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Abstract : Government debt and forecasts thereof attracted considerable attention

during the recent financial crisis. The current paper analyzes potential biases in

different U.S. government agencies’ one-year-ahead forecasts of U.S. gross federal

debt over 1984—2012. Standard tests typically fail to detect biases in these forecasts.

However, impulse indicator saturation (IIS) detects economically large and highly

significant time-varying biases, particularly at turning points in the business cycle.

These biases do not appear to be politically related. IIS defines a generic procedure

for examining forecast properties; it explains why standard tests fail to detect bias;

and it provides a mechanism for potentially improving forecasts.
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1 Introduction

Government debt attracted considerable attention during the recent financial crisis

and Great Recession. In the United States, federal debt limits, sequestration, and the

federal government shut-down have posed substantial economic, political, and policy

challenges; see The Economist (November 20, 2010), Podkul (2011), Bernanke (2011,

2013), Chokshi (2013), and Yellen (2014, pp. 20—21) inter alia. In Europe, government

debt and fiscal policy are central to current discussions about the euro-area crisis.

Because future outcomes of government debt are unknown, forecasts of that debt

may matter in government policy, so it is of interest to ascertain how good those

forecasts are, and how they might be improved. A central focus in forecast evaluation

is forecast bias, especially because forecast biases are systematic, and because ignored

forecast biases may have substantive adverse consequences for policy.

Building on Martinez (2011, 2015), the current paper analyzes potential biases in

different U.S. government agencies’ one-year-ahead forecasts of the U.S. gross federal

debt over 1984—2012. Standard tests typically do not detect biases in these forecasts.

However, a recently developed technique–impulse indicator saturation–detects eco-

nomically large and highly statistically significant time-varying biases in the forecasts,

particularly for 1990, 1991, 2001—2003, and 2008—2011. Biases differ according to the

agency making the forecasts as well as over time. Biases are typically associated with

turning points in the business cycle and (to a lesser degree) economic expansions, and

thus are highly nonlinear and dynamic. That said, the forecast biases do not appear

to be politically related. Impulse indicator saturation defines a generic procedure for

examining forecast properties; it explains why standard tests fail to detect forecast

bias; and it provides a mechanism for potentially improving the forecasts.

This paper is organized as follows. Section 2 describes the data and the fore-

casts being analyzed. Section 3 discusses different approaches to testing for potential

forecast bias and proposes impulse indicator saturation as a generic test of forecast

bias. Section 4 describes indicator saturation techniques, including impulse indicator

saturation and several of its extensions. Section 5 presents evidence on forecast bias,

using the methods detailed in Sections 3 and 4. Section 6 re-examines the forecast

biases in light of business-cycle turning points. Section 7 concludes.

2 The Data and the Forecasts

This section describes the data on the United States gross federal debt and the three

different one-year-ahead forecasts of that debt that are analyzed herein. The forecasts

are denoted by their sources:

• CBO (Congressional Budget Office) in its Budget and Economic Outlook ,
• OMB (Office of Management and Budget) in its Budget of the U.S. Government ,
and
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• APB (Analysis of the President’s Budget).
The Congressional Budget Office and the Office of Management and Budget are dif-

ferent agencies within the U.S. federal government. The Analysis of the President’s

Budget is produced by the Congressional Budget Office, but the forecast in the Ana-

lysis of the President’s Budget is referred to as the “APB forecast” in order to distin-

guish it from the “CBO forecast”, which appears in the CBO’s Budget and Economic

Outlook . The agencies’ publications detail how debt is forecast and the assumptions

made in generating those forecasts. Significantly, the CBO forecast assumes that

current law remains unchanged, whereas the OMB and APB forecasts assume that

the president’s proposed budget is implemented. The assumptions underlying the

forecasts, the complex process involved in generating the forecasts, and the goals and

objectives of that process are of considerable interest in their own right and merit

detailed examination. However, in the spirit of Stekler (1972), Chong and Hendry

(1986), and Fildes and Stekler (2002) inter alia, the current paper focuses on the

properties of the forecasts themselves. The data on the debt are published by the Fi-

nancial Management Service at the U.S. Department of the Treasury in the Treasury

Bulletin.

The data on debt are annual (end of fiscal year) over 1984—2012 (29 observations)

and are for total gross federal debt outstanding held by the public and the government.

The CBO, OMB, and APB forecasts typically are published in late January, early

February, and early March respectively, where those months directly precede the end

of the fiscal year (September 30); see Martinez (2011, Table 2; 2015) for details.

For convenience, these forecasts are called “one-year-ahead”, even though the actual

horizon is somewhat less than one year, differs for the three forecasts, and varies

somewhat from one year to the next. Debt and its forecasts are in billions of U.S.

dollars (nominal), and the analysis below is of the logs of debt and of its forecasts.

Figure 1 plots actual U.S. gross federal debt and its forecasts by the CBO, OMB,

and APB (in logs, denoted by lowercase). Actual and forecast values appear close,

reflecting in part the scale of the graph: debt increases by approximately an order

of magnitude over the sample. Figure 2 plots the forecast errors for the log of U.S.

gross federal debt. The forecast errors for all three forecasts are often small–under

2% in absolute value–but sometimes they are much larger, and with the magnitude

and even the sign differing across agency as well as by forecast date. Forecast errors

are often persistent, suggestive of systematic biases in the forecasts. For comparison,

the growth rate of debt is 83% on average, and its standard deviation is 41%.

The presence of forecast bias has both economic significance and statistical sig-

nificance. That said, the particular sense in which forecast bias is significant depends

in part on whether an agency’s forecasts are interpreted as “forecasts” or as “projec-

tions”, where “projections” are in the sense of being policy simulations conditional

upon a certain set of assumptions. If the agency’s forecasts are interpreted qua fore-

casts, then forecast bias implies potential room for improvement in terms of standard
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Figure 1: Actual U.S. gross federal debt and its forecasts by the CBO, OMB, and

APB (in logs).
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Figure 2: Forecast errors for the log of U.S. gross federal debt.
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performance measures such as the root mean squared error. If the forecasts are inter-

preted qua projections, then forecast bias implies a limited usefulness of the forecasts

as representing interesting hypothetical paths for economic policy. With that in

mind, the agencies’ forecasts are always referred to as “forecasts” below, while recog-

nizing that some of these forecasts may be more usefully viewed as projections. This

broader usage of the term “forecast” is also in line with Clements and Hendry (2002b,

p. 2): “A forecast is any statement about the future”. For some previous analyses

of these and other governmental and institutional forecasts, see Corder (2005), En-

gstrom and Kernell (1999), Frankel (2011), Joutz and Stekler (2000), Nunes (2013),

Sinclair, Joutz, and Stekler (2010), Romer and Romer (2008), and Tsuchiya (2013).

Finally, many prior studies have compared forecasts whose assumptions differ from

each other. Hence, the differing assumptions of the CBO, OMB, and APB forecasts

are not grounds per se for not comparing the forecasts.

3 Approaches to Detecting Forecast Bias

This section considers different approaches for assessing potential forecast bias, start-

ing with the standard test of forecast bias by Mincer and Zarnowitz (1969). This

section then discusses how Chong and Hendry’s (1986) forecast-encompassing test is

interpretable as a test of time-varying forecast bias. Finally, this section proposes us-

ing impulse indicator saturation as a generic test of arbitrarily time-varying forecast

bias. This generic test generalizes the Mincer—Zarnowitz test, which is a test of a

constant (i.e., time-invariant) forecast bias.

Mincer and Zarnowitz (1969, pp. 8—11) suggest testing for forecast bias by regress-

ing the forecast error on an intercept and testing whether the intercept is statistically

significant. That is, for a variable  at time  and its forecast ̂, estimate the equa-

tion:

( − ̂) =  +   = 1      (1)

where  is the intercept,  is the error term at time , and  is the number of ob-

servations. A test of  = 0 is interpretable as a test that the forecast ̂ is unbiased

for the variable . For one-step ahead forecasts, the error  may be serially uncorre-

lated, in which case a - or  -statistic for  = 0 may be appropriate. For multi-step

ahead forecasts,  generally will be serially correlated; hence, inference about the

intercept  may require some accounting for that autocorrelation.

Mincer and Zarnowitz (1969, p. 11) also propose a variant of equation (1) in which

the coefficient on ̂ is estimated rather than imposed. That variant is:

 = 0 + 1̂ +   = 1      (2)

where 0 is the intercept, and 1 is the coefficient on ̂. Mincer and Zarnowitz

(1969) interpret a test that 1 = 1 as a test of the efficiency of the forecast ̂ for
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the outcome . The joint hypothesis {0 = 0 1 = 1} is of interest to test as well.
Subtracting ̂ from both sides, equation (2) may be conveniently rewritten as:

( − ̂) = 0 + ∗1̂ +   = 1      (3)

where ∗1 = 1−1. Hence, the hypothesis {0 = 0 ∗1 = 0} in equation (3) is equivalent
to {0 = 0 1 = 1} in equation (2).
Below, “Mincer—Zarnowitz A” denotes the regression-based test of  = 0 in

equation (1), whereas “Mincer—Zarnowitz B” denotes the regression-based test of

{0 = 0 ∗1 = 0} in equation (3). While equations (2) and (3) are equivalent, equa-
tion (3) is reported below because it parallels the structure of equation (1), with −̂
as the dependent variable. Mincer—Zarnowitz A (i.e., testing  = 0 in equation (1))

is itself equivalent to testing 0 = 0 in equation (3), subject to the restriction that

∗1 = 0. See Holden and Peel (1990) and Stekler (2002) for expositions on these tests
as tests of unbiasedness and efficiency, and Sinclair, Stekler, and Carnow (2012) for

a recent discussion.

Chong and Hendry (1986) propose another test about forecast errors, namely,

a test of whether one model’s forecasts provide information about another model’s

forecast errors. If one model’s forecasts do provide information about another model’s

forecast errors, then those forecast errors are in part predictable. If not, then the

latter model “forecast-encompasses” the first model. As Ericsson (1992) discusses, a

necessary condition for forecast encompassing is having the smallest mean squared

forecast error (MSFE). Granger (1989) and Diebold and Mariano (1995) propose tests

of whether one model’s MSFE is less than another model’s MSFE.

