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Abstract
Background—Numerous clinical and experimental studies support the hypothesis that the
intrauterine environment is an important determinant of cardiovascular disease and hypertension.

Objective—This review examines the mechanisms linking an adverse fetal environment and
increased risk for chronic adult disease, with an emphasis on gender differences and the role of sex
hormones in mediating sexual dimorphism in response to a sub-optimal fetal environment.

Methods—This is a selective review that focuses on current findings regarding sex differences in
fetal programming and the mechanisms involved in the fetal programming of cardiovascular
disease and hypertension.

Results—The mechanisms involved in the fetal programming of adult disease are multifactorial
and involve alterations in the regulatory systems involved in the long-term control of arterial
pressure. Sex differences are observed in animal models of fetal programming and recent studies
suggests sex hormones modulate activity of regulatory systems leading to a lower incidence of
hypertension and vascular dysfunction in females compared to males.

Conclusions—Animal models of fetal programming demonstrate that female offspring are
protected from the adverse effects of fetal insult, and are providing insight into the mechanisms by
which sex hormones contribute to sexual dimorphism in adult disease.
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INTRODUCTION TO FETAL PROGRAMMING
Hypertension is a prevalent disorder estimated to affect about 25% of the world's adult
population (1,2). The cause of elevated blood pressure in the majority of the population is
unknown; however, common risk factors include: sex, diet, ethnicity and obesity (1,2).
Cardiovascular disease (CVD) continues to be the major cause of human death worldwide
and the incidence and prevalence of chronic kidney disease (CKD) is also increasing (3).
Hypertension and type II diabetes mellitus (DM) are the two major causes of CKD
worldwide and also contribute to death from CVD (3). Despite intense research in the field,
the etiology of these common diseases remains unknown. Environmental and genetic factors
have been considered the underlying cause of these diseases. However, hypertension
frequently coexists with type 2 DM, as well as dyslipidemia, insulin resistance, and CKD,
which may reflect a common underlying mechanism (3). One such mechanism may be
related to intrauterine environment.

To whom correspondence should be addressed: Barbara T. Alexander, Ph.D. Department of Physiology and Biophysics University of
Mississippi Medical Center 2500 North State Street Jackson, MS 39216−4505 Phone: 601−984−1831 FAX: 601−984−1817 email:
balexander@physiology.umsmed.edu.

NIH Public Access
Author Manuscript
Gend Med. Author manuscript; available in PMC 2009 March 18.

Published in final edited form as:
Gend Med. 2008 ; 5(Suppl A): S121–S132. doi:10.1016/j.genm.2008.03.012.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



As hypothesized by Barker, “the fetal origins of adult disease” proposes that cardiovascular
and related disorders derive from fetal adaptations to maternal undernutrition (4). This
hypothesis, referred to as “fetal programming,” suggests that an adverse environmental
stimulus experienced during a critical period of fetal development induces long-term
structural and functional effects in the developing organism predisposing it to increased risk
for development of hypertension and CVD (4). Programming is a consequence of
developmental plasticity in the fetus whereby a variety of different phenotypes result from a
background of a single genotype in response to a sub-optimal environment during
intrauterine life (5). These phenomena are intimately linked and have far reaching
implications if one considers that their effects can be perpetuated across generations (6).

Barker postulated his theory based on the correlation between birth weight and increased
risk for coronary heart disease (5). Numerous epidemiological studies focused on diverse
populations from various parts of the world have substantiated these initial findings and
expanded them to include increased susceptibility to a number of other pathophysiological
conditions such as impaired glucose tolerance, type II DM, obesity, stroke, high blood
pressure and non-insulin-dependent DM (7). By far, low birth weight (LBW) which occurs
when a fetus fails to achieve its genetically determined growth potential (8), and subsequent
hypertension has been the most studied. Although the mechanistic pathways underlying this
association remain unclear, investigators using animal models to induce a sub-optimal fetal
environment are providing critical support for the fetal programming hypothesis by
demonstrating that exposure to adverse conditions in utero results in offspring with marked
adaptive responses and adverse adult outcomes.

