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ABSTRACT 
 
 
 

 This paper studies the problem of spreading a product (an idea or a technology) among 
agents in a social network. An agent obtains the product with a probability that depends on 
the spreading rate (or degree of contagion) of the product as well as on the behaviour of the 
agent’s neighbours. This paper shows, using a mean field approach, that there exists a 
threshold for the spreading rate that shapes the pattern of the product’s diffusion. This 
threshold, that depends on the network structure and the mechanism of contagion, determines 
whether the product spreads and becomes persistent or it does not spread and vanishes. 
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1 Introduction
Introducing a new product, technology or idea, in the market is an issue of major
social-economic relevance. Innovations do not necessarily spread at once, but
often spread gradually through social and geographic networks. In fact, many
products promote rather easily in a social system through a domino effect. In
a first stage a few innovators adopt the product, and this makes more likely
that their neighbors do the same, then their neighbors’ neighbors and so forth.
Indeed, these products or ideas can spread more efficiently from “consumer-to-
consumer dialogue”, rather than from sellers to consumers. Indeed, the opinion
on these products among the agents in the social system heavily depends on
their interpersonal ties. These communication channels are more trusted and
have greater effectiveness than mass media advertisements. Thus, traditional
marketing is being replaced by new strategies in which the product is turned into
“epidemics” where consumers do the marketing themselves.1 A recent example
is that of the mobile phones. They became popular in the mid 90’s and, at
present, almost every individual possesses a phone, which is considered as an
essential commodity in developed countries. Apart from the intrinsic advantages
that the new product might provide to its users, the fast spreading of it in the
population is reinforced by more subtle aspects, such as fashion and benefits
from coordinating in the decision with your contacts. The spreading of these
products share common features with the contagion of an infectious disease
in a population. The aim of this paper is to bring these issues to a common
setting to describe how a new technology or an idea propagates in a population
where agents only interact with their neighbors. In particular, we address the
following questions: How many initial adopters are needed to spread a product?
and How does the spreading pattern depend on the interaction structure among
individuals and on the contagion mechanism?

We consider a large population with a complex pattern of interaction among
agents. Moreover, the social system is described through a network structure.
Traditionally, the study of networks has been a topic of graph theory. Graph
theory, however, concentrated in small networks with a high degree of regularity.
This paper focuses on the large-scale statistical properties of the network instead
of on the properties of single vertices. We assume that the precise topology of
the network is unknown and thus it is consider as a “random ensemble”. The
number of edges a node has -the connectivity of the node- is characterized by a
distribution function P (k), which gives the probability that a randomly selected
node has exactly k edges. Throughout this paper, the network is exogenously
given and it is characterized by its connectivity distribution P (k).

Random graphs have been widely studied in the literature of complex networks.
The seminal paper by Erdos and Renyi (1959) defines a random graph by a
group of N nodes such that every pair of nodes is connected with a certain

1 In a recent book, Seith (2002) describes how an “idea” can spread in a population the
same way a “virus” does.
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probability p. The graphs generated in this manner have a connectivity distri-
bution which is a Poisson distribution with its peak at the average connectivity,
denoted by kkl. In this case, the majority of nodes have similar connectivity.
Recent empirical studies show that most large complex networks are charac-
terized by a connectivity distribution different to a Poisson distribution (e.g.,
Barabási et al., 2000; Faloutsos et al., 1999; Lijeros et al., 2001; Yook et al.,
2001, etc.). For instance, WWW, Internet and human sexual contacts, among
others, have a power-law connectivity distribution, i.e. P (k) ∼ k−γ where γ
ranges between 2 and 3. This implies that each node has a statistically sig-
nificant probability of having a very large number of connections compared to
the average connectivity kkl which generates an extreme heterogeneity in the
connectivity of agents. Such random networks are called scale-free. This class
of networks can be easily simulated by imposing that every period new nodes
are introduced in the network and these are linked preferentially to the most
highly connected existing nodes. Therefore, two principles underlay scale-free
networks: preferential attachment and growth (see Barabási and Albert, 1999).

This work attempts to be of general applicability, i.e. the results are formulated
for any given connectivity distribution (P (k)). We pay special attention, how-
ever, to the differential properties of Poisson and scale-free networks. We have
considered a simple diffusion model. Each agent, classified as either an “active”
or a “potential” consumer, is represented by a node in the complex network
of social contacts. The transition from a potential to an active consumer de-
pends on the intrinsic properties of the product as well as on the number and
behavior of neighbors. Conversely, an active consumer becomes potential at an
exogenously given rate. This reflects the idea that, with a certain probability,
independent of the behavior of neighbors, an agent may need to replace the
product because it is lost or deteriorated. The framework considered in this
work is closely related to the so-called “susceptible-infected-susceptible” (SIS)
model, commonly used in epidemiology. Some paradigmatic examples that are
described using the SIS model are the diffusion of AIDS in a sexual contact
network or the spreading of a computer virus via Internet (e.g. Pastor-Satorras
and Vespignani, 2000; Lloyd and May, 2001). Each agent is represented by a
node and can be either “healthy” or “infected”. In each time step a healthy
node is infected at a rate ν if it is directly connected to at least one infected
agent. Conversely, an infected agent is cured at a rate δ > 0.

