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Abstract

Amathematical model to describe the growth of an arbitrarily large number of nanocrystals from
solution is presented. First, the model for a single particle is developed. By non-dimensionalising
the system we are able to determine the dominant terms and reduce it to the standard pseudo-steady
approximation. The range of applicability and further reductions are discussed. An approximate
analytical solution is also presented. The one particle model is then generalised to N well dispersed
particles. By setting N = 2 we are able to investigate in detail the process of Ostwald ripening.
The various models, the N particle, single particle and the analytical solution are compared against
experimental data, all showing excellent agreement. By allowing N to increase we show that the
single particle model may be considered as representing the average radius of a system with a large
number of particles. Following a similar argument the N = 2 model could describe an initially
bimodal distribution. The mathematical solution clearly shows the effect of problem parameters on
the growth process and, significantly, that there is a single controlling group. The model provides
a simple way to understand nanocrystal growth and hence to guide and optimise the process.
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1 Introduction

Nanoparticles (NPs) are small units of matter with dimensions in the range 1-100 nm. They exhibit
many advantageous, size-dependent properties such as magnetic, electrical, chemical and optical,
which are not observed at the microscale or larger [17, 9, 4, 30]. Consequently the ability to produce
monodisperse particles that lie within a controlled size distribution is critical.

There exist a number of NP synthesis methods, including gas phase and solution based synthesis
techniques. Although the first method can produce large quantities of nanoparticles, it produces
undesired agglomeration and nonuniformity in particle size and shape. Precipitation of NPs from
solution avoids these problems and is one of the most widely used synthesis methods [16]. The typical
strategy is to cause a short nucleation burst in order to create a large number of nuclei in a short
space of time, and the seeds generated are used for the latter particle growth stage. Thus the temporal
separation of nucleation and growth occurs, as proposed by La Mer and Dinegar [11, 12], is applied.
The resulting system consists of varying sized particles. Small NPs are more unstable than larger ones
and tend to grow or dissolve faster. Thus at relatively high monomer concentrations size focussing
occurs (leading to monodispersity). When the monomer concentration is depleted by the growth some
smaller NPs shrink and eventually disappear while larger particles continue to grow, thus leading to
a broadening of the size distribution (Ostwald ripening).
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The particle size distribution (PSD) can be refocused by changing the reaction kinetics. For exam-
ple, Peng et al. [24] observed size focusing during Cadmium Selenide growth following the injection of
additional solute. Bastús et al. [2, 3] were also able to induce size focusing of gold and silver nanopar-
ticles by the addition of extra solute and adjusting the temperature and pH. This type of technique for
size focussing is still rather ad hoc in that the precise relationships between particle growth, system
conditions and the final PSD are not fully understood [26]. Hence, in practice, the optimal reaction
conditions are usually ascertained empirically or intuitively.

In the 1960’s Lifshitz and Slyozov [13] and, independently, Wagner [35] were amongst the first to
provide theoretical descriptions of Ostwald ripening. Their classical theory, hereafter referred to as
LSW theory, consisted of a system of three coupled equations: a growth equation for a single particle,
a continuity equation for the PSD and a mass conservation expression for the concentration. They
solved the model to obtain pseudo-steady-state asymptotic solutions for the average particle radius
and PSD. Lifshitz and Slyozov [13] focused on diffusion-limited growth, where growth is limited by
the diffusion of reactants to the particle surface, while Wagner [35] considered growth limited by
the reactions at the particle surface (i.e. reaction-limited growth). In fact recent work described
by Myers and Fanelli [19] have shown that, within the restrictions of the steady-state assumption,
the model cannot distinguish between diffusion or reaction driven growth, so both approaches are
equally valid. For this reasons authors using either mechanism, or both, have been equally successful
in approximating experimental data.

Experimental studies on NP growth [6, 22, 27] show that LSW theory may provide good predictions
for the particle size but the observed PSDs were typically broader and more symmetric. Possible
explanations for this disparity is that LSW theory does not account for the finite volume of the
coarsening phase φ, and that it assumes a particle’s growth rate is independent of its surroundings.
In addition, LSW theory does not indicate how long it takes to reach the final state. A further issue
is that it purports to describe the dynamics in the initial stages of the growth process. In [19] it is
proven that the pseudo-steady solution does not hold for small times.

