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Abstract
Polymyxin B (PB) is increasingly used as the last treatment for multidrug-resistant (MDR) Gram-
negative bacterial infections. In this study, serum and epithelial lining fluid (ELF)
pharmacokinetics and the efficacy of a PB liposomal formulation were investigated. Two groups
of 24 Swiss Webster mice were intravenously administered PB liposomes or PB aqueous solution
at ca. 3 mg/kg. Serum and ELF samples were collected for up to 6 h to quantify major PB
components. Three groups of neutropenic mice (n = 6/group) were infected with a clinical MDR
Pseudomonas aeruginosa strain followed by intravenous administration of PB liposomes or PB
aqueous solution at 3 mg/kg every 6 h or sham (drug-free) liposomes every 6 h. Bacterial burden
in animal lung tissues was quantified after 24 h of therapy and was compared using one-way
ANOVA. Survival of infected animals over time (n = 10/group) was evaluated by Kaplan–Meier
analysis and log-rank test. In the pharmacokinetic study, the AUC ratio in ELF between liposome
and aqueous solution groups ranged from 4.6 to 11.1 for various major PB components. In the
efficacy study, for strain PA 9019 a significantly lower bacterial burden was seen in the liposomal
group (3.8 ± 0.7 vs. 7.9 ± 0.8 log10 CFU/g in the aqueous solution group), which subsequently
prolonged survival of infected animals. In this study, treatment with a PB liposomal formulation
yielded higher drug penetration into pulmonary ELF, which resulted in superior efficacy.
However, further investigations on the clinical utility of the PB liposomal formulation are
warranted.
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1. Introduction
Infections caused by multidrug-resistant (MDR) Gram-negative bacteria such as
Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae present a
critical clinical challenge worldwide [1,2]. Among the different infections caused by MDR
Gram-negative bacteria, pulmonary infections are especially problematic and are associated
with a high mortality rate [3–5]. Since no first-line antibiotics are effective, polymyxin B
(PB) is often used as the last-resort treatment for infections caused by MDR Gram-negative
bacteria [6,7].

PB [US Pharmacopeia (USP)] is commercially available as a mixture of several closely
related polypeptides, obtained from cultures of various Bacillus polymyxa strains and related
species [8]. The major components of PB (USP) are polymyxin B1, B2, B3 and isoleucine-
B1 (PB1, PB2, PB3 and ile-PB1, respectively) [9], the proportions of which have been
reported to be 73.5%, 13.7%, 4.2% and 8.6%, respectively [10]. Since most clinical isolates
of Gram-negative bacilli (including those that are MDR) remain susceptible to PB [11–13],
intravenous (i.v.) PB is commonly used for the treatment of critically ill patients with
pulmonary infections [14]. Despite good in vitro susceptibility, previous studies have
demonstrated that PB is associated with reduced efficacy in the treatment of pulmonary
infections [14–16]. A possible explanation for the poor therapeutic outcomes is the limited
penetration of PB into the site of infection, i.e. epithelial lining fluid (ELF).

Liposome encapsulation may potentially alter the pharmacokinetics and biodistribution of
antimicrobials compared with standard formulations [17,18]. Increased uptake by activated
tissue macrophages would allow higher antimicrobial concentrations to be achieved at the
site of infection [19,20] and presumably improve treatment efficacy. In this study, PB was
encapsulated in liposomes by a modified method of reversed-phase evaporation. Serum and
ELF pharmacokinetic (PK) profiles were compared between the liposomal formulation and
standard aqueous solution in mice. In addition, treatment efficacy was evaluated in a
neutropenic murine pneumonia model of P. aeruginosa. Improving drug delivery to the site
of infection is expected to enhance the effectiveness of PB for pulmonary infections due to
MDR Gram-negative bacteria.

2. Materials and methods
2.1. Chemicals and reagents

DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and cholesterol were purchased from
Avanti Polar Lipids (Alabaster, AL). Polymyxin B sulfate (USP) powder, 1.25% 2,2,2-
tribromoethanol (TBE) and trichloroacetic acid (TCA) were purchased from Sigma-Aldrich
(St Louis, MO). Carbutamide was purchased from Aldrich (Milwaukee, WI). Liquid
chromatography/mass spectrometry (LC/MS)-grade acetonitrile and water were obtained
from Mallinckrodt Baker (Phillipsburg, NJ). LC/MS-grade formic acid was purchased from
Fluka Analytical (Buchs, Germany).

