
Physiopathology of the Cochlear Microcirculation

Xiaorui Shi*
*Oregon Hearing Research Center (NRC04), Department of Otolaryngology/Head & Neck
Surgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR
97239, USA

Abstract
Normal blood supply to the cochlea is critically important for establishing the endocochlear
potential and sustaining production of endolymph. Abnormal cochlear microcirculation has long
been considered an etiologic factor in noise-induced hearing loss, age-related hearing loss
(presbycusis), sudden hearing loss or vestibular function, and Meniere's disease. Knowledge of the
mechanisms underlying the pathophysiology of cochlear microcirculation is of fundamental
clinical importance. A better understanding of cochlear blood flow (CoBF) will enable more
effective management of hearing disorders resulting from aberrant blood flow. This review
focuses on recent discoveries and findings related to the physiopathology of the cochlear
microvasculature.
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Introduction
Normally functioning cochlear microcirculation is critically important for maintaining ion
and fluid balance in the inner ear, as sensory hair cells are strikingly vulnerable to ischemia
(Nuttall, 1999b; Wangemann, 2002b). The inability to measure cochlear blood flow (CoBF)
in humans has limited the investigation in human subjects, but numerous studies using
different animal models have aptly demonstrated physiological changes with the alteration
of CoBF, including changes in leukocyte dynamics. Vascular permeability and deformation
have been shown to be contributing factors in various hearing disorders including
presbycusis, noise-induced hearing loss, and ear hydrops (Brown et al., 1995; Chen et al.,
2005a; Gratton et al., 1996a; Gratton et al., 1997; Hawkins, 1971; Kellerhals, 1972; Lamm
et al., 1998; Mazurek et al., 2006; Miller et al., 2003; Nuttall, 1999a; Ohlemiller, 2009;
Prazma et al., 1990; Seidman et al., 1999a; Shi et al., 2003). In humans, compelling clinical
evidence has associated blood risk factors and myocardial disease with hearing and
vestibular abnormalities (Aimoni et al., 2010; Mitchell et al., 2009). Capillary and stria
vascularis degeneration have also been shown in presbycusis patients (Nelson et al., 2006;
Wagenaar et al., 2000). In addition, the incidence of hearing loss in patients with various
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systemic autoimmune diseases is quite high, reported to be between 15% – 75%
(Barkhuizen et al., 2006; Mouadeb et al., 2005). One mechanism for hearing loss is
disruption of the vascular barrier in the stria vascularis (Cadoni et al., 2002; Fattori et al.,
2001; Naarendorp et al., 1998; Ottaviani et al., 1999), with subsequent loss of endocochlear
potential (Lin et al., 1997; Ruckenstein et al., 1999). Study of the vascular system in the
inner ear has a long and rich history, which has been well-documented in previous reviews
(Axelsson, 1988; Axelsson et al., 1986; Kimura, 1986; Lawrence, 1980; Miller et al., 1988;
Miller et al., 1995a; Nakashima et al., 2003; Nuttall, 1988; Seidman et al., 1999b; Sillman et
al., 1989; Wangemann, 2002a). Animal models of cochlear microcirculation have provided a
good understanding of cell-mediated CoBF homeostasis, and further studies will extend this
basic understanding to clinical studies, which directly address vascular-related hearing
disorders. This review focuses on the microvasculature, and in particular on recent findings
that show CoBF regulation at the microvessel level. The review introduces a new view of
the blood-labyrinth barrier (BLB), which has ramifications for treatment of clinical hearing
disorders such as noise-induced hearing loss, presbycusis, and sudden hearing loss, or ear
hydrops associated with the dysfunction of cochlear blood supply. The microvasculature is a
key component of tissue and organ health (Klijin et al., 2008; Lockhart et al., 2009), and
understanding the role of the microvasculature in the BLB and CoBF is the foundation for
preventing, diagnosing, and treating many hearing disorders.

1. Features of cochlear microcirculation
1.1. Capillary networks of the cochlear lateral wall are distinctively layered in a parallel
arrangement and anatomically distant from sensory hair cells in the cochlea

The main blood supply to the cochlea is the terminating spiral modiolar artery (SMA), a
branch of the anterior inferior cerebellar artery (AICA) (see Figure 1). As shown in Figure
1A, the SMA branches from the AICA centrifugally and radiates over the scala vestibuli and
across the spiral lamina. The spiral modiolar artery has radial branches to the lateral cochlear
wall which form the two major capillary systems in the spiral ligament and stria vascularis.
The two capillary systems form four distinct networks that are arranged in parallel in the
cochlear lateral wall (Illustrated in Figure 1 B) (Axelsson, 1968). The networks are: (1) The
supra-strial capillary network (arteriole system) of the spiral ligament. These microvessels,
located above the attachment of Reissner’s membrane and just below the perilymphatic
surface, are surrounded by a generous number of pre-capillaries. Location and arrangement
is suggestive of a plasma filter for the perilymph. The perilymph may also originate in this
network. (2) The post-strial capillary network (venous system) of the spiral ligament.
Capillary branches from radiating arterioles passing down behind the stria turn
longitudinally in the body of the prominence, and descend beneath the outer sulcus and
insertion of the basilar membrance to join the collecting venules of the tympanic portion of
the spiral ligament. (3) The ad-strial capillary network (true capillary system) of the spiral
ligament. Most of the capillaries in the middle part of the spiral ligament that pass behind
the stria run a more or less straight downward course in the spiral ligament until they reach
the floor of the outer sulcus. A majority of the vessels turn longitudinally to join the venules
in the wall of the scala tympani. (4) The capillaries of the stria vascularis. The largest
branches of the radiating arterioles enter the stria vascularis just below the attachment of
Reissner’s membrane, where they divide to form the strial network with its multiple
anastomoses. The volume of cochlear blood flow is extremely small, with CoBF estimated
on the order of 1/10 000 of total cardiac output in rodents such as guinea pigs or rats, and on
the order of 1/1 000 000 of total cardiac output in humans (Nakashima et al., 2003). Strial
capillaries are usually of larger diameter (12–16 micron) than spiral ligament capillaries (9–
12 micron) (Miller et al., 1988). The strial capillaries are tightly packed with red blood cells.
The flow is non-pulsatile and anatomically distant (> 100 micrometers) from sensory hair
cells (Fig 1A and B), minimizing the acoustic perturbation of blood flow on hair cell
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transduction (Axelsson et al., 1990). The velocity of blood flow in the strial network is much
slower than it is in the vessels of the spiral ligament. Themean velocity of blood flow in
spiral ligament vessels was measured at 0.12 mm/s, while strial flow measured 0.08 mm/s.
In a typical animal, blood velocity in various vessels of the ligament ranged between 0.09–
0.18 mm/s, but only ranged 0.03–0.10 mm/s in strial vessels (Nuttall, 1987). The strial
network is widest and most complex near the basal end and becomes narrower and simpler
towards the apex.