Many studies have modified and built on the pioneering analysis of LSW theory. Ardell [1] and
Sarian and Weart [25] extended LSW theory to systems for non-zero φ (i.e. the mean distance between
particles is finite). Several authors [5, 33, 34] have addressed the shortcomings of LSW theory by
statistically averaging the diffusional interaction of a particle of a given size with its surroundings to
demonstrate that the resulting PSD becomes broader and more symmetric with increasing φ. The
inclusion of stochastic effects, due to temperature and changes in concentration, in the modified
population balance model of Ludwig et al. [15] led to broader PSDs in line with experimental data.
The population balance approach of Iggland and Mazzotti [10] was used to examine the evolution of
non-spherical particles at the beginning of growth.

Most of the above studies were in relation to micron or larger-sized particles. As measurement
techniques have advanced many researchers have applied LSW theory and the related modifications
to the study of nanoparticle growth. Talapin et al. [29] used a Monte Carlo approach to simulate
the evolution of a nanoparticle PSD subject to diffusion-limited growth, reaction-limited growth and
mixed diffusion-reaction growth. In contrast to other treatments, their simulations gave PSDs narrower
than those predicted by LSW theory. This was explained by the fact that they considered much
smaller particles. Their main conclusion was that Ostwald ripening occurs much more rapidly for
nanoparticles while PSDs are narrower than in their microscale counterparts. Similarly, Mantzaris
[16] used a population balance formulation and a moving boundary algorithm to study the diffusion
and reaction-limited growth regimes.

Another issue which is particularly relevant in the context of nanoparticles is the applicability of
the Ostwald-Freundlich condition (OFC) which relates the radius of the particle, r∗p, to its solubility,
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s∗. This condition can be written as

s∗ = s∗∞ exp

(

2σVM

r∗pRGT

)

≡ s∗∞ exp

(

α

r∗p

)

, (1)

where s∗∞ is the solubility of the bulk material, σ the interfacial energy, RG the universal gas constant,
T the absolute temperature. The capillary length α = 2σVM/(RGT ) defines the length scale below
which curvature-induced solubility is significant [29]. This equation shows that the particle solubility
increases as the size decreases (which promotes Ostwald ripening). One approximation to the OFC
is to assume that the exponential term in (1) can be linearised to give the two term expression
s∗ ≈ s∗∞(1 + α/r∗p)[13, 14, 28, 35]. Obviously this expansion, which is based on α/r∗p, is invalid for
nanoparticles where capillary length is of the same order of magnitude as the particle radius [19].
Mantzaris [16] used an expansion for the exponential term in the OFC with n terms and showed that
increasing n led to higher average growth rates and a narrowing of the PSD. However, when comparing
his simulation to experimental data for CdSe nanoparticles from [23], he applied the linearised version
for the solubility. Talapin et al. [29], noting that for nanoparticles of the order 1-5 nm the linearised
OFC may be incorrect, applied the full condition.

In the following we begin by analysing the growth of a single particle. This is the basic building
block for more complex models. The treatment leads to equations similar to those of standard LSW
theory, however we arrive at them following a non-dimensionalisation which highlights dominant terms
and those which may be formally neglected. In this way we can ascertain which standard assumptions
are appropriate and, more importantly, which are not. Under conditions which appear easily satisfied
for nanocrystal growth the governing ordinary differential equation has an explicit solution, in the form
rp = rp(t) and also shows that the growth is controlled by a single parameter which may be calculated
by comparison with experiment. This section closely follows the work described in [19]. The single
particle model is obviously incapable of reproducing Ostwald ripening, where larger particles grow at
the expense of smaller ones. Consequently we then generalise the model to deal with a large number
of particles. In the results section we compare the analytical solution with that of a full numerical
solution and experimental data for the growth of a single particle and show excellent agreement
between all three. By setting the number of particles to two in the general model we are able to
clearly demonstrate Ostwald ripening. Simulations with N =10 and 1000 particles demonstrates that
increasing N leads to increasingly good agreement between the average radius and that predicted by
the single particle model. The single particle model may thus be considered as a viable method for
predicting the evolution of the average radius of a group of particles.