2.2. Bacteria
Two P. aeruginosa strains were used. PA 9019 was a bloodstream isolate from Houston,
Texas, which was previously found to be resistant to all first-line agents [21]. Pseudomonas
aeruginosa ATCC 27853 (PA 27853) was obtained from the American Type Culture
Collection (Rockville, MD). The PB minimum inhibitory concentrations (MICs) for PA
9019 and PA 27853 were previously determined to be 4 mg/L and 2 mg/L, respectively [22].
According to the Clinical and Laboratory Standards Institute (CLSI) [23], an isolate with an
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MIC ≤ 2 mg/L would be considered as susceptible and an isolate with MIC of 4 mg/L would
be considered as intermediate.

2.3. Preparation of liposomal polymyxin B formulation
PB was encapsulated in liposomes by a modified method of reversed-phase evaporation. The
specific method of liposome preparation is under protection by a provisional patent
application 61/684,276 (unpublished, filing date 17 August 2012). Briefly, PB was added to
a solution of DPPC and cholesterol in chloroform. A water-in-oil emulsion was formed and
chloroform was evaporated under pressure to form a uniform liposomal suspension. Finally,
this liposomal dispersion was extruded through a high-pressure extruder (Northern Lipids,
Inc., Burnaby, BC, Canada) and free PB was removed by centrifugation at 48 400 × g for 1
h (Beckman Coulter, Indianapolis, IN). The concentration of PB in each liposome batch was
determined by a validated ultraperformance liquid chromatography/tandem mass
spectrometry (UPLC-MS/MS) method.

2.4. Pharmacokinetic studies
The PK investigation in a small number of uninfected immunocompetent animals was used
as a screening tool to justify subsequent efficacy investigations in a murine neutropenic
model. The animal protocol was approved by the University of Houston (Houston, TX)
Institutional Animal Care and Use Committee. All of the animals received food and water ad
libitum and were cared for in accordance with National Research Council recommendations.
Two groups of 24 female ND4 Swiss Webster mice (20–23 g) (Harlan Laboratory,
Indianapolis, IN) were intravenously administered PB liposomes or aqueous solution (USP)
at approximately 3 mg/kg through the tail vein. At each time point (0.1, 0.5, 1, 2, 4 and 6 h
post dose), four mice were sacrificed for blood and ELF sample collection. Blood samples
were clotted on crushed ice and the serum was obtained by centrifugation. ELF samples
were obtained by bronchoalveolar lavage. All of the serum and ELF samples were stored at
–80 °C until analysis.

2.5. Serum and epithelial lining fluid sample analysis
Four major PB components in serum and ELF samples were assayed by a validated UPLC-
MS/MS method. An ACQUITY UPLC HSS C18 column (Waters, Milford, MA) was used
with 0.1% formic acid/acetonitrile as mobile phases. Analysis was performed in positive
ionisation mode with multiple reactions monitoring (MRM) scan type. Briefly, the serum
and ELF samples (200 μL) were spiked with 0.2 mL of carbutamide (internal standard).
Then, 200 μL of 5% TCA was added to precipitate the proteins, followed by 1 min of
vortexing. After centrifugation at 18 000 × g for 15 min, the supernatant was transferred to a
new tube and was evaporated to dryness under a stream of nitrogen.

The residue was reconstituted in 0.1 mL of mobile phase (acetonitrile:0.1% formic acid,
50:50) and then centrifuged at 18 000 × g for 15 min. Then, 10 μL of supernatant was
injected into the UPLC-MS/MS for quantitative analysis. The linear concentration range was
0.006–3.2 mg/L both for serum and ELF samples. Samples with concentrations higher than
the linear range were diluted before the assay. The intraday and interday variance was <11%
for all of the components both in serum and ELF. The concentration of drug in ELF was
corrected using the concentrations of urea in bronchoalveolar lavage fluid (BALF) and
serum, respectively [24]. Concentrations of urea in serum and BALF samples were
quantified with a commercially available assay kit (QuantiChrom™ Urea Assay Kit;
BioAssay Systems, Hayward, CA) and were measured on a Synergy2 microplate reader
(BioTek Instruments, Winooski, VT). Drug exposures observed both in serum and ELF were
normalised by the specific dose of each batch of liposomes to account for the variances
among different PK experiments. Naïve data averaging was used; the best-fit PK parameters
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as well as drug exposure in serum and ELF were calculated by WinNonlin 3.3 (Pharsight
Corp., Mountain View, CA) using a one-compartment model and non-compartmental
analysis, respectively.