Chong and Hendry (1986) and subsequent authors implement many versions of

the forecast-encompassing test. One appealing version is based on the regression:

( − ̂) = 0 + 1 ·(̃ − ̂) + 

=  +   = 1      (4)

where ̂ is the forecast of  by model 1 (say), ̃ is the forecast of  by model 2,

and 0 and 1 are regression coefficients. A test of 1 = 0 is interpretable as a test

of whether discrepancies between the two models’ forecasts are helpful in explaining

model 1’s forecast errors. The joint hypothesis {0 = 0 1 = 0} is also of interest to
test. Equation (4) can be extended to compare several forecasts at once, in which

case the right-hand side of equation (4) includes the differential of each alternative

model’s forecast relative to model 1’s forecast; see Ericsson and Marquez (1993).

Tests of forecast encompassing are interpretable as tests of time-varying forecast

bias, as the second line in equation (4) indicates. The subscript  on the intercept 

emphasizes the time dependence of the potential bias, which here is parameterized

as 0 + 1 ·(̃ − ̂). The forecast-encompassing test thus focuses on a specific time-

varying form of potential forecast bias.
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The time dependence of the forecast bias could be completely general, as follows:

( − ̂) =
P

=1  + 

=  +   = 1      (5)

where the impulse indicator  is a dummy variable that is unity for  =  and zero

otherwise, and  is the corresponding coefficient for . Because the {} may have
any values whatsoever, the intercept  in equation (5) may vary arbitrarily over time.

In this context, a test that all coefficients  are equal to zero is a generic test of forecast

unbiasedness. Because equation (5) includes  coefficients, equation (5) cannot be

estimated unrestrictedly. However, the question being asked can be answered by using

impulse indicator saturation, as is discussed in the following section.

4 Indicator Saturation Techniques

Impulse indicator saturation (IIS) is a general procedure for model evaluation, and

in particular for testing parameter constancy. As this section shows, IIS also can be

used to test for time-varying forecast bias. Doing so provides a new application of

impulse indicator saturation–as a generic test of forecast bias–noting that IIS has

previously been employed for model evaluation, model design, and robust estimation.

Section 4.1 discusses IIS and its extensions as a procedure for testing parameter

constancy. Section 4.2 re-interprets existing tests of forecast bias as special cases of

IIS and shows how IIS can be used to detect arbitrarily time-varying forecast bias.

Sections 5 and 6 then apply IIS and its extensions to analyze potential bias in forecasts

of the U.S. gross federal debt.

4.1 Impulse Indicator Saturation and Extensions

This subsection summarizes how impulse indicator saturation provides a general pro-

cedure for analyzing a model’s constancy. Specifically, IIS is a generic test for an

unknown number of breaks, occurring at unknown times anywhere in the sample,

with unknown duration, magnitude, and functional form. IIS is a powerful empirical

tool for both evaluating and improving existing empirical models. Hendry (1999)

proposed IIS as a procedure for testing parameter constancy. See Hendry, Johansen,

and Santos (2008), Doornik (2009a), Johansen and Nielsen (2009, 2013), Hendry and

Santos (2010), Ericsson (2011a, 2011b, 2012, 2016), Ericsson and Reisman (2012),

Bergamelli and Urga (2014), Hendry and Pretis (2013), Hendry and Doornik (2014),

Castle, Doornik, Hendry, and Pretis (2015), and Marczak and Proietti (2016) for

further discussion and recent developments.

Impulse indicator saturation uses the zero—one impulse indicator dummies {} to
analyze properties of a model. For a sample of  observations, there are  such dum-

mies, so the unrestricted inclusion of all  dummies in an estimated model (thereby

6



“saturating” the sample) is infeasible. However, blocks of dummies can be included,

and that insight provides the basis for IIS. To motivate how IIS is implemented in

practice, this subsection employs a bare-bones version of IIS in two simple Monte

Carlo examples.

Example 1. This example illustrates the behavior of IIS when the model is cor-

rectly specified. Suppose that the data generation process (DGP) for the variable 

is:

 = 0 +   ∼ NID(0 2)  = 1      (6)

where  is normally and independently distributed with mean 0 and variance 
2.

Furthermore, suppose that the model estimated is a regression of  on an intercept,

i.e., the model is correctly specified. Figure 3a plots Monte Carlo data from the DGP

in equation (6) with 0 = 20, 
2 = 1, and  = 100. Figure 3b plots the estimated

model’s residuals, scaled by that model’s residual standard error.

The bare-bones version of IIS is as follows.

1. Estimate the model, including impulse indicator dummies for the first half of the

sample, as represented by Figure 4a. That estimation is equivalent to estimating

the model over the second half of the sample, ignoring the first half. Drop all

statistically insignificant impulse indicator dummies and retain the statistically

significant ones (Figure 4b).

2. Repeat this process, but start by including impulse indicator dummies for the

second half of the sample (Figure 4d), and retain the significant ones (Figure 4e).

3. Re-estimate the original model, including all dummies retained in the two block

searches (Figure 4g), and select the statistically significant dummies from that

combined set (Figure 4h).

Hendry, Johansen, and Santos (2008) and Johansen and Nielsen (2009) have shown

that, under the null hypothesis of correct specification, the expected number of im-

pulse indicator dummies retained is roughly  , where  is the target size. In Fig-

ure 4h, five dummies are retained;  = 5%; and  = (5% ·100) = 5, an exact

match.

Example 2. This example illustrates the behavior of IIS when there is an unmod-

eled break. Suppose that the DGP for the variable  is:

 = 0 + 164 +   ∼ NID(0 2)  = 1      (7)

where 64 is a one-off step dummy that is equal to 0 ( = 1     63) or 1 ( =

64     100), and 1 is its coefficient in the DGP. The model estimated is a regression

of  on an intercept alone, ignoring the break induced by the step dummy 64. As

in Example 1,  is normally and independently distributed with a nonzero mean.

However, that mean alters at  = 64. The model ignores that change in mean (aka
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Figure 3: Actual and fitted values and the corresponding scaled residuals for the

estimated model when the DGP does not have a break.
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Figure 4: A characterization of bare-bones impulse indicator saturation with a target

size of 5% when the DGP does not have a break.
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a “location shift”) and hence is mis-specified. Figure 5a plots Monte Carlo data

from the DGP in equation (7) with 0 = 20, 1 = −10, 2 = 1, and  = 100.

Figure 5b plots the estimated model’s residuals. Interestingly, no residuals lie outside

the estimated 95% confidence region, even though the break is −10. The model has
no “outliers”.

Figure 6 plots the corresponding graphs for the bare-bones implementation of IIS

described in Example 1, as applied to the Monte Carlo data in Example 2. As the

penultimate graph (Figure 6h) shows, the procedure has high power to detect the

break, even although the nature of the break is not utilized in the procedure itself.

In practice, IIS as an algorithm may be more complicated than this bare-bones

version, which employs two equally sized blocks, selects dummies by -tests, and is

non-iterative. In Doornik and Hendry’s (2013) Autometrics econometrics software,

IIS utilizes many possibly unequally sized blocks, rather than just two blocks; the

partitioning of the sample into blocks may vary over iterations of searches; dummy

selection includes  -tests against a general model; and residual diagnostics help guide

model selection. Notably, the specific algorithm for IIS can make or break IIS’s

usefulness; cf. Doornik (2009a), Castle, Fawcett, and Hendry (2010), and Hendry

and Doornik (2014). IIS is a statistically valid procedure for integrated, cointegrated

data; see Johansen and Nielsen (2009). IIS can serve as a diagnostic statistic, and it

can aid in model development, as discussed in Ericsson (2011a).

Many existing procedures can be interpreted as special cases of IIS in that they

represent particular algorithmic implementations of IIS. Such special cases include

recursive estimation, rolling regression, the Chow (1960) predictive failure statistic

(including the 1-step, breakpoint, and forecast versions implemented in OxMetrics),

the Andrews (1993) unknown breakpoint test, the Bai and Perron (1998) multiple

breakpoint test, tests of extended constancy in Ericsson, Hendry, and Prestwich (1998,

pp. 305ff), tests of nonlinearity, intercept correction (in forecasting), and robust es-

timation. IIS thus provides a general and generic procedure for analyzing a model’s

constancy. Algorithmically, IIS also solves the problem of having more potential

regressors than observations by testing and selecting over blocks of variables.

Table 1 summarizes IIS and two extensions of IIS, drawing on expositions and de-

velopments in Ericsson (2011b, 2012) and Ericsson and Reisman (2012). Throughout,

 is the sample size,  is the index for time,  and  are the indexes for indicators,

 is the index for economic variables (denoted ), and  is the total number of

potential regressors considered. A few remarks may be helpful for interpreting the

entries in Table 1.

Impulse indicator saturation. This is the standard IIS procedure proposed by

Hendry (1999), with selection among the  zero—one impulse indicators {}.

Super saturation. Super saturation searches across all possible one-off step func-

tions {}, in addition to {}. Step functions are of economic interest because they
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Figure 5: Actual and fitted values and the corresponding scaled residuals for the

estimated model when the DGP has a break and the model ignores that break.
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Table 1: Impulse indicator saturation and two extensions, as characterized by the
variables involved.

Name Description Variables Definition

Impulse indicator

saturation

Zero—one

dummies

{}  = 1 for  = 

zero otherwise

Super

saturation

Step

functions

{ }  = 1 for  ≥ 

zero otherwise

Ultra

saturation

Broken linear

trends

{  }  = − + 1 for  ≥ 

zero otherwise

may capture permanent or long-lasting changes that are not otherwise incorporated

into a specific empirical model. A step function is a partial sum of impulse indica-

tors. Equivalently, a step function is a parsimonious representation of a sequential

subset of impulse indicators that have equal coefficients. Castle, Doornik, Hendry,

and Pretis (2015) investigate the statistical properties of a closely related saturation

estimator–step indicator saturation (SIS)–which searches among only the step indi-

cator variables {}. Autometrics now includes IIS, SIS, super saturation (IIS+SIS),

and zero-sum pairwise IIS (mentioned below); see Doornik and Hendry (2013).

Ultra saturation. Ultra saturation (earlier, sometimes called “super duper” satu-

ration) searches across {  }, where the {} are broken linear trends. Broken

linear trends may be of economic interest. Mathematically, the {} are partial sums

of the partial sums of impulse indicators. Broken quadratic trends, broken cubic

trends, and higher-order broken trends are also feasible.

Table 1 is by no means an exhaustive list of extensions to IIS. Other extensions

include sequential ( = 1) and non-sequential (  1) pairwise impulse indicator

saturation for an indicator , defined as  + +; zero-sum pairwise IIS for an

indicator , defined as ∆; many many variables for a set of  potential regressors

{  = 1    } for    ; factors; principal components; and multiplicative

indicator saturation for the set of . See Ericsson (2011b, 2012) and Castle,

Clements, and Hendry (2013) for details, discussion, and examples in the literature.

