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a  b  s  t  r  a  c  t

This  study  investigated  optimizing  the  formulation  parameters  for  encapsulation  of  a model  muci-
nolytic  enzyme,  �-chymotrypsin  (�-CH),  within  a novel  polymer;  poly(ethylene  glycol)-co-poly(glycerol
adipate-co-�-pentadecalactone),  PEG-co-(PGA-co-PDL)  which  were  then  applied  to  the  formulation  of
DNase  I. �-CH or  DNase  I loaded  microparticles  were  prepared  via  spray  drying  from  double  emul-
sion  (w1/o/w2) utilizing  chloroform  (CHF)  as  the  organic  solvent,  l-leucine  as  a  dispersibility  enhancer
and  an  internal  aqueous  phase  (w1) containing  PEG4500  or Pluronic® F-68  (PLF68).  �-CH released  from
microparticles  was  investigated  for bioactivity  using  the  azocasein  assay  and  the  mucinolytic  activity  was
assessed  utilizing  the  degradation  of  mucin  suspension  assay.  The  chemical  structure  of  PEG-co-(PGA-co-
PDL)  was  characterized  by 1H NMR  and  FT-IR  with  both  analyses  confirming  PEG incorporated  into  the
polymer  backbone,  and any  unreacted  units  removed.  Optimum  formulation  �-CH-CHF/PLF68,  1% pro-
duced  the  highest  bioactivity,  enzyme  encapsulation  (20.08  ± 3.91%),  loading  (22.31  ± 4.34  �g/mg),  FPF
(fine  particle  fraction)  (37.63  ± 0.97%);  FPD  (fine  particle  dose)  (179.88  ±  9.43  �g),  MMAD  (mass  median
aerodynamic  diameter)  (2.95  ±  1.61  �m), and  the  mucinolytic  activity  was  equal  to  the  native  non-
encapsulated  enzyme  up to 5 h. DNase  I-CHF/PLF68,  1%  resulted  in  enzyme  encapsulation  (17.44  ± 3.11%),
loading  (19.31  ±  3.27  �g/mg)  and  activity  (81.9  ±  2.7%).  The  results  indicate  PEG-co-(PGA-co-PDL)  can  be
considered  as  a  potential  biodegradable  polymer  carrier  for dry powder  inhalation  of  macromolecules
for  treatment  of local  pulmonary  diseases.

© 2012 Published by Elsevier B.V.

1. Introduction24

Recent advances in inhalation therapy have provoked consid-25

erable interest in the development of novel formulations intended26

for pulmonary delivery of macromolecules (Tamber et al., 2005).27

This is primarily due to the lung having a favourable environment28

for delivery of macromolecules, including enzymes, compared to29

the low pH and high protease levels associated with the gastroin-30

testinal tract (Fu et al., 2002). Furthermore, inhalation therapy of31

macromolecules has focused on dry powder inhalers (DPIs) due32

to their many advantages compared to pressurized metered dose33

inhalers (pMDIs) (Seville et al., 2002). Current research towards34

formulating macromolecules for pulmonary delivery has centred35

∗ Corresponding author at: School of Pharmacy and Biomolecular Sciences, Liv-
erpool John Moores University, James Parson Building, Byrom Street, Liverpool, L3
3AF, UK. Tel.: +44 0 151 231 2265; fax: +44 0 151 231 2170.

E-mail address: I.Saleem@ljmu.ac.uk (I.Y. Saleem).

mainly upon biodegradable polymers as carrier based controlled 36

release formulations (Kumar Malik et al., 2007), to increase the 37

quantity of macromolecule reaching the site of action and pro- 38

long its residence time in situ, improve in vivo stability, and allow 39

co-localized deposition with other therapeutic agents or helper 40

excipients (i.e. absorption enhancers) (Cryan, 2005). 41

An alternative class of biodegradable polyester, poly(glycerol 42

adipate-co-�-pentadecalactone), PGA-co-PDL, have shown 43

promise as sustained release carriers for large and small molecular 44

weight compounds (Gaskell et al., 2008; Kallinteri et al., 2005), 45

and the degree of hydrophobicity can be altered by varying 46

the backbone chemistry or attaching chemical moieties to the 47

free hydroxyl groups (Kallinteri et al., 2005). Recently, we have 48

formulated PGA-co-PDL as a microparticle carrier for pulmonary 49

delivery (Tawfeek et al., 2011) with small aerodynamic diameters 50

(≤3.50 �m)  (MMAD, diameter at which 50% of the particles by 51

mass are larger and 50% are smaller than aerodynamic diameter 52

(dae ≤ 4.6 �m))  to direct particles to the lung periphery for treat- 53

ment of diseases. For example, in cystic fibrosis, the microparticle 54

0378-5173/$ – see front matter ©  2012 Published by Elsevier B.V.
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formulations delivered via DPIs should possess aerodynamic55