2 Growth of a single particle

As shown in Figure 1, we initially focus on a single, spherical nanoparticle, with radius r∗p in a system
of particles. The ∗ notation represents dimensional quantities. The assumption is that particles
are separated at large but finite distances compared to their radius. Their morphologies remain
nearly spherical and particle aggregation is neglected. Thus, the mass flow from each particle can be
represented as a monopole source located at the center of the particle [32] and the problem becomes
radially symmetric. We assume the standard La Mer model [11], such that there has been a short
nucleation burst and the system is now in the period of growth.

The monomer concentration, c∗, is described by the classical diffusion equation in spherical coor-
dinates

∂c∗

∂t∗
=

D

r∗2
∂∗

∂r∗

(

r∗2
∂c∗

∂r∗

)

. (2)

This holds in the diffusion layer [r∗p, r
∗
p + δ∗] where r∗ is distance from the centre of the particle,

t∗ is time and D is the constant diffusion coefficient. To conform with standard literature (see for
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Figure 1: Schematic of a single nanoparticle with radius r∗p and the surrounding monomer concentration profile
where s∗, c∗i and c∗b are the particle solubility, the concentration at the surface of the particle and the far-field
concentration, respectively.

example [16, 28, 31]), we have included a diffusion layer of length δ∗ around the particle, where the
concentration adjusts from the value at the particle surface to the value in the far-field. Equation (2)
is subject to

c∗(r∗p, t
∗) = c∗i (t

∗) , c∗(r∗p + δ∗, t∗) = c∗b(t
∗) , c∗(r∗, 0) = c∗b,0 for r∗ > r∗p , (3)

where c∗i is the concentration adjacent to the particle surface, c∗b is the concentration in the far-
field and c∗b,0 is a constant describing the initial concentration when the solution is well-mixed. The
monomer concentration in the far-field c∗b(t

∗) will be derived via mass conservation. The value at the
particle surface c∗i is very difficult to measure [28], hence it is standard to work in terms of the particle
solubility.

The particle solubility s∗ (with the same dimensions as concentration) is given by the Ostwald–
Freundlich condition (1). If s∗ < c∗b then monomer molecules diffuse from the bulk towards the particle
to react with the surface and the particle grows, whereas if s∗ > c∗b the particle shrinks.

In order to determinate an expression for the concentration at the particle surface, we consider
two equivalent expressions for the mass flux at the particle surface, J . Firstly, Fick’s first law states
that the flux of monomers passing through a spherical surface of radius r∗ is

J = 4πr∗2D
∂c∗

∂r∗
. (4)

At the surface of the sphere the flux must also follow a standard first order reaction equation

J = 4πr∗2k(c∗i − s∗) , (5)

where k is the reaction rate, which is assumed to be constant for both growth and dissolution
contributions. Equating (4) with (5) gives

c∗i = s∗ +
D

k

∂c∗

∂r∗

∣

∣

∣

∣

r∗=r∗
p

, (6)

which defines the concentration c∗i for the surface condition of (3).
To complete the boundary conditions in the system, we require an expression for the time-

dependent bulk concentration, c∗b(t
∗). The mass of monomer in the system is constant because the
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bulk material is assumed well-mixed during the entire process. Mass conservation of the monomer
atoms in the particle and surrounding solution is then

1

N0

Mpc
∗
0 = Mpc

∗
b(t)

[

1

N0

−
4π

3
r∗p

3

]

+
4π

3
ρpr

∗
p
3 (7)

where ρp is density, Mp is molar mass and N0 the population density. Since particle occupy a small
region in comparison to their radius 4πN0r

∗
p
3/3 ≪ 1, also the molar volume VM = Mp/ρp. Equation

(7) then leads to

c∗b(t) ≈ c∗0 −
4πN0

3VM
r∗p

3. (8)

which will be used for the far-field concentration in (3).
As stated earlier, the diffusion equation must be solved on a domain r∗ > r∗p, where the particle

radius is an unknown function of time. The flux of monomer to the particle is responsible for the
particle growth

VMJ =
d

dt∗

(

4

3
πr∗p

3

)

= 4πr∗p
2
dr∗p
dt∗

. (9)

Eliminating J between (9) and (4) yields

dr∗p
dt∗

= VMD
∂c∗

∂r∗

∣

∣

∣

∣

r∗=r∗
p

. (10)

This is subject to the initial condition r∗p(0) = r∗p,0, where r∗p,0 is the initial particle radius.
The governing system is now fully defined and consists of equation (2), subject to the initial and

boundary conditions (3), where c∗i is defined by (6) and c∗b by (8), and the unknown particle radius
satisfies (10). As there is no analytical solution to the system, we proceed to simplify the problem
and use numerical approximations in order to understand the behaviour of the solution.