Also, the saturation procedure chosen may itself be a combination of extensions; and

that choice may affect the power of the procedure to detect specific alternatives. For

instance, in Example 2 above, the 37 impulse indicators {  = 64     100} are not

a particularly parsimonious way of expressing the step shift that occurs two thirds of

the way through the sample, whereas the single one-off step dummy 64 is.
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4.2 Re-interpretation and Generalization

This subsection discusses how IIS and its extensions provide a conceptual frame-

work for re-interpreting existing tests of forecast bias. Equally, saturation procedures

generalize those existing tests to allow for arbitrarily time-varying forecast bias.

For instance, the Mincer—Zarnowitz A test (based on equation (1)) is a special case

of super saturation in which only the step dummy 1 (equivalent to the intercept)

is included. The Mincer—Zarnowitz A test is also interpretable as the IIS test based

on equation (5), but where 1 = 2 =    =  is imposed , and the hypothesis 1 = 0

is tested. The Mincer—Zarnowitz B test (based on equation (3)) is a special case

of multiplicative indicator saturation in which the dependent variable is the forecast

error, the ’s are the intercept and the forecast, and the only multiplicative indicators

considered are those multiplied by the step indicator 1. Multiplicative indicator

saturation also includes the forecast encompassing test and standard tests of strong

efficiency as special cases; cf. Holden and Peel (1990) and Stekler (2002).

As equation (5) entails, saturation-based tests generalize the Mincer—Zarnowitz

tests to allow for time-varying forecast bias. This observation and the observations

above highlight the strength of the Mincer—Zarnowitz tests (that they focus on de-

tecting a constant nonzero forecast bias) and also their weakness (that they assume

that the forecast bias is constant over time). These characteristics of the Mincer—

Zarnowitz tests bear directly on the empirical results in the next two sections.

Certain challenges arise when interpreting a saturation-based test as a test of

forecast bias. Specifically, saturation-based tests can detect not only time-varying

forecast bias but also other forms of mis-specification, as reflected by discrepancies

between the actual data and their assumed distribution as implied by the model.

Such mis-specifications include outliers due to heteroscedasticity (as from a change

in the forecast error variance) and thick tails (thick, relative to the assumed distrib-

ution). IIS’s ability to detect many forms of mis-specification is thus a caveat for the

interpretation of IIS results per se. Two items can help resolve this interpretational

challenge: the retained dummies themselves, and outside information.

First, the structure of the retained dummies may have implications for their inter-

pretation. For instance, for mis-specification due to heteroscedasticity or thick tails,

retained impulses typically would not be sequential or–even if they were–would

not be of the same sign and of similar magnitude. Because (e.g.) step indicators

characterize sequential, same-signed, same-magnitude features, any retained step in-

dicators from super saturation would be unlikely to arise from heteroscedasticity or

thick tails. Hence, the interpretational caveat may not be germane to extended forms

of IIS such as super saturation. In that light, saturation procedures can serve as tools

for characterizing time-varying forecast bias qua bias, rather than as some unknown

form of mis-specification. Saturation procedures thus provide a generic approach to

estimating time-varying forecast bias, albeit a generic approach that is atheoretical,
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economically speaking.

Second, outside information–such as from economic, institutional, and historical

knowledge–may assist in interpreting saturation-based results. For instance, Sec-

tion 6 integrates saturation procedures with an economically based interpretation of

the estimated biases in light of the dates of business-cycle turning points. Features

of the government’s budget may imply systematic forecast errors (i.e., biases) at

business-cycle turning points. Such an economic interpretation holds, even although

impulse (rather than step) dummies statistically characterize the time-varying fore-

cast bias.

As a more general observation, different types of indicators are adept at character-

izing different sorts of bias: impulse dummies {} for date-specific anomalies, step
dummies {} for level shifts, and broken trends {} for evolving developments.
Transformations of the variable being forecast also may affect the interpretation of

the retained indicators. For instance, an impulse dummy for a growth rate implies a

level shift in the (log) level of the variable.

Saturation-based tests of forecast bias can serve both as diagnostic tools to detect

what is wrong with the forecasts, and as developmental tools to suggest how the fore-

casts can be improved. Clearly, “rejection of the null doesn’t imply the alternative”.

However, for time series data, the date-specific nature of saturation procedures can

aid in identifying important sources of forecast error. Use of these tests in forecast

development is consistent with a progressive modeling approach; see White (1990)

and Hendry and Doornik (2014).

5 Evidence on Biases in the Forecasts of Debt

This section examines the CBO, OMB, and APB forecasts of U.S. gross federal debt

for potential bias over 1984—2012. Standard (Mincer—Zarnowitz) tests of forecast bias

typically fail to detect economically and statistically important biases. By contrast,

saturation-based tests detect large time-varying biases in the CBO, OMB, and APB

forecasts, particularly for 1990, 1991, 2001—2003, and 2008—2011. Forecast biases for

a given year differ numerically across the CBO, OMB, and APB, albeit with some

similarities.

Table 2 reports the Mincer—Zarnowitz regressions in equations (1) and (3) for

the CBO, OMB, and APB forecasts, with columns alternating between the “A”

and “B” versions of the Mincer—Zarnowitz regression. Here and in subsequent ta-

bles, estimated standard errors appear in parentheses (·) under regression coefficients,
-ratios appear in curly brackets {·}, -values appear in square brackets [·], and ̂ de-
notes the residual standard error. For the Mincer—Zarnowitz test statistic in Table 2,

and for other test statistics here and below, the entries within a given block of num-

bers are the  -statistic for testing the null hypothesis against the designated main-
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Table 2: Coefficients, estimated standard errors, -ratios, and summary statistics for
Mincer—Zarnowitz A and B regressions of the CBO, OMB, and APB forecast errors.

Regressor
or statistic

CBO CBO OMB OMB APB APB

Intercept 027
(033)
{082}

−607
(460)

{−132}

−079
(040)

{−199}

1156
(515)
{224}

−036
(027)

{−134}

189
(382)
{050}

Forecast ̂ _ 00074
(00054)
{138}

_ −00144
(00060)
{−240}

_ −00026
(00044)
{−059}

̂ 1757% 1729% 2136% 1974% 1432% 1449%

RMSE of the
forecast

1746% 1746% 2243% 2243% 1452% 1452%

Mincer—
Zarnowitz
test statistic

067
[0421]
 (1 28)

130
[0290]
 (2 27)

396
[0056]
 (1 28)

521∗

[0012]
 (2 27)

180
[0191]
 (1 28)

105
[0363]
 (2 27)

Normality
statistic

106∗∗

[0005]
2(2)

540
[0067]
2(2)

135∗∗

[0001]
2(2)

172∗∗

[0000]
2(2)

600∗

[0050]
2(2)

679∗

[0034]
2(2)

Variance
instability
statistic

038 048∗ 043 039 037 030

tained hypothesis, the tail probability associated with that value of the  -statistic,

the degrees of freedom for the  -statistic (in parentheses), and (for saturation-based

statistics) the retained dummy variables. Superscript asterisks ∗ and ∗∗ denote re-
jections of the null hypothesis at the 5% and 1% levels respectively, and the null

hypothesis typically includes setting the coefficient on the intercept to zero. Doornik

and Hendry (2013) provide a description of the residual diagnostic statistics. For the

saturation-based statistics reported below,  is the number of potential regressors

for selection, and the target size is chosen much smaller than 1 in order to help

ensure that few if any indicators are retained fortuitously.

The results in Table 2 provide little evidence of forecast bias for any of the fore-

casts. From the first column for the CBO, the estimate of the forecast bias  in

equation (1) is 027, which is statistically insignificantly different from zero, with an

 -statistic of 067. From the second column for the CBO, the estimates of 0 and
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∗1 in equation (3) are −607 and 00074, which are individually insignificant with
-statistics of −132 and 138, and jointly insignificant with an  -statistic of 130.

The Mincer—Zarnowitz statistics for OMB and APB are likewise insignificant, except

that the Mincer—Zarnowitz B statistic for OMB is significant at around the 1% level.

Thus, the Mincer—Zarnowitz A test fails to detect bias in all three forecasts, and the

Mincer—Zarnowitz B test fails to detect bias in two of three forecasts. Standard tests

thus provide little evidence of forecast bias.

Table 3 reports forecast-encompassing statistics and saturation-based test statis-

tics of forecast bias for the CBO, OMB, and APB forecasts. Table 3 also includes

the Mincer—Zarnowitz statistics for comparison. The forecast-encompassing statis-

tic detects bias for all three forecasts; cf. Martinez (2011, 2015). Likewise, IIS and

its extensions always detect bias, and they do so for historically and economically

consequential years. The dates of several retained impulse and step dummies are in-

dicative of the following important events that potentially affected the actual federal

debt after its forecasts were made.

1990: Iraq invasion of Kuwait on August 2, 1990; July 1990—March 1991 recession.

2001: March—November 2001 recession; September 11, 2001.

2008, 2009: December 2007—June 2009 recession.

Recessions are dated per the National Bureau of Economic Research (2012). Business-

cycle turning points are prominent among the events listed. The four years listed

also highlight the difficulties in forecasting the debt, especially in light of unantic-

ipated events that affect both government expenditures and government revenues;

cf. Alexander and Stekler (1959) and Stekler (1967).

The saturation-based tests in Table 3 focus on the statistical significance of the

biases for each set of forecasts. The corresponding regressions permit assessing the

extent and economic and numerical importance of the bias for each set of forecasts.

Figure 2 plots the CBO, OMB, and APB forecast errors; and Figure 7 plots the

estimates of forecast bias obtained from ultra saturation. (Figure 8 provides an

alternative calculation of the forecast biases, as discussed in Section 6 below.)

The forecast biases vary markedly over time, and they exhibit some similarities

across agencies. For the CBO forecasts, the bias is approximately 2.5% for 1990

and 2001—2003, 5% for 2008, for the most part declining thereafter, and —0.5% (and

statistically detectably so) for all other years. For the OMB forecasts, the bias is

approximately —8% for 2009 and —0.5% for all other years. For the APB forecasts,

the bias is approximately 4% for 2008 and —0.5% for all other years. As a reference,

the residual standard errors for the regressions with ultra saturation are 0.68%, 1.65%,

and 1.20% respectively. In several instances, forecast biases exceed 2% in absolute

value. These biases are economically large, especially considering that debt is a stock

(not a flow), and that the forecasts are made less than nine months prior to the end

of the fiscal year.
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Table 3: Statistics for testing for bias in the CBO, OMB, and APB forecasts.