2.6. Experimental pneumonia model
Animals were housed in isolation boxes to decrease the risk of infection from extraneous
pathogens. To reduce the influence of innate immune function on the observed outcomes,
transient neutropenia was induced using two doses of intraperitoneal cyclophosphamide:
150 mg/kg administered 4 days prior to infection and 100 mg/kg administered 1 day prior to
infection. This procedure was reported to result in transient neutropenia for 1 week after the
last injection [25]. Animals were anaesthetised by a single intraperitoneal injection of 1.25%
TBE at a dosage of 250 mg/kg. Overnight bacterial cultures were inoculated in cation-
adjusted Mueller–Hinton broth (BBL, Sparks, MD), grown to log-phase growth and diluted
to ca. 104.5 CFU/mL (PA 9019) or 106 CFU/mL (PA 27853) with sterile normal saline on
the basis of absorbance at 630 nm. The bacterial inocula selected were determined by
previous lethal inoculum studies [21] and were intended to mimic a window of opportunity
in which pharmacological intervention might have an impact on outcome. Bacteria were
washed once in sterile saline and were inoculated (10 μL) into the trachea of anaesthetised
animals under laryngoscopic guidance [21]. Two hours after bacterial infection, three mice
were sacrificed at baseline to ascertain the infective inoculum.

2.7. Bacterial burden studies
Two hours after bacterial infection, three to six mice in each treatment group were
intravenously administered one of the following every 6 h: (i) PB liposomes (3 mg/kg); (ii)
PB aqueous solution (3 mg/kg); or (iii) sham (drug-free) liposomes. The selected dosing
regimen was guided by previous investigations based on the highest tolerated i.v. dose and
logistic feasibility (i.e. the number of injections given via the tail vein). All infected mice
were euthanised after 24 h by CO2 asphyxiation, and the lungs from each mouse were
aseptically collected for quantitative culture. Prior to being cultured, the lungs were
homogenised in 10 mL of sterile saline. Lung homogenate suspensions were centrifuged
(4000 × g at 10 °C for 15 min), decanted and reconstituted with sterile saline at 10 times the
original volume. Samples were subsequently serially diluted (10×) and plated on Mueller–
Hinton agar plates (Hardy Diagnostics, Santa Maria, CA). Colony counts were enumerated
after incubation at 35 °C in a humidified incubator for 24 h. The reliable lower limit of
detection was 1000 CFU/g. Statistical analysis was performed using the Kruskal–Wallis test
and Dunn's multiple comparison test. A P-value of ≤0.05 was considered to be statistically
significant.

2.8. Survival studies
Two hours after infection with PA 9019, ten mice in each treatment group were
intravenously administered (0.2 mL) with either of the following every 6 h: (i) PB liposomes
(3 mg/kg); (ii) PB aqueous solution (3 mg/kg); or (iii) sham (drug-free) liposomes for 24 h.
The mice were examined every 8 h for up to 96 h. Moribund mice were humanely sacrificed
at each inspection time, and death was recorded as occurred at the next inspection time.
Lungs from each mouse were aseptically collected for quantitative culture as described
previously, either upon death or at the end of the experiment. Survival over time was
evaluated by Kaplan–Meier analysis and log-rank test. A P-value of ≤0.05 was considered to
be statistically significant.
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3. Results
3.1. Serum pharmacokinetics

The serum concentration–time profiles (normalised by the total dose) following
administration of PB liposomes and aqueous solution are shown in Fig. 1. All four major PB
components in serum could be quantified for up to 6 h post dose; the PK profiles were
satisfactorily characterised by a one-compartment model. The best-fit PK parameters for
each component are presented in Table 1. Compared with the solution group, a relatively
slower clearance of all of the components was found in the liposome group.

3.2. Comparative polymyxin B exposures in epithelial lining fluid
The ELF concentration–time profiles of PB1, PB2, PB3 and ile-PB1 following i.v.
administration of PB liposomes and aqueous solution are displayed in Fig. 2. PB1 could be
quantified for up to 4 h, whilst PB2, PB3 and ile-PB1 could only be quantified for up to 2 h
post dose in the solution group. In contrast, all of the components could be quantified up to
the last sampling time point in the liposome group. Drug exposures over 6 h for the
liposome group was ca. 7-fold (range 4.6–11.1-fold) higher than that calculated for the
solution group (Table 2).

