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Abstract 15 

In Southern Europe where whole maize kernels are ground and used for making bread and other food products, 16 

infection of the kernels by Fusarium verticillioides and subsequent fumonisin contamination pose a serious safety 17 

issue. The influence of environmental factors on this fungal infection and mycotoxin accumulation as the kernel 18 

develops has not been fully determined, especially in such food grade maize. The objectives of the present study 19 

were to determine which environmental factors may contribute to kernel invasion by F. verticillioides and 20 

fumonisin accumulation as kernels develop and dry in naturally infected white maize. Three maize hybrids were 21 

planted at two different sowing dates and kernel samples were collected 20, 40, 60, 80 and 100 days after silking. 22 

The percentage of kernels infected, and ergosterol and fumonisin contents were recorded for each sampling. F. 23 

verticillioides was the most prevalent species identified as the kernels developed. Temperature and moisture 24 

conditions during the first 80 days after silking favored natural kernel infection by F. verticillioides rather than by 25 

Aspergillus or Penicillium species. Fumonisin was found in kernels as early as 20 days after silking however 26 

significant fumonisin accumulation above levels acceptable in the EU did not occur until after physiological 27 

maturity of the kernel indicating that kernel drying in the field poses a high risk. Our results suggest that this 28 

could be due to increasing kernel damage by insects that favor fungal development, such as the damage by the 29 

moth Sitotroga cerealella, and to the occurrence of stress conditions for F. verticillioides growth that could trigger 30 

fumonisin biosynthesis, such as exposure to suboptimal temperatures for growth simultaneously with low water 31 

activity. 32 
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1. Introduction 46 

Fusarium verticillioides (Sacc.) Nirenberg can infect maize (Zea mays L.) at most stages of the plants development 47 

and growth (Bacon et al., 2008). Before silking, F. verticillioides infection is mostly localized in basal organs such as 48 

the stalk; but at silking, silks become the most important pathway for F. verticillioides to enter the ear and a general 49 

increase in infection can be observed throughout the plant especially in tissues such as glumes and husks 50 

(Munkvold et al., 1997; Venturini et al., 2011). After glume colonization, F. verticillioides can use the open stylar 51 

canal to enter into unwounded kernels (Duncan and Howard, 2010). Asymptomatic infection is common 52 

throughout the maize plant.  Disease development can result in poor stand establishment, stalk rot, and kernel 53 

infection with the latter posing a serious economic threat as this fungus can contaminate the kernels with 54 

fumonisin mycotoxins (Munkvold and Desjardins, 1997).  55 

Fumonisins are among the most prevalent mycotoxins in maize and maize-based food and feed in Southern 56 

Europe (Binder et al., 2007; EHC, 2000). Many fumonisin analogs have been characterized, but fumonisin B1 57 

(FB1) typically accounts for 70 to 80% of the total fumonisins found, and fumonisin B2 (FB2) makes up from 15 58 

to 25% (Rheeder et al., 2002). Fumonisin toxicity is related to their capacity to disrupt the biosynthesis of 59 

sphingolipids, the main components of the plasmatic membrane of cells, resulting in apoptosis and disturbances 60 

of cellular processes such as cell growth, cell differentiation and morphology, and endothelial cell permeability 61 

(SCF, 2000; Voss et al., 2007). In humans, fumonisins are suspected risk factors for esophageal cancer and neural 62 

tube defects (Bennet and Klich, 2003) and the International Agency for Research on Cancer has classified them 63 

as probably carcinogenic (IARC, 1993). In livestock, fumonisins cause leukoencephalomalacia in horses, 64 

pulmonary edema in pigs, reduced growth in poultry and hepatic and immune disorders in cattle (Logrieco et al., 65 

2003; Voss et al., 2007).  66 

In a recent review, Picot et al. (2010) reported that eco-physiological factors such as water activity and 67 

temperature, physiochemical and nutritional factors such as pH and C: N ratio, and carbon metabolism, and 68 

plant defense metabolites such as oxylipins and phenolic compounds are important factors for regulating 69 

fumonisin production under laboratory conditions. Warfield and Gilchrist (1999) studied the dynamics of F. 70 

verticillioides infection and fumonisin accumulation during kernel development using inoculation on detached 71 

kernels. They showed that fumonisin production significantly increased with kernel development with levels of 72 

FB1 being the highest at the dent stage and lowest at the earlier blister stage. It was concluded that toxin 73 

production was affected by substrate composition as well as by moisture content suggesting that changes in 74 

kernel composition during kernel maturation “may represent a developmental transition in signaling metabolites 75 

within the developing kernel which could also play a role in regulating FB1 synthesis”. However, kernels 76 

detached before reaching physiological maturity are nonviable. The crosstalk between the host and pathogen is 77 

disrupted in such kernels thus interfering in the outcome of a plant–pathogen interaction, as stated by Mukherjee 78 

et al. (2011) who observed different FB1 production responses on nonviable versus viable kernels. 79 
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Fusarium verticillioides infection and fumonisin accumulation as kernels develop in field grown maize has been 80 

described, but little information about biotic and abiotic factors influencing infection and toxin accumulation has 81 

been published (Almeida et al., 2002; Bush et al., 2004; Chulze et al., 1996; King, 1981; Zorzete et al., 2008). 82 