diameters be within 1–5 �m micron range (Westerman et al.,56

2007).57

Many enzymes are not stable in phosphate buffered saline58

(PBS) pH 7.4 at 37 ◦C, where chemical degradation (cleavage,59

oxidation, reduction etc.) and physical changes (conformational,60

aggregation and adsorption) on surfaces have been reported (Jiang61

et al., 2002). Moreover, enzyme aggregation may  lead to incom-62

plete release from microparticles (Jiang et al., 2002). For example,63

octreotide showed a slower non-complete release in acetate buffer64

with increasing ionic saline strength and PBS buffer (Bodmer65

et al., 1992), while another luteinizing hormone-releasing hor-66

mone (LHRH) analogue, orntide, showed nearly complete release in67

acetate buffer, but not in phosphate buffer (Kostanski et al., 2000).68

Furthermore, exposure of enzymes to organic solvents, sonication69

and mechanical shear forces during particle preparation results70

in the disruption of the three dimensional structure required to71

maintain their activity leading to complete inhibition of biological72

activity (Perez-Rodriguez et al., 2003).73

Different strategies have been adopted to minimize such prob-74

lems of protein and peptide inactivation, such as, increasing75

protein concentration during emulsification (Cleland and Jones,76

1996; Perez and Griebenow, 2001), selection of solvent used in77

microparticle preparation (Castellanos and Griebenow, 2003) and78

incorporating amphipathic excipients (i.e. rat serum albumin),79

which competes with therapeutic protein for the interface between80

organic and aqueous phase (Srinivasan et al., 2005). Moreover,81

surfactants such as Tween 20, 80 (Cleland and Jones, 1996) and82

Pluronic® F68 (Blanco and Alonso, 1998) represent another group83

of amphipathic excipients, which can be applied to these systems.84

Another approach to prevent interface induced protein denatur-85

ation and aggregation is the addition of polyol or sugar excipients86

in the aqueous phase during preparation (Cleland and Jones, 1996;87

Perez and Griebenow, 2001). Poly(ethylene glycol) (PEG) has been88

studied as an emulsifier to decrease aggregate formation of �-CH89

loaded poly (lactic-co-glycolic acid) (PLGA) microspheres prepared90

by a soild-in-oil-in-water (s/o/w) technique (Castellanos et al.,91

2005).92

The aim of the current investigation was to optimize the for-93

mulation and delivery of �-CH as a model enzyme being highly94

sensitive to unfolding and formulation conditions, via DPIs to95

the lungs using novel biodegradable carrier PEG-co-(PGA-co-PDL).96

PEG was incorporated into the polymer backbone to render the97

particles less susceptible to phagocytosis (Gref et al., 1994) and98

decrease polymer hydrophobicity making the particles more suit-99

able for lung delivery (Fu et al., 2002). In addition, PEG4500 and100

Pluronic® F68 (PLF68) were incorporated in the internal aque-101

ous phase (w1) of the double emulsion in an attempt to prevent102

emulsification-induced denaturation and aggregation of �-CH.103

Different formulations were prepared by spray drying directly104

from a double emulsion (w1/o/w2), with l-leucine incorporated105

to enhance the dispersibility of the prepared dry particles within106

the respirable size range (Tawfeek et al., 2011) and investigated107

for their encapsulation efficiency, enzyme loading, particle size,108

zeta-potential, in vitro release, bioactivity, morphology, aerosoliza-109

tion performance, toxicity and mucinolytic activity. The optimum110

formulation parameters were then used to encapsulate deoxyri-111

bonuclease  I (DNase I) within PEG-co-(PGA-co-PDL) microparticles.112

2. Materials and methods113

2.1. Materials114

Novozyme 435 (a lipase from Candida antarctica immo-115

bilized on a microporous acrylic resin) was purchased from116

Biocatalytics, USA. Glycerol, �-pentadecalactone (PDL), PEG (MWs 117

400, 1500 and 4500), �-CH (from bovine pancreas, type II), mucin 118

(from porcine stomach, type II), poly(vinyl alcohol) (PVA, MW 119

9-10K, 80%), l-leucine, azocasein, trichloroacetic acid (TCA), RPMI- 120

1640 medium with l-glutamine and sodium hydrogen carbonate 121

(NaHCO3), (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 122

bromide (MTT), ammonium persulphate (APS), TEMED, gelatin, iso- 123

butanol, bromophenol blue, trisma base, glycine, sodium dodecyl 124

sulfate (SDS), colloidal coomassie blue, tris hydrochloride, sodium 125

chloride, calcium chloride, methyl green, bovine serum albumin, 126

thimerosal, Tween 20, and deoxyribonucleic acid (DNA) from 127

salmon testes were all obtained from Sigma–Aldrich, UK. DNase 128

I was obtained from Roche. Chloroform (CHF), dichloromethane 129

(DCM), sodium hydroxide and N-[2-hydroxyethyl]piperazine-N′- 130

[2-ethanesulphonic acid] (HEPES) were purchased from BDH 131

laboratory supplies, UK. Tetrahydrofuran (THF), 75 cm2/tissue cul- 132

ture flask with vented cap (IWAKI brand), 24-well tissue culture 133

plates, 96-well flat bottom plates, antibiotic/antimycotic solu- 134

tion (100×) was purchased from Fisher Scientific, UK. Phosphate 135

buffered saline tablets (PBS), pH 7.4, were obtained from Oxoid, 136

UK. Divinyl adipate (DVA) was obtained from Fluorochem, UK and 137

PLF68 was  a gift from BASF Corp., USA. Foetal calf serum heat 138

inactivated was  purchased from Biosera, UK. Proto Gel, proto gel 139

resolving buffer, proto gel stacking buffer was purchased from 140

National Diagnostics, USA. Mini-protean tetra electrophoresis sys- 141

tem was purchased from BioRad Laboratories, UK. Human bronchial 142

epithelial (16HBE14o-) cells were produced by Dr Dieter Gruenert 143

from the California Pacific Medical Center, University of California, 144

San Francisco, USA. 145

2.2. Polymer synthesis 146

PEG-co-(PGA-co-PDL) was  synthesized by a combination 147

of enzyme catalyzed polycondensation and ring opening co- 148

polymerization reactions for producing PGA-co-PDL using methods 149

modified from that as described by Thompson et al. (2006) and 150

He et al. (2003).  Briefly, PEG (0.0005 mol, 1500 Da), and the 151

monomers, glycerol (0.05 mol), divinyl adipate (DVA) (0.05 mol), 152

and �-pentadecalactone (PDL) (0.05 mol), were added to the reac- 153

tion medium (THF) prior to addition of novozyme 435 (1 g) and 154

the reaction allowed to proceed for 24 h. Upon completion, 300 ml  155

of DCM was  added and the enzyme was removed by Buchner fil- 156

tration. The solvent was  removed by rotary evaporation and the 157

molten polymer re-dissolved in the minimum amount of DCM. 158

Methanol (100 ml)  was added and the mixture agitated to precip- 159

itate the polymer leaving the unreacted components in solution. 160

The solid polymer was obtained by filtration and air dried before 161

storing over molecular sieves. The synthesized co-polymer was 162

characterized by gel permeation chromatography, GPC (Viscotek 163

TDA Model 300 using OmniSEC3 operating software), calibrated 164

with polystyrene standards (polystyrene standards kit, Supelco, 165

USA). FT-IR spectra were obtained using a Perkin Elmer Spectrum 166

BX spectrometer fitted with a PIKE technologies miracle sampling 167

accessory and using Spectrum v5.0.1 for data processing. 1H NMR  168

spectroscopy was performed using a Bruker AVANCE 300, inverse 169

probe with B-ACS 60 and autosampler with gradient chemming 170

(Thompson et al., 2006). 171

2.3. Effect of release media on the bioactivity of ˛-CH 172

Native enzyme (�-CH) (10 mg)  was added to different freshly 173

prepared release media (PBS pH 7.4, distilled water pH 7.5, aqueous 174

1% w/v PLF68 and aqueous 1% w/v  PEG 400, pH 7.15) and incubated 175

for 24 h at 37 ± 0.5 ◦C in an orbital shaker (IKA KS 130) at 250 rpm. 176
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The concentration and the bioactive fraction of the enzyme were177