METHODS
This selective review focuses on the current findings regarding mechanisms that mediate an
adverse adult outcome in response to a suboptimal fetal environment, with an emphasis on
the role of sex hormones and sexual dimorphism in the response to fetal programming of
adult disease.

SEX DIFFERENCES IN FETAL PROGRAMMING: ANIMAL STUDIES
Numerous investigators use different animal models to induce adverse fetal conditions in
order to mimic the pathophysiological conditions linked to slow fetal growth and the
subsequent increased risk for adult disease in humans. Different animal models include
dietary undernutrition induced by global food restriction (9,10) or protein restriction during
gestation (11,12,13,14,15), maternal hypoxia during gestation (16,17), placental
insufficiency (18,19,20,21,22), or prenatal glucocorticoid treatment (23,24).

Numerous animal models of fetal programming exhibit sex differences in the response to a
prenatal insult, with the adaptive response dependent on the timing and severity of the insult.
Maternal undernutrition during the preimplantation period in the rat leads to increased blood
pressure in male offspring only (25). These authors suggest that during preimplantation,
male embryos have a greater capacity to respond to the maternal environment and may, as a
consequence, exhibit enhanced sensitivity to specific programming influences. Female
offspring appear to be protected from or exhibit reduced sensitivity to a moderate insult
during development. Moderate global dietary restriction during gestation in the rat leads to
gender-related hypertension with young male offspring developing increased blood pressure
that is more pronounced and develops earlier than female offspring (26). Male offspring in
this model also demonstrate abnormalities in vascular function in isolated peripheral arteries
(26). Blood pressure is also significantly higher in males than females in response to
pharmacological levels of dexamethasone administered during early gestation in sheep
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(27,28). However, moderate protein restriction during gestation in the rat leads to marked
increases in blood pressure in male offspring associated with a reduced nephron number
(29). Only a more severe nutritional insult leads to hypertension and changes in renal
structure in both male and female offspring (29). A similar pattern of response is observed in
models induced by variations in sodium intake during pregnancy and lactation (30).
Moderate sodium intake leads to hypertension in male, but not female offspring; whereas
high sodium intake during the same window of development programs male and female
offspring (30). Hypoxia during gestation in the rat results in altered vascular function in
male, but not female offspring (16). Thus, animal models of fetal programming indicate that
male offspring are more sensitive to insults during development; and that female offspring
are less sensitive, or protected against development of adult disease in response to fetal
insult. Interestingly, females appear to be protected against deficiencies in nutrients, oxygen,
or both. However exposure to an excess intake of dietary fat, such as lard, is associated with
endothelial dysfunction in both male and female offspring, but hypertension in female
offspring, (31). Recent studies from our laboratory suggest that sex hormones may
contribute to sex differences that occur in response to fetal insult (32,33). Utilizing a model
of fetal programming induced by placental insufficiency during late gestation in the rat, we
observe marked increases in blood pressure in both pre-pubertal male and female growth
restricted offspring (18). However, after puberty, only male growth restricted offspring
remain hypertensive whereas female growth restricted offspring normalize their blood
pressure (18,32,33). Castration abolishes hypertension in adult male growth restricted
offspring in this model (32); ovariectomy induces hypertension in adult female growth
restricted offspring (33). Thus, sex hormones may contribute to sexual dimorphism in this
model of fetal programming of adult disease by modulating regulatory pathways important
in the long-term control of blood pressure.

