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Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and
perfusion within rectal tumors before and after hypofractionated radiotherapy.
Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT),
underwent FDG–positron emission tomography (PET)–computed tomography (CT) and perfusion-CT (pCT) im-
aging before the start of hypofractionated RTand at the day of the last RT fraction. The pCT-images were analyzed
using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters Ktrans, ve, and
vp. The mean and maximum FDG uptake based on the standardized uptake value (SUV) and transfer constant
(Ktrans) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each sub-
region the mean and maximum SUVs and Ktrans values were assessed and correlated. Furthermore, the mean FDG
uptake in voxels presenting with the lowest 25% of perfusion was comparedwith the FDGuptake in the voxels with
the 25% highest perfusion.
Results: The mean and maximum Ktrans values were positively correlated with the corresponding SUVs (r = 0.596,
p = 0.001 and r = 0.779, p < 0.001). Also, positive correlations were found for Ktrans values and SUVs within the
subregions (mean, r = 0.413, p < 0.001; and max, r = 0.540, p < 0.001). The mean FDG uptake in the 25%
highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions
(10.6% ± 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p =
0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) Ktrans values
were found to significantly increase.
Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels comparedwith relatively low
perfused tumors. Also, intratumor regions with a high FDG uptake demonstrated with higher levels of perfusion
than regions with a relatively low FDG-uptake. Early after hypofractionated RT, stable FDG uptake levels were
found, whereas tumor perfusion was found to significantly increase. � 2012 Elsevier Inc.

Perfusion-CT, FDG-PET-CT, Rectal cancer, Hypofractionated radiotherapy, Tumor perfusion, FDG uptake.
INTRODUCTION

Radiotherapy (RT), alone or with chemotherapy, is an estab-
lished treatment for patients diagnosed with rectal cancer
(1–3). The use of sequential positron emission tomography
(PET) and perfusion-CT (pCT) imaging allows a closer
look at therapy related changes of the tumor’s metabolic
activity and tumor perfusion, which might enable tumor
response predictions and tailored therapies in the future (4–
7). Evaluation of the metabolic activity of malignancies,
assessed with sequential fluorodeoxyglucose (FDG)–PET
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imaging, has been shown to be an accurate and promising

method for the prediction of treatment response during and

after neoadjuvant radiochemotherapy (RCT) in an

increasing number of malignancies (5, 8–19). The response

index (RI), describing the percentage of reduction of

maximum standardized uptake value (SUVmax) after 2

weeks of preoperative RCT treatment, has been presented

as an accurate predictor of the pathological treatment

response (5, 16–19). Also, tumors with higher FDG uptake

level before the start of treatment presented with a higher
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decrease in the SUVs early during treatment compared with
tumors with a lower pretreatment FDG uptake (18, 19).
Therefore, an accurate prediction of the pathological tumor
response already early during preoperative treatment would
enable more individualized treatment regimens, aiming at
further improvement of the tumor response or a modified
surgical approach.

Except changes in the metabolic activity of the tumor, as-
sessments of the microvascular status of the tumor tissue us-
ing pCT measurements have also been presented as an early
marker of treatment response (20–24). pCT Imaging is
increasingly applied to noninvasively assess the
microvascular status of tumor tissue by studying the
uptake kinetics of the administered tracer over time (7,
20–23, 25–34). A two-compartment model (extended Kety
model) is commonly used for pharmacokinetic modeling
of the tracer’s uptake kinetics, quantifying tumor perfusion
with the pharmacokinetic parameters Ktrans, ve, and vp (35,
36). For perfusion measurements, Ktrans, describing the
transfer rate of the used tracer from the blood plasma into
the extravascular–extracellular space (EES), is the most
valuable pharmacokinetic parameter related to the
microvascular blood flow, vessel wall permeability, and
vessel density (36). Malignancies presenting with a high
Ktrans value before treatment tend to better respond to (ra-
dio)chemotherapy treatment compared with tumors with
relatively low values of Ktrans (20–24, 32–34).

