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Abstract

Defining appropriate delivery strategies of thergpeproteins, based on lipid nanoparticulate
carriers, requires knowledge of the nanoscale azgtan that determines the loading and
release properties of the nanostructured partiblaaoencapsulation of three cationic proteins
(human brain-derived neurotrophic factor (BDNé&¢hymotrypsinogen A, and histone H3)
was investigated using anionic nanoparticle (NP)eas. PEGylated lipid NPs were prepared
from self-assembled liquid crystalline phases im@ monoolein and eicosapentaenoic acid.
Inclusion of the antioxidanti-tocopherol favoured the preparation of stealth oseme
carriers. The purpose of the present work is t@akthe structural features of the protein-
loaded lipid nanocarriers by means of high resolugmall-angle X-ray scattering (SAXS)
and cryogenic transmission electron microscopyddrigM). The obtained results indicate
that protein entrapment is concentration-dependedt may significantly modify the inner
liquid crystalline structure of the lipid nanocams through changes in the interfacial
curvature and hydration.

Keywords: BDNF, neurotrophin, protein nanoencapsulatiorxosemes, PEGylated liquid
crystalline nanocarriers.
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1. Introduction

Modern methods for protein and peptide drug dejivere based on nanoencapsulation in
nanoparticle (NP) carrierdAl-jamal et al., 2011; Azagarsamy et al., 2012; t€siret al.,
2007; Dai et al., 2006; de Hoog et al., 20G2ral et al., 2013Jorgensen et al., 2006; Patton
et al.,, 2005; Plum et al., 2000Since the emergence of nanomedicine, NP-baskdede
strategies have faced various challeng&éel and Cullis, 2004; Desai, 2012; Dai et al.,
2005; Petersen et al., 201% has been demonstrated that piwgsicochemical parameters of
lipid-based nanocarriefsize, surface charge, morphology, surface cheynistability) may
easily be adjustedsto satisfy the requirements for improved drug safetrgeted delivery,
appropriatedrug release kineticand possibility for scaling-up manufacturing.ifn et al.,
2012; Martins et al., 2007; Koennings et al, 20C@rafa et al., 2006; Fujita et al., 1995;
Gorodetsky et al., 2004; Guo et al., 2003; Kullbetgal., 2005; Langston et al., 2003;
Ramprasad et al., 2003; Ye et al., 20@rug delivery applications have shown an essential
need of stealth carriers that are stabilized byrdphkilic polymer shells Rreichels, et al.,
2011; Keefe et al., 201Zarcia-Fuentes et al., 2005; Garcia-Santana eR@0D6; Almgren
and Rangelov, 2006; Thongborisute et al., 3008Ps have been surface-modified by
polyethyleneglycol (PEG) chains as PEGylation piesi reduced immunogenicity and
increased circulation time of the vehicléglsudar et al., 2004; Badiee et al., 2007; Chang
et al., 2011; Frkanec et al., 2003; Gabizon etl@94. Functionalization of the nanocarriers
by appropriate ligands (including ligand grafting tae termini of the PEG chains) has
favoured targeted protein delivery and has helpealdang adverse effectB(gles et al.,
2007; Martin et al., 1982; Takeuchi et al., 2008ychilin et al., 2001; Visser et al., 2005;
Zhang et al., 2005; Wei et a012. Multifunctional lipid-based NPs, involving thereutic
and contrast agents, magnetic components for NBagoe, and/or fluorescence imaging
probes, have been developed for theranostic apiplsa(esieur et al., 2011; Mulet et al.,
2012; Petersen et al., 2012

Both PEGylated and non-PEGylated liposomes havacatd considerable interest for protein
encapsulationArifin et al., 2003; Goto et al., 2006, Gregoriadtsal., 1999; Murakami et al.,
2006; Rengel et al., 2002; Teiji et al., 2005; Kak, 2007; Xu et al., 20)2In such patrticles,
lipid membrane shells isolate the entrapped prstéiom the surroundings and serve for
efficient protein protection against chemical, pbgk or enzymatic degradatiowglde et al.,
200]). Furthermore, PEGylation of the NP carriers hastrbuted to their significantly
enhanced bioavailability and minimized side eff€@¥ang et al., 2012