Picot et al. (2011) suggested that fumonisin production can be initiated during the dough stage, which 83 

correspond approximately to 60 to 70% kernel moisture, but physiological changes occurring during the dent 84 

stage, such as amylopectin and pH modifications, may enhance fumonisin biosynthesis. The influence of 85 

environmental factors other than those related to kernel composition or physiological characteristics, on kernel 86 

infection by F. verticillioides and fumonisin accumulation in field corn during kernel development and drying has 87 

not been thoroughly studied. The objectives of the present work were: 1) to monitor kernel invasion by F. 88 

verticillioides and the subsequent contamination with fumonisin under field conditions of natural inoculation; and 89 

2) to search for environmental factors related to fumonisin accumulation during kernel development and drying 90 

in white maize. Scarcely studies evaluated yellow and white maize at the same time in relation to fumonisin 91 

contamination, and most of them showed inconclusive results attending to differences in contamination 92 

(Fadohan et al., 2003; Clements et al., 2004; Kleinschmidt et al., 2005). Our focus in the current research was on 93 

human food white maize, which is traditionally ground and used for making bread and other bakery products in 94 

the northwest region of the Iberian peninsula of Spain (Butrón et al. 2009). Fumonisin contamination of this 95 

maize could pose a considerable health threat and must be mitigated. 96 

2. Materials and methods 97 

 98 

2.1. Field evaluations 99 

Three white maize hybrids (EP10xEC22, EP65xEP10 and EP71xEC22) were chosen for evaluation based on 100 

their different levels of fumonisin contamination in a previous study (Butrón et al. 2006). In 2009, the hybrids 101 

were hand-planted at two different sowing dates (early and late May) in Pontevedra (42º24’ N, 8º38’ W, 20 m 102 

above sea level), Northwestern Spain. The late planting date was 23 days after the early planting. Hybrids silked 103 

in mid-July and early August, for the early and late plantings, respectively. The experimental design for each 104 

planting date was a split-plot with three replications. Hybrids were assigned to the main plots and sampling dates 105 

(20, 40, 60, 80 and 100 days after silking) to the subplot units. Each plot consisted of one row with 29 plants 106 

spaced 0.21 m. apart. The distance between adjacent rows was 0.8 m. Rows were overplanted and thinned to 107 

obtain a final plant density of about 60,000 plants/ha. 108 

Within each plot, five ears (subplot) were randomly collected at each sampling date and data was recorded on : 109 

husk tightness using a visual rating scale from 1 (loose husks with visible cob) to 5 (tight husks) [1= 0% tight, 2 110 

= 30%, 3 = 50%, 4 = 70% and 5 = 100% tight husks](Wiseman and Isenhour, 1992); damage from boring 111 

insects [Sesamia nonagrioides (Lefèbvre) and Ostinia nubilalis (Hübner)] using a visual rating scale from 1 (ear totally 112 

damaged by borers) to 9 (no damage) [1 = >90% damaged, 2 = 81–90% damaged, 3 = 71–80% damaged, 4 = 113 

61–70% damaged, 5 = 41–60% damaged, 6 = 31–40% damaged, 7 = 21–30% damaged, 8 = 1–20% damaged 114 
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and 9 = 0%](Sandoya et al., 2010); Fusarium ear rot using a similar visual rating scale from 1 (total ear visually 115 

infected) to 9 (no symptoms of infection); damage by Sitotroga cerealella (Oliver) measured as number of kernels 116 

perforated by the larvae; and, kernel moisture (by calculating the difference between the fresh and dry weight of 117 

a grain subsample of approximately 100 g, after drying until constant weight at 80 °C for 4-6 days). Grain was 118 

dried at 35º C for one week and maintained at 4ºC until biological and chemical analyses could be conducted.  119 

Several climatic variables were calculated for the 20-day period preceding each sampling date including: average  120 

daily mean temperature (ºC), average  daily maximum temperature (ºC), average  daily minimum temperature 121 

(ºC), average  daily mean relative humidity (%), daily mean precipitation (mm), number of days with minimum 122 

temperature ≤ 15 ºC, number of days with maximum temperatures  ≥ 30 ºC, number of days with mean 123 

temperature ≥ 10 °C  and < 15 °C, ≥ 15 and < 20 °C, ≥ 20 and < 25 °C, ≥ 25 and < 30 °C, and number of days 124 

with rainfall  ≥ 2 mm. These climatic variables were selected according to previous reports on the influence of 125 

climatic factors on mold development in wheat and maize (de la Campa et al., 2005; Maiorano et al., 2009; Marín 126 

et al., 2004; Schaafsma and Hooker, 2007).  127 

 128 

2.2. Determination of fungal species infecting maize kernels  129 

On each of the five-ear samples, the percentage of kernels infected by molds was computed and the fungal 130 

genera and Fusarium species were determined. Analyses of fungal infection and ergosterol were not carried out 131 

with samples from the first sampling date of the early planting because those samples were dried at 60 ºC and 132 

that temperature disturbed kernels and fungal tissues integrity. From each other sample, one hundred kernels 133 

were externally disinfected with 3% sodium hypochlorite. Fifty disinfected kernels were incubated at 25 ºC for 134 

five days on Petri dishes containing DRBC (Dichloran rose-bengal chloramphenicol agar) culture medium in 135 

order to determine the percentage of kernels infected by molds (King et al, 1979; Van Pamel et al., 2009). The 136 

isolates of Penicillium and Aspergillus were identified and counted (Pitt et al. 2009). The remaining disinfected 50 137 