determined by the following tests:-178

(A) The total enzyme content in the samples was determined179

using spectrophotometry at 282 nm (UV–vis spectrophotome-180

ter Lambda 40, Perkin Elmer).181

(B) Enzyme bioactivity (expressed as bioactive fraction) was182

determined by measuring the proteolytic activity of �-CH183

using a chromogenic based technique, the azocasein assay, as184

described by Gaskell et al. (2008) and Jesse and Rudolph (1947).185

The bioactive fraction was calculated as the ratio of enzyme186

concentration recorded from the azocasein test to the enzyme187

concentration obtained from UV spectrophotometeric analysis188

at 0 h (the bioactivity of enzyme just after preparation) and 24 h189

(the bioactivity of enzyme after release from microparticles).190

(C) SDS-PAGE zymography was employed to identify the proteo-191

lytic activity of �-CH separated in polyacrylamide gel using192

gelatin as the substrate under non reducing conditions (Kleiner193

and Stetlerstevenson, 1994). SDS-PAGE zymography gels were194

prepared as previously reported (Kleiner and Stetlerstevenson,195

1994). Samples were prepared by mixing 30 �l of either non-196

encapsulated native enzyme (control) or enzyme released from197

microparticles before and after 24 h incubation in aqueous 1%198

w/v PLF68 with 30 �l sample buffer (10 ml  glycerol, 1 g SDS,199

4 ml  Tris–HCl 1 M pH 6.8, 0.1% w/v bromophenol blue, 50 ml200

deionised water). Samples were loaded onto the gels placed201

within mini-protean tetra electrophoresis system and elec-202

trophoresis was conducted by applying a constant current of203

26 mA  per gel for approximately 60 min, followed by incuba-204

tion at room temperature (25 ◦C) in 50 mM Tris–HCl buffer,205

pH 7.4 (121.14 g Tris base, 69.1 ml  conc. HCl and 824 ml  dis-206

tilled water) with 2.5% Triton X-100, to remove SDS, followed207

by washing with distilled water. The gels were then incu-208

bated at 37 ◦C overnight in enzyme buffer (30 mM Tris–HCl pH209

7.4, 200 mM NaCl, 10 mM CaCl2·2H2O) followed by colloidal210

coomassie blue staining for 90 min  and then de-staining in dis-211

tilled water for 2 h. Evidence of �-CH activity was demonstrated212

by the absence of staining in areas where the gelatin substrate213

had been degraded.214

2.4. Microparticle preparation215

Microparticles were prepared by spray drying directly from a216

double emulsion (w1/o/w2) as reported by Tawfeek et al. (2011)217

with modifications. 50 mg  �-CH was dissolved in 1.5 ml  distilled218

water (w1) containing different concentrations (% w/v) of PLF68219

(1 and 3.4) or PEG4500 (1, 3.4 and 6.7). The enzyme solutions220

were homogenized (IKA yellowline DI 25 basic at 8000 rpm for221

1 min) in 15 ml  DCM or CHF containing 450 mg  polymer to form222

the first w1/o emulsion. This was then added to a second aque-223

ous phase (w2) (150 ml  distilled water containing 1% w/v  PVA as224

an emulsifier and l-leucine (1.5% w/w of polymer weight) as a dis-225

persing agent), under moderate stirring conditions (silverson L5RT226

mixer, 2000 rpm at room temperature, 25 ◦C) to form the w1/o/w2227

double emulsion. The formulations will be represented within228

the text as: DCM alone, CHF alone, [CHF/PLF68, 1%], [CHF/PLF68,229

3.4%], [CHF/PEG4500, 1%], [CHF/PEG4500, 3.4%], [CHF/PEG4500,230

6.7%]. Microparticles incorporating DNase I were prepared using231

CHF/PLF68, 1%.232

2.5. Microparticle characterization233

2.5.1. Yield, encapsulation efficiency and enzyme loading234

Spray dried PEG-co-(PGA-co-PDL) microparticles yields were235

quantified as the percentage mass obtained compared with the236

anticipated total powder yields. All analyses in the manuscript were237

conducted in triplicate unless otherwise specified. The enzyme 238

loading (EL) and percentage encapsulation efficiency (EE) were cal- 239

culated using Eqs. (1) and (2):  240

EL = weight of �-CH in microparticles
microparticles sample weight

(1) 241

EL (%) = actual weight of �-CH in sample
theoretical weight of �-CH

× 100 (2) 242

Briefly, 10 mg  of microparticles were weighed and solubilized in 243

a mixture of DCM/water (2:1) to dissolve the polymer and extract 244

the enzyme. The two  phases were separated by centrifugation 245

(5 min  at 16,200 × g, accuspin micro 17) and the aqueous layer ana- 246

lyzed for enzyme content spectrophotometrically at 282 nm. The 247

same procedure was applied for formulations containing DNase I. 248

2.5.2. Particle size, zeta potential, powder density and theoretical 249

aerodynamic diameter 250

Spray dried microparticles were sized using a Zetaplus, 251

Brookhaven Instruments, UK. 100 �l of microparticles suspension 252

was diluted to 4 ml  using double distilled water and the measure- 253

ments recorded at 25 ◦C. The zeta potential was determined using 254

the same instrument with 50 �l of the suspension added to 2 ml  of 255

distilled water and the measurement was performed using a gold- 256

plated zeta dip probe at 25 ◦C. The theoretical primary aerodynamic 257

diameter (dae) was  calculated using data acquired from geometric 258

particle size (d) and tapped density (p) according to Eq. (3) (Tawfeek 259

et al., 2011). 260

dae = d

√
p

p1
, p1 = 1 g cm−3 (3) 261

2.5.3. Degree of crystallinity and particle morphology 262

The degree of crystallinity for the polymer and spray dried 263

microparticle formulations was determined using differential scan- 264

ning calorimetry (DSC, Perkin Elmer Pyris 1) and the thermal data 265

was determined from the second heating cycle (Thompson et al., 266

2007). Briefly, 3–5 mg  of sample was placed into a hermetically 267

sealed and crimped pan. Samples were purged with nitrogen at 268

20 ml/min and heated at a rate of 20 ◦C/min. Formulations were 269

visualized by scanning electron microscopy (SEM) (FEI – Inspect 270

S Low VAC SEM). Particles were mounted on aluminium stubs 271

(pin stubs, 13 mm)  using an adhesive conductive carbon tab and 272

air dried. Samples were coated with gold (EmiTech K 550X Gold 273

Sputter Coater, 10–15 nm)  prior to examination at an accelerating 274

voltage of 25 mA for 3 min. 275

2.6. In vitro release testing 276

Briefly, 10 mg  of spray dried microparticles was added to a 277

1.5 ml  microtube containing 1 ml  pre-warmed (37 ± 0.5 ◦C) aque- 278

ous 1% w/v PLF68 release medium and incubated at 37 ◦C in an 279

orbital shaker (IKA KS 130) at 250 rpm over 24 h. The supernatant 280

was collected after centrifugation (5 min  at 16,200 × g, accuspin 281

micro 17) at designated time-points and stored at 2–4 ◦C until fur- 282

ther analysis. The bioactivity of released �-CH from the different 283

formulations was  determined at 0 h and after 24 h using the azo- 284

casein assay described above. The enzyme activity of DNase I was  285

determined at 0 h and 24 h using a colorimetric assay performed 286

at room temperature (Sinicropi et al., 1994). Release samples and Q2 287

unprocessed DNase I (100 �l) were added to 96-well plate followed 288

by 100 �l of DNA-methyl green substrate, and incubated at room 289

temperature for 90 min. The reaction was  quenched with 50 �l 290

of EDTA–hydrogen peroxide solution (50 mM)  and the absorption 291

measured at 620 nm.  This was immediately followed by incubation 292

for a further 90 min  before measuring the absorption at 620 nm.  The 293
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difference in absorption was used to calculate the activity of DNase294