2.1 Nondimensionalisation

A complex mathematical model can often be reduced to a simpler form by estimating the relative
magnitude of terms. A standard way to achieve this is by writing the system in non-dimensional form.
Here the model is nondimensionalised via

r =
r∗

r∗p,0
, rp =

r∗p
r∗p,0

, t =
t∗

τ∗
, c =

c∗ − s∗
0

∆c
, s =

s∗ − s∗
0

∆c
, (11)

where ∆c = c∗b,0 − s∗
0
represents the driving force for particle growth and s∗

0
= s∗∞ exp (α/r∗p,0) is

the initial particle solubility. The concentration and growth equations yield two possible time scales
τ∗D ∼ r∗2p,0/D and τ∗R ∼ r∗2p,0/(VMDc0), respectively. To focus on particle growth we choose the growth
time scale τ∗ = τ∗R and the governing system is now transformed to

ε
∂c

∂t
=

1

r2
∂

∂r

(

r2
∂c

∂r

)

, (12)

drp
dt

=
∂c

∂r

∣

∣

∣

∣

r=rp

, (13)

c(rp, t) = s+Da
∂c

∂r

∣

∣

∣

∣

r=rp

, c(rp + δ, t) = c̄0 − βr3p, , (14)

c(r, 0) = 1 , rp(0) = 1 , (15)
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where
s = s∞ exp (ω/rp)− s0 , (16)

and

ε = VM∆c , δ =
δ∗

r∗p,0
, Da =

D

kr∗p,0
, ω =

α

r∗p,0
, β =

4πN0r
∗3
p,0

3VM
, c̄0 =

c∗
0
− s∗

0

∆c
.

(17)
The above system contains a number of nondimensional groups. The first, ε, is generally very small

for nanoparticle growth. For example, Peng et al. [23] studied Cadmium Selenide nanoparticles, with
a capillary length of 6nm and initial radii in the range 1− 100 nm, so that ε = O(10−3). In general it
should be expected that ε ≪ 1. If we look at the time scales, we see that τ∗D/τ

∗
G = VM∆c = ε ≪ 1.

Physically, this indicates that growth is orders of magnitude slower than the diffusion time scale, that
is, the concentration adjusts much faster than growth occurs and so the system can be considered
as pseudo-steady. In terms of the mathematical model, this means that the time derivative can be
omitted from the concentration equation, but since time also enters into the problem through the
definitions of rp and cb this is a pseudo-steady-state situation rather than a true steady-state.

The parameter Da is an inverse Damköhler number measuring the relative magnitude of diffusion
to surface reactions [16]. In the past similar models have been simplified by considering diffusion-
limited growth (Da ≪ 1) or surface reaction limited growth (Da ≫ 1). In practice both mechanisms
play a role. In [19] it is shown that the diffusion limited case requires either k → 0, which results
in zero growth, or the concentration adjacent to the particle surface matches the solubility ci ≃ s∗

throughout the process. Similary the reaction driven growth requires D → 0, which again indicates
no growth, or ci ≃ cb throughout the process. Therefore, we will place no restrictions on Da.

A common simplification is to assume ω ≪ 1 which reduces the OFC, (1), to a constant s∗ = s∗∞
or a linear approximation is used, see [14, 28]. This significantly simplifies the analysis. However, for
particles that have just nucleated or very small nanoparticles ω is not small and the simplification is
not appropriate. Despite the large errors in the prediction of s∗ caused by the small ω assumption
authors obtain good matches to data. In [19] it is shown that this is because the pseudo-steady
model is not valid for early times when the particle is small. By the time the model is valid so is the
linearisation. Basically, the variation of s∗ plays a minor role in the study of the growth of a single
nanoparticle. However, this is not the case with multiple particles where Ostwald ripening is driven
by the delicate balance between the bulk concentration and the particle solubility.