The purpose of this study was to analyze the intratumoral
FDG uptake and perfusion within rectal tumors before and
after hypofractionated radiotherapy, as well as to test a possi-
ble correlation between the tumor’s metabolic activity and
tumor perfusion.
METHODS AND MATERIALS

Patient characteristics
Patients diagnosed with non–locally advanced rectal cancer and

scheduled for preoperative radiotherapy treatment followed by sur-
gery were considered for study enrollment. For each included pa-
tient, the TNM stage was determined from pretreatment magnetic
resonance (MR) images. All patients were preoperatively referred
to short-course hypofractionated RT, five fractions of 5 Gy on 5
consecutive working days, followed by a total mesorectal excision
(TME) within 3 days after the last RT fraction. According to the
Dutch law, the medical ethics committee approved the trial, and
all patients gavewritten informed consent before entering the study.
PET-CT and pCT acquisition
All patients underwent a FDG-PET-CT scan combined with a pCT

scan before the start of treatment and at the day of the lastRT fraction.
All PET-CTand pCTexaminations were performed on the same ded-
icated Siemens TruePoint Biograph 40 PET-CT simulator (Siemens
Medical, Erlangen, Germany). The patients were positioned equal
to the radiotherapy treatment position using a laser alignment system
tohaveminimal variations between imagingand treatment conditions
and between the two imaging time points. After a fasting period of at
least 6 h, patients received an intravenous injection of FDG, with the
activity normalized for the patients’ bodyweight (weight [kg]*4 + 20
[MBq]). Static PET acquisition was started after an uptake period of
60 min, with an acquisition time of 5 min per bed position. For PET
reconstruction (OSEM2D: four iterations, 8 subsets), CT based atten-
uation correction and three-dimensional scatter and decay correction
were performed. After the PET-CT scan, a pCT-scan was performed
over 100 s. The field-of-view (FOV) for the pCT scan was defined by
an expert radiation oncologist (J.B. or G.L.) with knowledge of the
PET data. To ensure that the most representative tumor areawas cho-
sen, the tumor areawith the highest FDG-uptake on the PET scanwas
selected. Knowledge of the FOV selected for the first pCT scan was
used to select the identical region for the second pCT scan. For the
pCT-scan, 120 ml of an iodinated contrast-agent (300 mg iodine/
ml; Xenetix 300, Guerbet, Aulnay-sous-Bois, France) was injected
at a rate of 3 ml/s via an automatic injector (Stellant Sx, CT Injection
System, MedRad, Warrendale, PA) into the antecubital fossa. The
pCT-scanwas performed in a static cine-modeover 12 contiguous sli-
ces with a slice thickness of 2.4mm, a FOVof 500mm, and an image
size of 512� 512 pixels. Other acquisition settings were tube voltage
80 kVp, tube current 140 mAs, and a rotation time of 1 s.
PET analysis and tumor contouring
For each of the PET scans, a tumor contour was generated using

automated SUV thresholding with the threshold (percentage
of SUVmax within the tumor) depending on the tumor-to-
background signal ratio with the gluteus muscle selected as relevant
background (37, 38). Dedicated software (TrueD, Siemens
Medical, Erlangen, Germany) was used to calculate the mean and
maximum FDG uptake (SUV) within the tumor. In addition, all
PET data were normalized for the blood-glucose-level (BGL) mea-
sured shortly before FDG administration (19, 39, 40).
pCT Analysis
Image-registration between the PET-CT scan and the pCT-scan

was performed using a registration algorithm based on Mutual In-
formation (Focal software, version 4.34, CMS Inc., St. Louis, MO).
The automatic tumor delineation based on PET thresholding was
exported and projected onto the pCT dataset for further analysis.
The pCT images were down-sampled from a voxel size of 0.98 �
0.98 � 2.4 mm to 3.92 � 3.92 � 4.8 mm to improve the signal-
to-noise ratio. For the quantification of the dynamic pCT data,
the extended Kety model was used, describing the uptake of a con-
trast agent from the blood plasma into the tissue by (36):