External wall vessels only form a single-layer capillary network at birth, but subsequently
divide into two layers, constituting the microvessels of the stria vascularis and spiral
ligament. This process occurs progressively from the basal turn toward the apical turn
between days 5 and 8 in mice (Iwagaki et al., 2000). The cochlear vasculature tends to
mature from the basal turn towards the apex (Iwagaki et al., 2000). In guinea pigs, the main
stem of the inner ear vessel is formed by day 30 of fetal life, however, the peripheral
capillary nets remain immature in form and vessel density is low (Nakai et al., 1986). It is
also reported that BLB permeability is much greater before 14 days of birth in rats (Suzuki
et al., 1998).

Pre-capillary and post-capillary vessels of the spiral ligament have vessel walls with smooth
muscle cells, and regulation of lateral wall blood flow is largely considered to be a function
of this network (Wangemann et al., 1996). In contrast, capillaries of the stria vascularis,
formed in polygonal loops, are highly specialized vascular epithelia (Axelsson, 1968). Strial
capillaries have a minor role in blood flow regulation, but a crucial one in maintaining the
endocochlear potential, ion transport, and endolymphatic fluid balance essential for the ear’s
sensitivity (Spicer et al., 2002a; Wangemann, 2002a).

1.2. The cochlear capillary network is densely populated with pericytes
The capillary networks of the cochlear lateral wall include a rich population of pericytes
(Shi et al., 2008). Pericytes are smooth-muscle-like cells and also are considered as
pluripotential progenitor cells. Pericytes are generally situated on microvessels, such as
arterioles and venules, and particularly on the smallest capillaries, where there is little or no
smooth muscle (Gerhardt et al., 2003; Hirschi et al., 1996; Thomas, 1999). Pericytes
typically have a prominent nucleus and relatively little cytoplasm, and display nearby short
processes as well as several long processes which embrace the abluminal endothelium wall
(Diaz-Flores et al., 1991). The long cytoplasmic processes of pericytes, often in contact with
numerous endothelial cells, serve to integrate signals along the length of the vessel (Bergers
et al., 2005) (Figure 2 showing cochlear pericytes).

Pericytes show considerable morphological heterogeneity in the capillary beds of different
tissues as well as wide differences in distribution density. For example, the ratio of pericytes
to endothelial cells varies from 1:1 in retina, 1:5 in brain, 1:10 in lung, to 1:100 in skeletal
muscle (Frank et al., 1987; Shepro et al., 1993). In the cochlea, the ratio of pericytes to
endothelial cells in the stria vascularis and spiral ligament are approximately 1:2 (Shi et al.,
2008), similar to that in the retina. The cochlear capillary system has a relatively high
population of pericytes. The morphology of pericytes also differs depending on where they
are found. The majority of cochlear pericytes on true capillaries have a polygonal cell body
and long, slender processes (see Figure 3, Panels A–C), while most pericytes in the pre-
capillary areas have prominent soma and band-like processes which completely encircle the
vessel (see Figure 3, Panels D–F). Most pericytes in the post-capillary venule areas have
flattened cell bodies and, likewise, circumferential band-like vessel-enshrouding processes
(see Figure 3, Panels G–I). Pericytes on branch points have spindle-cell bodies and long
processes distributed over the two branches (see Figure 3, Panels J–L). Pericytes on the
vessels of the spiral ligament express contractile proteins, including α-SMA, desmin, F-
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actin, and tropomyosin (Shi et al., 2008), and exhibit vasocontractility (Dai et al., 2009). In
contrast, pericytes on the vessels of the stria vascularis, lacking expression of α-SMA or
tropomyosin, express abundant desmin structural proteins.

Pericytes in the kidney, retina, liver, and lung not only play a role in regulating capillary
blood flow, but also in blood vessel formation, immune response, and regulation of
endothelial activity via different cell factors and signaling agents, including
neuromodulators, vasoactive peptides, metabolic factors, growth factors, and cytokines (Allt
et al., 2001; Betsholtz et al., 2005; del Zoppo et al., 2006; Donoghue et al., 2006; Kim et al.,
2006; Nehls et al., 1993; Pallone et al., 2001; von Tell et al., 2006; Yamagishi et al., 2005).
In addition, pericytes exhibit multipotent stem cell activity and can differentiate into a
variety of different cell types, including macrophages and phagocytes, fibroblasts, and
smooth muscle cells (Dore-Duffy et al., 2006; Sims, 2000). Moreover, various vascular
diseases have been found to be associated with pericyte pathology (von Tell et al., 2006).
Pericytes are receiving increased attention in microcirculation studies. However, cochlear
pericytes have traditionally received little attention and the specific role of pericytes in
cochlear homeostasis is largely unknown.