The reason why the pseudo-steady model is invalid at small times is due to the thickness of the
boundary layer δ(t). The model involves the assumption δ(t) ≫ rp yet initially, when the fluid is
well-mixed δ(0) = 0. Only when the boundary layer is sufficiently thick is it reasonable to apply the
pseudo-steady model. In [19] it is shown through comparison with experiments that the initial stage
can last for the order of 100s. The shift to the pseudo-steady model can often be identified simply by
looking at the trend in the data. In the following we will present the model with the full OFC and
then an approximation where it is neglected. We will also neglect early data points when matching to
experimental data.

2.2 Pseudo-steady state solution

Since ε = O(10−3) and all variables have been scaled to be O(1) then neglecting terms of order ε
should result in errors of the order 0.1%. Consequently, we neglect the time derivative in the diffusion
equation and obtain the pseudo-steady state form

1

r2
∂

∂r

(

r2
∂c

∂r

)

= 0 . (18)
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After integrating and applying the boundary conditions we obtain

c = −
A

r
+B , (19)

where

A =
r2p(rp + δ)(cb − s)

rpδ +Da(rp + δ)
, B = s+A

(

1

rp
+

Da

r2p

)

. (20)

There is no way to calculate δ(t) in the pseudo-steady approach. A time-dependent treatment, such
as that described in [18] is required. Hence the standard method is to assume rp ≪ δ, which reduces
(20) to

A =
r2p(cb − s)

rp +Da
, B = cb . (21)

Substituting (19) into the Stefan condition (13) leads to

drp
dt

=
cb − s

Da+rp
=

c̄0 − βr3p + s0 − s∞ exp(ω/rp)

Da+rp
. (22)

Hence, the problem has been reduced to the solution of a single first-order ordinary differential equation
for rp. It is a highly nonlinear equation which must be solved numerically. The assumption that rp ≪ δ
means it only holds for relatively large times. Approximate solutions, in various limits, may be found in
the literature. For example if we take cb constant and ω sufficiently small for the linear approximation
to the exponential to hold then equation (22) may be integrated in the limits of large and small Da.
In [19] it is shown that for sufficiently large times, for a single particle, the variation of eω/rp does
not affect the solution in which case equation (22) may be integrated analytically to find an implicit
solution of the form t = t(r). By identifying negligible terms they are able to invert this to find an
explicit solution, r = r(t) which depends on a single parameter,

rp =
rm
2

[

1 + 2f(rp0) exp
(

t−t0
G

)

−

√

−3 + 12f(rp0) exp
(

t−t0
G

)

]

[

−1 + f(rp0) exp
(

t−t0
G

)] , (23)

where rm is the experimental maximum radius, t0 is the time at which the second growth stage is
judged to have begun rp0 the radius at this time and f(rp0) = (r2m + rmrp0 + r2p0)/(rm − rp0)

2. If t0
is greater than the true value, this should not affect the results. This is discussed in further detail in
[19]. The unknown parameter G is defined as

G =
1

6ab

ak + bD

akbD
, a3 = Vm(c∗0 − c∗eq) , b3 =

4

3
πN0 . (24)

Its value is obtained by comparison with experimental data. Once G is determined, then the diffusion
coefficient (D), the reaction rate (k), the solubility of the bulk material (s∞) and population density
(N0) may be systematically retrieved. In [19] it is stated that ak ≈ bD, hence G ≈ 1/(3a2bk) =
1/(3ab2D). Further, since c∗

0
≫ c∗eq a reasonable approximation is a3 = Vmc∗

0
. Growth stops when the

maximum radius r∗m = a/b is achieved.

3 Evolution of a system of N particles

We now extend the single particle model to an arbitrarily large system of particles. The particle radii,
initial radii and solubilities are denoted r∗i , r

∗
i,0 and s∗i , respectively, where i represents the i

th particle
and i = 1 . . . N . We nondimensionalise via (11) with the only difference being that the mean value of
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the radii r̄∗p,0 replaces the length scale r∗p,0. It has to be noted that this also affects the concentration
scale, ∆c, through the initial solubility. Hence in what follows, all dimensionless parameters are the
same as those defined in (17), except with r∗p,0 and s∗

0
replaced by r̄∗p,0 and s̄∗

0
, respectively.