CtðtÞ ¼ vpCpðtÞ þ Ktrans

ðt

0

CpðuÞe�Ktrans

ve
ðt�uÞ du

The blood plasma concentration curve (Cp), extracted from the right
external iliac artery, was derived from the acquired whole blood
tracer concentration (Cb) divided by (1-Hct), with the hematocrit
value (Hct) set to 0.45 (36). To improve the signal-to-noise ratio,
Cp was calculated by averaging the concentration time curves over
all voxels selected inside the iliac artery. The tumor concentration
curves (Ct) were extracted from the dynamic pCT data on a voxel-
by-voxel basis and on a tumor uptake curve based on the average
of all tumor voxels. Pharmacokinetic analysis was performed using
in-house–developed software (MATLAB,R2008b,Mathworks,Na-
tick, MA). The concentration time curves from pCT-data were fitted
to the pharmacokineticmodel, with the pharmacokinetic parameters
being calculated using the Levenberg–Marquardt algorithm, with
boundaries set to 0 # Ktrans#5 min�1, 0#ve#1 and 0#vp#1
(41–43).



Fig. 1. Spherical representation of a tumor with the dashed lines in-
dicating the cutting planes used for subdivision of the tumor into 8
subregions.
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Correlation of FDG uptake and tumor perfusion
For each of the included patients, the mean and maximum FDG

uptake (SUV) and transfer constant (Ktrans) within the tumor were
correlated. Next, based on the tumor contour resulting from SUV
thresholding, the tumor was subdivided into eight subregions
(Fig. 1). For each of the tumor subregions, the mean and maximum
SUVs and Ktrans values were assessed and correlated.
In addition, the mean FDG uptake in the voxels presenting with

the lowest 25% of perfusion (Ktrans values) was compared with the
FDG uptake in the voxels with the 25% highest perfusion.
To study early treatment effects, the metabolic activity of the tu-

mors as well as the level of tumor perfusion were studied over time
by comparing the pre- and posttreatment scans.
Statistical analysis
Statistical differences between parameters were evaluated in

SPSS version 15.0 (SPSS Inc., Chicago, IL), performing aWilcoxon
Fig. 2. Pre-treatment comparison of a positron emission tomog
a perfusion-computed tomography (pCT) image and the corres
signed-rank test for the comparison of related measurements. Dif-
ferences were considered to be significant when the p value was
less than 0.05. For assessing the correlation between FDG uptake
perfusion within the tumor, the Spearman’s rank coefficient (r)
was calculated.
RESULTS

Patient characteristics
Twenty patients (mean age, 67.0 � 10.9 years) diagnosed

with non–locally advanced rectal cancer were included in
this study. Based on pretreatment MR imaging (MRI), the
clinical TNM staging was staged as T 1–3, N 0–1, M 0–1.
For 3 of the included patients, large deformations of the rec-
tum were observed when registering the CT and pCT scan.
As these large deformations hamper an accurate registration
of the PET-CT and pCT scans, a reliable correlation of the
FDG uptake within and perfusion of the tumor could not
be ensured. For this reason, 17 patients remained for further
analysis.
Correlation of the metabolic activity and perfusion of
rectal tumors

In Fig. 2, a FDG-PET-CTand pCT scan of a representative
patient is shown. Visual inspection shows that there is a large
correspondence of FDG uptake and perfusion within the tu-
mor. Note the heterogeneous pattern of both the FDG uptake
and perfusion of the tumor. When comparing the mean and
maximum SUVs and Ktrans values within the tumors of the
included patients, clear relationships were found with corre-
lation coefficients (r) of respectively 0.596 (p = 0.001) and
0.779 (p < 0.001) (Fig. 3).

A location-based analysis was performed by subdividing
the tumors into eight sub-regions and comparing the FDG
uptake and perfusion within these regions. The mean and
maximum Ktrans values and SUVs showed a large correspon-
dence, with positive correlation coefficients (r) of 0.413 (p <
0.001) and 0.540 (p < 0.001), respectively (Fig 4). Further-
more, the pretreatment measured mean FDG uptake of the
voxels within the tumor presenting with the 25% highest
raphy-computed tomography (PET-CT) image (left) and
ponding Ktrans map (right).