This paper extends the SIS model in several ways. For instance, the SIS model
considers the contagion of a disease as a linear function of the absolute number of
infected neighbors, whereas the present model allows for non-linear mechanisms.
For example, adding one active consumer in the neighborhood of an agent with
only one active neighbor could have a different effect than doing the same in
a situation where many neighbors are already active. Furthermore, a richer
framework is introduced in which the intensity of each interaction can depend
on the total number of interactions. This possibility has been ignored in the
epidemiology literature although it is a natural assumption in most economic
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contexts. Thus, in our model, the contagion could depend not only on the
absolute number of neighboring active consumers but also on the size of the
neighborhood, i.e. the connectivity of the agent.

The theoretical results of our model are derived using the so-called mean field
theory. Heuristically, this theory simplifies the description of the exact con-
tagion process by substituting some local variables of the dynamics by their
global mean values. Although our model is an attempt to predict events in a
social-economic environment, this approach is commonly used in physics and
biology since it provides a reasonable guide of the qualitative behavior of com-
plex systems. We show that there exists a threshold for the degree of contagion
(or spreading rate) of the product, such that, above the threshold the technol-
ogy spreads and becomes persistent. This threshold depends crucially on two
features: the mechanism of diffusion and the connectivity distribution of agents
in the population. Indeed, when the mechanism of diffusion is such that the
intensity of each interaction is independent of the total number of neighbors,
i.e. the contagion of the product only depends on the absolute number of active
consumers among neighbors, the diffusion of the product is easier and greater
in scale-free networks than in Poisson networks. In contrast, if the intensity of
each interaction decreases in parallel with the number of neighbors, or specifi-
cally, the contagion of the product depends on the relative proportion of active
consumers among neighbors, all networks exhibit the same spreading behavior.
Finally, for concave diffusion functions there always exists a continuous tran-
sition from the absence to the existence of diffusion. Nevertheless, for some
particular non-concave diffusion functions, this transition is non-continuous, i.e.
a phase transition and hysteresis phenomenon occurs.

In summary, this paper builds on two literatures. The formal framework con-
sidered is close to the literature on epidemiology and complex systems, as men-
tioned above, mean field theory is often used. However, the inspiration for this
work comes mainly from the fast expanding pure game theory literature on so-
cial and economic networks. Recent instances of this literature show that the
pattern of interaction between individuals is crucial in determining the nature
of outcomes. A wide number of papers have focused on the analysis of lattices;
that is, regular networks in which all players have the same number of direct
connections (e.g., Anderlini and Ianni, 1996; Ellison, 1993; Goyal, 1996; Young,
2002; Blume, 1995). One step beyond comes from Morris (2000) who has devel-
oped techniques to study coordination games in general networks. Although, the
present paper shares the flavour of these previous works it introduces important
novelties. First, we study very general contagion mechanisms characterized by
the fact that the transition from one individual state to the other (active to po-
tential consumer and vice versa) is typically stochastic and asymmetric. Second,
we consider complex random networks rather than networks with a determinis-
tic geometric form. The paper is organized as follows. The model is contained
in Section 2. Section 3 provides a game theoretical context where the model
can be applied. Section 4 returns to the general model and introduces the mean
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field theory. Section 5 presents the main results. In Section 6 we run some sim-
ulations of the original dynamics in order to test the validity of the theoretical
results. Finally, Section 7 concludes. Some proofs have been relegated to the
Appendix.

2 The model
Let N = {1, 2, ..., i, ...n} be a finite but large set of agents. Assume agents are
communicated one with another through certain channels which determine the
social system. More precisely, each agent interacts only with her fixed group
of neighbors, i.e. direct connections. These interactions represent personal
and professional contacts. To describe the social system formally, consider an
undirected network Γ ≡ (V,L) where V is the set of nodes and L is the set
of undirected links. Each node represents one agent in the population. A link
{i, j} belongs to the set L if and only if agents i and j are directly connected.
Let Ki ⊆ N be the set of neighbors of player i and let ki be its cardinality which
is referred as her connectivity from here onwards.

Assume that the population is large and the pattern of interactions between
agents is complex. Moreover, the network structure has a high degree of ran-
domness and thus can only be described by its large-scale statistical properties.
Denote by P (k) to the connectivity distribution of the network, i.e. the fraction
of agents in the population that have exactly k direct neighbors. Equivalently,
P (k) is the probability that an agent chosen uniformly at random has connec-
tivity k. Throughout this paper, the network is characterized by being “ran-
dom” and having a connectivity distribution P (k) which is exogenously given.
These networks have been referred in the literature as generalized random net-
works since they extend the Erdos-Renyi random graphs by incorporating the
property of non-Poisson connectivity distributions.2 . Roughly speaking, a ran-
dom graph is characterized by the fact that when generating the network, the
link-formation operates in a stochastically independent way across nodes. This
process rules out correlations among connectivity of connected nodes and gen-
erates a graph with a low clustering coefficient One of the aims of this work is
to explicitly account for the influence of P (k) in the spreading behavior of the
product.