Statistic
or regressor
(target size)

 CBO OMB APB

Mincer—
Zarnowitz A

1 067
[0421]
 (1 28)

396
[0056]
 (1 28)

180
[0191]
 (1 28)

Mincer—
Zarnowitz B

2 130
[0290]
 (2 27)

521∗

[0012]
 (2 27)

105
[0363]
 (2 27)

Forecast-
encompassing

3 838∗∗

[0000]
 (3 26)

1944∗∗

[0000]
 (3 26)

312∗

[0043]
 (3 26)

Impulse
indicator
saturation
(1%)

29 1850∗∗

[0000]
 (8 21)
1990

2001 2002 2003
2008 2009 2010

2804∗∗

[0000]
 (6 23)
1990 2001

2008 2009 2011

1440∗∗

[0000]
 (5 24)
1990 2001
2008 2009

Super
saturation
(0.5%)

56 1766∗∗

[0000]
 (8 21)

2008 1990 1991
2001 2004
2008 2011

1544∗∗

[0000]
 (4 25)
2008

2008 2010

763∗∗

[0002]
 (2 27)
2008

Ultra
saturation
(0.3%)

84 2416∗∗

[0000]
 (7 22)
1990 2011
2001 2004
2008 2009

1333∗∗

[0000]
 (2 27)
2009

763∗∗

[0002]
 (2 27)
2008

Intercept
(OLS)

1 027
(033)
{082}
[0421]

−079
(040)

{−199}
[0056]

−036
(027)

{−134}
[0191]

Intercept
(IIS at 1%)

29 −058
(015)

{−378}
[0001]

−079
(018)

{−443}
[0000]

−060
(016)

{−374}
[0001]
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Figure 7: Estimates of forecast bias for the log of U.S. gross federal debt using ultra

saturation.

Estimated bias for CBO forecasts (NBER-based) 
Estimated bias for OMB forecasts (NBER-based) 
Estimated bias for APB forecasts (NBER-based) 

1985 1990 1995 2000 2005 2010
-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06
Estimated bias for CBO forecasts (NBER-based) 
Estimated bias for OMB forecasts (NBER-based) 
Estimated bias for APB forecasts (NBER-based) 

Figure 8: Estimates of forecast bias for the log of U.S. gross federal debt using a

standardized set of NBER-dated and other impulse dummies.
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As Figure 7 shows, forecast biases are sometimes positive and othertimes negative.

The Mincer—Zarnowitz tests have particular difficulty in detecting such biases because

the Mincer—Zarnowitz tests average all biases (both negative and positive) over time,

and because the Mincer—Zarnowitz tests assign any time variation in bias to the

residual rather than to the bias itself. As an extreme hypothetical example, the

Mincer—Zarnowitz A test has no power whatsoever to detect a forecast bias that is

+$10100 for the first half of the sample and −$10100 for the second half of the sample,
even though this bias would be obvious from (e.g.) plotting the forecast errors.

Mincer—Zarnowitz tests also can lack power to detect forecast bias if forecast errors

have thick tails or are heteroscedastic. Indeed, for every Mincer—Zarnowitz regression

in Table 2, residual diagnostic statistics reject either normality or homoscedasticity.

As follows from Johansen and Nielsen (2009), IIS can provide robust inference about

the intercept in such a situation. While heteroscedasticity-consistent standard er-

rors may provide consistent inference, they fail to improve efficiency of coefficient

estimates, whereas robust estimation techniques such as IIS can. Those differences

are highlighted in the bottom two rows of Table 3, which compare the estimated in-

tercepts in the (OLS) Mincer—Zarnowitz A regressions with the estimated intercepts

using IIS. The intercepts in the standard Mincer—Zarnowitz A regressions are statis-

tically insignificant, whereas the intercepts estimated using IIS are highly significant.

Even when IIS is viewed purely as a robust estimation procedure, empirical inferences

about bias alter dramatically for the CBO, OMB, and APB forecasts. Bias is present

in all three forecasts, and the standard Mincer—Zarnowitz tests typically fail to detect

that bias. Section 6 goes further by re-interpreting the selected indicators themselves

as resulting from an economically based time-varying forecast bias.

6 An Economic Interpretation of the Forecast
Biases

This section examines the forecast biases in light of the business cycle. Section 6.1

re-interprets the estimated biases in light of the dates for the peaks and troughs

of the business cycle, as determined by the National Bureau of Economic Research

(NBER). This re-interpretation leads to a standardized reformulation of the estimated

forecast biases in terms of business-cycle turning points, augmented by a few addi-

tional adjustments. Thus, this approach draws on Sinclair, Joutz, and Stekler (2010),

who analyze the Fed’s Greenbook forecasts similarly; and on Hendry (1999), who re-

interprets IIS-detected outliers in an economic and institutional framework. See also

Dyckman and Stekler (1966) and Stekler (1972, 2003). Section 6.2 evaluates these

new models of forecast bias, including with tests for biases associated with political

factors. Section 6.3 discusses some implications of forecast bias for forecasting.
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Table 4: NBER reference dates and announcement dates for 1984—2012.

Event Reference date

of the event

Announcement date

of the reference date

Length of

determination

(in months)

Impulse

indicator

Peak July 1990 April 25, 1991 9 1990

Trough March 1991 December 22, 1992 21 1991

Peak March 2001 November 26, 2001 8 2001

Trough November 2001 July 17, 2003 20 2002

Peak December 2007 December 1, 2008 11 2008

Trough June 2009 September 20, 2010 15 2009

Notes. The length of determination is the time elapsed from the end of the month of the reference

date to the announcement date of the reference date, rounded to the nearest end of month. The

date of the impulse indicator is the calendar year in which the fiscal year ends for the fiscal year

that spans the reference date. A superscript  or  on an impulse indicator denotes peak or

trough; and that superscript emphasizes the event associated with the superscripted indicator.

Source for events and dates: National Bureau of Economic Research (2012).

6.1 Forecast Biases and Turning Points

The previous section noted that several of the years associated with forecast bias are

years in which major events–such as business-cycle turning points–occurred after

the forecasts were made. As a way of capturing these phenomena in an economi-

cally interpretable manner, this subsection re-analyzes the forecast errors, specifically

accounting for the effects of business-cycle turning points with impulse indicators.

Additionally, IIS and its extensions are re-calculated, conditional on including the

impulse indicators for these turning-point events.

The analysis below allows the forecast bias to alter for years in which an NBER-

dated peak or trough occurs after the publication of the forecast but before the end

of the fiscal year. In practice, impulse indicators are constructed for these turning-

point events, and these dummy variables are included in regressions such as those

for calculating the Mincer—Zarnowitz tests. From an economic and budgetary per-

spective, turning-point events could generate systematic biases in forecasts of debt

because the advent of a recession or an expansion is likely to affect both sides of

the federal government’s balance sheet. For instance, the onset of a recession could

lead to higher-than-anticipated outlays (as through higher unemployment compensa-

tion) and lower-than-anticipated revenues (as through lower individual and corporate

income taxes).

Table 4 reports the NBER’s turning-point events (“peak” or “trough”) within the

sample, the date of the event (the “reference date” in the NBER’s terminology), the
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Table 5: Statistics for testing for additional time-varying forecast bias in regressions
of the CBO, OMB, and APB forecast errors on a standardized set of NBER-dated
impulse indicators.

Statistic
(target size)

 CBO OMB APB

IIS
(1%)

23 1169∗∗

[0000]
 (2 20)
2003 2010

2099∗∗

[0000]
 (1 21)
2011

No
impulses
selected

date on which the NBER announced the determination of that event, and the length

of time taken to determine that an event had occurred; see the National Bureau

of Economic Research (2012) for details. The corresponding impulse dummies are

denoted 1990, 

1991, 


2001, 


2002, 


2008, and 2009, where a superscript  or  denotes

that the event was a peak or trough, and the subscript indicates the year of the event

(i.e.,  in the notation above for the subscript on an indicator dummy).

The turning-point dummies appear necessary to capture the time variation in the

forecast bias, but they do not appear sufficient. When the turning-point dummies are

added to (e.g.) the Mincer—Zarnowitz A regression in equation (1), those dummies

do capture economically and statistically important time dependence of the forecast

bias. However, there is also evidence of time-varying bias, additional to what is

associated with those turning points. Specifically, when IIS is applied to the version

of equation (1) that is augmented by the turning-point dummies, IIS detects three

additional years (2003, 2010, 2011) with bias for the CBO and OMB forecasts. Those

three years immediately follow troughs, suggesting a potential explanation.

Table 5 reports the additional impulse dummies detected and the corresponding

test statistics. The additional dummies detected differ across agencies: 2003 and

2010 for the CBO, 2011 for the OMB, and none for the APB. For a given forecast,

the indicators selected are the same across saturation procedures, whether IIS at 1%

( = 23), super saturation at 05% ( = 50), or ultra saturation at 03% ( = 78).

To provide a unified and encompassing approach, the agencies’ forecast errors are

re-analyzed in regressions that include an intercept, all turning-point dummies, and

all three of the additional dummies from Table 5. Table 6 reports these regressions,

and Figure 8 (above) graphs the corresponding estimated forecast biases. This uni-

fied approach is also in line with the methodology in Hendry and Johansen (2015),

who advocate (and provide the statistical underpinnings for) empirical analysis that

embodies the available economic theory, while allowing model selection to detect ad-

ditional phenomena that are also incorporated into the empirical model.
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Table 6: Coefficients, estimated standard errors, and summary statistics for regres-
sions of the CBO, OMB, and APB forecast errors on a standardized set of NBER-
dated and other impulse indicators.