Under the pseudo-steady approximation and assuming that there are no interparticle diffusional
interactions, the growth of each particle is now described by an equation of the form (22) with ri and
si,0 substituting for rp and s0, respectively. The bulk concentration equation must account for all
particles, that is

1

N0

Mpc
∗
0 = Mpc

∗
b(t

∗)

[

1

N0

−
4π

3

N
∑

i=1

r∗i
3

]

+
4πρp
3

N
∑

i=1

r∗i
3 (25)

where N may decrease with time due to Ostwald ripening. Assuming that the solution is sufficiently

dilute that 4πN0/3
N
∑

i=1

r∗3i ≪ 1 and also VM = Mp/ρp, we obtain

c∗b(t
∗) ≈ c∗0 −

4πN0

3VM

N
∑

i=1

r∗3i . (26)

In dimensionless form the problem is then governed by the system of differential equations

dri
dt

=
cb − si
Da+ri

=
c̄0 − β̄

∑N
i=1

r3i + s̄0 − s∞ exp(ω/ri)

Da+ri
(27)

for each i = 1, . . . , N . Equation (27) represents a system of N non-linear ODEs which must be solved
numerically.

4 Comparison of model with experiment

The accuracy of the various forms of the mathematical model will now be ascertained through com-
parison with the experiments on CdSe nanocrystal synthesis reported by Peng et. al. [23]. Certain
parameter values concerning the experiment and CdSe are provided in that paper, others, such as
D, k, s∗∞, N0 must be inferred. Here they will be determined through fitting to equation (23). Since
this only contains one free parameter the fitting is a very simple process. We then show that the
pseudo-steady state model (PSS model) gives virtually identical results to equation (23). Once it has
been established that the analytical solution and the PSS model give such good correspondence and
match to experimental data we move on to comparing with the numerical results. The PSS is an
approximation to the full system defined by equations (12-16), the analytical solution equation (23)
is an approximation to the PSS. Using the full system in the N particle model would be extremely
computationally expensive, for this reason the PSS model is the basic component of the N particle
model. Consequently we demonstrate that the PSS closely matches the numerical solution of the full
model (and consequently so does equation (23)). The N particle model is then examined. First, by
setting N = 2 we are able to demonstrate Ostwald ripening. We go on to show that as N increases the
prediction for the average radius tends to the analytical solution for a single particle as N becomes
large.

4.1 Parameter estimation via the analytical solution

In Figure 2 we show the first eleven data points from [23]. As discussed earlier not all data points
correspond to the pseudo-steady regime, here it is clear that the first three points follow a linear
trend so these will be neglected. In the experiment extra monomer was added after three hours, so
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we have ignored all data beyond the eleventh point. Using the remaining eight data points in the
nonlinear least-squares Matlab solver lsqcurvefit to fit to equation (23) we obtain G ≈ 958. The results
of equation (23), with G = 958, is shown as the solid line in Figure 2.

To determine the necessary parameters for the other models we first note that the maximum
radius attained during this part of the experiment is r∗m ≈ 3.8nm= a/b = D/k. The experimental
concentration at the end of the growth process is known, this defines c∗eq = s∗∞eα/r

∗
m . This is enough

information to determine D, k, s∗∞, N0. The values taken from [23] are shown as the first ten rows of
Table 1, the final four (in italics) are the ones calculated after G has been determined. These values
may be used for the pseudo-steady state (PSS) model, or the arbitrary N model. The dashed line
in Figure 2 represents the result predicted by the PSS model. Clearly there is excellent agreement
between this and the analytical solution, thus verifying the claim that the solubility may be set to a
constant without greatly affecting the solution (provided the early time data is neglected).

Quantity Symbol Value Units

Universal gas constant RG 8.31 Jmol−1 K−1

Density ρp 5816 kgm−3

Molar volume VM 3.29 × 10−5 m3mol−1

Molar mass Mp 0.19 kgmol−1

Solution temperature T 573.15 K
Surface energy σ 0.44 Jm−2

Capillary length α 6.00 × 10−9 m
Initial bulk concentration c∗

0
55.33 molm−3

Volume of the liquid V 7.21 × 10−6 m3

Maximum particle radius rm 3.78 × 10−9 m
Diffusion coefficient D 3.01 × 10−18 m2 s−1

Reaction rate k 7.97 × 10−10 ms−1

Solubility of bulk material s∗∞ 5.53 × 10−2 molm−3

Population density N0 8.04× 1021 Nom−3

Table 1: Physical parameters for the cadmium selenide (CdSe) nanoparticle synthesis method used by Peng et

al. [23]. The parameters in italics are not given in explicitly and are thus obtained via a fitting approach.