Advances in the methods for protein and peptideoeacapsulation have led to studies of
nanostructured lipid particles with multicompartrhenganizations Angelov et al., 2012a;
Angelova et al., 2005a, 2011, 20zéral et al., 2012; Mulet et al., 2012; NguyenlgtZ®11;
Puglia, 2008; Woerle et al., 2007; Yaghmur and t@taR009. Inner nanostructures of liquid
crystalline types facilitate the encapsulation afgk amount of protein molecules in the
nanocarriers and may provide protein delivery atagced concentration on target sites
(Angelov et al., 2003; Angelova et al., 2003; 20(B0)5c¢c, 2008, 201X logston et al., 2005;
Conn et al., 2010; Garti et al., 2012; Misiinasakf 2012;Negrini and Mezzenga, 2012;
Rizwan et al., 2011 Factors controlling the encapsulation and r&ezsbiomolecules from
liquid crystalline nanocarriers include the typetioé inner structural organization, the inner
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nanochannel sizes, interface area, surface chdwgetionalization, as well as the NP
dimensions Angelov et al., 2013; Angelova et al., 2003, 20CBgmelli et al., 2012; Negrini
and Mezzenga, 2012; Rizwan et al., 201¥ajor types of lipid NPs with internal liquid
crystalline structures comprise cubosomes, hexospnspongosomes, micellar-type
cubosomes, multilamellar liposomes, and nanostredtemulsions Angelov et al., 2006,
2012a, 2012b; Boyd et al., 2006; Conn et al., 2@<posito et al., 2005; Dehsorkhi et al.,
2011; Géral et al., 2013; Kulkarni et al., 2010; éal., 2010; Mulet et al., 2012; Negrini and
Mezzenga, 2012; Phan et al., 2011; Salentinig t28I08; Yaghmur and Glatter, 2009
Figure 1 presents examples of lipid NP carriersvedrfrom PEGylated liquid crystalline
nanostructures. Such nanocarriers offer unexplopgrtunities for protein and peptide drug
delivery in view of the suggested link between-ssl$embled mesophase structure and drug
releasePhan et al., 20)1

Figurel

High resolution electron microscopy and small-anileay scattering (SAXS) studies
(Angelov et al., 2007, 2009, 2011a, 2011b; 20124280 Cortesi et al., 2007; Woerle et al.,
2007; Yaghmur et al., 2007, 200Bave permitted to visualize the single aqueou® o
cubosome nanocarriers, to control the nanochaiwes & the inner channel networks as well
as to detect the earliest stage of the tetrahedradchannel formation in cubic lipid particles.
It has been suggested that medium- and large-sateip molecules, which are bigger than
the agueous channel diameters, will locate at tkexfaces of the nanocubosome subunits,
formed inside the cubosome carriers upon protenmoeacapsulationAhgelova et al., 2005c,
2017). The work of Negrini and Mezzenga (2012) haslteddhat guest species smaller than
the mesophase periodicity will be confined withive taqueous channels and may affect the
inner mesophase periodicity, whereas larger spe&dglebe expelled and may partition at the
grain boundaries of the mesophase domains in thiersa

The purpose of the present work is to investigagestructural features related to entrapment
of different proteins in PEGylated nanocarrierarfed by the nonlamellar lipids monoolein
and eicosapentaenoic acid (a representabrdepolyunsaturated fatty acid). The antioxidant
a-tocopherol was included in the lipid mixture irder to induce the formation of an inverted
hexagonal (i) mesophase structur8dqyd et al., 2006 Brain-derived neurotrophic factor
(BDNF), a-chymotrypsinogen A, and histone H3 are consideasdexamples. All three
proteins are basic proteins, i.e. are positivelgrghd at pH < pl (see Table 1). BDNF and
chymotrypsinogen A are soluble in agqueous mediurd da not aggregate under the
investigated solution conditions. At variance, tie, which is characterized essentiallyolsy
helical content Arents et al., 1991 is less soluble and was studied as a model atejpr
aggregation at elevated concentrations. Tdrgocopherol component (promoting the
hexosome carrier formation) was not studied indage of histone H3 encapsulation taking
into account the geometrical constraints for emramt of large protein aggregates inside the
fine channels of the hexosome particles. The negultanoscale organizations were revealed
by cryogenic transmission electron microscopy (€FM) and X-ray structural analysis
(SAXS) in order to evaluate the ability of the istigated PEGylated lipid NPs for protein
upload.
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2. Materialsand Methods