I compared to unprocessed DNase I.295

2.7. In vitro aerosolisation investigations296

Aerodynamic particle size distribution was determined using297

next generation impactor (NGI) (Copley Scientific, Nottingham,298

UK). Microparticle samples (20 ± 0.4 mg)  were manually loaded299

into hydroxypropyl methylcellulose capsules (HPMC size 3) and300

placed in a HandiHaler®. A flow rate of 60 L/min for 4 s was  applied301

using a pump (Copley Scientific, Nottingham, UK) to deposit the302

particles on the impactor plates which were coated with 1% w/w303

glycerol/methanol solution. Following inhalation all parts of NGI304

were washed with DCM/water (2:1), and analyzed as above. The305

fine particle fraction (%FPF) (defined as the mass of drug deposited306

(dae < 4.6 �m),  was expressed as a percentage of the emitted dose.307

The mass median aerodynamic diameter (MMAD) was  calculated308

by plotting cumulative percentage of mass less than stated aerody-309

namic diameter (probability scale) versus aerodynamic diameter310

(log scale). The fine particle dose (FPD) was expressed as the mass311

of drug deposited in the NGI (dae < 4.6 �m).312

2.8. Cell viability study313

The effect of microparticle formulations produced using CHF314

alone, optimum formulations [CHF/PL68, 1%] and [CHF/PEG4500,315

1%] (0–5  mg/ml) (n = 6) on the viability of human bronchial epithe-316

lial (16HBE14o-) cells (passage no. 26) were evaluated over 24 h317

using the MTT  assay as previously reported (Tawfeek et al., 2011).318

DMSO (10%) was used as a positive control. The relative cell viability319

(% of control cells) was calculated using Eq. (5):320

Viability (%)  = A − S

CM − S
× 100 (5)321

where A is the absorbance of the test substance concentrations, S is322

the absorbance obtained for isopropanol and CM is the absorbance323

obtained for untreated cells incubated with medium (control).324

2.9. Mucinolytic activity325

The mucinolytic activity of �-CH was determined using mucin326

as a substrate and monitoring its degradation spectrophotomet-327

rically (400 nm). There are several factors that affect the rate of328

mucin degradation, such as substrate concentration, enzyme con-329

centration, temperature and pH, which were investigated to obtain330

the optimum conditions for the assay (Gaskell et al., 2008). Briefly,331

mucin solution (1.45 ml,  3 mg/ml, 20 mM sodium phosphate buffer,332

pH 7.4) was added into a semi-micro, 2 ml  cuvette and pre-333

incubated under controlled temperature conditions at 37 ± 0.5 ◦C334

for 20 min  to eliminate any temperature variations. 50 �l native335

enzyme and 50 �l of �-CH released from optimum microparticle336

formulation [CHF/PLF68, 1%] and blank microparticles, which had337

been incubated in aqueous 1% w/v PLF68 release medium for dif-338

ferent time intervals (0–24 h), were added to pre-incubated mucin339

solution and mixed by pipette (n = 6). The turbidity of mucin upon340

addition of enzyme was compared with PBS buffer (pH 7.4) as a neg-341

ative control. Samples were analyzed immediately at 400 nm using342

a UV–vis spectrophotometer (Lambda 40, Perkin Elmer) and after343

30 min  incubation at 37 ± 0.5 ◦C. The change in absorbance read-344

ing taken at the two time points was considered as the enzyme’s345

mucinolytic activity.346

2.10. Statistical analysis347

Statistical analysis comparing �-CH and DNase I was  performed348

using the paired Student’s t-test with two-tailed comparison.349

All subsequent formulations of [CHF/PEG] and [CHF/PLF68] were 350

compared with control, CHF alone, by a one-way analysis of vari- 351

ance (ANOVA) with Dunnett multiple comparison test. CHF alone, 352

[CHF/PEG] and [CHF/PLF68] formulations and release media were 353

then compared with each other by means of a one-way ANOVA with 354

the Tukey’s comparison test. Differences of p < 0.05 are considered 355