Regressor or statistic CBO OMB APB

Intercept −054
(015)

−088
(018)

−069
(015)

1990 291
(071)

382
(082)

246
(067)

1991 034
(071)

036
(082)

021
(067)

2001 348
(071)

343
(082)

320
(067)

2002 307
(071)

187
(082)

201
(067)

2008 622
(071)

424
(082)

454
(067)

2009 348
(071)

−716
(082)

−286
(067)

2003 261
(071)

098
(082)

147
(067)

2010 253
(071)

−102
(082)

−047
(067)

2011 −137
(071)

−384
(082)

−095
(067)

̂ 0690% 0798% 0654%

RMSE of the forecast 1746% 2243% 1452%

AR(2) LM statistic 047
[0634]
 (2 17)

145
[0261]
 (2 17)

010
[0910]
 (2 17)

ARCH(1) LM statistic 018
[0674]
 (1 27)

036
[0554]
 (1 27)

000
[0951]
 (1 27)

Normality statistic 108
[0582]
2(2)

463
[0099]
2(2)

609∗

[0048]
2(2)

Ramsey (1969)
RESET statistic

000
[0999]
 (2 17)

000
[0996]
 (2 17)

000
[0999]
 (2 17)
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The estimated biases in Figure 8 are thus interpretable economically, and they

arise primarily from turning points in the business cycle. The three business-cycle

peaks are all associated with substantial under-prediction of the debt: approximately

2%—3% in 1990 and 2001, and 3%—6% in 2008. Debt tends to be slightly over-

predicted (by roughly 05%—1%) during 1984—1989, 1992—2000, 2004—2007, and 2012,

which correspond to expansionary periods: see the intercepts in Table 6. Numeri-

cally and economically, the estimated biases are very similar across forecasts through

2008, but differ markedly thereafter. Statistically, the estimated biases in Figure 8

are substantial, noting the large difference between the residual standard error (̂) of

a given regression in Table 6 and the root mean squared error (RMSE) of the corre-

sponding forecast. Interestingly, these economically based estimated forecast biases

are generally similar to the “atheoretically based” estimated biases in Figure 7, which

are derived from ultra saturation alone.

The estimated biases in Figure 8 also can be assessed statistically through resid-

ual diagnostics of the corresponding estimated equations. The standard diagnostics

reported in Table 6 do not detect any substantial evidence of mis-specification. In

particular, the Ramsey (1969) RESET test does not detect any nonlinearity, addi-

tional to that found by IIS. Conversely, the saturation-based tests for time-varying

bias in Section 5 are very much in the spirit of Ramsey’s RESET test for nonlinear

mis-specification.

6.2 Assessment of the Economic Interpretation

This subsection assesses the economic interpretation of the models of forecast bias

in Table 6 by testing various hypotheses about these models. Table 7 examines

hypotheses that restrict the parameters estimated in Table 6–hypotheses of unbi-

asedness, the degree of bias induced by turning points, and biases across different

forecasts. Table 8 examines hypotheses that focus on the potential importance of

information excluded from the regressions in Table 6: assumed efficiency (in Mincer

and Zarnowitz’s sense), alternative forecasts, the phase of the NBER business cy-

cle, the White House administration, the political party in the White House, and

dates of presidential elections. Empirically, the magnitude of the forecast bias varies

across business cycles; and the forecast bias does not appear politically related. The

remainder of this subsection considers the results in Tables 7 and 8 in detail.

Table 7 examines restrictions on the parameters estimated in Table 6. Hypo-

thesis (i) in Table 7 restricts all coefficients (including the intercept) to equal zero.

This is denoted the Mincer—Zarnowitz A∗ test because it generalizes the Mincer—
Zarnowitz A test by allowing for time-varying forecast bias. If all coefficients are

zero, then the forecasts are unbiased. Unbiasedness is strongly rejected for all agen-

cies’ forecasts, contrasting with non-rejection by the Mincer—Zarnowitz A tests in

Table 3.
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Table 7: Tests of coefficient restrictions in regressions of the CBO, OMB, and APB
forecast errors on a standardized set of NBER-dated and other impulse indicators.

Hypothesis or statistic CBO OMB APB

(i) Mincer—
Zarnowitz A∗

1670∗∗

[0000]
 (10 19)

2099∗∗

[0000]
 (10 19)

1238∗∗

[0000]
 (10 19)

(ii) Mincer—
Zarnowitz A∗∗

1208∗∗

[0002]
 (1 19)

2440∗∗

[0000]
 (1 19)

2215∗∗

[0000]
 (1 19)

(iii) Equal
coefficients
(by event)

636∗∗

[0002]
 (4 19)

1847∗∗

[0000]
 (4 19)

839∗∗

[0000]
 (4 19)

(iv) Equal magnitude,
opposite-signed
coefficients

2559∗∗

[0000]
 (5 19)

1651∗∗

[0000]
 (5 19)

1219∗∗

[0000]
 (5 19)

(v) Equality of biases
across forecasts

8623∗∗

[0000]
2(10)

(CBO=OMB)

6377∗∗

[0000]
2(10)

(OMB=APB)

10031∗∗

[0000]
2(10)

(APB=CBO)

Hypothesis (ii) restricts just the intercept in Table 6 to equal zero. This also is

a variant of the hypothesis underlying the Mincer—Zarnowitz A test, so it is denoted

Mincer—Zarnowitz A∗∗. This hypothesis is rejected for all forecasts. Rejection implies
a bias for all years without an impulse indicator in the regression, i.e., for the years

1984—1989, 1992—2000, 2004—2007, and 2012, all of which are during expansions. The

estimated biases for those years are —0.54%, —0.88%, and —0.69% for the CBO, OMB,

and APB respectively. That is, during these expansionary years, forecasts tend to

over-predict the debt by about two-thirds of a percent.

Hypotheses (iii) and (iv) restrict the bias associated with turning points: either

so that that bias is equal across dates for a specific event (peak or trough), or so

that that bias is of equal magnitude across all events and opposite-signed for peaks

and troughs. These hypotheses thus examine whether all peaks have the same bias

(and likewise, all troughs), and additionally whether the nature of the event (peak or

trough) affects only the sign of the bias. Hypotheses (iii) and (iv) are rejected for all

agencies’ forecasts. Not all peaks–nor all troughs–are equal in their effect on bias.

Hypothesis (v) imposes equality of the bias across different forecasts, e.g., testing
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whether the CBO and OMB forecast biases are equal. Hypothesis (v) is strongly

rejected, whether comparing CBO and OMB forecast biases, OMB and APB forecast

biases, or APB and CBO forecast biases. Furthermore, the hypothesis of equality

across CBO, OMB, and APB forecast biases is rejected, with the likelihood ratio

statistic being 2(20) = 1499∗∗ [0000]. Thus, in Figure 8, the time-varying forecast
biases for the CBO, OMB, and APB are all significantly different from each other:

the CBO, OMB, and APB forecasts do not share the same bias.

Table 8 focuses on the potential importance of information excluded from the

regressions in Table 6. While IIS directly applied to Table 6’s regressions would

implicitly test the hypotheses listed in Table 8, explicit tests of these hypotheses

may have more power than IIS. Hypothesis #1 in Table 8 imposes efficiency in the

sense of Mincer and Zarnowitz, generalizing on the hypothesis 1 = 1 in equation (2)

and hence denoted Mincer—Zarnowitz B∗. This hypothesis is examined by testing
for the significance of the forecast itself, if the forecast is added to a regression in

Table 6. This test is not rejected for the CBO or the APB, but it is rejected for the

OMB. That said, the implied estimate of 1 for the OMB is 09922, which is very

close to unity numerically. Hypothesis #2 (forecast encompassing) considers whether

alternative forecasts help explain a given forecast’s forecast error. Only for the OMB

do the other agencies’ forecasts aid in explaining the forecast error, and then, only

marginally so. Hypothesis #3 considers whether the phase of the NBER business

cycle (expansion or contraction) matters for the forecast bias, above and beyond the

presence of turning points. The phase does not matter for the CBO or APB but does

matter (marginally) for the OMB.

The remaining hypotheses in Table 8 examine whether various political factors bias

the forecasts. These hypotheses are very much in the spirit of Faust and Irons (1999),

who test for presidential-cycle effects in U.S. macro-economic data. These hypotheses

about political factors are of interest for all of the forecasts, even though the Con-

gressional Budget Office produces “nonpartisan analysis for the U.S. Congress” (CBO

website). In particular, outcomes of debt might be influenced by political factors, in

which case the forecast errors could be, too. That is, a forecast could be biased

because it failed to account for political factors that affected the actual outcome.

Hypotheses #4 and #5 consider the administration in the White House and the

political party of the administration, where the “administration” is defined by the

four-year presidential term. Neither the administration nor its political party appear

to affect the forecast bias of any of the agencies. Hypotheses #6—#8 consider the

presidential elections themselves, as measured by the year of the election, or by the

political party of the president elected in that year. Furthermore, because the fore-

casts are made early in the calendar year and the presidential elections are held shortly

after the end of the fiscal year, these hypotheses are also tested for the year after the

presidential election (Hypotheses #9—#11). As the statistics for Hypotheses #6—#11

indicate, presidential elections do not appear to affect the forecast bias of any of the
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Table 8: Diagnostic statistics for regressions of the CBO, OMB, and APB forecast
errors on a standardized set of NBER-dated and other impulse indicators.

Hypothesis or statistic CBO OMB APB

1. Mincer—
Zarnowitz B∗

025
[0620]
 (1 18)

935∗∗

[0007]
 (1 18)

041
[0532]
 (1 18)

2. Forecast
encompassing

117
[0334]
 (2 17)

445∗

[0028]
 (2 17)

020
[0820]
 (2 17)

3. Phase of the NBER
business cycle

069
[0574]
 (3 16)

483∗

[0014]
 (3 16)

055
[0656]
 (3 16)

4. White House
administration

079
[0606]
 (7 12)

172
[0194]
 (7 12)

049
[0823]
 (7 12)

5. Political party of
the administration

000
[0948]
 (1 18)

022
[0642]
 (1 18)

007
[0797]
 (1 18)

6. Presidential
election year

088
[0550]
 (7 12)

158
[0233]
 (7 12)

063
[0725]
 (7 12)

7. Year that a Democratic
president was elected

054
[0471]
 (1 18)

170
[0209]
 (1 18)

013
[0727]
 (1 18)

8. Year that a Republican
president was elected

111
[0305]
 (1 18)

012
[0732]
 (1 18)

057
[0458]
 (1 18)

9. Year after a
presidential election

081
[0565]
 (5 14)

044
[0811]
 (5 14)

061
[0696]
 (5 14)

10. Year after a Democratic
president was elected

142
[0249]
 (1 18)

059
[0453]
 (1 18)

060
[0448]
 (1 18)

11. Year after a Republican
president was elected

035
[0560]
 (1 18)

002
[0892]
 (1 18)

032
[0578]
 (1 18)
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agencies, regardless of the particular measure used for the presidential election year.