MECHANISMS OF FETAL PROGRAMMING
Birth weight, nephron number and glomerular size

The kidney is a central organ involved in hypertension, by mechanisms such as sodium
handling, intravascular fluid volume homeostasis, as well as intrinsic renal disease (34). In
many animal models, LBW is associated with a deficit in nephron number which is
suggested to predispose the development of hypertension by decreasing sodium excretion
(35). Total nephron number is a biological variable that is defined in humans prior to birth.
Approximately 60% of the nephrons develop during the third trimester of pregnancy (36)
with no new nephrons formed after birth (36). Additionally, a reduction in the number of
nephrons at birth may also be associated with a diminished resistance to mechanisms of
renal damage in adult life.

In humans, Brenner (35) proposes that intrauterine growth restriction (IUGR) may be
associated with impaired nephrogenesis, resulting in reduced nephron number, leading to a
subsequent increase in blood pressure and progressive deterioration of renal function. Many
human studies demonstrate that IUGR is associated with a significant reduction in nephron
number (37,38,39). Human studies show there are about 1 million nephrons on average in
each normal kidney, with large variations depending on the counting methodology used
(40,41,42). Although numerous studies suggest an association between birth weight and
nephron number, there are also studies that suggest that reduced nephron number may not
always be associated with IUGR and impaired nephrogenesis (40). The median number of
glomeruli in patients with hypertension is about 700,000 per kidney compared with about
1.4 million for matched controls. Although the number of glomeruli in hypertensive patients
is about half that seen in controls, it is within the normal variable observed for a full-term
human fetuses (41,42). Thus, considerable variability is observed in the total nephron
number within the human population. However, despite the large variation in nephron
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numbers observed in these studies, a consistent observation had emerged; glomerular
volume varies inversely with glomerular number. These findings suggest that larger
glomeruli may be a sign of compensatory hyperfiltration and hypertrophy in subjects with
fewer nephrons (43,44). Total glomerular volume, which represents total filtration surface
area, is not different among groups with different nephron numbers and birth weights (45).
This observation suggests that total filtration surface area may initially be maintained, but
with compensatory glomerular hypertrophy, may lead to progressive deterioration of renal
function in time (46).

A marked reduction in nephron number is a common adaptive outcome observed in response
to fetal insult in animal models of fetal programming. Nephron number is reduced in models
induced by nutrimental insult in the rat (13,14,15), sheep (12), or microswine (47), and in
models induced by placental insufficiency in the rat (21) and rabbit (19). Placental
insufficiency in the rat leads to marked reductions in nephron number associated with
significant increases in renal apoptosis and expression of key apoptosis genes and in the
IUGR offspring (48). Thus, fetal insult may lead to renal apoptosis contributing to reduced
nephron number.

Animal models of fetal programming demonstrate that timing and severity of the fetal insult
is critical to nephron complement. Nutritional insults initiated prior to nephrogenesis in the
rat do not result in changes in nephron number or hypertension (13,49). Reductions in
nephron number occur only when the nutritional insult occurs during the nephrogenic period
suggesting that timing of the insult is critical to programming of adult disease. Severity of
the nutritional insult also alters the adaptive response. Moderate nutrimental insult leads to
reduced nephron number in male offspring only (29). Only a more severe nutritional insult
leads to reduced nephron number in male and female offspring of protein restricted dams
(29). To summarize, a reduction in nephron number is observed in LBW humans and in
many animal models of fetal programming suggesting that an adverse fetal environment
during a critical period of fetal development results in permanent structural alterations in
renal structure.

Vascular reactivity
Vascular endothelial dysfunction plays an important role in the development of hypertension
and CVD (50). LBW in human is associated with vascular dysfunction (51), an observation
supported by animal models of fetal programming (16,26,52,53). Thus, fetal programming
contributes to both structural and physiological changes in the vasculature which may
contribute to increased risk for development of CVD associated with LBW.