significantly different. 356

3. Results and discussion 357

3.1. Characterization of PEG-co-(PGA-co-PDL) 358

The chemical structure of PEG-co-(PGA-co-PDL) (Fig. 1A) was 359

characterized by 1H NMR  and FT-IR. Analysis of the polymer by 360

GPC confirmed a unimodal mass distribution corresponding to a 361

polymer molecular weight of 19.9 kDa with no peaks relating to 362

free PEG (1500 Da), indicating this was  removed by the methanol 363

during the washing stage of polymer synthesis. In conjunction with 364

this data, NMR  and FT-IR analysis (Fig. 1B and C) confirmed that the 365

monomeric units were polymerized with PEG incorporated into the 366

polymer backbone, and any unreacted units were removed. The 367

integrals of the peaks for the CH2 groups of PDL (1.3 ppm, 21H), 368

DVA (2.39 ppm, 4H), glycerol (4.18 ppm, 4H) and PEG (3.67 ppm, 369

1.5H), were used to calculate the actual PEG and monomer ratio 370

in the polymer using a 1H NMR  integration method (Kolhe et al., 371

2004). The actual ratio of PEG-co-(PGA-co-PDL), 0.01:1:1:0.75, was 372

calculated as the ratio of theoretical to actual protons. Additionally, 373

the percentage of PEG in the polymer was calculated as 3.89%, based 374

on the molecular weight ratio of PEG to polymer. 375

3.2. Stabilization of ˛-CH in aqueous release medium 376

Degradation of enzyme resulting in loss of bioactivity can occur 377

either during preparation or in conventional release media (PBS 378

buffer pH 7.4 and distilled water) at 37 ◦C. Hence, in vitro release 379

experiments under physiologically relevant conditions are difficult 380

due to autolysis and protein fragmentation (Perez-Rodriguez et al., 381

2003). PBS (pH 7.4) and distilled water (pH 7.5) resulted in a low 382

bioactive fraction, 0.21 ± 0.06 and 0.12 ± 0.04 respectively, whilst 383

the incorporation of additives, 1% w/v  PEG 400 (pH 7.15) and 1% w/v 384

PLF68 (pH 7.15), to distilled water retained higher enzyme activity, 385

with a bioactive fraction of 0.78 ± 0.09 and 1.02 ± 0.07 respectively 386

after 24 h. Our data indicated the type and/or components of the 387

medium used during in vitro release were influential, with aqueous 388

1% w/v PLF68 solution, being the optimum to preserve the native 389

enzyme bioactivity during incubation at 37 ◦C over 24 h, compared 390

to the other media (p < 0.05, ANOVA/Tukey’s). Consequently, aque- 391

ous 1% w/v  PLF68 solution was used in all subsequent studies to 392

ensure that any loss in bioactivity was  not associated with the com- 393

position of the release media. The enhanced bioactivity was most 394

likely due to the stabilizing effects of PLF68 resulting in preven- 395

tion of enzyme aggregation and adsorption to hydrophobic surfaces 396

(Blanco and Alonso, 1998). Similar observations were reported 397

(Wolf et al., 2003), indicating the preservation of l-asparaginase 398

activity (100 ± 1.7%) after incubation in aqueous 1% w/v PLF68 399

medium for 24 h. 400

3.3. Microparticle characterization 401

DSC analysis of PEG-co-(PGA-co-PDL) alone produced a crys- 402

talline endothermic peak at 60.66 ◦C with an onset of melting at 403

55.01 ◦C (Fig. 2, Trace A). In contrast, spray dried microparticles 404

CHF alone, [CHF/PLF68, 1%] and [CHF/PEG4500, 1%] exhibited a sig- 405

nificant reduction in the area under the melting endotherm peak, 406

lowered melting point (56.97 ◦C, 57.30 ◦C and 56.95 ◦C respectively) 407
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Fig. 1. (A) Chemical structure of PEG-co-(PGA-co-PDL) polymer, (B) 1H NMR  spectrum of PEG-co-(PGA-co-PDL), and (C) FT-IR spectrum of PEG-co- (PGA-co-PDL).

Fig. 2. DSC thermograms of (A) PEG-co-(PGA-co-PDL) polymer, (B) Spray dried CHF
alone microparticles, (C) spray dried CHF/PLF68, 1% microparticles and (D) spray
dried CHF/PEG4500, 1% microparticles.