1.3 Autoregulation
Another feature of cochlear microcirculation is its strong autoregulation (Brechtelsbauer et
al., 1995; Brown et al., 1994; Laurikainen et al., 1993; Miller et al., 1995a; Nakashima,
1999; Nakashima et al., 2003). A significant decrease in systemic blood pressure only
causes a slight change in CoBF (Albera et al., 2003; Degoute et al., 1997; Tono et al., 1998).
The rapid recovery of CoBF that occurs during occlusion of the anterior inferior cerebellar
artery, the main blood supply to the ear, is a further indication of the autoregulation
(Nakashima, 1999; Ren et al., 1993). Moreover, Suzuki et al. (1993) found that when
cerebrospinal fluid pressure is increased, CoBF is not correspondingly decreased by the
elevation in fluid pressure.

2. Regulation of CoBF in the inner ear
Sound stimulation of the inner ear imposes an energy demand that requires efficacious
delivery of oxygen and glucose. A well-regulated cochlear blood flow (CBF) is needed to
meet these requirements while also effectively clearing away metabolites. Regulation of
CoBF, under the prevailing model, is hypothesized to include both local auto-regulatory and
central control through neural pathways. The model incorporates neural- and autocrine/
paracrine-based regulation of vasoconstriction and dilation at the level of artery and
arterioles, as well as at the level of capillaries.

2.1 Regulation of CoBF by smooth muscle cells
Contraction of the smooth muscle cells in the spiral modiolar artery is hypothesized to be
tightly regulated to meet the demand of cochlear tissues (Wangemann, 2002b). Contraction
of the smooth muscle cells of the vascular wall reduces its luman diameter with the effect of
decreasing blood flow, while relaxation of the smooth muscle cells increases blood flow.
Smooth muscle cell contractility is signaled both with central neural and local metabolic
signals. Sympathetic (peptidergic and adrenergic) nerve fibers have been found in the spiral
modiolar artery of the gerbil and guinea pig (Brechtelsbauer et al., 1990; Carlisle et al.,
1990; Rauchegger et al., 1981). Norepinephrine-induced vasoconstriction in the spiral
modiolar artery is mediated by α1A-adrenergic receptors (Gruber et al., 1998). Stimulation
applied in the sympathetic ganglia, stellate ganglion, or superior cervical chain in the guinea
pig has been shown to alter CoBF in situ (Laurikainen et al., 1994; McLaren et al., 1993;
Ren et al., 1993). In addition, distribution of vasoactive intestinal peptide (VIP),
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neuropeptide Y (NPY), substance P (SP), and calcitonin gene-related peptide (CGRP) are
also found in the spiral modiolar artery (Carlisle et al., 1990; Qiu et al., 2001). These
findings support a hypothesis that CoBF is controlled by neuronal signals at the level of the
artery (Gruber et al., 1998; Herzog et al., 2002; Sadanaga et al., 1997; Scherer et al., 2005;
Wangemann, 2002b; Wangemann et al., 1998; Wonneberger et al., 2000).

2.2 Regulation of CoBF by pericytes
Capillary-mediated local control of perfusion was first reported by (Wangemann et al.,
1996). Recent findings on the vascular capillaries in the brain and retina highlight the role of
pericytes in controlling capillary blood flow and maintaining microvascular homeostasis
(Peppiatt et al., 2006). Microvessels in the spiral ligament contain a high density of
pericytes, spaced approximately 2–25 µm apart as compared to 100 µm on true capillaries
(Shi et al., 2008). The pericytes express contractile proteins, including α-smooth muscle
actin and tropomyosin, and exhibit vasocontractility under both in vivo and in vitro
conditions (Dai et al., 2009). The contractility of pericytes could affect flow resistance of the
vascular network, and may profoundly alter overall blood flow. In particular, cochlear
pericyte long processes span considerable distances (~ 60 µm) within the microcirculatory
network and touch each other on the surface of microvessels, which may set the stage for
signal integration. Pericytes may be functionally linked to form a “pumping system” to
regulate blood flow.

2.3 Regulation of CoBF by fibrocytes
Recent experiments have also shown that CoBF is modulated by lateral fibrocyte input (Dai
and Shi, 2011, an illustration in Figure 4). Fibrocytes in the cochlear lateral wall are divided
into five types (I–V) based on morphological appearance, immunostaining pattern, and
general location (Spicer et al., 1991; Suko et al., 2000). Fibrocytes have long been regarded
as simple supporting cells; however, recent evidence suggests other functional roles under
both physiological and pathological conditions (Adams, 2009; Doherty et al., 2004; Hirose
et al., 2003; Moon et al., 2006; Nakashima, 1999; Nakashima et al., 2003; Qu et al., 2007;
Spicer et al., 1991; Spicer et al., 2002b; Trowe et al., 2008; Wangemann, 2002c; Wu et al.,
2003). In particular, fibrocytes participate in ion transport. They facilitate generation of the
endocochlear potential by recycling K+ from hair cell transduction, through gap junctions to
strial intermediate cells and marginal cells, into the endolymph.

Normal hearing requires tight control over the supply of oxygen and glucose. In the brain
and retina, “neuro-vascular units” (NVUs) provide direct and fast control of local blood
flow. Activation of smooth muscle cells and pericytes, mediated by brain astrocytes and
retinal glial cells, enable these tissues to accommodate the metabolic demand. Type V
fibrocytes resemble astrocytes and glial cells. The fibrocytes are in morphological
association with pre-capillaries of the spiral ligament through “end-feet” structures similar to
astrocyte/pericyte junctions in NVUs (See Figure 5) (Dai et al., 2011). Fibrocyte activation
significantly affects capillary diameter and blood flow velocity by initiating COX-1 activity
and release of several vasoactive metabolites of arachidonic acid (Dai et al., 2011). The
mechanism is analogous to the NVU for regulation of blood flow in brain.