2.1. Materials and samples preparation

Monoolein (MO) (1-monooleoyl-rac-glycerol, C18:1cMW 356.54, powder, purity
>99.5%), cis-5,8,11,14,17 eicosapentaenoic acid (EPA) (20:5, N802.45, oil phase,
analytical standard, purity98.5%),a-tocopherol (Vit E) (MW 430.71, Ph Eur grade),obd-
tocopherol polyethyleneglycol 1000 succinateety (MW 1531, waxy solid, CMTJ10.02%
by weight) were purchased from Sigma-Aldrich-Fluk&aint-Quentin, France). The
PEGylated lipid 1,2-dioley$n-glycero-3-phosphoethanolamine-N-[methoxy (poly&thg
glycol)-2000] (DOPE-PE&o) (MW 2801.51, powder, purity >99.5%, CMT 2x10° M)
was a product of Avanti Polar Lipids (COGER, Frgndearrier-free human recombinant
brain-derived neurotrophic factor (hrBDNF, MW 13k®a) was purchased from R&D
Systems. The proteing-chymotrypsinogen A (type Il from bovine pancrepsrified by
6xcrystallization, salt-free, lyophilized powder\Vi25.656 kDa) and histone H3 (type 1lI-S
lysine-rich fraction, from calf thymusMW 15.3 kDa) were products of Sigma (Saint-
Quentin, France). Phosphate buffer solution (%20, pH 7) was prepared using the
inorganic salts NaPO, and NaHPO, (p.a. grade, Fluka, Saint-Quentin) and MilliQ waié
resistivity 18.2 M2.cm (Millipore Co., Molsheim).

Liquid crystalline lipid NP formulations were prapd by the method of hydration of a
dry lipid film followed by physical agitation (An¢mv et al., 2011b). The organic solvent
(chloroform) was evaporated under flow of nitroggs and the resulting lipid mixtures were
lyophilized overnight. Towards mesophase formatidipjd assemblies were initially
incubated with aqueous buffer during 30 min followy repeated vortexing. Subsequently,
15 min agitation was performed in ice medium usingonication bath with a moderate
frequency (40 kHz, Branson 2510) (Branson UltrasgniGeneve). The PEGylated
amphiphiles (DOPE-PEfgo and Mpog served as solubilizing and dispersing agentdier
MO/EPA/VItE liquid crystalline phases. The resuitibNP formulations were incubated with
proteins for several hours, homogenized, and stubdie means of SAXS, cryo-TEM, and
QELS.

2.2. Small-angle X-ray scattering (SAXS)

SAXS experiments were performed at the P12 BioSAE&mline of the European Molecular
Biology Laboratory (EMBL) at the storage ring PETRA of the Deutsche Elektronen
Synchrotron (DESY, Hamburg, Germany) at 20 °C usirRjlatus 2M detectod 75 x 1679
pixels) (Dectris, Switzerland) and synchrotron aidin with a wavelengtih = 1 A. The
sample-to-detector distance was 3 m. Ghector was defined ag= (4r/L) sin6, where 2

Is the scattering angle. Therange was calibrated using the diffraction pateoh silver
behenate. The experimental data were normalizddnegipect to the incident beam intensity.
The background scattering of the solvent buffer walstracted. The solvent scattering was
measured before and after every lipid NP or preteintaining sample in order to control for
eventual sample-holder contamination. Eight consesdrames comprising measurements
for the solvent, the sample, and the solvent wegglisged. No measurable radiation damage
was detected by the comparison of eight succesisneframes with 5 s exposures. The final
scattering curve was obtained using the progranmiVRI by averaging the scattering data
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collected from the measured frames. An automatmopsa changer adjusted for sample
volume of 15:L and a filling cycle of 20 s was used.