3.3. Comparative efficacy in neutropenic pneumonia model
The bacterial burdens after 24 h in various treatment groups are displayed in Fig. 3. At the
start of therapy, the animals had 3.1–3.6 log10 CFU/g (PA 9019) and 4.2–5.1 log10 CFU/g
(PA 27853) in lung tissues. After 24 h, the bacterial burden in lung tissues of the sham
liposome control group increased to 8.4–9.1 log10 CFU/g (PA 9019) and 8.5–9.2 log10 CFU/
g (PA 27853); these increases were similar to no-treatment controls (P > 0.05). For PA
9019, a significant difference in bacterial burden was found between the liposome group
(3.8 ± 0.7 log10 CFU/g) and the sham liposome control group (8.7 ± 0.2 log10 CFU/g) (P <
0.001). However, only a minimal antimicrobial effect was observed in the solution group
compared with the sham liposome control group. A similar trend was observed in PA 27853.
These results were generally consistent with our postulation that only a limited drug
exposure could be achieved at the site of infection with the highest tolerated dose.

3.4. Survival studies
Therapy with liposomes for 24 h significantly prolonged the survival of animals infected
with PA 9019 compared with treatment with PB solution and sham liposomes (P < 0.001).
In contrast, survival was not prolonged with treatment of PB solution compared with sham
liposomes. With sham liposomes treatment, the median survival was 40 h, whilst the median
survival was 44 h with treatment of PB solution and 56 h with treatment of PB liposomes
(Fig. 4). In all dead animals, the tissue bacterial burdens were considerably higher (>10
000×) than baseline, suggesting that pneumonia was likely the primary cause of death (data
not shown). These observations were consistent with previous results of bacterial burden in
lung tissues.

4. Discussion
Pneumonia is the leading cause of infection-related mortality worldwide, and antibiotic
resistance has become more prevalent in the past several decades. PB is increasingly used as
the last resort to treat pulmonary infections due to MDR Gram-negative bacteria. However,
PB was reported to have reduced efficacy in the treatment of pulmonary infections.
Considering the high molecular weight, low lipophilicity and high plasma protein binding of
PB [26], reduced treatment efficacy was postulated to be associated with a low drug
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exposure in ELF. Several attempts have been made to characterise the pharmacokinetics and
pharmacodynamics of PB [22,26,27], however PB exposure in ELF is still unknown. In this
study, major PB components distributed to the ELF in mice were quantified using a sensitive
UPLC-MS/MS assay. Only limited PB exposure was found in ELF, which provided
supportive evidence for our hypothesis. Furthermore, an efficacy study was performed in a
validated murine neutropenic pneumonia model [21]. The bacterial burden in the lung
tissues at 24 h was only found to be minimally reduced in mice treated with standard PB
solution compared with no treatment. In addition, no survival benefits were observed in
infected animals. Unsatisfactory antimicrobial activity of standard PB solution seen in this
pneumonia model is consistent with previous clinical observations [14–16].

PK and pharmacodynamic (PD) relationships have been described for a number of drugs,
often using serum concentrations as a surrogate for the concentrations at the actual site of
infection. For pulmonary infections, concentrations of antibiotics in ELF are thought to
reflect antibiotic activity more realistically [24]. This is the first report to explore the reason
why standard PB solution is associated with reduced efficacy in the treatment of pulmonary
infections. With limited drug exposure achieved at the infection site, standard PB solution
was not found to be efficacious.

Intravenous liposomes have the potential for uptake by macrophages in the lungs and then
release of PB into ELF, resulting in a higher drug exposure at the site of infection. We
demonstrated that, compared with the standard formulation, liposome encapsulation
increased PB distribution into the ELF. This preferential distribution may lead to improved
treatment efficacy. The potential use of liposomes as a carrier system for PB delivery to the
lungs has been explored by other investigators [28–31]. Most studies only reported enhanced
in vitro susceptibility of liposomal PB in Gram-negative bacteria [29,31]. It was also
demonstrated that direct delivery of liposomal PB to the lungs was efficacious in the
treatment of pulmonary infections [28]. However, there was no detectable drug in the
bloodstream, which might not be ideal in situations when bacteria disseminated systemically
from the lungs. A preferred treatment option for pulmonary infections could achieve
effective concentrations both in the ELF and systemically. Therefore, an i.v. liposomal PB
formulation was developed in this study, which was found to have superior efficacy in a
validated experimental pneumonia model against two P. aeruginosa isolates. Moreover, the
improved efficacy of PB liposomes was confirmed by two clinically relevant endpoints,
namely bacterial burden in lung tissues at 24 h and survival.