kernels were incubated at 25 ºC for six days on Petri dishes containing MGA (Malachite Green Agar) culture 138 

medium for isolation of Fusarium species (Alborch et al., 2010; Castellá et al., 1997).  The isolates were counted 139 

and grouped according to cultural and microscopic features of the mycelium, thereafter transferred to Petri 140 

dishes containing SNA (Spezieller Nährstoffarmer agar) culture medium (Leslie and Summerell, 2006) and 141 

incubated at 25 ºC for seven days (12:12 hours of day: night light conditions). A small amount of mycelium from 142 

each Petri dish was added to 10 ml of distilled water and vortexed, the resulting spore suspension was poured 143 

and spread on a Petri dish containing water-agar (20 g /l of agar) culture medium. Petri dishes were inclined and 144 

incubated at 25 ºC for 16-18 hours for favoring the formation of a spore gradient. Then, a single spore was 145 

isolated from each dish, transferred to a Petri dish containing SNA medium and incubated at 25 ºC for 15 days 146 

(12:12 hours of day: night light conditions) to allow mycelia growth and subsequent identification of the Fusarium 147 

species. A small scrape of mycelium was spread in a tube contained PDA medium and incubated for 7 days at 25 148 

ºC (12:12 hours of day: night light conditions). Identification was performed taking into account microscopic 149 



6 
 

morphological characteristics of the mycelium and spores on SNA culture medium and coloration on PDA 150 

medium (Leslie and Summerell, 2006).    151 

2.3. Ergosterol and fumonisin quantifications   152 

Ergosterol and fumonisin analyses from each subplot were performed on representative 10 g sample taken from 153 

200 g of dried ground kernels which had been ground through a 0.75 mm screen in a Pulverisette 14 rotor mill 154 

(Fritsch GmbH, Oberstein, Germany). For ergosterol analysis, 50 ml of methanol (HPLC grade) were added to 155 

10 g of maize flour; the mixture was shaken for 30 minutes and then filtered through a sieve of filter paper. Ten 156 

ml of the filtered solution was mixed with 1.2 g of potassium hydroxide. Ergosterol extraction was performed 157 

twice with 10 ml of hexane in a water bath at 55-60 °C for 30 minutes. The upper layers were recovered, 158 

combined and evaporated in a rotary evaporator at 40°C. Extracts were dissolved in methanol (HPLC grade), 159 

transferred to a vial and evaporated under a gentle N2 flow in a sample concentrator (Stuart, Bibby Scientific 160 

Limited, Staffordshire, UK). Samples were dissolved in 1 ml of methanol (HPLC grade) prior to HPLC analysis.     161 

HPLC separation was carried out in a Waters HPLC-system (Waters 2695, separations module, Waters 162 

Corporation, Milford, USA) at room temperature by injecting a 100 µL sample onto a C18 column (Waters 163 

Spherisorb ODS2, 250 x 4.6mm, 5µm) at a flow rate of 1 ml/min with methanol (HPLC grade) in isocratic 164 

conditions. Detection of ergosterol was made using an absorbance detector (Waters 2487 dual λ absorbance 165 

detector, Waters Corporation, Milford, USA) set at 282 nm. Quantification was performed using external 166 

calibration with ergosterol standard solutions (Sigma, St. Louis, MO, USA) ranging from 0.08 to 5 µg/ml. 167 

Detection limit of the analysis was 0.013 µg/g. 168 

Fumonisin extraction from the 10 g samples was made with a solvent of 50 ml of distilled water: methanol: 169 

acetonitrile (50:25:25) and 1 g of sodium chloride. The mixture was agitated for 20 minutes and filtered through a 170 

sieve of filter paper. Ten milliliters of the filtered solution were suspended on 40 ml of PBS. The resulting 50 ml 171 

were passed through an immunoaffinity column (Fumoniprep, R-Biopharm Rhône Ltd, UK) and fumonisins 172 

were recovered using 1.5 ml of methanol and 1.5 ml of MiliQ water. Fumonisin quantification was performed in 173 

a Waters HPLC-system (Waters 2695, separations module, Waters Corporation, Milford, USA) equipped with 174 

fluorescence detector (Waters Multi λ Fluorescence Detector 2475, excitation λ at 335 nm and emission λ at 440 175 

nm) and a C18 column (Waters Spherisorb ODS2, 150 mm x 4.6 mm, 5 µm) connected to a precolumn. One 176 

hundred µl were injected into the HPLC system after derivatization of fumonisins with o-phthaldialdehyde, at 30 177 

ºC and a flow rate of 1 ml/min. The mobile phase was methanol: 0.1 M sodium dihydrogen phosphate (77:23). 178 

Quantification was performed using external calibration with FB1 and FB2 standard solutions (Sigma, St. Louis, 179 

MO, USA), ranging from 0.08 to 2.5 µg/ml. Results were converted into µg/g of dry maize flour. Detection 180 

limits for FB1 and FB2 were 0.02µg/g and 0.08 µg/g, respectively.  181 

Ergosterol, FB1 and FB2 concentrations in a fresh sample were calculated by multiplying the concentrations in 182 

the dry kernel sample by the percentage of dry weight on the total weight (fresh sample weight).  183 
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2.4. Statistical analyses  184 

Individual and combined analyses of variance were performed using the PROC GLM procedure of SAS (SAS, 185 

