulted in no significant increase in AUC compared with the values obtained using single 

features (Table 3), and no significant relationship was observed between RP development 

and either MLD or V20 in our dataset compared with other existing reports of RP. It is 

possible that a nonlinear classifier such as a neural network (32, 33) may further improve 

classification accuracy, but that approach remains to be investigated with a larger database.

The retrospective nature of RP diagnosis makes it possible that RP grade was incorrectly 

identified in some patients, as symptomatic changes characteristic of RP can also be caused 

by other comorbidities (27, 34). In the present study, RP grade was determined based on the 

consensus of 3 clinicians after review of all patient imaging and clinical records. To further 

increase the reliability of RP diagnosis, future prospective studies should be performed. 

Retrospective data collection also resulted in differences in technical parameters across CT 

scans, which may affect feature values. In a previous study, changes in 140 features in the 

low-dose (<5 Gy) regions of the CT scans used in this study were compared with feature 

changes in scans acquired from healthy patients at a different institution (20). Despite 

differences in CT scanner type, scan resolution, and patient health status, the 20 features 

used in the present study remained stable, indicating that these features may be useful for 

data analysis from a variety of CT scanners.

Errors in CT scan coregistration may have occurred, resulting in incorrect identification of 

matched ROIs between diagnostic scans. In previous work in our laboratory, landmark 

matching was used to evaluate the registration accuracy between pre- and post-RT CT scans 

of 24 lung cancer patients, using Plastimatch demons. Average diagnostic CT scan 

registration error was 2.4 mm across patients who did not have radiation-induced changes 

and 4.6 mm across patients with moderate or severe changes. In the current database, the 

degree of physiologic change among scans was smaller than in the lung cancer patient 

database due to the smaller volume that received high radiation dose and the absence of lung 
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tumors, which could undergo volume changes due to RT or disease progression. The 

applicability of our findings in a lung cancer patient cohort remains to be investigated. The 

registration algorithm and parameters used in this study were selected because of previous 

research that showed high registration accuracy among diagnostic CT scans (17). It is likely, 

however, that further improvements in image registration could improve the findings of this 

study by facilitating improved alignment accuracy between ROIs in pre- and post-RT scans.

Previous studies have observed changes in CT scan density with increasing radiation dose 

for patients treated with conventionally fractionated RT (5) or stereotactic radiation therapy 

(6), which is consistent with our finding that ΔFV for a wide variety of features increased 

significantly with increasing dose. Phernambucq et al (35) found no relationship between 

CT scan density changes and increasing dose or RP status, although the authors attributed 

this result in part to the small sample size (7 patients with RP). To our knowledge, the 

present study is the first to demonstrate that texture changes following thoracic RT are 

associated with patient RP status. Although most texture analysis research quantifies lung 

disease status at a single time point, this study used deformable registration to relate pre- and 

post-RT scans, facilitating measurement of treatment-related change. When feature values 

were measured directly in post-RT scans, feature value variability increased, significantly 

(p<0.05), decreasing AUC values for individual features (Table 3) by up to 0.14 (mean: 

0.03).

Although several of the first-order features analyzed were strongly related to mean CT 

density changes (eg, median pixel value, 70% quantile, and 30% quantile), higher-order 

texture features were also used to measure the patterns of radiation-induced damage. The 

correlation between changes in mean pixel value and changes in 9 of the 19 remaining 

feature values was low (|r|<0.5), indicating the potential for uncorrelated features to provide 

complimentary information to mean CT density. Specifically, these features could capture 

aspects of image appearance that characterize the patchy appearance of acute RT-induced 

injury but are independent of changes in mean pixel value.

The post-RT CT scans in our study were acquired at various time points from 1 week to 4 

months following RT (Table 1), which is a time frame that is typical for RP development. 