Numerous models of fetal programming exhibit sex differences in the vascular response to
fetal insult. Although decreased acetylcholine-induced relaxation is observed in both male
and female offspring from nutrient restricted dams, vascular abnormalities are more
pronounced in males than in females (26,52,53). Endothelial nitric oxide synthase activity,
but not gene expression of eNOS, is reduced in female offspring from undernourished dams
(52). Estrogen levels are reduced in these female offspring suggesting that the
vasoprotective role of the estrogen on the vascular responses is lost in females subjected to
fetal undernutrition. Thus, reduced nitric oxide bioavailability may contribute to altered
vascular function and sex hormones may contribute to sex differences in the programming
response of vascular function.

The renin angiotensin system
The renin angiotensin system (RAS) plays a major role in the control of blood pressure and
body fluid volume through both systemic and intrarenal actions (54,55). Components of the
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RAS are highly expressed in the developing kidney (56). A critical role for the RAS in
mediating proper nephrogenesis is suggested in studies whereby angiotensin type I receptor
(AT1R) blockade during the nephrogenic period after birth in the rat leads to a decrease in
nephron number associated with a reduction in renal function and an increase in arterial
pressure (57). Numerous investigators have examined the role of the RAS in the etiology of
reduced nephron number and hypertension in models of fetal programming
(12,15,32,33,58,59). Reduced nephron number that occurs in response to gestational protein
restriction is associated with marked reductions in renal renin mRNA and tissue ANG II
levels in the offspring at birth (15). Thus, suppression of the RAS during fetal development
may play a key role in mediating the structural and physiological changes observed in
models of fetal programming. Marked reductions in renal renin mRNA are also observed at
birth in models of fetal programming induced by placental insufficiency in both the rat (60)
and sheep (12) suggesting that different fetal insults lead to common alterations in the RAS.

Sex specific alterations in the renal RAS may contribute to sex differences in the fetal
programming of nephron number (15,60). Suppression of the RAS is observed at birth in
male, but not female offspring from moderately protein restricted dams (29). Importanlty,
only male offspring demonstrate reduced nephron number and hypertension in this model
(29). Therefore, moderate gestational undernutrition may lead to sex specific programming
effects on the renal RAS which contributes to sex differences in nephron number and the
development of programmed hypertension.

Temporal alterations in the RAS are also observed in models of fetal programming (58,60).
Plasma renin activity (PRA) remains significantly reduced in young rats from protein
restricted dams prior to the development of hypertension (58). However, PRA becomes
significantly increased after the establishment of hypertension (58). ACE inhibition
abolishes hypertension in young (59) and adult (58) offspring of protein restricted dams
suggesting that RAS played a critical role in the etiology of hypertension programmed by
undernutrition in utero. ACE inhibition also abolishes hypertension in young (60) and adult
male offspring (31) in a model of placental insufficiency in the rat suggesting similar
mechanisms mediate hypertension programmed by in utero insult. Therefore, evidence from
these studies suggests that a reduction in nephron number induced by fetal insult is due to
suppression of the fetal RAS. Additionally, later inappropriate activation of the RAS, or
increased sensitivity to angiotensin II, contributes to the etiology of fetal programmed
hypertension.

SEX HORMONES IN FETAL PROGRAMMING
Role of testosterone

In men, testosterone has an inverse relationship to systolic blood pressure (61), an
observation strongly supported by numerous studies in animal models of hypertension.
Castration of male spontaneously hypertensive rats (SHR) or Dahl salt-sensitive rats at a
young age (3 to 5 weeks) delays the development of hypertension (62). Treatment of
castrated male and ovariectomized female SHR with testosterone exacerbates their
hypertension (62). Furthermore, chronic blockade of the androgen receptor with the
antagonist flutamide attenuates blood pressure in male SHR to lower levels than those found
in female SHR (63). Thus, testosterone is suggested to play an important mechanistic role in
blood pressure control and may contribute to sex differences in human essential
hypertension and also in animal models of hypertension.