and earlier onset of melting (50.84 ◦C, 50.52 ◦C and 49.54 ◦C respec-408

tively) (Fig. 2, Traces B–D) indicating a largely amorphous nature,409

which is characteristic of spray dried products due to the rapid410

drying of droplets (Corrigan, 1995). Consequently, spray drying411

parameters were set to preserve the outlet temperature in the range412

of 44–47 ◦C due to the low melting of PEG-co-(PGA-co-PDL).413

Spray drying the emulsion formulations with l-leucine pro-414

duced dry powders with yields between 66.6 ± 7.1 and 88.8 ± 5.4%415

(Table 1). Microparticles produced using DCM alone resulted416

in significantly lower enzyme loading, 13.35 ± 0.45 �g/mg par-417

ticles, compared to microparticles produced using CHF alone,418

22.85 ± 2.56 �g/mg (p < 0.05, t-test/two-tailed) (Table 1). The419

improvement was related to the low water miscibility of420

CHF (0.8 g/100 ml)  compared to DCM (1.32 g/100 ml). This cor-421

responded to reduced enzyme adsorption at the CHF/water422

interface compared to DCM/water interface (Castellanos et al.,423

2001), resulting in reduced leaching of �-CH to the exter-424

nal aqueous phase (w2) during secondary emulsification (o/w2425

stage). Furthermore, the reduced partitioning to the external426

aqueous phase (w2) significantly enhanced the encapsulation com-427

pared with microparticles produced using DCM alone (p < 0.05,428

t-test/two-tailed). Consequently, CHF was chosen as the organic 429

solvent for preparing the remaining formulations. However, only 430

addition of PEG4500 (1.0 or 3.4% w/v) to the internal phase 431

resulted in an increase in enzyme loading compared to CHF alone 432

(p < 0.05, ANOVA/Dunnett), whereas the addition of PEG4500 (6.7% 433

w/v) resulted in a significant reduction to 16.57 ± 0.78 �g/mg par- 434

ticles (p < 0.05, ANOVA/Dunnett). A similar trend was observed 435

with encapsulation efficiency, which ranged from 12.01 ± 0.40 to 436

25.32 ± 0.64% (Table 1). This has been associated with PLF68 and 437

PEG4500 decreasing the surface tension of �-CH solution, leading 438

to reduced protein aggregation and adsorption to hydropho- 439

bic surfaces (Bilati et al., 2005; Blanco and Alonso, 1998). The 440

spray dried yield of DNase I encapsulated microparticles was  441

similar to the formulations of �-CH with [CHF/PLF68, 1%]. How- 442

ever, the enzyme loading and encapsulation efficiency were 443

lower (p > 0.05, t-test/two-tailed) than the corresponding �-CH 444

formulations. 445

All microparticle formulations had a geometrical particle size 446

suitable for pulmonary delivery, with microparticles produced 447

using DCM alone (0.95 ± 0.12 �m)  generated significantly smaller 448

particles compared to using CHF alone (1.43 ± 0.27 �m)  (p < 0.05, 449

t-test/two-tailed) (Table 1). This was associated with CHF hav- 450

ing a higher boiling point compared to DCM, resulting in a 451

slower rate of removal (due to a higher solvency) and greater 452

packing density of the polymer chain during spray drying (Bain 453

et al., 1999). Furthermore, addition of PLF68 or PEG4500 to 454

the internal aqueous phase significantly increased the parti- 455

cle size, 1.95 ± 0.14 to 2.66 ± 0.76 �m,  compared to CHF alone 456

(1.43 ± 0.27 �m)  (p < 0.05, ANOVA/Dunnett) (Table 1). The theoret- 457

ical aerodynamic diameter (dae) for all formulations was  between 458

0.38 ± 0.07 and 1.08 ± 0.37 �m.  Moreover, microparticles formed 459

using DCM alone had an anionic surface charge with a zeta poten- 460

tial of −19.67 ± 1.20 mV,  which was  reduced to −14.99 ± 1.46 mV 461

upon changing to CHF, with no significant change upon incorpo- 462

ration of PLF68 or PEG4500 (Table 1) (p > 0.05, ANOVA/Dunnett). 463

The negative surface charge demonstrated the anionic nature of the 464

produced microparticles, which may  be associated with incomplete 465

removal of the PVA emulsifier incorporated in the external aqueous 466

phase (w2) of the double emulsion. 467
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Table  1
The physical characteristics of spray dried microparticles (data represent mean ± SD, n = 3).

Formulation Yield (%) EL (�g/mg particles) EE (%) Particle size (�m) Zeta potential (mV) dae (�m)

DCM alone 80.5 ± 5.4 13.35 ± 0.45* 12.01 ± 0.40* 0.95 ± 0.12* −19.67 ± 1.20 0.38 ± 0.07
CHF  alone 66.6 ± 7.1 22.85 ± 2.56 20.57 ± 2.30 1.43 ± 0.27# −14.99 ± 1.46 0.56 ± 0.18
CHF/PLF68, 1% 67.4 ± 4.9 22.31 ± 4.34 20.08 ± 3.91 2.05 ± 0.66 −16.60 ± 0.93 0.87 ± 0.30
CHF/PLF68, 3.4% 68.4 ± 5.5 22.23 ± 1.65 20.01 ± 1.49 2.44 ± 0.13 −17.58 ± 1.98 0.97 ± 0.21
CHF/PEG4500, 1% 83.2 ± 2.6 27.12 ± 3.01 24.41 ± 2.70 2.66 ± 0.76 −14.56 ± 0.50 1.08 ± 0.37
CHF/PEG4500, 3.4% 88.8 ± 5.4 28.13 ± 0.71 25.32 ± 0.64 1.95 ± 0.14 −17.76 ± 1.77 0.78 ± 0.10
CHF/PEG4500, 6.7% 72.8 ± 3.2 16.57 ± 0.78** 14.92 ± 0.70** 2.29 ± 0.35 −15.56 ± 0.93 0.92 ± 0.17
DNase  I CHF/PLF68, 1% 69.1 ± 3.5 19.31 ± 3.27 17.44 ± 3.11 2.21 ± 0.93 −15.50 ± 0.71 1.16 ± 0.23

* DCM alone vs CHF alone (p < 0.05, t-test/two-tailed).
** CHF/PEG4500, 6.7% vs CHF/PLF68, 3.4%, CHF/PEG4500, 1% and CHF/PEG4500, 3.4% (p < 0.05, ANOVA/Tukey’s).
# CHF alone vs CHF/PLF68, 1%, CHF/PLF68, 3.4%, CHF/PEG4500, 1%, CHF/PEG4500, 3.4% and CHF/PEG4500, 6.7% (p < 0.05, ANOVA/Dunnett).

Fig. 3. Scanning electron micrographs of (A) �-CH loaded CHF/PLF68, 1% microparticles and (B) CHF/PEG4500, 1%. The scale bar represents 5 �m.