2.4 CoBF regulation by local metabolites
Multiple metabolic factors, including ATP, NO, lactate, PGE and K+, are involved in local
blood perfusion.

2.4.1 Nitric oxide (NO)—NO is a potent vasodilator and regulator of vascular tone, and
thus is an agent controlling organ blood flow (Brechtelsbauer et al., 1994; Feletou et al.,
1996; Nelson et al., 1995). Nitric oxide synthase (NOS) has been found in a variety of
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cochlear cell types in several animal models including the mouse and guinea pig (Chen et
al., 2005b; Konishi et al., 1998; Ruan, 2002; Shi et al., 2002). Direct NO production is found
in cochlear vascular and smooth muscle cells (Chen et al., 2005b; Ruan, 2002; Shi et al.,
2002; Shi et al., 2001). The NO causes smooth muscle and pericyte relaxation by activating
cGMP and affecting its downstream target, protein kinase G (PKG) (Haefliger et al., 1994;
Tian et al., 1999). NO also directly inhibits voltage-gated calcium channels, to the effect of
relaxing smooth muscle cells (Sakagami et al., 2001), and activates ATP-sensitive K+

channels in endothelial and smooth muscle cells of the spiral modiolar artery, causing
hyperpolarization and smooth muscle relaxation (Jiang et al., 2004; Si et al., 2002). Through
one of these several pathways, pharmacological intervention of NO production offers a
viable strategy for modulating regional blood flow in the cochlea.

2.4.2 Prostaglandin—Prostaglandin E (PGE), a major arachidonic acid metabolite in a
wide variety of tissues, has a complex and diverse pathophysiology in blood flow regulation
(Yang, 2007). PGE signaling, mediated by four distinct E-prostanoid receptors (EP1–4), has
been demonstrated in the stria vascularis, spiral ligament, and organ of Corti (Nakagawa,
2011). The EPs also have significant roles in blood flow regulation in other tissues (Gordon
et al., 2007). EP2 and EP4 have been shown to mediate vasodilatation in several organs,
with EP1 and EP3 shown to mediate vasoconstriction (Legler et al., 2010; Nakagawa, 2011).
CoBF in animals, measured by laser Doppler anenometry, was increased by local
administration of prostaglandin E1 (PGE1) (Sone et al., 2003; Tominaga et al., 2006). PGE2
also induces a dose-dependent increase in inner ear blood flow (Rhee et al., 1999; Umemura
et al., 1997). The prostaglandins are generally shown to enhance autoregulation of the inner
ear vessels (Nagahara et al., 1988). Indeed, PGE has been used to treat idiopathic sudden
sensorineural hearing loss (Nishimura et al., 2002). However, further studies are needed to
delineate the distinct regulatory roles of PGE signaling on CoBF.

2.4.3 Adenosine 5'-triphosphate (ATP)—ATP also plays a role in CoBF regulation.
Extracellular ATP applied to vessels has been shown to produce a dose-dependent increase
in CoBF (Munoz et al., 1999). ATP transiently increases intracellular Ca2+ in ECs. 1 mM
ATP caused a 10% dilation in spiral ligament capillaries in vivo (Wu et al., 2010). The ATP-
induced effect on CoBF involves P2X- and P2Y-subtype purinoceptors (Ren et al., 1997;
Takago et al., 2001). Inhibition of P2X4 receptor significantly blocks ATP-induced vessel
dilation (Wu et al., 2010). Humoral adenosine 5'-triphosphate (ATP), adenosine, and uridine
5'-triphosphate (UTP) have also been shown to have a role in controlling local blood flow in
the stria vascularis (Munoz et al., 1999). Manipulations of the adenosine signaling system
hold significant promise for therapeutic management of dysfunctional CoBF.

2.4.4 Lactate—Lactate, a major by-product of metabolism, is involved in the regulation of
local blood flow in many tissues (Gordon et al., 2008; Lombard, 2006; Mendrinos et al.,
2008). Cochlear perilymph has a three times higher concentration of lactate than blood and
cerebrospinal fluid. This suggests the perilymph lactate is of intracochlear origin (Scheibe et
al., 1976) and may rise to effective levels with sound stimulation. Different concentrations
of extracellular lactate serve as dynamic signals for pericyte relaxation and contraction,
which cause perturbations in intracellular Ca2+ by inhibiting the Na+/Ca2+ exchanger in the
retinal capillary system (Lombard, 2006). Recently, we found that lactate also has a
significant effect on regulation of CoBF. The effect on capillary diameter is mediated by an
NO signaled coupling with fibrocytes (Dai et al., 2010). Few experiments have been done on
lactate-based regulation of CoBF, and further study is needed, particularly considering the
high concentration of lactate in the cochlea. Lactate may be an essential signal in the control
of CoBF.
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2.4.5 Potassium (K+)—Elevating the K+ concentration from 3.6 to 150 mM by
superfusion of the spiral modiolar artery in vitro caused transient vasoconstriction
(Wangemann et al., 1998). Pericytes can also “detect” extracellular K+ signals (Matsushita
et al., 2006). Under both in vitro and in vivo conditions, we found that an extracellular K+

concentration of 10 mM induces pericyte contraction (Dai et al., 2009). Endolymphatic K+

recycling through sensory hair cells and non-sensory supporting cells has recently been
shown to have an important role in maintaining normal hearing function (Fujimura et al.,
2005; Marcus et al., 2002; Mistrik et al., 2009; Rickheit et al., 2008; Wangemann, 2002a).
Although cochlear blood flow is anatomically distant from sensory hair cells, the cells are
morphologically coupled to intermediate cells and fibrocytes by gap junctions (Ando et al.,
1998; Takeuchi et al., 2001). K+ movement through gap junctions between hair cells and
lateral wall supporting cells could produce a variable K+ concentration in the interstrial
space. K+ cycling through the cochlear lateral wall may be regulate pericyte function. The
outward ERG channel found in intermediate cells (Nie et al., 2005) is consistent with this
regulation. The channel produces a marked K+ extrusion into the interstitial fluid which
affects extracellular K+ concentration (Nie et al., 2005). Retinal pericytes, hyperpolarized or
depolarized depending on the concentration of extracellular K+, cause pericyte relaxation or
contraction (Cao et al., 2006; Matsushita et al., 2006; Quignard et al., 2003). Whether
cochlear K+ recycling regulates pericyte function to control capillary diameter has not been
determined.