Due to the retrospective nature of RP diagnosis, we were unable to determine the date of RP 

onset or whether the measured texture changes occurred prior to RP development. Future 

prospective studies should investigate whether texture changes in CT scans acquired after 

RT but before RP incidence could predict RP development. Identification of patients who 

are at high risk for future RP development would allow for closer monitoring, facilitating 

earlier treatment and improved outcomes for these patients (36). Alternative measurements 

including elevated serum levels (37), dose-volume histogram data (3, 4), and functional 

information derived from SPECT (38) or PET (39, 40) scans show promise for predicting 

RP. Future studies may benefit from combining measurements derived from these various 

methods with texture analysis of CT scans.
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Conclusions

This study demonstrated that quantitative measurement of dose-dependent texture changes 

between pre- and post-RT CT scans can differentiate between patients with clinical (grade 

≥2) RP and those patients without RP. Twelve intensity- and texture-based features 

demonstrated significantly increased changes for patients with RP. In general, individual 

features could be used to discriminate between patients with and without RP with moderate 

performance. When multiple features were combined in a classifier, AUC increased 

significantly (AUC values from 0.59 to 0.84). This study demonstrates the potential ability 

of radiomics to provide a quantitative, individualized approach to measure patient lung 

tissue reaction to RT and assess radiation pneumonitis.
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Summary

For 106 esophageal cancer patients treated with radiation therapy (RT), the relationship 

among changes in 20 image-based features in post-RT computed tomography scans, 

radiation doses, and development of radiation pneumonitis (RP) was tested. All features 

changed significantly with increasing doses. Twelve features were significantly related to 

RP development. Patients with RP could be distinguished by using a texture-based 

classifier. These methods provide a quantitative, individualized approach to measure lung 

tissue reaction to RT and assess RP development.
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Fig. 1. 
Process for mapping the center of each ROI (yellow box) from the pre-RT CT scan (a) to the 

post-RT CT scan (b) and the RT planning CT scan with assocated dose map (c). CT scans. 

CT=computed tomography; ROI=region of interest; RT = radiation therapy. A color version 

of this figure is available at www.redjournal.org. Abbreviations: RT = radiation therapy.
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Fig. 2. 
Plots of ΔFV versus mean physical dose with 95% confidence intervals for 2 features. 

Average values were calculated on a per-patient basis in 5-Gy dose bins.
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Table 1

Patient characteristics and image acquisition parameters

Parameter Value

No. of patients 106

Males: (n = 89)

Females: (n = 17)

Median age, y (range) 63 (29–81)

No. with smoking history 84

Disease stage I (n = 4)

II (n = 34)

III (n = 57)

IV (n = 10)

Recurrent (n = 1)

Histology Adenocarcinoma (n = 87)

Squamous cell carcinoma (n = 16)

Neuroendocrine (n = 2)

Sarcoma (n = 1)

Tumor location Distal/GE junction (n = 90)

Middle (n = 14)

Proximal (n = 2)

RP grade 0 (n = 38)

1 (n = 48)

2 (n = 11)

3 (n = 5)

4 (n = 3)

5 (n = 1)

Treatment regimen Chemoradiation therapy (n = 105)

RT only (n = 1)

Treatment modality Photon 3D–CRT (n = 17)

Photon IMRT (n = 56)

Proton therapy (n = 33)

Median dose (range) (Gy) 50.4 (45–66)

Dose per fraction (Gy) 1.8 (n = 102)

2 (n = 3)

2.25 (n = 1)

Median treatment time (range) (d) 38 (35–55)

Median time between pre-RT scan and RT start (range) (d) 27 (0–168)

Median time between post-RT scan and RT end (range) (d) 38 (5–120)

Treatment planning scan parameters (n = 106):

  Peak kilovoltage (kVp) 120

  Slice spacing (mm) 2.5

  Pixel spacing (mm) 0.97
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Parameter Value

Diagnostic scan parameters (n = 212):

  Scanner manufacturer and model GE LightSpeed 16 (n = 97)

GE LightSpeed VCT (n = 52)

GE LightSpeed Plus (n = 31)

GE LightSpeed QX/i (n = 18)

GE Discovery CT70 HD (n = 6)

GE Discovery RX (n = 1)

GE BrightSpeed (n = 1)

Philips Brilliance 64 (n = 4)

Hitachi SCENARIA (n = 1)

Toshiba Aquilion (n = 1)