2008) for most of the traits evaluated. Hybrid, sampling and planting dates were considered as fixed factors. 186 

Fumonisin concentrations were log-transformed as log(x+1) to ensure normal distribution of residues and 187 

homogeneity of variance. Mean comparisons were made using the Fisher’s least significant difference (LSD) at 188 

0.05 probability level. Husk tightness, borer damage and Fusarium ear rot ratings were rank transformed and 189 

analyzed by a nonparametric analysis of ordinal data (Shah and Madden, 2004).  190 

Pearson’s correlation coefficients were computed with data averaged across replications and hybrids using the 191 

PROC CORR procedure of SAS (n=10). To explain changes in the rate of kernel infection by F. verticillioides and 192 

fumonisin accumulation with kernel development, we used multiple linear regression on differentials between 193 

consecutive harvests for kernel characteristics, and climatic variables calculated for the 20-days period before 194 

each kernel sampling date (20, 40, 60, 80, and 100 days after silking) in two planting dates (n=8). For regression 195 

analysis, we used increments between consecutive harvests rather than data at each sampling date because 196 

infection and fumonisin content increased with time and that could generate spurious correlations between these 197 

data and environmental characteristics that also change with time. We used stepwise selection with the PROC 198 

REG procedure of SAS for performing multiple linear regressions. 199 

3. Results 200 

There were significant differences between planting dates for the percentage of kernels infected by Aspergillus, 201 

husk tightness, and kernel damage by S. cerealella (data not shown). There were no significant differences among 202 

hybrids for fumonisin concentrations, but there were for husk tightness, kernel damage by S. cerealella, Fusarium 203 

ear rot and kernel moisture (data not shown).There were significant differences among kernel samples collected 204 

at the different sampling dates (20, 40, 60, 80 and 100 days after silking) for all traits, except the percentage of 205 

kernels infected by Penicillium and Fusarium proliferatum (Matsushima) Nirenberg (Table S1).  206 

Fusarium was the most prevalent genus at each sampling date, with F. verticillioides being the species most isolated 207 

(Figure 1, Table S1). The percentage of kernels infected by F. verticillioides, Fusarium spp. other than F. verticillioides 208 

or F. proliferatum, and by Aspergillus, significantly changed with kernel development. The number of kernels 209 

infected by F. verticillioides significantly decreased from 20 to 40 days after silking, but when kernel development 210 

was completed, the percentage of kernels infected increased linearly until reaching 70% at 100 days after silking. 211 

Another Fusarium infection peak occurred at 80 days after silking (20.8%). Kernel infection caused by Aspergillus 212 

and F. proliferatum peaked at 60 days after silking (2%) then decreased as the kernels dried. Penicillium infection 213 

occurred at every kernel stage with percentages varying between 1 and 8%. Ergosterol content in the kernel 214 

showed a non significant tendency to decrease from 20 to 40 days after silking, a linear and significant increase 215 

from 40 to 80, and a sharp increase from 80 to 100 days after silking (Figure 1, Table S1). Fumonisins were 216 

detected in kernels at 20 days after silking and significantly increased with sampling dates (Table 1). Husk 217 
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tightness significantly decreased with kernel development. Kernel damage by S. cerealella and Fusarium ear rot 218 

significantly increased with kernel development. 219 

The interaction between planting date x sampling (or kernel development stage) was significant for FB1, FB2, 220 

total FB, borer and Angoumois grain moth damage, and percentage of kernel infected by Aspergillus (Table 1). 221 

Total fumonisin content were similar until 60 days after silking for both planting dates; however, significant 222 

increase in fumonisins occurred 60 to 80 days after silking in the late planting trial and 80 to 100 days after 223 

silking in the earlier planted trial. Nevertheless, fumonisin contents in kernels 100 days after silking were 224 

significantly higher in the early than in the late planted trial. For this study, fumonisin data were based on kernel 225 

fresh weight to minimize kernel weight changes with time, but food and feed safety levels are always based on 226 

dry matter content. Thus, our fumonisin concentrations when based on dry matter content were quite high with 227 

levels of 13.99 µg/g and 7.16 µg/g at 100 days after planting for the early and late trial, respectively. Kernel 228 

damage by S. cerealella increased with kernel development and drying in both planting trials but was significantly 229 

higher for all sampling dates in the earlier planted trial. Damage to the ears by corn borers was higher in the late 230 

planting at increasing kernels age (Table 1).  231 

Since sampling time and planting date had significant effect on many of the traits, correlation and regression 232 

analyses were performed with mean data for each sampling x planting date combination. The simple correlation 233 

coefficient between percentage of kernels infected by molds and percentage of kernels infected by F. verticillioides 234 

was extremely high (Table 2). The percentage of kernels infected by the genus Fusarium and the species F. 235 

verticillioides were significantly correlated with ergosterol content, although Fusarium ear rot was significantly 236 

correlated with kernel infection by Fusarium, F. verticillioides and other Fusarium. Fumonisin content was correlated 237 

with the percentage of kernels infected by F. verticillioides, husk tightness and kernel moisture. Ergosterol and 238 

fumonisin contents were highly correlated (r=0.93) and both showed significant association with kernel damage 239 

by S. cerealella and Fusarium ear rot.  240 

The climatic variables calculated for the 20-day period before kernel sampling dates (20, 40, 60, 80 and 100 days 241 

after silking) in two planting dates are shown in table 3. In order to minimize the time effect on variables, we 242 

used the differentials of biotic and abiotic variables between consecutive sampling dates and used regression 243 

analysis to explore the effect of these variables on F. verticillioides infection, and fumonisin and ergosterol contents 244 