2.3. Cryogenic transmission electron microscopy (Cryo-TEM)

For cryo-TEM studies, a sample droplet ofuR was put on a lacey carbon film covered
copper grid (Science Services, Munich, Germany)jclwhwvas hydrophilized by glow
discharge for 15 s. Most of the liquid was then aeed with blotting paper, leaving a thin
film stretched over the lace holes. The specimergewinstantly shock frozen by rapid
immersion into liquid ethane and cooled to appratety 90 K by liquid nitrogen in a
temperature-controlled freezing unit (Zeiss Crygbdeiss NTS GmbH, Oberkochen,
Germany). The temperature was monitored and kemitant in the chamber during all the
sample preparation steps. After the specimens wizen, the remaining ethane was
removed using blotting paper. The specimen wasrtegdeinto a cryo transfer holder
(CT3500, Gatan, Munich, Germany) and transferrea Zeiss EM922 Omega energy-filtered
TEM (EFTEM) instrument (Zeiss NTS GmbH, Oberkoch&grmany). Examinations were
carried out at temperatures around 90 K. The TENtument was operated at an acceleration
voltage of 200 kV. Zero-loss-filtered imageSEH = 0 eV) were taken under reduced dose
conditions (100-1000 e/mn All images were recorded digitally by a bottoneunted
charge-coupled device (CCD) camera system (Ultian S®00, Gatan, Munich, Germany)
and combined and processed with a digital imagimggssing system (Digital Micrograph
GMS 1.8, Gatan, Munich, Germany). All images wexkeh very close to focus or slightly
under the focus (some nanometers) due to the sbrindancing capabilities of the in-column
filter of the used Zeiss EM922 Omega. In EFTEMfmenderfocussed images can be totally
avoided.

2.4. Quasi-elastic light scattering (QELS)

Particle size distributions in the investigatedodised lipid samples were determined using a
Nanosizer apparatus (Nano-ZS90, MALVERN, Orsay)maed with a Helium-Neon laser of
633 nm wavelength. The samples were diluted to 1 hpl concentration prior to
measurement in 1 cm thick cells and analyzed ira@omatic mode using the following
experimental parameters: temperature®@5 scattering angle, 90°; refracting index, 1.33;
environment medium viscosity, 0.890 cP. The averhgdrodynamic diameterd,, was
calculated considering the mean translational sifia coefficient,D, of the particles in
accordance with the Stokes-Einstein law for splaéparticles in the absence of interactions:
dn = ksT/3n7D, wherekg is the Boltzmann constark,is temperature, anwlis the viscosity of
the aqueous medium. Three measurements with the sath were averaged for every
sample. The protein solutions were investigatecdhaisen concentrations (Table 1). The
results were analyzed using the MALVERN Zetasiodtvwgare (version 6.11).

3. Results and discussion
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Sterically stabilized lipid nanocarriers were pnegh by hydration of mixed lipid films
consisting of self-assembled MO/EPA/VItE or MO/ER#xtures and functionalized by the
PEGylated amphiphiles DOPE-Pkf or Vigoo Monoolein (MO) andu-tocopherol (VitE)
are neutral lipids of nonlamellar propensities, was eicosapentaenoic acid (EPA) i3
polyunsaturated anionic lipid. The role @ftocopherol (VitE) is to increase the interfacial
curvature of the cubic-phase forming lipid monowolas well as to induce the formation of
inverted hexagonal phase structures. The latter pnayide sustained release of entrapped
proteins from nanochanneled-type carriers. The stigated PEGylated amphiphiles form
PEGylated micelles in individual assemblies at eom@tions above their critical micellar
concentrations (CMC). The molar percentages ofetidsGylated components, included in
the studied liquid crystalline lipid structures, ieoptimized in a manner ensuring only a
partial shield of the charges of the lipid NPs, ebhfacilitate the protein entrapment through
electrostatic interactions. In the following, weepent the structural results obtained for lipid
NPs (MO/EPA/VItENooo or MO/EPA/DOPEPEGy,) interacting with the proteins BDNF,
a-chymotrypsinogen A, or histone H3. Taking into @uat the possible aggregation of
histone, the latter was not selected for studie¢b thie H, phase carriers. The associated form
of histone would have a minor chance for loadirtg the nanochannels of hexosome carriers
formed by the self-assembled MO/EPA/Vitgdy (71/17/8/4 mol.%) mixture.