  Number of scan pairs acquired with different scanners Same manufacturer, different model (n = 60)

Different manufacturer and model (n = 6)

  Peak kilovoltage (kVp) 120 (n = 209)

140 (n = 3)

  Peak kilovoltage difference between paired scans (kVp) 0 (n = 103)

20 (n = 3)

  Mean slice spacing (range) (mm) 2.5 (2.0–4.0)

  Mean slice spacing differences between paired scans (range) (mm) 0.1 (0.0–1.5)

  Mean pixel spacing (range) (mm) 0.80 (0.63–0.98)

  Mean pixel spacing difference between paired scans (range) (mm) 0.00 (0–0.12)

Abbreviations: 3D-CRT = 3-dimensional conformal radiation therapy; IMRT = intensity modulated radiation therapy; RP = radiation pneumonitis; 
RT = radiation therapy.
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Table 2

Distribution of ROIs across radiation dose levels

Average number of ROI pairs per
patient (range)

Mean ROI dose Photon RT Proton RT

0–10 Gy 503 (165–776) 532 (300–936)

10–30 Gy 162 (17–398) 118 (22–294)

30 Gy 49 (1–154) 27 (0–90)

Abbreviations: ROI = region of interest; RT = radiation therapy.
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Table 3

Performance of patient-averaged values of individual feature changes to separate RP patients from non-RP 

patients

AUC

Feature/dose-dependent measurement Low dose Medium dose High dose Fitted slope

First-order features

  70% Quantile*,† 0.72 0.77 0.77 0.77

  Median*,† 0.70 0.73 0.75 0.75

  Mean*,† 0.68 0.73 0.75 0.76

  Binned entropy* 0.68 0.74 0.75 0.68

  30% quantile* 0.67 0.69 0.72 0.74

  Unbinned entropy 0.66 0.69 0.71 0.69

  5% Quantile 0.61 0.62 0.65 0.69

  Minimum 0.58 0.56 0.63 0.58

Fractal features

  Brownian dimension* 0.66 0.72 0.78 0.78

  Box-counting dimension 0.49 0.54 0.60 0.67

  Fine box-counting dimension 0.49 0.49 0.52 0.54

Laws’ filter features

  E5L5 entropy* 0.63 0.72 0.75 0.77

  R5L5 entropy* 0.63 0.73 0.75 0.77

  S5L5 entropy* 0.62 0.71 0.74 0.76

  W5L5 entropy* 0.62 0.71 0.73 0.76

GLCM features

  Sum average*,† 0.69 0.74 0.76 0.77

  Sum of squares variance*,† 0.70 0.75 0.76 0.77

  Sum entropy 0.68 0.70 0.73 0.68

  Difference entropy 0.62 0.65 0.68 0.66

  Entropy 0.59 0.60 0.60 0.50

Average AUC across features 0.64 0.68 0.71 0.71

Abbreviations AUC = Area under the receiver operating characteristic curve; E5L5 = edge-level filter; GLCM = gray-level co-occurrence; RP = 
radiation pneumonitis; R5L5 = ripple-level filter; S5L5 = spot-level filter; W5L5 = wave-level filter.

*
Significant (P<0.0025) relationship between change in feature value (ΔFV) and grade ≥2 RP.

†
Significant (P<0.0025) relationship between DFV and grade ≥3 RP.
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Table 4

Comparison of single-feature performance to distinguish patients with RP compared with a classifier 

composed of each 2- or 3-feature combination

No. of features/dose-dependent
measurement

Mean AUC (range)

Low dose Medium dose High dose Fitted slope

1 Feature 0.64 (0.49–0.72) 0.68 (0.49–0.77) 0.71 (0.52–0.78) 0.71 (0.50–0.78)

2 Features 0.66 (0.59–0.74) 0.71 (0.59–0.78) 0.73 (0.59–0.78) 0.74 (0.59–0.84)

3 Features 0.66 (0.59–0.75) 0.72 (0.59–0.79) 0.72 (0.60–0.79) 0.75 (0.61–0.83)

Abbreviations: AUC = area under the receiver operating characteristic curve; RP = radiation pneumonitis.
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