(Table 3). Variability for differentials of the percentage of kernels infected by F. verticillioides between consecutive 245 

harvests were associated with variability of changes between consecutive harvests for days with maximum 246 

temperature ≥ 30 ºC, and days with rainfall ≥ 2 mm.  Increasing damage by S. cerealella, explained 49% of 247 

variability for the rate of fungal growth (differential for ergosterol content between consecutive harvests). An 248 

increase in ergosterol rate and higher decreases for days with mean temperature between 15 and 20 ºC explained 249 

the 87% and 6%, respectively, of the variability for the rate of fumonisin accumulation. In addition, when 250 

ergosterol content was not included in the stepwise model, increase in the differential for days with mean 251 
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temperatures between 10 and 15 ºC, and the decrease of the differential for daily mean rainfall explained the 89% 252 

of variability for the rate of fumonisin increase (Table 4).  253 

4. Discussion 254 

4.1. Fungal infection 255 

The genus Fusarium was a prevalent fungus at all kernel development stages sampled in this study with kernel 256 

infection by Fusarium representing more than 80% of the fungal infections. Infection by Penicillium, Aspergillus and 257 

other fungal species were marginal at each kernel development stage. F. verticillioides was the most abundant 258 

species, in agreement with previous reports in Northwestern Spain and Southern Europe (Butrón et al., 2006; 259 

Logrieco et al., 2002). Mean daily temperatures between 15 and 20 ºC and high kernel moisture until 80 days 260 

after silking [corresponding to water activities ranging from 1 to 0.95, according to Maiorano et al. (2010)] are 261 

considered to be more favorable conditions for natural kernel infection by F. verticillioides than for Aspergillus and 262 

Penicillium species (Marín et al., 2004).  263 

With respect to the progress of infection as the kernels developed, our results associated increases in the 264 

incidence of F. verticillioides with decreases in the number of days with extreme high temperatures (≥ 30 ºC), and 265 

also with increases in the number of days with appreciable rainfall (≥ 2 mm). These weather conditions could 266 

favor spore production and dispersal.  Rossi et al. (2009) reported that sporulation by F. verticillioides progressively 267 

increased between 5 ºC and 27 ºC and then declined rapidly with temperatures higher than 30 ºC being less 268 

favorable for spore production. The number of rainy days also had a positive relationship to spore production, 269 

and rainfall and splashing favored spore dispersal (Ooka and Kommedhal, 1977; Rossi et al., 2009).  270 

4.2. Fungal growth 271 

As most of fungal isolates belonged to the species F. verticillioides and the percentage of kernels infected by F. 272 

verticillioides was significantly correlated with ergosterol content (unlike non-Fusarium infections) we used the 273 

amount of this sterol found in fungal membranes as an indirect measurement of F. verticillioides development in 274 

this study. At milk stage (20 days after silking, approximately 80% kernel moisture), maize ears were already 275 

infected by F. verticillioides, in accordance with previous studies; however, in our study, the  percentage of infected 276 

kernels at this time was high in comparison to that described previously (Bush et al., 2004; King, 1981). In the 277 

subsequent 20-day period, a decrease in the number of infected kernels and low ergosterol content was observed 278 

in contrast with observations reported previously. Picot et al. (2011) reported an important change in fungal 279 

growth during the transition from the milk to the dent kernel stage (40 days after silking, approximately 50% 280 

kernel moisture) and suggested that, in general, F. verticillioides did not further colonize the maize ears after 42 281 

days from inoculation (46-50 days after silking, approximately). Nevertheless, in our experiment, F. verticillioides 282 

growth, measured as the rate of ergosterol content increase, was almost linear from 40 to 80 days after silking 283 

after which the increase was even higher between 80 and 100 days. Our results showed that environmental 284 

characteristics, besides those directly related to kernel changes, could play an important role in fungal 285 
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development. With kernel development, increased differentials for ergosterol content between consecutive 286 

harvests were favored by increased rate of kernel damage by the larvae S. cerealella. The activity of insects can 287 

facilitate the dispersion and entry of fungus into maize kernels and damaged kernels may have increases in kernel 288 

moisture contents thus providing even better conditions for fungal development (Imura and Sinha, 1984; Misra 289 

et al., 1961).  290 

4.3. Fumonisin production 291 

According to Nielsen (2001),  kernels harvested 20, 40, and 60 days after silking corresponded to the blister-milk, 292 

dent, and physiological maturity stages, since our  kernel moistures were 80-83 %, 48-49 %, and 31-32 %, 293 

respectively. In previous studies, the dent stage has been reported as the stage most conducive to fumonisin 294 

production (Picot et al., 2011; Warfield and Gilchrist, 1999), and fluctuating fumonisin contents have been 295 

reported with kernel drying (Bush et al., 2004; Picot et al., 2011). However, our results showed that the pattern of 296 

fumonisin accumulation did not change or changed very little from the blister-milk stage to physiological 297 

maturity, and increased during the kernel drying period, especially at the end of our sampling period. In the 298 

laboratory study by Warfield and Gilchrist (1999), it is possible that different treatments (autoclaved / not 299 

autoclaved) applied to kernels from different stages and the use of detached ears could alter the physical and 300 

chemical kernel properties or the natural crosstalk between the plant and the fungus, with consequences on 301 

fumonisin production (Marín et al., 2004; Mukherjee et al., 2011). In addition, differences between field studies 302 

could be attributable to differences in sampling frequencies, fumonisin measurements (ELISA or HPLC), maize 303 

genotypes, and/or climatic factors (Shephard et al., 1996; Bush et al., 2004; Kleinschmidt, 2005; Battilani et al. 304 