Notably, the results on Hypotheses #4—#11 pertain to forecast errors and are mute

about whether politics affects the government debt and its forecasts.

In summary, debt forecasts by the CBO, OMB, and APB exhibit time-varying

biases that are primarily associated with turning points in the business cycle. The

biases are not the same across the agencies making the forecasts, nor are they the same

for peaks (or troughs) across different business cycles. Biases appear little affected

by other factors. In particular, the biases do not appear to be politically related.

6.3 Remarks and Implications

This subsection discusses some potential implications of forecast bias. As background,

this subsection first discusses forecast bias as a conditional expectation and then

examines the importance of the information set on which that expectation is taken.

Forecast bias is defined as the expectation of the deviation between the actual

outcome and the forecast itself. Either implicitly or explicitly, this expectation is

conditional on an information set, such as past data; and the choice of that informa-

tion set can affect the forecast bias. For instance, a forecast error may be unantic-

ipated, unpredictable, and non-systematic conditional on one information set–but

anticipated, predictable, and systematic conditional on another information set.

To illustrate, consider a simple (albeit slightly modified) example from Granger’s

(1983) paper “Forecasting White Noise”. Define the forecast error  as (− ̂), and
assume that  is white noise and has an unconditional zero mean. Hence, from the

properties of white noise, the expectation of the forecast error conditional on its own

lag is zero:

E [( − ̂) | (−1 − ̂−1)] = E [ |−1] = 0 (8)

where E [·] is the expectations operator. In fact, conditional on the lagged forecast
error −1, the current forecast error  is unpredictable, and the forecast ̂ is unbiased
for . That said, whether the forecast is really unbiased–and whether the forecast

error is really unpredictable–depends on the information set being conditioned upon.

To see the importance of the information set chosen, suppose that the white-noise

forecast error  is made up of two white-noise processes  and :

 = −1 + . (9)

Conditional on −1, rather than on −1, the forecast error is both biased and pre-
dictable:

E [ | −1] = E [(−1 + ) | −1] = −1. (10)

If −1 is large relative to , the forecast error may appear to be an outlier conditional
on the lagged forecast error −1, whereas the forecast error simply may be biased
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conditional on −1. As equations (8), (9), and (10) highlight, the choice of condition-
ing set can matter; see Clements and Hendry (1999, Chapter 1.4.1) and Hendry and

Mizon (2014) for discussion.

Some additional observations are germane. First, the forecast bias in equation (10)

is systematic in that it depends directly on −1. Second, that forecast bias is not
persistent, noting that  is white noise. Third, the conditioning information sets in

both equations (8) and (10) include only lagged information.

Several different information sets are relevant for analyzing the forecasts of debt,

including:

(a) knowledge about the economy, as available at the time that the forecast is made;

(b) knowledge about the economy, as available on September 30; and

(c) the actual state of the economy on and before September 30.

Information set (a) is relevant for formulating the forecasts themselves, whereas in-

formation sets (a), (b), and (c) are all valuable for casting light on the sources of

forecast error. In particular, the NBER dates for business-cycle turning points can

be viewed as information in (c) and hence as valid information for ex post analysis

of the forecast errors. Those dates provide the basis for the statistical and economic

interpretation of the estimated forecast biases in Section 6.2. Information about up-

coming turning points may be present in (a), but not fully utilized in formulating the

forecasts, thereby leading to forecast biases relative to (a).

The presence of forecast bias implies the potential for improved forecasts. The

feasibility of improvement may depend on the information in (a)—(c), as the large

biases in 2001 and 1990 illustrate. For 2001, the NBER-dated peak of the business

cycle is March. Because the 2001 forecasts were released on January 31 (CBO), Feb-

ruary 28 (OMB), and May 1 (APB), exploitable information about the 2001 recession

may have been available when the forecasts were being prepared. For 1990, however,

the NBER-dated peak of the business cycle is July, which is much later in the forecast

period than March. Hence, at the time of forecasting in 1990, evidence about the

upcoming recession may have been more limited than in 2001. Additionally, Iraq’s

invasion of Kuwait begins on August 2, 1990; and that event and its timing would

have been difficult to predict when the debt forecasts were being prepared in early

1990. These two examples highlight the importance of developing robust and accurate

forecasts, and some of the difficulties in doing so.

As Fildes and Stekler (2002) and others have documented, turning points have

been difficult to forecast. The large forecast biases for debt appear to reflect that

challenge. From an institutional perspective, it may be useful to isolate the causes

of the forecast errors according to the various assumptions made about fiscal policy,

outlays and revenues, and the path of the economy in terms of variables such as

output, inflation, and interest rates. Such an analysis could lead to improved forecasts,

or at least provide a deeper understanding of the sources of forecast error.
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7 Conclusions

Government debt and its forecasts feature prominently in current economic and polit-

ical discussions. The properties of these forecasts are thus of interest, and it matters

how these properties are assessed. Mincer—Zarnowitz tests typically fail to detect

biases in the CBO, OMB, and APB one-year-ahead forecasts of U.S. gross federal

debt over 1984—2012. By contrast, more general tests based on impulse indicator

saturation detect economically large, systematic, and statistically highly significant

time-varying biases in the CBO, OMB, and APB forecasts, particularly for 1990,

1991, 2001—2003, and 2008—2011. These biases differ according to the agency making

the forecasts, and these biases are closely linked to turning points in the business cycle

and (to a lesser degree) economic expansions. However, these biases do not appear

to be politically related. The IIS approach also explains why Mincer—Zarnowitz tests

may fail to detect bias. The Mincer—Zarnowitz tests average over the biases for all

observations, but those biases may be positive for some observations and negative for

others, thereby reducing the tests’ power.

Impulse indicator saturation defines a generic procedure for examining forecast

properties and, in particular, for detecting and quantifying forecast bias. Forecast

bias can be systematic yet time-varying; it can be difficult to detect in a timely

fashion; and it may have substantive implications for policy analysis. IIS and its

extensions can help address these issues by characterizing systematic properties in

the forecast errors. The IIS approach also links directly to existing techniques for

robustifying forecasts, noting that intercept correction is a variant of super saturation;

see Clements and Hendry (1996, 1999, 2002a), Hendry (2006), Castle, Fawcett, and

Hendry (2010), and Castle, Clements, and Hendry (2015).

The IIS approach has many potential applications, beyond its initial roles in model

evaluation and robust estimation. Ericsson (2012) considers its uses for detecting

crises, jumps, and changes in regime. IIS also provides a framework for creating

near real-time early-warning and rapid-detection devices, such as of financial market

anomalies; cf. Vere-Jones (1995) on forecasting earthquakes and earthquake risk, and

Goldstein, Kaminsky, and Reinhart (2000) on early warning systems for emerging

market economies. Relatedly, the model selection approach in IIS is applicable to

nowcasting with a large set of potential explanatory variables, such as those gener-

ated from Google Trends; see Doornik (2009b), Choi and Varian (2012), and Castle,

Hendry, and Kitov (2016). Finally, IIS generalizes to systems, and so is consonant

with the approach proposed in Sinclair, Stekler, and Carnow (2012) for evaluating

economic forecasts.
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AppendixA. Interpreting Estimates of Forecast Bias

This appendix resolves differences in results and interpretation between

Ericsson’s (2017) and Gamber and Liebner’s (2017) assessments of fore-

casts of U.S. gross federal debt. As Gamber and Liebner (2017) discuss,

heteroscedasticity could explain the empirical results in Ericsson (2017).

However, the combined evidence in Ericsson (2017) and Gamber and Lieb-

ner (2017) supports the interpretation that these forecasts have significant

time-varying biases. Both Ericsson (2017) and Gamber and Liebner (2017)

advocate using impulse indicator saturation in empirical modeling.

A.1 Introduction

Using impulse indicator saturation (IIS), Ericsson (2017) tests for and detects eco-

nomically large and statistically highly significant time-varying biases in forecasts of

U.S. gross federal debt over 1984—2012, particularly at turning points in the business

cycle. Gamber and Liebner (2017) discuss Ericsson (2017), obtaining different em-

pirical results and offering a different interpretation. This appendix resolves those

differences through a re-examination of IIS.

Gamber and Liebner (2017) examine Ericsson’s (2017) choice of IIS’s significance

level and interpretation of the estimated bias, concluding that the empirical basis

for time-varying bias per se is weaker than claimed, and that the outliers detected

by IIS could easily arise from heteroscedasticity rather than from time-varying bias.

Because IIS does have power to detect heteroscedasticity, heteroscedasticity could

explain the IIS results in Ericsson (2017). However, as Sections A.2 and A.3 below

show, time-varying bias is more consistent with the combined evidence in Ericsson

(2017) and Gamber and Liebner (2017). Section A.4 comments further on modeling

with IIS.

A.2 Analysis of Alternative Model Specifications

Ericsson (2017) and Gamber and Liebner (2017) assess forecasts of U.S. federal debt,

focusing on the economic and statistical bases for the selected impulse indicators from

IIS. Although Ericsson (2017) and Gamber and Liebner (2017) evaluate the same set

of forecasts, they obtain different empirical results and offer different interpretations

of those results. Section A.3 below resolves the differences in interpretation through

a re-examination of IIS. The current section resolves the differences in the empirical

results themselves–both qualitatively and quantitatively–through an encompassing

approach by examining alternative model specifications.

In particular, encompassing analysis of an analytical example demonstrates how

certain model specifications reduce the power of tests to detect impulse indicators,
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where that power depends directly on -ratios for the indicators. The encompassing

analysis implies that some relevant indicators may nonetheless appear unimportant in

certain models, simply because those models omit relevant variables, thereby increas-

ing the residual standard error and hence reducing the -ratios. The current section

first presents the analytical example and then applies it to the disparate empirical

results with IIS.

This type of assessment is sometimes called “mis-specification analysis” because

some models analyzed omit certain relevant variables and hence are mis-specified,

relative to the data generation process; see Sargan (1988, Chapter 8). Mizon and

Richard (1986) propose a constructive utilization of mis-specification analysis–known

as the encompassing approach–in which a given model (Model M0, below) is shown

to explain or “encompass” properties of the other models (Models M1 andM2, below).

In the current section, model properties include -ratios, residual variances, and the

selection of impulse dummies. See Davidson, Hendry, Srba, and Yeo (1978), Mizon

and Richard (1986), and Bontemps and Mizon (2008) for further discussion.