The optimum formulations in terms of bioactivity (see Sec-468

tion 3.4,  bioactivity of released enzyme), [CHF/PLF68, 1%] and469

[CHF/PEG4500, 1%], were visualized using SEM (Fig. 3A and B,470

respectively). The spray dried microparticles appeared uniform471

spherical and regular in shape. The smooth surface possibly472

occurred due to rapid microparticle hardening and evaporation473

of CHF rather than solvent partitioning into water. Hence, there474

was limited possibility of water ingress during manufacturing or475

aggregation of particles which often occurs in emulsion solvent476

evaporation techniques. The optimum formulation incorporating477

PLF68, 1% was used to encapsulate DNase I, and had a similar geo-478

metrical particle size, zeta potential and aerodynamic diameter to479

�-CH microparticles formulated with [CHF/PLF68, 1%] (p > 0.05, t-480

test/two-tailed) (Table 1).481

3.4. In vitro release and bioactivity of released ˛-CH482

The in vitro release behaviour for all investigated formula-483

tions is represented in Fig. 4A and B up to 5 h as no further484

release of �-CH was noted beyond this time point. A significantly485

higher enzyme burst release was noted from microparticles pre-486

pared using DCM alone (95.33 ± 5.51%) compared to CHF alone487

(45.70 ± 8.25%) (p < 0.05, t-test/two-tailed). This was due to the low488

boiling point of DCM and faster rate of evaporation, resulting in the489

presence of higher amounts of enzyme on the surface of spray dried490

microparticles.491

Incorporating PLF68 and PEG4500 to the internal phase (w1) of492

double emulsion, [CHF/PLF68, 1%] (41.85 ± 7.34%) and [CHF/PLF68,493

3.4%] (58.12 ± 13.29%), [CHF/PEG4500, 1%] (43.06 ± 6.87%),494

[CHF/PEG4500, 3.4%] (40.15 ± 6.56%), did not significantly affect495

the burst release of �-CH compared to microparticles produced496

using CHF alone (p > 0.05, ANOVA/Tukey’s). However, a signifi-497

cantly higher burst release was observed with [CHF/PEG4500, 6.7%]498

and [CHF/PLF68, 3.4%] compared to the other formulations (Fig. 4A 499

and B) (p < 0.05, ANOVA/Tukey’s). This was  due to the solubilizing 500

effect of PEG4500 and PLF68 on the polymer matrix, influencing its 501

plasticity and porosity (Jiang et al., 2002), resulting in more rapid 502

entry of the release medium into the microparticles, eventually 503

accelerating the release of the enzyme (Castellanos et al., 2005; 504

Blanco and Alonso, 1998). It has been reported that complex 505

formations between PLF68 and polyester polymers in organic 506

solution may  be responsible for changes in physicochemical prop- 507

erties of microparticles, such as encapsulation efficiency, particle 508

size and release (Blanco and Alonso, 1998). Hence, the release 509

pattern of �-CH from microparticles can be tailored by optimizing 510

the additive concentration and selection of organic solvent. The 511

release study indicated that both formulations [CHF/PLF68, 1%] 512

and [CHF/PEG4500, 1%] were considered optimum, with reduced 513

burst release. The formulation of DNase I with [CHF/PLF68, 1%] had 514

a similar release profile to that composed of �-CH [CHF/PLF68, 1%], 515

with no significant difference in the burst release (25.21 ± 13.29%) 516

(p > 0.05, t-test/two-tailed) (Fig. 4C). 517

Table 2 represents the bioactive fraction of �-CH at 0 h and 518

after 24 h release in 1% w/v PLF68 medium. The shear stresses 519

involved in the preparation of microparticles during primary 520

emulsification (w1/o stage) and contact with DCM have been 521

recognized as the major cause of �-CH aggregation and loss in 522

activity (Castellanos et al., 2005). The results clearly indicated that 523

microparticles prepared using CHF alone significantly improved 524

the bioactive fraction compared to particles produced using DCM 525

alone from 0.29 to 0.46 after 24 h release (p < 0.05, t-test/two- 526

tailed). The improvement in bioactivity was again related to the 527

low water miscibility (see Section 3.3, microparticle characteriza- 528

tion); however, the low bioactive fractions for both formulations 529

indicated a high percentage of enzyme degradation during 530

preparation. 531
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Fig. 4. In vitro release of �-CH from spray dried microparticles in aqueous 1% w/v  PLF68 medium, (A) microparticles prepared using DCM alone, CHF alone and different
concentrations of PLF68 in the internal phase (w1) of double emulsion, (B) microparticles prepared using CHF  alone and different concentrations PEG4500 in the internal
phase (w1) of double emulsion and (C) in vitro release of �-CH and DNase I from microparticles prepared using CHF/PLF68, 1% in the internal phase (w1) of double emulsion
(data  represent mean ± SD, n = 3).

In this study the incorporation of PLF68 and PEG4500 in the532

internal aqueous phase (w1) not only improved the bioactivity533

(Perez and Griebenow, 2001), but was also shown to be concen-534

tration dependent, with low concentrations of PLF68 (1% w/v)535

(1.08 ± 0.07 at 0 h and 0.9 ± 0.02 at 24 h) and PEG4500 (1% w/v)536

(0.84 ± 0.08 at 0 h and 0.83 ± 0.02 at 24 h) enhancing the bioactiv-537

ity compared to the other formulations (p < 0.05, ANOVA/Tukey’s)538

(Table 2). This occurred due to the properties of PLF68 and PEG4500539

decreasing the surface tension of �-CH solution, leading to reduced540

protein aggregation and adsorption to hydrophobic surfaces (Bilati541

et al., 2005; Blanco and Alonso, 1998). In addition, PEG4500 has542

the potential to prevent the dehydration-induced protein structural543

perturbations during the emulsification process (Prestrelski et al.,544

1993). However, the reduced �-CH bioactivity with increased PLF68545

(3.4% w/v) and PEG4500 (3.4 and 6.7% w/v) concentrations have546

been related to interactions with the enzyme resulting in its desta-547

bilization (Katakam et al., 1995). Furthermore, PLF68 (6.7% w/v) was548

not used due to separation of the w1/o emulsion and visual aggrega-549

tion of the enzyme. Due to [CHF/PLF68, 1%] and [CHF/PEG4500, 1%]550

maintaining the bioactive fraction of �-CH more efficiently than the551

other formulations, they were carried forward for aerosolization552

performance and cell toxicity studies.553

3.5. In vitro aerosolisation performance554

The use of l-leucine as a dispersibility enhancer has been555

investigated in our research group (Tawfeek et al., 2011) and by556

others (Chew et al., 2005; Najafabadi et al., 2004) to enhance557

Table 2
The bioactive fraction of �-CH released from different formulations at 0 h and after
24 h release in aqueous 1% w/v Pluronic® F68 medium, determined using the azo-
casein assay (data represent mean ± SD, n = 3).

Formulation Bioactive fraction at 0 h Bioactive fraction
after 24 h

DCM alone 0.29 ± 0.07 0.29 ± 0.06
CHF alone 0.46 ± 0.12* 0.46 ± 0.03*

CHF/PLF68, 1% 1.08 ± 0.07** 0.90 ± 0.02**

CHF/PLF68, 3.4% 0.63 ± 0.03 0.64 ± 0.05
CHF/PEG4500, 1% 0.84 ± 0.08** 0.83 ± 0.02**

CHF/PEG4500, 3.4% 0.75 ± 0.10 0.75 ± 0.03
CHF/PEG4500, 6.7% 0.63 ± 0.09 0.63 ± 0.07

* CHF alone vs DCM alone (p < 0.05, t-test/two-tailed).
** CHF/PLF68, 1% and CHF/PEG4500, 1% vs CHF alone (p < 0.05, ANOVA/Dunnett),

CHF/PLF68, 1% and CHF/PEG4500, 1% vs CHF/PLF68, 3.4%, CHF/PEG4500, 3.4%,
CHF/PEG4500, 6.7% (p < 0.05, ANOVA/Tukey’s).