2011). Mean temperatures gradually decreased with kernel development in our trials in Northwestern Spain; 305 

while, in Southwestern France, a rapid decrease of the mean temperature below 15 ºC was reached around 306 

physiological maturity (Picot et al., 2011) making drying conditions unfavorable for fumonisin production. On 307 

the other hand, fumonisin accumulation should be estimated per kernel as kernel weight changes with time. 308 

However, when fumonisin accumulation is based on fresh weight, as in this study, the bias is lower than when it 309 

is based on dry weight, as in the study by Picot et al. (2011), since fresh weight changes are significantly lower 310 

than dry weight changes with time (Bulant et al., 2000).  311 

The simple correlation coefficient between kernel fumonisin and ergosterol contents and between fumonisin and 312 

the percentage of kernels infected by F. verticillioides were highly significant (r=0.97 and 0.67, respectively). A 313 

steady accumulation of fumonisins from 20 to 60 days after silking accompanied a drop in the percentage of 314 

kernels infected by F. verticillioides and in ergosterol content observed at 40 days after silking, while a more rapid 315 

accumulation of fumonisin beyond 60 days after silking preceded the ergosterol burst in the period of 80-100 316 

days after silking. Mycotoxins could be competitive factors against other fungal species, however fumonisin 317 

production itself has not been directly associated with such a competition strategy (Marín et al. 2001, 2004). The 318 

results of our study point to fumonisins being involved in response to plant stress. The stimulation of mycotoxin 319 

formation under growth stress conditions as a result of temperature and water extremes has long been postulated 320 
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(Samapundo et al., 2005). Kim et al. (2011) reported that enzymes implicated in sugar sensing/signaling networks 321 

for controlling growth and development in response to the changing environment also have an important role 322 

on regulation of secondary metabolism, including FB1 biosynthesis. Disruption of a hexokinase-encoding gene 323 

significantly reduced FB1 synthesis and osmotic stress tolerance (Kim et al., 2011). 324 

Diverse field studies reported the relevance of the dynamic of water activity in maize hybrids for fumonisin 325 

contamination in kernels (Battilani et al. 2011; Herrera et al., 2010). In the laboratory temperatures and water 326 

activities below 17 ºC and 0.94, respectively, have been reported marginal for F. verticillioides growth (Marín et al., 327 

2010).  In contrast, our results showed an increase in fumonisin accumulation from 60 to 100 days after silking, 328 

in which temperature and water activity characteristics were unfavorable for mycelia growth, according to 329 

previously published reports. A considerable number of days had mean temperatures below 15 ºC and kernel 330 

moisture which dropped from approximately 30 to 20 % [corresponding to water activities of approximately 0.96 331 

and 0.92, respectively (Maiorano et al., 2010)].  In addition, as the kernels developed, the increase in fumonisin 332 

accumulation rate was explained in part by an increased number of days with suboptimal temperatures. In our 333 

experiment, the increase in the number of days with suboptimal temperatures for F. verticillioides growth (days 334 

when the mean temperature between 15 and 20 ºC decreased, and with the mean temperature between 10 and 15 335 

ºC increased) happened when kernel moisture dropped below 30 % [corresponding to water activities of 336 

approximately 0.95-0.97 (Maiorano et al., 2010)]. These results are in accordance with previous in vitro studies in 337 

which high osmotic stress greatly reduced F. verticillioides growth and increased fumonisin biosynthesis, while 338 

temperature was less directly related to fumonisin production (Jurado et al., 2008; Samapundo et al., 2005). The 339 

effect of temperature on fumonisin production at water activity values optimal for fungal growth was only 340 

marginal, whereas at lower water activities the effect of temperature was more pronounced and fumonisin 341 

production became higher at temperatures not optimal for growth (Samapundo et al., 2005).   342 

In conclusion, the high prevalence of kernel infection by F. verticillioides as kernels develop increases the risk of 343 

contamination with fumonisins, especially during the kernel drying stages. In this study, levels of fumonisins in 344 

kernels harvested 100 days after silking (with approximately 20% kernel moisture) were above allowed levels for 345 

human consumption (13.99 and 7.16 µg/g of dry weight in the early and late plantings, respectively) in the EU [4 346 

µg/g in unprocessed maize (Commission Regulation 1126/2007)]. Contamination risk began earlier in the late 347 

planted trial, but by 100 days after silking the risk was higher in the earlier planted trial. Fumonisin accumulation 348 

rate was constant until the kernels reached physiological maturity, after which faster accumulation of fumonisin 349 

occurred indicating that factors other than kernel developmental stage, such as local environmental conditions, 350 

were influencing fumonisin accumulation in the kernels. Feeding damage to the kernels by the larvae S. cerealella 351 

was also determined to play a role in fungal growth and, consequently, in fumonisin accumulation. The small 352 

deviations of the predicted fumonisin accumulation rate based on fungal growth rate could be explained, in part, 353 

by increased stress conditions due to more days with suboptimal temperatures for F. verticillioides growth when 354 

water activity values were low. 355 
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Table 1. Means or ranks of ear and kernel traits at each sampling date (20, 40, 60, 80, and 100 days after silking) and planting date a.  356 