3. Blood-labyrinth barrier in the stria vascularis
3.1. The physical structure of the blood-labyrinth barrier

The capillary bed in the stria vascularis is essential for solute homeostasis and preventing
the influx of toxic substances into the inner ear (Juhn et al., 1981; Juhn et al., 2001). In the
classic view, the BLB is composed of endothelial cells and an underlying basement
membrane (Sakagami et al., 1982; Sakagami et al., 1987). Endothelial cells connect to each
other by tight junctions (Sakagami et al., 1982; Takeuchi et al., 2001) and form a diffusion
barrier which selectively excludes most blood-borne substances from entering the ear,
protecting it from systemic influences (Juhn, 1988; Juhn et al., 1981). In a recent study, the
BLB was discovered to include, in addition to endothelial cells and basement membrane, a
large number of pericytes (Shi, 2009; Shi et al., 2008; Takeuchi et al., 2001) and
perivascular resident macrophages (Shi, 2010) (Figure 6). The perivascular resident
macrophages, with foot processes strikingly rich in mitochondria and vesicles, are highly
invested on the abluminal surface of capillaries. They are positive for several macrophage
surface molecules, including F4/80, CD68, and CD11b (Shi, 2010). They are also similar to
astrocytes in the brain and glial cells in the retina, both of which are known to have an
essential role in regulating barrier integrity (Abbott, 2002; Abbott et al., 2006; Cardoso et
al., 2010; Prat et al., 2001). In the absence of astrocytes and glial cells, BBB and BRB lose
tight junction proteins and become leaky to large molecules (Abbott, 2002; Abbott et al.,
2006; Haseloff et al., 2005; Willis, 2011). Presence of perivascular resident macrophages in
the BLB may suggest an analogous regulatory mechanism in the cochlea. Pericytes in the
BLB are rich in the structural protein desmin which gives mechanical strength to the
capillary and enhances general integrity of the network. Blood vessels deficient of pericytes
are abnormally large and leaky (Hellstrom et al., 2001). Perivascular resident macrophages
and pericytes are new classes of cells in the BLB, and their function is largely
uncharacterized.

3.2. Molecular composition of blood-labyrinth barrier
The BLB contains an array of enzymes and transporters, which together maintain the
necessary extracellular environment of the cochlear system (Saito et al., 1997; Yang et al.,
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2011). Using a mass-spectrometry, shotgun-proteomics approach, combined with a novel
“sandwich-dissociation” method of isolating capillaries from the stria vascularis, more than
600 strial capillary proteins have been identified (Yang et al., 2011) (Figure 7). Strikingly, a
high number of identified proteins are involved in metabolism and transport. For example,
the most abundant protein identified in the blood-labyrinth barrier is the ion transporter
subunit, Na+/K+-ATPase α1. In addition, a large number of proteins are metabolic enzymes,
including glutathione S-transferase (GST), prosaposin, leukotriene A4 hydrolase, and
glutamate oxaloacetate transaminase. Prosaposin, synthesized and secreted by the stria
vascularis, is pivotal to maintaining homeostasis in the auditory system (Terashita et al.,
2007). LTB4 is a vasoconstrictor which can cause hearing loss by down-regulating cochlear
blood flow (Rhee et al., 1999). The large number of transporters and metabolic enzymes in
the blood-labyrinth barrier is indicative of a high level of energy and transport activity.
Moreover, stria vascularis capillaries are rich in tight junction and cell adhesion proteins,
which is consistent with blood-labyrinth barrier function.

3.3. Regulation of blood-labyrinth barrier permeability
The inner ear has an endothelial blood-tissue barrier in the stria vascularis that is as tight as
the blood brain barrier. However, the mechanisms that control stria vascularis endothelial
blood-barrier permeability remain largely unknown. Information on regulation of the BLB is
sparse. Early studies showed that BLB permeability is more robust in developing rat cochlea
(Suzuki et al., 1998). Recently, protein kinase C eta (PKCη) was found to regulate barrier
permeability by directly interacting with Na+/K+-ATPase α1 and mediating tight junction
protein status, for example, by affecting the phosphorylation status of occludin.

Highly regulated transport of ions in and out of the BLB maintains the fluid composition in
the inner ear essential for auditory function. A better understanding of how the BLB is
regulated would enable development of therapies for restoring the barrier in BLB related
hearing disorders.