Fig. 3. Scatter plots of the mean and maximum FDG uptake (SUV) within the tumor and the mean and maximum tumor
perfusion (Ktrans values). Note the positive correlation between the FDG uptake within and perfusion of tumor tissue for
both the pre- and post-treatment situation.
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Ktrans values was found to be significantly higher compared
with the FDG uptake of the voxels within the tumor present-
ing with the 25% lowest Ktrans values. For the 25% highest
perfused tumor voxels, a 10.6% � 5.1% (p = 0.017) higher
mean SUVs were found when compared with the 25% low-
est perfused tumor voxels (Fig. 5).

Hypofractionated radiotherapy treatment effect
To study the early effects of hypofractionated radiother-

apy on the FDG uptake within and perfusion of rectal tu-
mors, PET-CT and pCT scans were performed before the
start of treatment and at the day of the last radiotherapy frac-
tion. When comparing the mean (pre, 7.9 � 3.0; post, 7.5 �
2.8; p = 0.362) and maximum (pre, 15.8 � 6.4; post, 14.6 �
5.8; p = 0.280) SUVs, stable FDG uptake levels were found
during short-course hypofractionated RT (44). However, for
the mean (pre, 0.463 � 0.102 min�1; post, 0.500 � 0.105
Fig. 4. Scatter plots of the FDG uptake (SUV) and perfusion (K
a location based analysis. Each dot or triangle represents the F
regions created within a patient’s rectal tumor respectively bef
min�1; p = 0.040) and maximum (pre, 1.253 � 0.124
min�1; post, 1.340 � 0.092, min�1, p = 0.003) Ktrans values,
significant increases were found between both pCT scans
(7). In Fig. 6, the average histograms of the Ktrans values
and SUVs within the tumor are shown for all patients. As
can be seen from the histograms, preoperative treatment
with hypofractionated RT resulted in an increased tumor per-
fusion for the included patients, whereas stable FDG uptake
levels were found. For the bins of the histogram presenting
the number of voxels with a relatively high Ktrans value, an
increase of the number of voxels was observed between
the pre- and posttreatment pCT scan. In contradiction, a de-
crease was found for the number of voxels in the bins with
a lower Ktrans value. The shift of the histogram toward
increased bins with relatively higher Ktrans indicates an in-
crease of tumor perfusion because of preoperative treatment
with short-course hypofractionated RT.
trans values) within the eight created tumor sub-regions for
DG uptake within and perfusion of one of the eight sub-
ore and after treatment.



Fig. 5. For the pretreatment situation, a significant higher FDG up-
take was observed within the tumor voxels presenting with the 25%
highest Ktrans values when compared with the voxels presenting
with the 25% lowest Ktrans values.

Correspondence of FDG uptake and tumor perfusion d M. H. M. JANSSEN et al. 853
DISCUSSION

The purpose of this study was to analyze the intratumoral
FDG uptakewithin and perfusion of rectal tumors before and
after hypofractionated radiotherapy treatment as well as to
test a possible correlation between FDG uptake and tumor
perfusion. The FDG uptake within rectal tumors was found
to positively correlate with tumor perfusion assessed from
Fig. 6. Treatment effect of hypofractionated radiotherapy on bo
For the FDG uptake within rectal tumors, no significant treatme
better tumor perfusion was observed when evaluating the Ktran
dynamic pCT images. Highly perfused rectal tumors pre-
sented with higher FDG uptake levels compared with rela-
tively low perfused tumors. To our knowledge, this article
is the first to describe a positive correlation of FDG-PET
and pCT imaging for rectal cancer. The presented findings
for rectal cancer patients are in line with the findings of
Miles et al. and Groves et al. for lung and breast cancer pa-
tients, respectively (25, 27, 28). Patients diagnosed with
a relatively high perfused tumor tend to better respond to
(radio)chemotherapy when compared with relatively low
perfused tumors (20–24, 32, 33). Based on the presented
results, it could be suggested that, for highly perfused
tumors, a better distribution of the administered FDG, and
possibly also of a chemotherapeutic drug, is possible.
However, for different types of malignancies, FDG uptake
has been studied as a surrogate marker for the detection
and imaging of hypoxia, although with conflicting findings
(45–47). The results presented here, specifically, a strong
positive correlation between FDG uptake and tumor
perfusion, are in conflict with an increased FDG uptake as
a surrogate marker of tumor hypoxia, as tumors are
thought to develop hypoxia because of a low perfusion.