4.2 Validating the pseudo-steady state approximation

The PSS model is described by equations (19)-(22). Since this forms the basis for the N particle
model it is important to verify its accuracy. We do this by comparison with the numerical solution
of the full system (12)-(15) (referred to as the full model). Although we have already shown that the
PSS is very well approximated by the analytical solution and that for a single crystal the solubility
variation may be neglected, we must employ the PSS in the N particle model. This is because when
an individual particle’s solubility drops below the bulk concentration Ostwald ripening occurs. The
analytical solution neglects variation in solubility, so cannot capture this behaviour.

Problems similar to the full model frequently occur in studies of phase change where it is termed
the one-phase Stefan problem (one-phase because the temperature is neglected in one of the phases,
this is analogous to neglecting the concentration in the crystal). Examples of one-phase problems
occur in laser melting and ablation, Leidenfrost evaporation of a droplet and in supercooled materials.
At the nanoscale there are many studies on nanoparticle melting and growth, see [8, 7, 20, 21]. The
nanoparticle studies are particularly relevant, since they deal with a spherical geometry and at the
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Figure 2: The circles represent the experimental data from Peng et al. [23] and the solid line the corresponding
least-squares fit to the analytical solution, equation (23) with G = 958, of Myers & Fanelli [19]. The dashed
line is the PSS model with the same value of G.

nanoscale the melt temperature varies in a manner similar to the variation of the solubility in the
current problem. For this reason we follow the numerical scheme outlined in these studies. It requires
a standard boundary immobilization transformation and then a semi-implicit finite difference scheme
is applied to the resulting equations. For further details see [8, 7]. The PSS model requires the solution
of a single nonlinear ordinary differential equation, (22). To do this we simply use the Matlab ODE
solver ode15s. Once rp is determined the concentration is given by equation (21).

(a) (b)

Figure 3: Solution of the full and the PSS models (represented by circles and by a solid line, respectively) for the
growth of a single particle. Panel (a) shows the evolution of the particle radius and panel (b) the concentration
of monomer around the particle at five different times.

In Figure 3 we compare the numerical solution of the full and PSS models using the parameters
of Table 1, where panel (a) shows the evolution of the particle radius and panel (b) the concentration
profile at five different times. In both cases the agreement between the full and PSS models is excellent,
thus justifying the use of the simpler PSS model in the N particle system. Panel (a) shows how the
particle grows rapidly until around t ≈ 1 hr when the growth rate decreases, subsequently the radius
slowly approaches the maximum value of rp ≃ 3.8 nm. This behaviour can be understood by analysing
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the concentration profiles presented in panel (b). The growth rate is proportional to the concentration
gradient, see equation (10). From Figure 3 (b) it is clear that the concentration gradient between the
particle surface and the far field is relatively large at small times, leading to rapid growth. After t ≈ 1
hr the concentration profile is practically flat, leading to a slow growth rate.

4.3 Ostwald ripening with N = 2

Ostwald ripening (OR) occurs when the bulk concentration falls below a given particle’s solubility.
With a single particle the growth rate tends to zero as the solubility and bulk concentration become
similar, hence OR will never occur. However, with a group of particles of different sizes theoretically
OR must always occur. In practice this could take a very long time and so be difficult to observe.
To demonstrate that the current model can predict OR we now investigate the simplest possible case,
with two particles.

The system is defined by equation (27) with N = 2. We take parameter values from Table 1 and
choose initial radii 2 nm and 2.5 nm. The governing equations may be solved again using the Matlab
ODE solver ode15s. Results are presented in Figure 4. The first figure shows the evolution of the radii
for more than 25 hours. The solid line represents the evolution of the 2.5 nm particle, the dashed line
is the 2 nm one. As can be seen, for small times both particles grow rapidly however, after around
1.7 hours the smaller particle starts to shrink, while the larger one grows linearly. In Figure 4(b)
the variation of the particle solubility and concentration is shown, solid and dashed lines correspond
to the 2.5, 2nm particle’s solubility respectively, while the dotted line is the bulk concentration.
With reference to the variation of the radius it is clear that the rapid growth phase corresponds to
a sharp decrease in the bulk concentration. Initially the solubility of each particle is below the bulk
concentration and decreases as rp increases. Ostwald ripening begins when the solubility of the smaller
particle crosses the cb curve, cb = s1 at t ≃ 1.7 hr, subsequently its size decreases. The solubility of
the larger particle keeps slowly decreasing, in keeping with its slow growth, and remains below the
bulk concentration until the end of the simulation. If we continued the simulation the smaller particle
would eventually disappear.