4. Hearing loss associated with impaired microvasculature
4.1. Noise-induced hearing loss

The cause of noise-induced hearing loss remains unclear, despite years of investigation.
Insufficient blood supply is one mechanism which accounts for temporary or permanent
noise-induced threshold shifts. For example, several histological and physiological studies
have demonstrated signs of reduced circulation (vessel contraction and cochlear hypoxia)
and inflammation, including leukocyte infiltration and up-regulation of adhesive molecules,
in the cochlea after noise exposure (Hillerdal et al., 1987; Lamm et al., 1999; Quirk et al.,
1992; Scheibe et al., 1993; Seidman et al., 1999b; Shi et al., 2007; Yamane et al., 1991). A
recent study by Arpornchayanon et al. (2011) shows that noise exposure reduces red blood
cell velocity compared to stable control measurements. In addition to noise-induced
disruption of endothelial cells, noise also causes upregulation of vascular endothelial growth
factor (VEGF), a potent inducer of vascular breakdown (Nag et al., 2011; Selivanova et al.,
2007). Furthermore, noise exposure causes down-regulation of COX enzymes (Heinrich et
al., 2010; Heinrich et al., 2006), which can decrease endogenous PGE2 (a vasodilator) levels
in the cochlea. Down-regulation of PGE2, particularly EP2 and EP4, could be the cause of
noise induced cochlear ischemia. In addition, structural and molecular changes in the
cochlear endothelium are involved in the BLB breakdown from noise-exposure. We have
observed that pericytes, hypothesized to provide structural support in the BLB, lose their
tight association with endothelial cells following loud sound damage (Shi, 2009) (Figure 8).
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4.2. Endolymphatic hydrops
Endolymphatic hydrops is a condition in which too much endolymph is present (Pirodda et
al., 2010; Semaan et al., 2010). Meniere's disease is characterized by fluctuating hearing
loss, episodic vertigo, and tinnitus, and by endolymphatic hydrops found on examination
post-mortem (Semaan et al., 2005). The cause of Meniere's disease remains unclear.
Numerous factors play a role in the development of hydrops and in the pathogenesis of
related cochleovestibular dysfunction. However, the evidence from research on animal
models suggests the pathophysiology in Meniere's disease is closely associated with
dysfunctional CoBF. For example, Miller and his co-worker demonstrated that the
magnitude of evoked CoBF response was reduced by approximately one third in hydropic
ears compared to normal ears (Miller et al., 1995b; Vass et al., 1995; Yazawa et al., 1998).
Brechtelsbauer et al. (Brechtelsbauer et al., 1995) reported reduced autoregulation of CoBF
in guinea pigs with endolymphatic hydrops. Significantly higher levels of plasma
norepinephrine and vasopressin have been reported in patients with Meniere's disease (Juhn
et al., 1999). However, the evidence is not consistent. Others have not found endolymphatic
hydrops associated with blood flow. For example, Larsen et al. (Larsen et al., 1988) found
no change in regional or total cochlear blood flow in hydropic ears. CoBF measurement in
patients with Ménière's disease and control groups showed no statistically significant
difference with respect to CoBF amplitudes (Selmani et al., 2001). Resolving the issue of
whether microcirculation and ear hydrops are correlated needs to wait on development of
better means to measure blood flow in the cochlea.

4.3. Presbycusis
Age-related hearing loss is the major form of hearing loss and the predominant
neurodegenerative disease of aging (Frisina, 2009; Lang et al., 2010; Ohlemiller et al., 2008;
Ohlemiller et al., 2010; Schacht et al., 2005). Insufficient CoBF and decline in the
endocochlear potential (EP) (strial presbycusis) are considered responsible for hair cell
damage and hearing loss in the elderly (Gacek, 1969; Harkins, 1981; Seidman et al., 1999b).
For example, Prazma et al. (Prazma et al., 1990) reported that CoBF in old gerbils was less
than in young animals. Gratton et al (Gratton et al., 1996b) reported that age-related
decreases in endocochlear potential are associated with vascular abnormalities in the stria
vascularis. Brown et al. (Brown et al., 1995) found that cochlear vascular reactivity to
topical application of nitroprusside, a vasodilating agent, was less in old mice than in young
mice. Suzuki et al. (Suzuki et al., 1998) demonstrated that autoregulation was significantly
reduced in the aged group. Using a microsphere technique to quantify blood flow, they
found diminished flow in morphologically normal-appearing basal turn capillaries. Changes
in whole blood viscosity and red-cell rigidity have also been correlated with high-frequency
hearing loss in elderly human subjects (Gatehouse et al., 1990). Furthermore, in a series of
in vivo experiments using intravital microscopy of the cochlear microvasculature, Seidman
et al. (Seidman et al., 1996) demonstrated age-dependent, statistically significant reductions
in mean red blood cell velocity accompanied by increases in capillary permeability.
Increased immunoglobulin and laminin deposits were observed in thickened basement
membranes of aged strial capillaries (Sakaguchi et al., 1997a; Sakaguchi et al., 1997b). In
humans, an age-related, gradual loss of capillaries in the spiral ligament of the scala
vestibuli was observed. For example, in a human temporal bone study, presbycusis patients
showed loss of hair cells and neurons and atrophy of the stria vascularis (Sprinzl et al.,
2010).

However, the literature is also inconsistent. Hillerdal and co-workers (Hillerdal et al., 1987)
reported no difference in CoBF in young and aged normotensive rats. The conflicting results
may reflect a difference in the species studied or age at which animals were selected for
investigation. The association of age-related pathological changes with disturbance of CoBF
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is not clear at present. A better understanding of cochlear homeostasis requires a way to
measure CoBF in humans, as animal models currently provide our only means to study
CoBF.

4.4. Sudden deafness
The pathogenesis of idiopathic hearing loss remains unknown, but vascular involvement is
one hypothesis (Mosnier et al., 2011). Observational clinical studies have shown that
patients with sudden idiopathic sensorineural hearing loss often present with systemic
arterial hypertension, diabetes mellitus, dyslipidemias, alone or associated with systemic
sclerosis, and thromboembolic risk (Nagaoka et al., 2010). The sudden deafness patient
often presents with high precontrast signals in the inner-ear fluid space and an increased
concentration of protein passing through blood vessels, indicating a breakdown of the blood-
labyrinth barrier (Sone et al., 2009; Sugiura et al., 2006; Yoshida et al., 2008).