Another finding of this study was the difference in early
treatment response as measured with respectively PET and
pCT imaging. Early during hypofractionated RT, the mean
and maximum FDG uptake levels within the tumors were
found to be stable, whereas the mean and maximum Ktrans

values were found to increase significantly. The significant
increase of the mean and maximum Ktrans values early dur-
ing preoperative RT could be caused by endothelial cell
death within the tumor, stress reactions of injured tumor
cells, or even death of tumor cells resulting from the hypo-
fractionated RT treatment (48). Endothelial cell death would
result in endothelial cell leakage, which in turn results in in-
creased Ktrans values within the tumor.

Because of the relative small dimension of the FOV for
pCT imaging of the used PET-CT simulator in the craniocau-
dal dimension (only 2.88 cm), the craniocaudal coverage of
the FOV resulted in incomplete tumor coverage in some pa-
tients. Because of the possibly incomplete tumor coverage,
th the FDG uptake within and perfusion of rectal tumors.
nt effect was observed, whereas a shift towards an overall
s values.



854 I. J. Radiation Oncology d Biology d Physics Volume 82, Number 2, 2012
the calculated mean Ktrans values represent the perfusion of
the tissue covered by the FOV. However, Goh et al. presented
a study showing that an increase in the FOV in craniocaudal
direction did not improve the reproducibility of perfusion
measurements (29). Nevertheless, current state-of-the-art
(PET)–CT scanners are becoming available that are able to
perform volumetric perfusion measurements that encompass
the entire tumor volume.

The major limitation of sequential functional imaging
(PET and pCT imaging), followed by a voxelwise compari-
son of the resulting images, are deformations of the organs
within the scanned region of the human body. Not only
day-to-day differences in bladder and rectum filling, but
also differences in bladder and rectum filling and bowel peri-
stalsis within the short time span (maximum 20 min) be-
tween the PET–CT and pCT scan hampered an accurate
voxelwise comparison of the PET and pCT images. Because
of this, for this study, only a region-based comparison of
FDG uptake within and perfusion of tumor tissue was per-
formed. Even for the region-based correlation of the FDG
uptake level and tumor perfusion, an accurate registration
of the PET–CT and pCT images should be ensured. Three
of the included patients were excluded from further analysis
because of large deformations of the rectum between the
PET–CT and pCT scan.

Within a recent study, we presented pCT imaging as an al-
ternative modality to Dynamic contrast-enhanced magnetic
resonance imaging (MRI) for the in vivo evaluation of tumor
perfusion in terms of the transfer constant Ktrans (31). Be-
cause of the relatively high availability of CT scanners
over MRI scanners within radiotherapy departments, as
well as the shorter total examination duration of a pCT
scan, pCT imaging is an attractive alternative for DCE–
MRI imaging. Also, pCT imaging has a better time resolu-
tion compared with DCE–MRI imaging, which enables
a high temporal acquisition of the first pass of the adminis-
tered tracer. However, each pCT scan results in an additional
effective dose of 15 mSv, whereas DCE–MRI can be per-
formed without ionizing radiation. However, all of the in-
cluded patients were scheduled for preoperative treatment
with short-course hypofractionated radiotherapy. The addi-
tional effective dose caused by pCT scanning should be
compared with the much higher dose planned to preopera-
tively treat the patient, as well as to the relatively advanced
age and the life expectations of the patients. For relatively
young patients and/or when a MRI system is available,
DCE–MRI is recommended over pCT imaging because of
the better signal-to-noise characteristics, stronger contrast
uptake, larger tumor coverage, and the absence of ioniz-
ing-radiation.
CONCLUSION

In conclusion, FDG uptake within the tumor, assessed
with PET imaging, was found to positively correlate with tu-
mor perfusion assessed with dynamic pCT imaging. Highly
perfused rectal tumors presented with higher FDG uptake
levels compared to relatively low perfused tumors. Early
during hypofractionated radiotherapy, tumor perfusion was
already found to significantly increase, whereas FDG uptake
levels were stable over time. Thus, for highly perfused rectal
tumors or regions within the tumor, a better distribution of
the administered FDG is more likely compared with tumors
with a relatively low perfusion.
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