Analytical example. To put the encompassing analysis in context, suppose that

both blocks of observations for bare-bones IIS include impulse dummies that have

nonzero coefficients in the data generation process (DGP). In bare-bones IIS, estima-

tion of coefficients for dummies that saturate a given block then implies omission of

the other block’s relevant dummies in the corresponding model. These omitted dum-

mies typically result in reduced power to detect the significance of included dummies.

An analytical example illustrates.1

In a notation similar to that in Ericsson (2017, Example 2), let the DGP for the

variable  be as follows.

DGP:  = 0 + 11 + 22 +   ∼ NID(0 2)  = 1      (A1)

That is,  is normally and independently distributed with a constant mean 0 and

constant variance 2 over  observations, except that ’s mean is 0 + 1 in period

 = 1 (when the impulse indicator 1 is nonzero) and 0 + 2 in period  = 2 (when

2 6= 0). For expository purposes, assume that 1 and 2 are both strictly positive,

and that 1 and 2 are in the first and second blocks of observations respectively.

Consider three models, denoted M0, M1, and M2. Model M0 is specified as the

DGP (A1) itself.

Model M0:  = 0 + 11 + 22 +  (A2)

Models M1 and M2 entail omitted variables. Model M1 includes 1 but omits 2.

Model M1:  = 0 + 11 + 1 (A3)

1This analysis and its empirical application below ignore changes in the estimated coefficients

that arise from the omitted impulse indicators. However, because impulse indicators are orthogonal,

those changes should not be an important consideration here.
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Model M2 includes 2 but omits 1.

Model M2:  = 0 + 22 + 2 (A4)

For Model M1, the error 1 is (22 + ), so Model M1’s mean squared error 
2
1 is:

21 = (
2 + 22 ) (A5)

which is larger than 2, the error variance for Model M0. Likewise, for Model M2,

the error 2 is (11 + ), and the mean squared error 
2
2 is:

22 = (
2 + 21 ) (A6)

which also is larger than 2.

One possible consequence of model specifications such as M1 and M2 is to shrink

-ratios on included variables. As equations (A5) and (A6) imply, the estimated

residual variance in a model with an omitted relevant variable is typically larger than

the estimated residual variance in the DGP. Hence, the estimated standard error on

the coefficient of a variable included in that model is larger than the corresponding

coefficient’s estimated standard error in the DGP. That shrinks the coefficient’s -ratio

in the model with the omitted variable.

For example, the -ratio for 1 in Model M1 uses ̂1 in the coefficient’s estimated

standard error, rather than ̂, which would be used for its -ratio in Model M0.

Thus, 1 might be significant in Model M0 but appear insignificant in Model M1,

simply because Model M1 excludes 2 and so ̂1  ̂. Likewise, the -ratio for 2

in Model M2 uses ̂2 in the coefficient’s estimated standard error, rather than ̂.

Hence, 2 might be significant in Model M0 but appear insignificant in Model M2

because Model M2 excludes 1 and so ̂2  ̂. As Hendry and Doornik (2014, p. 243)

summarize, “[w]hen there is more than a single break, a failure to detect one [break]

increases the residual variance and so lowers the probability of detecting any others.”

Empirical application. Gamber and Liebner (2017) discuss -ratios, significance

levels, and empirical power for IIS, illustrating with the CBO forecasts. To interpret

these empirical results in an encompassing framework, consider a baseline specification

that includes all seven impulse indicators selected in Ericsson (2017). The observed

-ratios on retained impulses in Gamber and Liebner’s models are closely matched

by -ratios as numerically solved from an encompassing analysis that starts with that

baseline seven-indicator model. This comparison appears in Table A1. Moreover, the

retention (or not) of individual impulse indicators in Gamber and Liebner (2017) is

consistent with the losses in power implied by the encompassing analysis.

Key empirical results can be summarized, as follows. Using the “bare-bones”

implementation of IIS, Gamber and Liebner (2017, Section 3) detect the following

impulse indicators in the second subsample (1998—2012):
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Table A1: Actual and solved -ratios and residual standard errors for regressions of
the CBO forecast errors on various impulse indicators.

Regressor Block analyzed, significance level or target size, and result and column
or statistic Bare-bones IIS Autometrics IIS

2nd block

(1%)

(a)
col. #1

2nd block

(1%, 1%)

(b)
col. #2

2nd block

(5%)

(c)
col. #3

1st block

(—)

(d)
col. #4

Multi-block

(1%)

(e)
col. #5a

Estimated

coefficient ̂

(e)
col. #5b

1990 12
h15i

40∗∗∗ 296

2001 24∗
h27∗i

35∗∗
h38∗∗i

48∗∗∗ 352

2002 31∗∗
h34∗∗i

42∗∗∗ 312

2003 26∗
h29∗∗i

36∗∗ 266

2008 46∗∗∗
h48∗∗∗i

38∗∗∗
h39∗∗∗i

64∗∗∗
h67∗∗∗i

85∗∗∗ 627

2009 25∗
h27∗i

36∗∗
h38∗∗i

48∗∗∗ 353

2010 26∗
h28∗i

35∗∗ 257

̂ 124
h128i

144
h158i

094
h091i

174
h188i

072 –

Calculated
rescaling
factor

h057i h046i h080i h038i − –

Notes. Column headers indicate the version of IIS employed, the block(s) analyzed, the signif-

icance level (for bare-bones IIS) or target size (for Autometrics IIS), associated result (a)—(e),

and the column number. Unbracketed numerical values are observed empirical -ratios, ̂, and

(for Column #5b) estimated coefficients from the designated regressions. Values in angled

brackets h·i are as solved from the encompassing analysis. Superscript asterisks ∗, ∗∗, and ∗∗∗

denote rejections of the null hypothesis at the 5%, 1%, and 01% levels respectively; and the null

hypothesis is that the coefficient on the corresponding impulse indicator is zero. All actual and

solved values are reported to just one or two decimals for readability, but solved quantities are

calculated from unrounded actual values. All regressions include an intercept; ̂ is in percent;

and the sample period is 1984—2012. In Column #2, selection at the 1% significance level is

repeated.
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(a) 2001, 2008, and 2009 (at a 1% significance level);

(b) 2008 only (at a 1% significance level, but re-selected from (a)); and

(c) 2001, 2002, 2003, 2008, 2009, and 2010 (at a 5% significance level).

For the first subsample (1984—1997), Gamber and Liebner find that:

(d) 1990 is not significant, nor is any other impulse indicator.

Columns ##1—4 in Table A1 report the -ratios from (a)—(d). Using IIS in Automet-

rics, Ericsson (2017, Table 3) detects seven impulse indicators:

(e) 1990, 2001, 2002, 2003, 2008, 2009, and 2010 (at a 1% target size).

Column #5a in Table A1 reports the -ratios in that specification.

The results in (a)—(e) present a puzzle. From (a)—(d) combined, Gamber and

Liebner (2017) find that only 2008 is significant at the 1% level. By contrast, all

seven impulses in (e) are significant at not only the 1% level but at the 05% level;

and all but 2003 and 2010 are significant at the 01% level.

These apparently contradictory results can be reconciled by an encompassing ana-

lysis that treats (e) as Model M0 (the DGP), (a)—(c) as versions of model M1, and

(d) as model M2. In this context, specifications (e), (a)—(c), and (d) generalize

equations (A2), (A3), and (A4) to (potentially) include multiple indicators in each

subsample.

The encompassing analysis begins with ̂. Note that ̂ in Column #5a is 072,

which is ̂ for the assumed DGP. In Columns ##1—4, the values of ̂ are much

larger, as would be expected with omitted relevant indicators. Directly under those

four values of ̂, the values in angled brackets h·i report the corresponding residual
standard errors, as solved numerically from the analytical example above. These

solved values are calculated from formulas (A5) and (A6), generalized for multiple

impulses, and using the values of ̂ and ̂ for the model in Column #5. The solved

values for ̂ are very close to the actual values for ̂, indicating how well the analytical

example helps explain (and encompass) Gamber and Liebner’s empirical results.

Similarly, the values in angled brackets h·i under actual -ratios report the
-ratios as solved from the encompassing analysis. To obtain a “solved” -ratio, the

actual -ratio is rescaled by the ratio of Column #5’s ̂ to the solved value of the

residual standard error. The values of the solved -ratios also are very close to their

actual values. The last line in Table A1 reports the calculated rescaling factor, which

highlights the considerable anticipated loss of information from the omitted impulse

indicators in (a)—(d).

To illustrate concretely how these encompassing calculations proceeded, consider

the solved values for Column #3. From equation (A6), the solved value of ̂ is

the square root of (0722 + (296229)), or 091. The solved -ratio on (e.g.) 2001 is

48 · (072091), or 38. These solved values for ̂ and the -ratio are very close to
the actual values of 094 and 35.
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A.3 The Power of Impulse Indicator Saturation

Gamber and Liebner (2017) observe that IIS has power to detect heteroscedasticity

in the disturbances as well as nonconstancy in the forecast bias. Gamber and Lieb-

ner then conduct Monte Carlo simulations, which suggest that heteroscedasticity is

a likely interpretation of the empirical results from IIS in Ericsson (2017). Parallel-

ing Gamber and Liebner’s Monte Carlo simulations, a direct analytical solution shows

that heteroscedasticity can give rise to IIS detecting multiple impulse dummies. How-

ever, the number of impulse dummies actually detected by IIS for the government

debt forecast errors would likely require substantially more heteroscedasticity than

assumed. This section summarizes the statistical framework for Gamber and Lieb-

ner’s Monte Carlo simulations, derives an alternative analytical solution, summarizes

implications for the empirical results, and reconsiders the potential role of heterosce-

dasticity.

To show that pure heteroscedasticity might explain the empirical results from IIS,

Gamber and Liebner (2017) adopt the following DGP for :

 ∼ NID(0 2)  = 1     ; and (A7)

 ∼ NID(0 2)  = ( + 1)      (A8)

Based on the empirical setting for debt forecasts as analyzed with bare-bones IIS,

Gamber and Liebner choose equations (A7)—(A8) with subsamples of length  = 14

and  = 15 where  ≡ ( −), and subsample standard deviations of  = 1007%
and  = 2122%. Gamber and Liebner generate 104 replications of Monte Carlo

data with these properties, apply bare-bones IIS to each replication, and count the

number of dummies retained across replications. Table A2’s column labeled “Monte

Carlo (5%)” reports Gamber and Liebner’s (2017, Table 1) estimated probabilities

for retaining different numbers of impulse indicator dummies when selecting them

at a 5% significance level on individual -ratios in bare-bones IIS. These estimated

probabilities imply a nearly one-in-three chance of detecting six or more impulse

indicators, six being the number of indicators detected in (c) above. The average

number of indicators detected in the Monte Carlo simulation is 44.