4.5. Genetic Hearing loss
The endocochlear potential (EP) is essential to hearing, because it provides approximately
half of the driving force for the mechanoelectrical transduction current in auditory hair cells
(Salt et al., 1987; Smith et al., 1954; Tasaki et al., 1958; Tawackoli et al., 2001;
Wangemann, 2002a). The EP is produced in the stria vascularis (SV) (Ferrary et al., 1998;
Marcus et al., 1983; Offner et al., 1987; Salt, 2001; Salt et al., 1987; Tran Ba Huy et al.,
1986; Wangemann, 2002a; Wangemann, 2002b). Disruption of the endothelial barrier in the
stria vascularis leads to loss of EP in genetic hearing loss (Cohen-Salmon et al., 2007). For
example, connexin30 deficiency results in severe congenital hearing impairment with
disruption of the BLB (Cohen-Salmon et al., 2007). In addition, hearing loss resulting from
Nr3b2(−/−) mutation is associated with reduction of the density of the cochlear strial
capillaries (Chen et al., 2007).

5. Measurement of CoBF
Direct measurement of CBF is difficult and techniques for assessing blood flow are still
under development. Various techniques are used for evaluation of cochlear blood flow,
including laser-doppler anemometry (LDA), magnetic resonance imaging (MRI),
fluorescence intravital microscopy (FIVM), microendoscopy (FME), as well as approaches
based on injection of radioactive or labeled microspheres into the boodstream. Here, I
discuss two recent methods for measurement of cochlear blood flow.

Fluorescence microendoscopy (FME)
The fluorescence microendoscope, consisting of a flexible imaging fiber, coupled to a
system for detection of fluorescence, enables study of cochlear blood flow on a scale of
microns. Blood flow velocity is determined by analysis of video sequences (Monfared et al.,
2006). The small size of the instrument makes it versatile and suitable for relatively non-
invasive imaging of regional blood flow. In 2006, Monfared et al. observed single red blood
cells passing through individual capillaries in several cochlear structures, including through
the round window membrane, spiral ligament, osseous spiral lamina, and basilar membrane.
They determined blood flow velocity using this technique by analyzing the acquired video
sequences. Fluorescence microendoscopy has several advantages: (1) The endoscope probe
can be placed at the round window without disturbing the membrane; (2) The vasculature of
the round window membrane itself, as well as the most proximal portion of the osseous
spiral lamina and basilar membrane, can be imaged; (3) With resection of the round window
membrane, the endoscope probe can easily be introduced into the scala tympani to image
blood flow in the osseous spiral lamina, spiral ligament, and basilar membrane.
Disadvantages include disruption of the delicate homeostatic balance in the cochlea.
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Optical microangiography (OMAG)
Optical microangiography (OMAG) is a recently developed technique which enables the
imaging of circulation patterns at capillary level resolution in tissue beds up to 2 mm thick
(Wang, 2008a; Wang, 2008b). Endogenous light scattering from moving blood cells
provides the image contrast, and no exogenous contrast agents are necessary. The technique
is sensitive enough to image very slow blood flow velocities, such as those found in
capillary networks of the cochlea, without opening a window in the cochlear lateral wall.
Volumetric reconstruction of microvascular flow in the cochlea with this technique has been
demonstrated (see Figure 9). The collection to the left displays OMAG images of the otic
capsule, stria vascularis of the apical (SVa) and middle (SVm) turns, and radiating arterioles
that emanate from the modiolus (M) in an intact cochlea (Choudhury et al., 2009). Further
improvements to the resolution of the OMAG imaging system, for example with a higher
numerical aperture (NA) objective, would enable visualization of individual capillaries in
the stria vascularis, as well as measurement of blood flow in the intact cochlea of living
animals, without need of compromising the lateral wall.

Conclusion
Normal blood supply to the cochlea and BLB are essential for sustaining endocochlear
potential, ion transport, and endolymphatic fluid balance, and for preventing toxic
substances from entering the cochlea. Many of these functions are well-documented in
previous reviews (Axelsson, 1988; Axelsson et al., 1987; Kimura, 1986; Lawrence, 1980;
Miller et al., 1988; Miller et al., 1995a; Nakashima et al., 2003; Nuttall, 1988; Seidman et
al., 1999b; Sillman et al., 1989; Wangemann, 2002b). This review has focused on regulation
of blood flow in the microvasculature, as dysfunction of cochlear blood flow and disruption
of the cochlear BLB are shown to result in hearing impairment in animal models. Recent
research has shown breakthroughs in explaining some of the underlying mechanisms.
Progress in understanding the cellular and molecular structure of the blood-labyrinth barrier
is accelerating, and new experimental methods are providing opportunities to study the
physiology of the inner ear microvasculature more deeply. Future directions for cochlear
microcirculation research include (i) developing novel CoBF measurement tools for
diagnosis of vascular dysfunction related hearing loss; (ii) investigating the role of the
blood-labyrinth-barrier in generating the endolymphatic potential; (iii) investigating the role
of CoBF in cochlear homeostasis; and (iv) defining the pathological mechanisms in clinical
diseases which involve flow dysregulation and barrier disruption.