Testosterone appears to contribute to sex differences in models of hypertension programmed
by in utero insult. Our laboratory reports that testosterone levels are significantly elevated in
hypertensive adult male growth restricted offspring in a model of fetal programming
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induced by placental insufficiency in the rat (32). Castration abolishes hypertension in adult
male growth restricted offspring suggesting that testosterone contributes to elevations in
blood pressure in the adult animal (Figure 1) (32). The mechanism by which testosterone
contributes to hypertension in adult male growth restricted offspring may involve the RAS, a
regulatory systems important in sodium and water homeostasis and arterial pressure control
(54,55). We report that renal angiotensinogen mRNA is elevated in adult, but not pre-
pubertal male growth restricted offspring (60). Other investigators demonstrate that
angiotensinogen mRNA expression in kidney and liver is testosterone dependent (64,65).
Since hypertension in adult male growth restricted offspring can be abolished by chronic
ACE inhibition (60), testosterone may serve as a stimulus to enhance intrarenal
angiotensinogen in adult male growth restricted offspring, thus exacerbating the increase in
blood pressure in adulthood.

Role of estrogen
The increased incidence of hypertension in women after the age of 50 suggests that
endocrine changes associated with a decline in ovarian function play a role in the
pathogenesis and clinical manifestation of hypertension (66). Consequently, the value of
estrogen replacement as prophylactic to hypertension is plausible. In animal studies,
ovariectomy leads to hypertension in the aging female Dahl salt sensitive and female
mRen(2).Lewis rats, models whereby the female rat is normotensive to their male
counterparts (67,68). Thus, a protective role for estrogens against increases in blood pressure
is suggested.

Estrogens may also contribute to sex differences in animal models of fetal programming.
Our laboratory reports that placental insufficiency in the rat leads to female growth restricted
offspring that normalize their blood pressure after puberty (18), or the age at which female
rats reach their maximum levels of estrogen in the strain (69). Blood pressure is significantly
increased following ovariectomy in adult female growth restricted offspring in this model
with no effect on blood pressure in adult female control offspring (Figure 2) (33). The
importance of estrogens is indicated since estrogen replacement normalizes blood pressure
in ovariectomized adult female growth restricted (33). Thus, estrogens appear to provide a
protective status in adult female growth restricted offspring in this model of placental
insufficiency; however, the protective mechanism is not clear.

Presently, there is a paucity of data regarding the effects of estrogens on the natural history
of hypertension. Estradiol is associated with protective cardio-renal effects in many animal
models of hypertension (67,68,70) and the deleterious effects of ovariectomy such as
induced hypertension, renal injury, or endothelial dysfunction are reversed with estradiol
therapy (70,71). Therefore, the cardio-renal protective effect of estradiol appears to be
complex and includes a wide range of regulatory systems. One potential target for
modulation by estrogen is the RAS. Estrogens may activate the RAS by augmenting levels
of renin and angiotensinogen (72,73). Estrogens may also act downstream of these two
proteins by reducing angiotensin converting enzyme (ACE) and increasing angiotensin
converting enzyme 2 (ACE2) (74). The ACE-dependent pathway of the RAS generates the
potent vasoconstrictor peptide, angiotensin II (ANG II) which is critical for blood pressure
regulation (75). However, the ACE2-dependent pathway generates the peptide ANG (1-7)
which acts as a negative regulator of the vasoconstrictor effects of ANG II providing a
counter-regulatory balance to ACE (75). A role for modulation of ACE and ACE2 is
demonstrated in the DBA/Ren-2d model. In this animal model, males become severely
hypertensive, but females are less hypertensive compared to age-matched males (74).
Ovariectomy induces hypertension in the transgenic females; however, estrogen replacement
reverses this effect suggesting estrogens shift the balance between the ACE and ACE2
pathways and their circulating peptides, ANG II and ANG 1−7, respectively (74).
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Our laboratory observes similar effects by estrogen on the ACE2 pathway in a model of
placental insufficiency in the rat. Significant elevations in renal ACE2 mRNA expression
are observed in normotensive adult female growth restricted offspring (33). However,
hypertension induced by ovariectomy in adult female growth restricted offspring is
associated with a significant decrease in renal ACE2 mRNA expression (33). Ovariectomy
has no effect on blood pressure or renal ACE2 mRNA expression in adult control female
offspring suggesting that only in adult female growth restricted offspring, is the RAS and
subsequent regulation of blood pressure sensitive to the presence of estrogens. Therefore,
the abnormal response to loss of ovarian function on blood pressure regulation in adult
female growth restricted offspring may reflect permanent alterations in the regulatory
systems important in the long-term control of arterial pressure regulation, and the RAS, as a
consequence of fetal programming, may be one system sensitive to the effects of estrogen.