The statistical problem posed by Gamber and Liebner can also be solved analyt-

ically, noting the following features. First, the -ratios on the impulse indicators in

bare-bones IIS have -distributions, once the -ratios are rescaled by  or ,

as appropriate. Second, the probability of retaining a specific number of dummies

can be derived from a generalization of the binomial distribution; see Stuart and Ord

(1987, Chapter 5). Solving that probability obtains the values in Table A2’s column

“Binomial solution (5%)”, which closely matches the previous column, “Monte Carlo

(5%)”.

As Section A.2 discusses, the empirically relevant target size is 1% (not 5%), and

it is of interest to calculate the probability of retaining at least seven dummies (rather
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Table A2: Calculated probabilities for retaining different numbers of impulse indicator
dummies under an assumption of heteroscedasticity, at 5% and 1% target sizes.

Number of
retained
dummies

Monte
Carlo
(5%)

Binomial
solution
(5%)

Binomial
solution
(1%)

Binomial
solution
(1%)

[ = 2842]

0 1.9 0.3 5.4 0.4

1 6.4 2.0 17.5 2.8
2 13.3 6.8 26.2 8.6
3 16.5 14.0 24.3 16.4
4 17.4 20.2 15.6 21.6
5 15.1 21.4 7.4 20.9

6 11.9 17.1 2.6 15.3
7 8.1 10.6 0.7 8.6
8 5.0 5.1 0.2 3.8
9 2.7 1.9 0.0 1.3
10 1.0 0.5 0.0 0.3

11 0.5 0.1 0.0 0.1
12 0.1 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0

Probability
of retaining
6+ dummies

29.4 35.3 3.5 29.4

Probability
of retaining
7+ dummies

17.5 18.2 0.9 14.1

Average
number of
dummies
retained

4.4 4.9 2.6 4.6

Notes. All values for Monte Carlo and binomial calculations are in percent, ex-

cept for the “average number of dummies retained”. Values in the column for

“Monte Carlo (5%)” are from Gamber and Liebner (2017, Table 1), rounded to

the first decimal in light of the implied uncertainty in their Monte Carlo simu-

lation; see Hendry (1984). Probabilities in the antepenultimate and penultimate

rows are calculated from unrounded values. The final column is calculated for the

alternative value of  equal to 2.842.
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than at least six). The corresponding calculations appear in Table A2’s penultimate

column, labeled “Binomial solution (1%)”. The average number of dummies retained

is only 26, and the probability of retaining at least seven dummies is under 1%. Pure

heteroscedasticity thus appears unlikely to explain the retention of the seven impulse

indicators found in practice.

That said, if the difference between the subsample standard deviations  and

 were greater, the implied heteroscedasticity could have been a likely explanation

for IIS’s empirical behavior. Specifically, if  were 2842 rather than 2122 (and

 unchanged), then the probability of retaining at least six dummies would have

been 294%, the same value as obtained by Gamber and Liebner. The correspond-

ing calculations appear in Table A2’s final column, labeled “Binomial solution (1%)

[ = 2842]”.

A.4 Remarks

Several issues merit additional remarks, including algorithmic implementation, the

models considered, power, time-invariant bias, and directions for further research.

First, algorithmic implementation of IIS requires important choices, as Hendry

and Doornik (2014) discuss. Choices include the construction of the blocks, model

selection criteria, use of diagnostic statistics, path search, block combination and re-

selection, iteration, and significance level. These choices may matter under the null

hypothesis of correct specification, under the alternative hypothesis, or under both.

For example, under the null hypothesis, too loose a significance level may inad-

vertently retain many irrelevant dummies, downwardly biasing the estimated resid-

ual standard error, and upwardly biasing -ratios; see Gamber and Liebner (2017).

Hendry, Johansen, and Santos (2008) and Johansen and Nielsen (2009, 2013, 2016)

consider this issue in detail. Hendry and Doornik (2014, Chapter 15) and Johansen

and Nielsen (2016) propose implementable bias corrections. Even simpler, Hendry

and Doornik (2014, Chapter 15) recommend a relatively tight significance level of

1 as a rule-of-thumb to help keep such estimation bias minimal. Ericsson (2017)

employs an even tighter level of about 03 for IIS. So, the seven impulse indicators

discussed in Section A.2 above are of substantive interest and do not appear to have

been retained spuriously. Relatedly, bare-bones IIS can actually select more (and not

only fewer) impulse indicators than Autometrics IIS, as Figures 6g and 6h in Ericsson

(2017) imply.

Second, the models considered–and those not considered–can affect the model

selected. Thus, the results in Section A.2 may depend on differences between bare-

bones and Autometrics implementations of IIS, indirectly through which models the

two algorithms consider in their selection processes. For instance, if one of the blocks

in bare-bones IIS had included 1990 in addition to 1998—2012, bare-bones IIS would

have detected the impulse indicator for 1990 at the 1% significance level. When the
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null hypothesis is false, the choice of blocks and the implied set of models can strongly

influence IIS’s ability to detect the alternative. Hence, Autometrics searches over

many blocks, including possibly overlapping and unequally sized blocks; see Doornik

(2009a).

Third, IIS has power to detect heteroscedasticity–and many other alternatives

as well. Applications of IIS reflect that wide-ranging ability: see Hendry (1999) on

nonconstancy, Johansen and Nielsen (2009) and Marczak and Proietti (2016) on out-

liers, Hendry and Doornik (2014, Chapter 15.6) on thick-tailed distributions, Hendry

and Santos (2010) on heteroscedasticity and super exogeneity, Ericsson (2011b) on

omitted variables and regime changes, Castle, Doornik, and Hendry (2012) on multi-

ple breaks, Pretis, Schneider, Smerdon, and Hendry (2016) on “designer” breaks, and

Ericsson (2016) on measurement errors. Gamber and Liebner (2017) underscore the

benefits of IIS, stating that “. . . the IIS technique is useful as an ex-post diagnostic

tool for detecting points in time when the model is biased” (Section 4), and that

IIS is valuable “. . . as a general diagnostic tool for detecting model misspecification”

(abstract).

Fourth, in order to achieve good power against many different alternatives, Hendry

and Doornik (2014) intentionally allow Autometrics to beneficially (and temporarily)

relax the significance level in “. . . search[ing] for potentially significant, but as yet

omitted, variables” (p. 235). Doing so has little effect under the null hypothesis but

may be helpful under alternatives, as Section A.2 highlights.

Fifth, time-invariant bias in the government debt forecasts is empirically de-

tectable at the 02% significance level when using IIS, even if the retained impulse

indicators are thought of as arising purely from “outliers”. By contrast, without IIS

to robustify estimation and inference, the forecast bias appears insignificant at even

the 10% level; cf. the Mincer—Zarnowitz A and A∗∗ tests for the CBO in Ericsson

(2017, Tables 3 and 7).

Sixth, many directions for further research are highly promising. In particular,

generalized saturation offers parsimonious representations of outliers and breaks; see

Castle, Doornik, Hendry, and Pretis (2015) on step indicator saturation, and Er-

icsson (2011b) for a typology of saturation techniques. One saturation technique–

multiplicative indicator saturation–embodies a structure similar to that of regime-

switching models, while allowing a given regime to differ quantitatively across its

multiple occurrences. Highlighting this aspect, test (iii) in Ericsson (2017, Table 7)

shows that forecast biases are not equal across different occurrences of the same

“event” (or regime), where that event is a peak or a trough. A standard regime-

switching model would have difficulty accommodating such heterogeneity, and would

have difficulty even detecting turning points as regimes because of their brief nature.
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A.5 Conclusions

Gamber and Liebner (2017) raise important issues concerning the interpretation of

empirical results, particularly when employing impulse indicator saturation. In the

discussion above, the analysis of alternative model specifications and the calculation

of empirical power functions highlight consequences for IIS when the null hypothesis

is incorrect. Specifically, IIS has power to detect many empirical features, including

heteroscedasticity, structural breaks, outliers, and omitted variables. As a practical

implication, the evidence in Ericsson (2017) and Gamber and Liebner (2017) supports

the interpretation that U.S. government agencies’ forecasts of U.S. gross federal debt

have time-varying biases.
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AppendixB. The Data and the Forecasts

Sections 1—7 above, Gamber and Liebner (2017), and Ericsson (2017) (Appendix A

above) analyze data on U.S. government debt (denoted “Debt”) and CBO, OMB, and

APB forecasts of that debt, as compiled by Martinez (2015). The current appendix

lists those data and forecasts in Table B1. See Martinez (2015) and Section 2 above

for details, including sources and definitions.

Table B1: U.S. government debt and CBO, OMB, and APB forecasts of that debt.

Year Debt CBO OMB APB

1983 1381.886 — — —
1984 1576.748 1600. 1591.573 1599.
1985 1827.47 1853. 1841.077 1854.

1986 2129.964 2114. 2112. 2110.6
1987 2355.206 2364. 2372.4 2367.2
1988 2600.679 2598. 2581.6 2603.
1989 2865.664 2865. 2868.8 2869.
1990 3206.26 3131. 3113.3 3150.

1991 3598.919 3606. 3617.837 3616.
1992 4002.815 4039. 4080.3 4058.
1993 4351.149 4392. 4396.7 4391.
1994 4643.996 4690. 4676. 4692.
1995 4920.95 4942. 4961.5 4947.

1996 5181.923 5191. 5207.3 5193.
1997 5369.7 5436. 5453.7 5432.
1998 5478.717 5540. 5543.6 5524.
1999 5606.486 5579. 5614.9 5578.
2000 5629.009 5665. 5686. 5674.

2001 5770.249 5603. 5625. 5627.
2002 6198.129 6043. 6137.1 6117.
2003 6758.722 6620. 6752. 6706.
2004 7352.017 7459. 7486.4 7453.
2005 7902.8 7975. 8031.4 7991.

2006 8448.991 8515. 8611.5 8556.
2007 8948.534 8915. 9007.8 8968.
2008 9983.694 9432. 9654.4 9606.
2009 11873.812 11529. 12867.5 12303.
2010 13526.633 13260. 13786.6 13684.

2011 14762.223 15047. 15476.2 15006.
2012 16048.111 16002. 16350.9 16187.
2013 16716.791 17068. 17249.2 16897.
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