the aerosolization performance. The deposition of �-CH from 558

microparticles, [CHF/PLF68, 1%] and [CHF/PEG4500, 1%], in the 559

capsule, inhaler and mouthpiece is represented in Fig. 5A, 560

with no significant difference after aerosolization (p > 0.05, t- 561

test/two-tailed). However, [CHF/PLF68, 1%)] microparticles had a 562

significantly lower throat deposition compared to [CHF/PEG4500, 563

1%] (p < 0.05, t-test/two-tailed) (Fig. 5A). Both optimized micropar- 564

ticle formulations, [CHF/PLF68, 1%] and [CHF/PEG4500, 1%], 565

illustrated high deposition on stages 2–4 (cut-off diameter 566

4.6–1.6 �m)  of the NGI, indicating these formulations would be 567

expected to deliver the majority of the emitted dose to the res- 568

pirable regions of the lung periphery, which is the target site for 569

CF patients (Westerman et al., 2007) (Fig. 5B) (p > 0.05, t-test/two- 570

tailed). 571

Table 3 represents the FPF (%), FPD (�g) and MMAD (�m)  572

of �-CH loaded [CHF/PLF68, 1%] and [CHF/PEG4500, 1%] spray 573

dried microparticles, with significant difference noted only in the 574

FPF (37.63 ± 0.97% and 33.69 ± 0.90%, respectively) (p < 0.05, t- 575

test/two-tailed). The theoretical aerodynamic diameters (Table 1) 576

calculated from tapped density indicate the suitability of PEG-co- 577

(PGA-co-PDL) microparticles for targeting the deep lungs, generally 578

≤1 �m (Patton and Byron, 2007). However, the MMAD of the opti- 579

mum  formulations, [CHF/PLF68, 1%] and [CHF/PEG4500, 1%],  was 580

much larger at 2.95 and 2.75 �m respectively, indicating deposition 581

in the lung periphery as noted above. This probably occurred due 582

to formation of particle aggregates during aerosolization, which 583

under the aerosolization parameters studied (flow rate 60 L/s, using 584

the Handihaler) could not overcome van der Waals forces between 585

particles. 586

3.6. Cell viability study, proteolytic and mucinolytic activity 587

Spray dried microparticles (0–5 mg/ml) CHF alone (96.99 ± 8.70 588

to 80.01 ± 4.01% cell viability), [CHF/PLF68, 1%] (94.56 ± 6.20 to 589

86.57 ± 4.39% cell viability) and [CHF/PEG4500, 1%] (96.65 ± 3.43 to 590

88.16 ± 3.55% cell viability) appeared to be well tolerated by normal 591

Table 3
The aerosolization characteristics of spray dried �-CH encapsulated microparticles
(data represent mean ± SD, n = 3).

Formulation FPF (%) FPD (�g) MMAD  (�m)

CHF/PLF68, 1% 37.63 ± 0.97* 179.88 ± 9.43 2.95 ± 1.61
CHF/PEG4500, 1% 33.69 ± 0.90 175.05 ± 3.57 2.75 ± 0.23

* CHF/PLF68, 1% vs CHF/PEG4500, 1% (p < 0.05, t-test/two-tailed).
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Fig. 5. Aerosol deposition of �-CH from CHF/PLF68, 1% and CHF/PEG4500, 1%, (A) comparing the deposition of �-CH in capsule, device, mouthpiece and throat, (B) the
deposition of �-CH on different stages of NGI (data represents mean ± SD, n = 3). *CHF/PLF68, 1% vs CHF/PEG4500, 1% (p < 0.05, t-test/two-tailed).

lung bronchial epithelial cells (16HBE14o-) in vitro, even at high592

concentrations (5 mg/ml) following 24 h exposure, 80.01 ± 4.01,593

86.57 ± 4.39 and 88.16 ± 3.55% cell viability were obtained respec-594

tively. Consequently the tolerance of normal bronchial epithelial595

cells to high concentrations of microparticles provides an indi-596

cation to the feasibility of using PEG-co-(PGA-co-PDL) polymers597

as novel safe carriers for pulmonary delivery of �-CH and other598

macromolecules.599

As there was no significant difference in cell toxicity and aerosol600

performance between [CHF/PLF68, 1%] and [CHF/PEG4500, 1%]601

microparticles, [CHF/PLF68, 1%] was chosen as the optimum for-602

mulation due to higher bioactive fraction, and released enzyme603

was subjected to further analysis at 0 h and after 24 h in 1%604

w/v PLF68 release medium using SDS-page gelatin-zymography605

(Fig. 6). It appeared that the bands obtained for �-CH released from606

[CHF/PLF68, 1%] microparticles were similar to the bands of the607

native enzyme at 0 h and after 24 h incubation, indicating incorpo-608

ration of PLF68 (1% w/v), [CHF/PLF68, 1%], in the internal aqueous609

phase (w1) of the double emulsion retained the proteolytic activ-610

ity of �-CH after preparation, processing and release (Fig. 6). In611

addition, comparable mucinolytic activity was observed for �-CH612

released from [CHF/PLF68, 1%] microparticles and an equivalent613

concentration of native non-encapsulated enzyme incubated in614

aqueous 1% w/v PLF68 medium up to 5 h (p > 0.05, t-test/two-615

tailed), which was  lower than the native non-encapsulated enzyme616

after 24 h (p > 0.05, t-test/two-tailed) (Fig. 7). Gaskell et al. have617

previously reported using mucin as a substrate for enzymes having618

mucinolytic activity, as a reproducible, reliable spectrophotometric619

assay (Gaskell et al., 2010). In this method light is transmitted and620

not absorbed as in standard photometric assays due to the tur-621

bidity of the mucin suspension. The results of this assay coincide622

Fig. 6. SDS page-zymography of �-CH released from (A, B) CHF/PLF68, 1% at 0 h and
after (D, E) 24 h compared to equal amounts of native, non-encapsulated enzyme,
at  (C) 0 h and after (F) 24 h incubation in aqueous 1% w/v  PLF68 medium at 37 ◦C.

Fig. 7. The mucinolytic activity of native �-CH enzyme and encapsulated �-CH
within optimum microparticle formulation CHF/PLF68, 1% obtained from the muci-
nolytic degradation spectroscopic assay of mucin (data represent mean ± SD, n = 6).

with the release data obtained from [CHF/PLF68, 1%] microparticles 623

with the burst release at time 0 h responsible for the initial higher 624

mucinolytic activity followed by a gradual reduction over 24 h as 625

the release concentration falls. Activity of DNase I was  analyzed by 626

monitoring DNA-methyl green degradation following release stud- 627

ies at 0 h and 24 h. The activity was  found to be 90.1 ± 4.5% and 628

81.9 ± 2.7% respectively, compared to unprocessed DNase I. 629

4. Conclusion 630

The findings from our investigations indicate that PEG-co-(PGA- 631

co-PDL) can be used successfully to encapsulate �-CH, and possibly 632

other macromolecules, in biocompatible microparticles utilizing 633

a double emulsion/spray drying technique with a good yield, 634

encapsulation efficiency and aerosolization performance. More- 635

over, incorporation of PLF68 (1% w/v) in the internal aqueous phase 636

(w1) of the double emulsion prior to emulsification/spray drying 637

can maintain the bioactivity of �-CH and protect it from the harsh 638

preparation conditions. The burst phase can be reduced to below 639

40% by incorporation of PLF68 or PEG4500 in the internal aqueous 640

phase, and this is followed by gradual release over 5 h in vitro. 641
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