3.1. Human recombinant brain-derived neurotrophic factor (BDNF)

Small-angle X-ray scattering (SAXS) patterns of RE&d lipid NPs studied for
nanoencapsulation of the neurotrophin BDNF are shawFigure 2a. The SAXS curve
presented in the inset characterizes the NPs steu(MO/EPA/VitE/Ngoo 71/17/8/4 mol.%)
formed before the addition of the therapeutic protd8DNF exerts its neuroprotective
bioactivity at concentrations in the nanogram rafdesrefore, the nanoencapsulation studies
should take into account that BDNF can cause adwdfscts in a concentrated state. For this
reason and because of its high cost, the interaciadecombinant human BDNF with lipid
NPs was studied at a chosen relatively low proteincentration of gig/ml. Under these
conditions, BDNF was completely soluble in the amieemedium (Table 1). The positively
charged protein was allowed to interact with theatarriers involving the anionic lipid EPA.

The analysis of the obtained SAXS patterns estaddishat both blank (MO/EPA/VItEAo)
and protein-loaded lipid NPs have inner mesophasetsres of an inverted hexagonal,jH
type (Fig. 2a). The formation of stable PEGylatesdsomes in the lipid formulations was
favoured by the hydrophobic component VitE, whicksentially increases the lipid
monolayer curvature and augments the nonlamellapgmsity of the mixture. In addition,
VItE provides an antioxidant functionality of therders, which is of interest for their
therapeutic applications. The included higher patiaoge of VitE (8 mol%) with regard to the
PEGylated component 130 (4 mol.%) contributes to compensate the decredséhe
monolayer curvature, due to the PEGylation, andntiuce a nonlamellar supramolecular
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organization of hexagonally-packed aqueous char(féds 1a). The resolved Bragg peaks,
spaced in the ratio M3: V4: V7, determine an inner Hattice periodicity of 6.53 nm. The
water channel diameteB\, was calculated using a literature method (Tuared Gruner,
1992). The protein hydrodynamic siak, was determined by quasi-elastic light scattering
(QELS) (see Table 1). The obtained results indidhet the aqueous channels in the
hexosome nanocarriers are sufficiently lar§gy & 3.42 nm) to accommodate the soluble
protein BDNF @, = 2.3 nm).

Figure 2

Both the SAXS (Fig. 2a) and the cryo-TEM (Fig. 2b%ults confirmed that BDNF does not
modify the structural periodicity of the lipid natwriers at the investigated protein
concentration. Figure 2b shows the characteristipphiology of the hexosome NPs. The inset
presents the Fast Fourier transform (FFT) derivethfthe cryo-TEM image. It reveals the
inverted hexagonal (H mesophase periodicity corresponding to an ordetegcture of
aqueous nanochannels available for BDNF loadinge THexosome particles in the
MO/EPA/NItE/V1000 (71/17/8/4 mol.%) formulation displayed mean hybmamic diameters
of (400 nm in QELS measurements. This is in agreematfit thhe electron microscopy
results. A coexisting fraction of small vesiclel € 38 nm) was also observed in the cryo-
TEM and QELS studies as a result of nonequilibrieffiects related to the dispersion of the
nanoparticulate system under energy input.