> Cochlear microcirculation is essential for normal hearing function. > A better
understanding of cochlear microcirculation will benefit clinic treatment. > Progress in
this field is accelerating due to new methods and technologies. > This review focuses on
recent discoveries on cochlear microcirculation.
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Figure 1. Schematic view of CoBF supply
A, The SMA, a major artery, supplies blood to the cochlea image from (Axelsson, 1968)]. B,
A characterization of the vascular pattern on the outer wall of the cochlea is shown.
Radiating arterioles arching over the roof of the scala vestibuli run in bony channels,
branching as they emerge from the upper margin of the spiral ligament. Two distinct
capillary networks in the spiral ligament and stria vascularis are apparent in the lateral wall.
The networks parallel each other without cross connections [image adapted from (Mudry et
al., 2009)]. V/SL: vessels of the spiral ligament; V/SV: vessels of the stria vascularis.
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Figure 2. Cochlear pericytes on cochlear microvessels in adult guinea pig
Pericytes are idenified with double-staining for desmin (red), a pericyte marker protein, and
nitric oxide (DAF-2DA, green). A: an arteriole; B: a capillary of the spiral ligament (SL); C:
a capillary of the stria vascularis (SV). Pericytes have a body (short arrows) and many
primary processes (long arrows) which tightly embrace the endothelial tube. Pericytes on the
outer wall of vessels have a characteristic “bump on a log” shape.
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Figure 3. Shapes of pericytes on different cochlear microvessels
The pericytes were double-labeled with a pericyte marker protein: desmin (red), combined
with fluorescent indicator for intracellular nitric oxide DAF-2DA (green). Panels A–C show
the morphology of a pericyte on a true capillary. The pericyte has a polygonal-shaped cell
body (Panel A, 10 sections; interval: 1 µm), relatively few long longitudinal processes, and
short, fine circumferential projections (Panel B, 10 sections; interval: 1 µm). Panel C is a
merged image of Panels A and B. Panels D–F show the morphology of a pericyte on a
precapillary. The pericyte has a “bump-shaped” soma (Panel D, 11 sections; interval: 1 µm)
and relatively large processes that encircle the capillary (Panel E, 10 sections; interval: 1
µm). Panel F is a merged image of Panels D and E. Panels G–I show the morphology of a
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pericyte on a postcapillary. These pericytes have a flattened cell body (Panel G, 11 sections;
interval: 1 µm) and short processes encircling the vessel (Panel H, 11 sections; interval: 1
µm). Panel I is a merged image of Panels G and H. Panels J–L show the morphology of a
pericyte on a branch point of the postcapillary. The pericyte has a spindle-shaped cell body
(Panel J, 10 sections; interval: 1 µm) and long processes distributed over the two branches
(Panel K, 10 sections; interval: 1 µm). Panel L is a merged image of Panels J and K
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Figure 4. Morphological details of fibro-vascular coupling is shown in confocal and TEM images
(A) Type V fibrocytes positive for S100 (green) abut capillary walls labeled by isolectin IB4
(blue). (B) Type V fibrocytes are positive for Na+/K+ ATPase β1 (red). (C) Type V
fibrocytes also contain high levels of NO, as detected with the intracellular NO indicator,
DAF-2DA (gray). (D) Magnification of panel B shows foot processes in contact with a
capillary. (E) A multiple-foot process of a fibrocyte abuts capillary wall. (F) A high
magnification image shows a fibrocyte end-foot structure at the soma of a pericyte. The
soma of pericytes were labeled by an antibody for NG2, (red), and processes were labeled
with an antibody for the structural protein, desmin (blue). Capillary walls are labeled by
phalloidin (green). (G) and (H) Fibrocytes contact capillaries with enlarged endings. (I) The
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endings display electron-dense membrane regions rich in mitochondria. Abbreviations: FC,
fibrocyte; EC, endothelial cells; PC, pericyte; Mt, mitochondria. Calibration bars in H and I
are 500 nm.
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Figure 5. A working model of fibro-vascular coupled signaling in the inner ear
Cochlear blood flow is anatomically distant from sensory hair cells, but the cells are
morphologically coupled to supporting and fibrocytes by gap junctions. Mechanical activity
(red line) or metabolic activity (red dotted line) increases COX-1 enzymatic activity in type
V fibrocytes, but the exact pathway is unknown. Activation of COX-1 may result in
conversion of arachidonic acid into metabolic intermediates such as PGE2. The PGE2
diffuses into the perivascular space and elicits vasodilatation through the mediation of
fibrocyte-coupled pericyte activity.
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Figure 6. Cellular structure of the blood-labyrinth barrier
Endothelial cells in normal BLB are identified with an antibody for mouse endothelial IgG
(A, blue), pericytes with an antibody for desmin (B, green), and macrophages with an
antibody for F4/80 (C, red). The merged image (D) shows the complexity of the blood-
labyrinth-barrier.
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Figure 7. Noise induces breakdown of the blood-labyrinth-barrier and causes irregularities in
pericyte coverage
A & C, Serum protein IgG is confined to blood plasma (IgG/arrow) in vessels of the stria
vascularis in normal mice (A) and guinea pigs (C). B and D, Serum protein IgG leaks from
vessels (arrow/IgG) in noise-exposed mice (B) and guinea pigs (D). Arrowheads indicate
sites of vascular leakage. GP: guinea pig. Pericytes containing desmin filaments are evenly
distributed on the vessel walls of the stria vascularis in both guinea pigs (E) and mice (F).
Pericytes are labeled with an antibody for desmin (green), and vessels with an antibody for
isolectin IB4 (red). G and H: Confocal fluorescent images from noise-exposed guinea pigs
and mice show abnormal pericyte morphology and increased pericyte coverage. Arrows
point to irregular pericyte foot processes turning away from the vessel wall (G) and detached
from it (H). I and J: Drawings illustrate the pattern of pericyte distribution on vessel walls in
normal and noised-exposed animals. V/SV, vessel of the stria vascularis; NE, noise
exposure; GP, guinea pig; MS, mouse.
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Figure 8. Classification of isolated stria vascularis capillary proteins identified ATP1A1 as the
most abundant protein in the blood-labyrinth barrier
The pie graph shows a spectral count-weighted tabulation of the GO annotation by
biological process. Proteins involved in transport (42%) and metabolism (19%) are highly
expressed in the blood-labyrinth barrier
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Figure 9. The 3D volume rendering of mouse cochlea is segmented and displayed in four
different orientations to provide a detailed view of the cochlear microvasculature
A & B show a 3D volumetric perfusion image of the entire cochlea (Media3 & Media4). C
is a segmented 3D volumetric microvascular perfusion at the Modiolus (Media5), and D a
3D volumetric reconstruction of the microvascular perfusion together with cochlear
structures (Media6).
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