 Kernel age (days after silking) Early planting Kernel age (days after silking) Late planting 

 20 40 60 80 100 20 40 60 80 100 

           

MEANS           

Ergosterol b --- 0.17 c 0.93 bc 1.14 bc 4.80 a 0.79 c 0.17 c 0.65 c 1.35 bc 2.36 b 

Kernel moisture c  80 a 49 b 31 c 24 d 20 e 83 a 49 b 32 c 24 d 22 de 

S. cerealella damage d --- 0.08 e 4.92 d 15.25 b 26.97 a 0.03 e 0.08 e 0.53 e 2.31 de 9.37 c 

F. verticillioides e  --- 9 d 32 cd 70 ab 63 ab 36 c 11 cd 34 cd 47 b 76 a 

F. proliferatum  --- 0.00 b 4.70 a 0.34 b 2.26 b 0.00 b 0.00 b 1.37 b 1.41 b 0.00 b 

Other Fusarium --- 1 c 12 abc 14 abc 18 ab 4 bc 9 bc 19 ab 27 a 15 abc 

Total Fusarium spp. --- 10 d 48 b 84 a 83 a 40 bc 21 cd 54 b 76 ab 91 a 

Penicillium --- 0.44 b 0.22 b 15.33 a 5.78 ab 2.22 b 3.33 b 1.56 b 1.33 b 2.00b 

Aspergillus --- 0.22b 4.00 a 0.00 b 0.00 b 0.00 b 0.22 b 0.00 b 0.00 b 0.22 b 

Total Molds  --- 19 d 61 b 95 a 88 a 46 cd 30 d 60 bc 88 a 97 a 

FB1 f 0.004 c 0.04 c 0.16 c 0.14 c 0.94 a 0.003 c 0.04 c 0.12 c 0.45 b 0.65 b 

FB2  0.05 cd 0.09 cd 0.12 cd 0.13 c 0.46 a 0.03 d 0.10 cd 0.14 c 0.26 b 0.33 b 

Total FB  0.05 cd 0.12 cd 0.25 c 0.24 c 1.02 a 0.04 d 0.13 cd 0.23 cd 0.55 b 0.74 b 

           

RANKS           

Husk tightness g 0.58 0.58 0.46 0.46 0.41 0.67 0.55 0.45 0.41 0.41 
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 (0.43-0.71) (0.43-0.70) (0.37-0.55) (0.37-0.55) (0.35-0.47) (0.49-0.79) (0.39-0.70) (0.33-0.58) (0.29-0.53) (0.29-0.53)

Borer damage  0.54 0.64 0.47 0.42 0.42 0.87 0.50 0.31 0.29 0.52 

 (0.33-0.72) (0.51-0.75) (0.32-0.61) (0.28-0.59) (0.25-0.61) (0.80-0.89) (0.37-0.63) (0.21-0.44) (0.21-0.42) (0.37-0.65)

Fusarium ear rot  0.80 0.72 0.37 0.40 0.20 0.80 0.63 0.49 0.30 0.26 

 (0.75-0.83) (0.62-0.79) (0.24-0.54) (0.32-0.49) (0.14-0.32) (0.75-0.84) (0.53-0.72) (0.33-0.65) (0.20-0.46) (0.18-0.37)

a For each trait, means followed by the same letter did not significantly differ at the 0.05 probability level [Fisher’s least significant difference(LSD)].  357 

b Ergosterol units are µg/g of fresh weight; c kernel moisture as percentage; d damage by S. cerealella measured as number of kernel perforated by the moth; e molds as 358 

percentage of kernels infected; f FB1, FB2, total FB concentrations were calculated based on fresh weight and then log-transformed; g husk tightness evaluated by a 359 

visual scale from 1 (loose husks with visible cob) to 5 (tight husks) (Wiseman and Isenhour, 1992). Ratings for Fusarium ear rot and borer damage were based on a 360 

visual rating from 1 (100% of ear totally infected-damaged) to 9 (no infection or damage). Analysis based on rank transformations. Estimated relative effects and 361 

confidence interval (95%) for relative treatment effect (lower-upper limit).   362 
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Table 2. Simple coefficients of correlation among traits recorded in maize ear and kernel samples collected at different kernel development stages (20, 40, 60, 80, 363 

and 100 days after silking) at each planting date (n=10). 364 

 Kernel age (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

Ergosterol (1) a 0.76 *               

Husk tightness (2) b -0.82 ** -0.51              

Borer damage (3) -0.60 -0.32 0.77 **             

Kernel moisture (4) -0.92 ** -0.51 0.87 ** 0.70 *            

S. cerealella damage (5) 0.74 * 0.91 ** -0.60 -0.36 -0.57           

Fusarium ear rot (6) -0.95 ** -0.78 * 0.84 ** 0.63 0.90 ** -0.72 *          

Total Fusarium spp. (7) c 0.87 ** 0.70 * -0.62 -0.51 -0.68 * 0.68 * -0.83 **         

F. verticillioides (8) 0.81 ** 0.69 * -0.51 -0.31 -0.56 0.71 * -0.72 * 0.97 **        

F. proliferatum (9) 0.21 0.24 -0.49 -0.36 -0.35 0.20 -0.50 0.12 -0.03       

Other Fusarium (10) 0.70 * 0.43 -0.62 -0.84 ** -0.72 * 0.30 -0.77 * 0.70 * 0.50 0.32      