(a) (b)

Figure 4: Evolution of two CdSe nanoparticles. (a) Change in time of the radii of two particles with initial radii
of 2 nm (dashed line) and 2.5 nm (solid line). (b) Change in bulk concentration (dotted line) and solubilities of
smaller (dashed line) and larger (solid line) particles.
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4.4 N particles system

To simulate the experiments of [23] we consider a distribution of N nanoparticles where the initial
distribution is generated by random numbers, with an initial mean radius r̄∗p,0 of 2.92 nm and a standard
deviation of σo = 8.9%. In the numerical solution if a particle decreases below 2nm it is assumed to
break up and all the monomer enters back into the bulk concentration.

In Figure 5 we compare the prediction for the average radius of 10 and 1000 CdSe particles (dashed
lines) with the corresponding data of Peng et al. [23]. The single particle analytical solution for r(t),
equation (23), is shown as a solid line. The inset shows the difference between the N particle and
analytical solution. In Figure 5(a) the maximum difference between the two solutions is of the order
1.5%, which decreases rapidly with time. The solution with N = 1000, shown in Figure 5(b), has a
maximum difference of the order 0.15% from the analytical solution.

(a) (b)

Figure 5: Comparison of the model for N particles (dashed lines) with experimental data from Peng et al.[23]
(dots) using N = 10 in (a) and N = 1000 in (b). The solid lines represent the explicit solution for the one
particle model, equation (23). The inset plots show the percentage difference between the models.

In practice N would be much higher. In Table 1 the population density is given as N0 = 8.04×1021

crystals/m3, so in a volume V ≈ 7 × 10−6m3 we would expect around 1016 crystals. The Figure
demonstrates that as N increases the solution tends to the analytical solution. Given that N is
typically very high it is then clearly not necessary to solve the large system. Obviously the analytical
solution is easier to understand and implement than a 1016 particle model. However, it is important to
note that in the present example there is no significant Ostwald ripening. From Figure ?? we observe
defocussing starts around 1.7 hours and after nearly 30 hours the radius of the smaller particle has only
decreased by 7%. In the experimental data used here extra monomer is added to the solution after
three hours and we stop our calculations then. So, in the absence of significant OR we may assume
that the analytical solution may be used to predict the average evolution of nanocrystal growth. If
OR is to be modelled an N particle model should be used, since this accounts for the solubility of
each particle.

5 Conclusions

We have developed a model for the growth of a system of N particles, whereN may be arbitrarily large.
The model involves a system of first order nonlinear ordinary differential equations, which are easily
solved using standard methods. The basis of the N particle model is the pseudo-steady approximation
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presented in [19]. This incorporates the particle solubility variation which then permits the model to
capture Ostwald ripening.

It has been shown that the pseudo-steady model for a single particle has an accurate approximate
explicit solution. This was verified by comparison with the full pseudo-steady model. The explicit
solution shows that there is a single main parameter controlling nanocrystal growth.

The main drawback to the single particle model is that it cannot capture Ostwald ripening, whereby
smaller particles disappear at the expense of larger ones. By studying the system with N = 2 we
were able to emulate Ostwald ripening on a very simple system. By allowing N to become large
and calculating the average particle radius we showed that the results approached the single particle
explicit solution, which may thus be considered to represent the average growth of a large distribution
of particles. A consequence of this is that the N = 2 model can equally well represent the average
radii for an initially bimodal distribution of nanocrystals. An N > 2 model can represent a much
larger distribution of particles.

The main advantage of the current method is that since the single particle model may be solved
analytically, and this accurately describes the average radius of a distribution, then the controlling
parameters are apparent. This allows us to adjust them and so optimise the growth process, paving
the way for efficient large scale production. Since we only have to deal with a single particle the
numerical solution is rapid (almost instantaneous), as opposed to previous large scale, time-consuming
calculations.
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