There are several limitations of this study. Only a limited number of bacterial strains were
investigated; using additional isolates with a diverse background would enhance the
robustness of the evaluation. Second, whilst the importance of protein binding on
antimicrobial efficacy is well recognised, we did not specifically compare protein binding
between the two formulations. Protein binding of PB in different mammalian species was
previously found to be similar (data not shown), but since we did not expect a high protein
content in ELF, the confounding from the bound PB was not thought to be highly relevant in
the treatment of pneumonia. Third, PB is associated with considerable nephrotoxicity;
however, we did not compare renal toxicity between the liposomal and standard
formulations because the mouse model is not suitable for this purpose. Investigations on
nephrotoxicity associated with the polymyxins are ongoing in our laboratory. Preliminary
biodistribution studies suggested that the drug exposures achieved in renal tissues were
lower with liposomes compared with the standard solution (data not shown). Finally, since
the systemic drug exposure achieved by PB solution was lower than that expected with
standard dosing in humans, clinical studies are warranted to verify the ELF drug exposure
and efficacy in humans before this liposomal formulation can be used clinically.
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In conclusion, we explored the reason for the lower efficacy of PB in the treatment of
pulmonary infections. In addition, an i.v. liposomal PB formulation demonstrated superior
treatment efficacy in a validated murine pneumonia model. These investigations are
expected to shed more light on the potential of a novel drug delivery system that may
improve the treatment of pulmonary infections.
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Fig. 1.
Serum concentrations of the major polymyxin components (A) PB1, (B) PB2, (C) PB3 and
(D) isoleucine-B1 (ile-PB1) following intravenous administration of polymyxin B liposomes
(◆) and aqueous solution (US Pharmacopeia) (❑). N = 4, data shown as mean ± standard
deviation.
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Fig. 2.
Epithelial lining fluid concentrations of the major polymyxin components (A) PB1, (B) PB2,
(C) PB3 and (D) isoleucine-B1 (ile-PB1) following intravenous administration of polymyxin
B liposomes (◆) and aqueous solution (US Pharmacopeia) (❑). N = 4, data shown as mean
± standard deviation.
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Fig. 3.
Comparison of bacterial burdens in lung tissue after 24 h of treatment for Pseudomonas
aeruginosa strains (A) PA 9019 and (B) PA 27853. * Significantly different compared with
the polymyxin B (PB) solution and sham liposome groups (P < 0.05). Each data point
represents one animal; the horizontal line in each group depicts the median bacterial burden.
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Fig. 4.
Survival of mice infected with Pseudomonas aeruginosa PA 9019 following treatment for
24 h for polymyxin B (PB). N = 10 in each group. Survival was significantly prolonged in
the PB liposome group compared with the sham liposome group (P < 0.001).
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Table 1

Best-fit pharmacokinetic (PK) parameters of the major polymyxin components PB1, PB2, PB3 and isoleucine-
B1 (ile-PB1) following intravenous administration of polymyxin B (n = 4)

PK parameter Component Liposome Solution (USP)

AUC0–6h (mg·h/L) PB1 4.77 2.76

PB2 1.07 0.30

PB3 0.39 0.33

ile-PB1 0.64 0.64

T1/2 (h) PB1 0.60 0.32

PB2 0.44 0.21

PB3 0.30 0.28

ile-PB1 0.42 0.29

CL (mL/h/kg) PB1 444.10 790.06

PB2 308.28 899.90

PB3 489.78 664.39

ile-PB1 562.65 575.61

Vss (ml/kg) PB1 382.90 373.06

PB2 197.77 274.74

PB3 209.87 267.30

ilePB1 338.41 241.10

USP, US Pharmacopeia; AUC0–6h, area under the concentration–time curve from 0–6 h; T1/2, elimination half-life; CL, clearance; Vss, volume

of distribution at steady state.
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Table 2

Comparative epithelial lining fluid exposures of the major polymyxin components PB1, PB2, PB3 and
isoleucine-B1 (ile-PB1) in mice following intravenous administration of polymyxin B (n = 4)

Component AUC0–6h (mg·h/L)
a AUC ratio (liposome:solution)

Liposome Solution

PB1 9.75 1.57 6.21

PB2 3.44 0.31 11.10

PB3 1.28 0.26 4.92

ile-PB1 2.00 0.44 4.55

a
The area under the concentration–time curve from 0–6 h (AUC0–6h) was calculated from the average concentration–time profile. Each time

concentration was averaged by naïve pooling. Undetectable concentrations were deemed to be zero.
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