SEX DIFFERENCES IN FETAL PROGRAMMING: HUMAN STUDIES
Numerous epidemiological studies examine the association between birth weight and blood
pressure with significant controversy as to whether an inverse relationship is observed (4).
Original population studies linking birth weight and blood pressure did not separate findings
based on gender of the cohort (4). Recent population studies report that the inverse
relationship between birth weight and blood pressure is observed in both men and women
(76,77,78,79,80). Another study performed in children between 8 and 11 years old indicates
that this inverse relationship is observed only in girls (80). Other studies suggest that the
association between birth weight and coronary heart disease may be associated with sex
differences in early growth patterns reflecting sex differences in the rate of fetal growth at a
similar level of maternal nutrition (77). Although coronary heart disease in women is
associated with LBW, it is more strongly linked to short body length at birth (77). Among
men, coronary heart disease is also associated with LBW, but is more strongly linked to
thinness at birth (77). Thus, whether sex differences are observed in LBW individuals in not
clear and contributions from confounding variables including current BMI, catch-up growth
and socioeconomic factors may limit these investigations. Sex differences are observed in
human essential hypertension (81). An increase in blood pressure is more common and
severe in men as compared to age-matched, pre-menopausal women. However, after
menopause the risk of hypertension increases with age (82) suggesting that while the ovaries
are functional, women have a lower risk for hypertension and cardiovascular disease than
men. Thus, sex differences in the response to an adverse fetal environment may lead to
sexual dimorphism in the severity or the age-dependent development of chronic adult
disease in humans, an observation already demonstrated by animal models of fetal
programming.

CONCLUSIONS
Animal models of fetal programming provide critical support for the inverse relationship
between birth weight and blood pressure. Despite the model of insult, animal models of fetal
programming exhibit sex differences in the pathophysiological response to an adverse fetal
environment. A role for sex hormone involvement is strongly suggested with the response of
regulatory systems critical to the long-term regulation of arterial pressure exhibiting
increased sensitivity to sex hormones within the adult fetal programmed animal. As humans
also exhibit sexual dimorphism in blood pressure in adulthood and later life, animal studies
investigating sex differences in fetal programming may provide insight critical to the
mechanisms linking sex hormones and factors crucial to the long-term control of blood
pressure.
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Figure 1.
Castration abolishes hypertension in male intrauterine growth restricted (IUGR) offspring.
Mean arterial pressure was measured by radio telemetry from 12 to 16 weeks of age in
conscious, free moving animals that underwent either sham (intact) or castration (CTX) at
10 weeks of age. * P<0.05 vs. Control intact, † P<0.05 vs. IUGR intact. Used with
permission from reference 32; Am J Physiol Regul Integr Comp Physiol.
2007;292(2):R758−63.
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Figure 2.
Ovariectomy induces significant increases in mean arterial pressure in adult female
intrauterine growth restricted (IUGR) offspring. Mean arterial pressure was measured by
radio telemetry from 12 to 16 weeks of age in animals that underwent either sham (intact) or
ovariectomy (OVX) at 10 weeks of age. *P<0.01 vs. IUGR intact. Used with permission
from reference 33; Hypertension 2007; 50:679−685.
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