3.2. a-Chymotrypsinogen A

The NP carriers studied above (MO/EPA/VitEdys 71/17/8/4 mol.%) were allowed to
interact also with the positively charged enzymehymotrypsinogen A of concentration 4
mg/mL. The obtained results revealed that the prptesplaying surface activity under these
conditions, affected the curvature of the lipideasbly. The SAXS patterns (Fig. 3a) and the
cryo-TEM images (Fig. 3b) clearly demonstrate thia¢ performed nanoencapsulation
resulted in a structural change of thg-phase lipid nanocarriers (MO/EPA/VitE{do
71/17/8/4 mol.%) (Fig. 3a, inset) toward proteiaded NPs with new structural and
morphological features. The SAXS pattern of the tggmcontaining NPs (Fig. 3a)
corresponds to the form factor of the NP scatteratger than to Bragg diffraction peaks of
an inner periodic structure. The blue bars (whidrknthe positions of the Hohase peaks of
the blank NPs) show that the Bragg peaks are wvedisim the presence ofi-
chymotrypsinogen A as a result of the hexosomeraifstormation into another type of NPs.

Figure3

Indeed, the cryo-TEM image (Fig. 3b) shows douldsiaular structures in the protein-loaded
lipid NP formulation. The mean hydrodynamic diametethe a-chymotrypsinogenA-loaded
particles determined by QELSI,(= 458 nm) is slightly different from that of thdahk
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hexosome carrierd{ [J 400 nm). Coexisting bilamellar lipid NPd,(C0 80 nm) were also
observed (Fig. 3b, inset). They are likely obtaingdn the membrane fragmentation (from
larger to smaller particles), which is provoked ttme surface-active protein. The darker
interior of the bilamellar vesicles is due to tmeks variation (the transmission is reduced
because the electrons must pass through extraelslayNo evidence for protein aggregation
IS obtained at the studied concentration.

3.3. Histone

PEGylated lipid NPs (MO/EPA/DOPE-PE4g (69/28/3 mol.%) were incubated with histone
H3, which is a basic protein of prevailimghelical content. The employed lipid mixture did
not display a propensity for hexosome formationilsity to the recently reported NPs
involving DOPE-PEGyo (Angelov et al., 2012b). The mean particle sizeha blank NP
formulation (MO/EPA/DOPE-PESgo 69/28/3 mol.%), determined by QELS, wés= 142
nm and was attributed to coexisting small cubosoar@s vesicles (see the histogram in
Figure 4b). The solution scattering of histonerisspnted in Fig. 4a together with the derived
pair distance distribution functiga(r) (inset). The size of the histone octamer, estichatam
these SAXS results, is 4.5 nm. The QELS data (F&.red histogram) showed that the
histone units (4.5 nm) begin to associate into eggfes at the studied solution concentration.
The hydrodynamic particle diameter of the assodiapeotein wasd, = 255 nm at
concentration of 4 mg/ml (Fig. 4a, inset).

Figure4

Figure 5a (inset) shows the NP scattering of trenlbIMO/EPA/DOPE-PE&q (69/28/3
mol.%) carriers. The observed SAXS is typical formaxture of membrane-type lipid
nanocarriers. Attempts to load these small cubosand vesicles with histone (4 mg/ml) did
not permit significant entrapment of the proteiside the NPs, because of its associated state
in solution. The SAXS pattern of the particles ibated with protein is shown in Fig. 5a. The
performed QELS investigation also confirmed the raggtion of histone in lipid NP
formulations (Fig. 4b, right panel). The particlees distributions in a blank lipid NP
formulation and in a protein-containing lipid (MQ?B/DOPE-PEGyy, 69/28/3 mol.%)
formulation determined mean NP diametergiof 142 nm and 220 nm, respectively.

Figure5

The obtained cryo-TEM image (Figure 5b) shows aeable phase separation of the protein
from the lipid NPs (MO/EPA/DOPPEG, 69/28/3 mol.%). The difficulty to entrap histone,
associated in aggregates, into such small PEGylstedcarriers implies that larger lipid
particles or even bulk liquid crystalline phasesuldobe more appropriate for confinement
and encapsulation of this hydrophobichelical protein. At variance, BDNF and-
chymotrypsinogen A appeared to be homogeneouslyildieed in the investigated NP
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systems and can be entrapped both in hexosome esidular carriers of similar lipid
compositions.