Penicillium (11) 0.32 0.24 -0.26 -0.23 -0.28 0.58 -0.17 0.46 0.55 -0.28 0.05     

Aspergillus (12) -0.07 -0.14 -0.25 0.01 -0.10 -0.09 -0.16 -0.14 -0.19 0.82 ** -0.10 -0.29    

FB1 (13) d 0.85 ** 0.94 ** -0.60 -0.41 -0.66 * 0.77 * -0.86 ** 0.72 * 0.67 0.22 0.58 0.06 -0.16   

FB2 (14) 0.88 ** 0.92 ** -0.65 * -0.49 -0.72 * 0.77 ** -0.88 ** 0.71 * 0.64 0.22 0.62 0.08 -0.17 0.99 **  

Total FB (15) 0.88** 0.93 ** -0.64 * -0.46 -0.71 * 0.77 * -0.89 * 0.74 * 0.67 * 0.23 0.62 0.07 -0.15 1.00 ** 1.00 ** 

*, ** Significant at the 0.05 and 0.01 probability levels, respectively. 365 

a Ergosterol units are µg/g of fresh weight. 366 



15 
 

b Husk tightness was evaluated by a visual scale from 0 (loose husks with visible cob) to 5 (tight husks), ear rot by a visual rating from 1 (100% of ear totally 367 

damaged by the fungus) to 9 (no damage), ear damage by borers on a similar visual rating from 1 (100% of ear totally damaged by borers) to 9 (no damage), kernel 368 

moisture measured as percentage, and damage by S. cerealella measured as number of kernel per ear perforated by the moth. 369 

c Fusarium infections were presented as percentage of infected kernels. 370 

d FB1, FB2, total FB concentrations were calculated based on fresh weight and then log-transformed.  371 

372 
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Table 3. Climatic variablesa calculated for the 20-day period before each sampling date (20, 40, 60, 80, and 100 days after silking) for each planting date. 373 

 Kernel age (days after silking) Early planting Kernel age (days after silking) Late planting 

 20 40 60 80 100 20 40 60 80 100 

Average  Tm (ºC) 17.92 19.56 18.81 17.14 15.49 19.55 18.88 17.26 15.91 14.88 

Average  Tmin (ºC) 12.92 13.17 12.66 11.29 10.79 13.53 12.80 10.78 10.85 11.88 

Average Tmax (ºC) 22.60 26.01 25.53 23.82 21.80 25.52 25.42 24.62 22.29 18.65 

Relative hunidity (%) 81.56 76.59 74.96 82.71 85.37 76.53 77.25 77.59 84.86 91.98 

Daily rainfall (P) (mm) 3.60 0.12 0.53 7.68 7.67 0.73 0.54 0.81 9.38 9.47 

Days Tmin ≤15 ºC 16 18 18 17 17 18 16 20 16 17 

Days Tmax ≥30 ºC 0 2 3 0 0 2 3 0 0 0 

Days 10≤Tm<15 ºC 0 0 0 3 9 0 0 2 8 9 

Days15≤Tm<20 ºC 19 13 15 16 11 14 14 18 11 10 

Days 20≤Tm<25 ºC 2 7 5 1 0 7 6 0 1 0 

Days 25≤Tm<30 ºC 5 0 2 6 7 1 2 2 6 12 

Days P≥2 mm 5 0 1 6 7 1 2 2 6 12 

a Tm stands for mean daily temperature, Tmin for minimum daily temperature, Tmax for maximum daily temperature, relative humidity for mean daily relative 374 

humidity, and daily rainfall for mean daily rainfall (P).375 
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Table 4. Variability explained and the sign of regression coefficient (between parenthesis) in multiple linear regressions of differentials for infection by F. verticillioides 376 

and ergosterol and fumonisin contents between consecutive sampling dates by changes for kernel characteristics, and climatic variablesa calculated for the 20-day 377 

period before kernel sampling dates (20, 40, 60, 80, and 100 days after silking) in two planting dates (n=8).  378 

 Tmax ≥30 ºC 10≤ Tm <15 ºC 15≤ Tm <20 ºC Daily rainfall (P) P ≥2 mm S. cerealella damageb Ergosterol

 days days days mm days no. µg/g 

F. verticillioidesc 0.34(-) -  - 0.33(+) - - 

Ergosterol - -  - - 0.49(+) - 

Total FB - - 0.06 (-) - - - 0.83(+) 

Total FBd  0.49(+)  0.40(-) - - - 

a Tm stands for mean daily temperature, Tmax for maximum daily temperature, and daily rainfall for mean daily rainfall (P). 379 

b Damage by S. cerealella measured as number of kernel perforated by the larvae. 380 

c Percentage of kernels infected by F. verticillioides. 381 

d Ergosterol content was not included in the stepwise model. 382 

 383 
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Figure 1. Graphical representation for ear and kernels traits at each sampling date (20, 40, 60, 80, and 100 days 384 

after silking) for three maize hybrids evaluated at two planting dates. 385 
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Ratings for Fusarium ear rot and borer damage were based on a visual rating from 1 (100% of ear totally infected 405 

damaged) to 9 (no infection or damage). 406 
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