4. Conclusion

Further to the recently reported protein-containRigGylated cubosomes (Angelov et al.,
2012a), the present study of nanostructured liguydtalline lipid NPs demonstrates that the
interaction of PEGylated hexosomes with cationiotggn molecules may lead to either
preservation or dramatic changes in the inner stracof the NPs. The obtained results
revealed that the entrapped protein, dependingsoooncentration and amphiphilicity, may
influence the curvature of the lipid assemblies amen transform the internal nanostructure
of channels into a different structural organizatidcfficient protein encapsulation was

achieved for recombinant BDNF anmdchymotrypsinogen A. Histone in its aggregatedestat
showed a tendency to phase separate from the Mpictarriers at the investigated protein
concentration. The outcome of this structural stadgfirms that SAXS, QELS and cryo-

TEM measurements are very powerful methods in @segd of protein drug delivery carriers

and should be recommended as tools of ultimatenpd@eutical relevance permitting to

control the protein nanoencapsulation process.
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Figure captions

Figure 1. Examples of nanoparticulate lipid carriers thatynba derived from PEGylated
liquid crystalline lipid phases: (a) hexosome, fiamellar vesicle, and (c) spongosome
particles.

Figure 2. Small-angle X-ray scattering (SAXS) patterns (ajl anyo-TEM image (b) of a

PEGylated nanoparticulate lipid system (MO/EPA/NNtkyoo 71/17/8/4 mol.%) interacting

with the neurotrophic protein BDNF (brain-deriveceunotrophic factor) of solution

concentration §ig/ml. The blue bars indicate the positions of thadg reflections (spaced in
the ratio 1:V3: v4: V7) of an inverted hexagonal (Hlattice structure, which is present in
both blank (inset) and BDNF-loaded NPs (a). Theetine (b) shows the Fast Fourier
transform (FFT) image analysis of the hexosomel li@nocarrier.

Figure 3. SAXS patterns (a) and cryo-TEM images (b) of a Platéd nanopatrticulate lipid
system (MO/EPA/VItENoe 71/17/8/4 mol.%) interacting with the proteim-
chymotrypsinogen A with solution concentration 4/mig The blue bars in (a) indicate the
positions of the Bragg reflections of the inverteskagonal (i) structure, which vanished
upon protein loading. The inset in (b) shows a sdc@presentative NP population in the
protein-containing sample.

Figure 4. (a) SAXS patterns (orange curve), a pair distatistibution functionp(r) (blue
curve, inset), and quasi-elastic light scatteri@gS) size distribution plot (inset) measured
with histone solution. The protein concentratiotisng/ml. (b) QELS determination of the
particle size distributions in blank lipid NP forfation (MO/EPA/DOPEPEGy,, 69/28/3
mol.%) (left) and of the lipid formulation with inbated histone H3 (4 mg/ml) (right). The
maxima of the histograms correspond to the moshddmit average hydrodynamic particle
diameters. The error bars are given in green.

Figure 5. SAXS patterns (a) and cryo-TEM image (b) of a P& nanoparticulate lipid
system (MO/EPA/DOPEREG,, 69/28/3 mol.%) interacting with the protein histoH3 with
solution concentration 4 mg/ml.
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Table 1

Mean particle hydrodynamic diameter, dj;, molecular weight (MW), isoelectric point (pl), and
state of protein dissolution/association at the studied concentration in a phosphate buffer

aqueous phase. The values of d, were determined by quasi-elastic light scattering

measurements.
Protein MW pl concentration di state
[kDa] [nm]

BDNF 13.6 10.5 8 nug/ml 23 dissolved
molecules

o-chymotrypsinogen A 25.6 9.2 4 mg/ml 4.8 dissolved
molecules

histone 15.3 10.8 4 mg/ml 255 aggregate of 4.5
nm octamers
(Fig.4a)
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