Assume there is a new product in the market. We focus on its spreading among
the population N . To do so, consider that an agent i ∈ N can only exist in two
discrete states si ∈ {0,1}, where si = 0 if i is a “potential” consumer and si = 1
if i is an “active” consumer. A potential consumer is an agent that does not
have the product but is susceptible of obtaining it if exposed to someone who
does. An active consumer is an agent that has already adopted the product and
so can influence her neighbors in favor of obtaining it.

2For further details on generalized random networks the reader is referred to M.E.J. New-
man (2003)
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Consider a stochastic continuous time dynamics process as follows. At time t,
the state of the system is a vector

st = (s1t, s2t, ...sit, ....snt) ∈ Sn ≡ {0, 1}n

where sit = 0 if i is a potential consumer at time t whereas sit = 1 if i is an active
consumer at time t. Assume i is a potential consumer at time t. She becomes
an active consumer at a rate that depends crucially on: her connectivity ki,
the number of neighbors that are active consumers at time t (ai hereafter) and
the spreading rate (or degree of contagion) of the product, denoted by ν ≥ 0.
More precisely, the transition rate from potential to active consumer is given
by a function F (ν, ki, ai) that determines the properties of the mechanism of
diffusion. We assume independence of the spreading rate effect and the effect
that the behavior of neighbors has over the agent’s decision. Thus,

F (ν, ki, ai) = ν · f(ki, ai)

where f(ki, ai), named as the diffusion function from here onwards, is a non-
negative function only defined for (ki, ai) ∈ N × N such that 0 ≤ ai ≤ ki.3

It is worth noting that, the connectivity of an agent is fixed throughout the
dynamics. Instead, the number of active consumers among neighbors “ai” might
change over time. We suppose that a necessary condition for the adoption of
the product is that at least one neighbor has already adopted it. More precisely,

f(k, 0) = 0 for all k ≥ 1 (A-1)

Roughly speaking, the transition from a potential to an active consumer can
be interpreted as follows. At a rate ν any given agent becomes aware of the
existence of the product -e.g. through mass media advertisement- and considers
the possibility of adopting it. The agent’s final decision, however, depends
crucially on her neighbors’ behavior. More precisely, the agent responds to her
neighbors current configuration by choosing an action according to some choice
rule. The particular choice rule considered is characterized by f(ki, ai).

Conversely, consider agent i ∈ N is an active consumer at time t. Then, i be-
comes a potential consumer at some stochastically constant rate δ > 0 which
indicates the rate at which the agent may need to replace the product because it
is lost or deteriorated. Notice that, this transition is independent of her neigh-
bors’ behavior. It is implicit in this formulation that the cost of “maintaining”
the product is approximately zero and thus agents never have incentives for
getting rid of it. Finally, let us define the effective spreading rate of the product
by λ = ν

δ .

For concreteness, we will now define formally what we mean by the mechanism
of diffusion.

3The SIS model can be obtained as a particular case of this model by simply assuming
f(k, a) = a.
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Definition 1 A mechanism of diffusion is a pair m = (λ, f(·)) where λ denotes
the effective spreading of the product and f(·) denotes the diffusion function.
Notice that, since the transition rates only depend on the properties of the
present state, the dynamics induced by the connectivity distribution P (k) and
the mechanism of diffusion m determines a continuous Markov chain over the
space of possible states Sn.

The aim of this work is to analyze whether and how the product spreads in the
population. Several questions raise as natural:

• Is there prevalence of the product in the long-run of the dynamics?
• Are small perturbations of the initial state in which there are no active
consumers enough to converge to states with a positive fraction of active
consumers?

• Is there a discontinuity (or phase transition) in the proportion of active
consumers as we increase λ?

The next section describes briefly a particular context where this model could
be applied.

3 An example
Consider a population of agentsN = {0, 1, ..., n}. As before, agents interact only
with their fixed group of neighbors. The pattern of interaction among them is
described through a social network where each node represents one agent and
the connections among them are represented by links.

Let x be a new technology. Assume that the cost incurred by an individual i in
case of adopting x is randomly determined by ci. For the sake of concreteness,
suppose ci ∼ U [0, C] where C is the highest possible cost. Also assume that
(cj)j∈N are i.i.d. Therefore (ex-post) the cost can be different across agents.
For simplicity, assume that, once adopting the product, the cost of maintaining
it is zero.

Suppose that, if two players are neighbors, there is a pairwise interaction that
can generate mutual payoffs. The common set of strategies is S = {0, 1} where
si = 1 means agents i is an active consumer whereas si = 0 otherwise. For each
pair of strategies s, s3 ∈ S, the payoff earned by a player i choosing s when
interacting with her partner j choosing s3 is b > 0 if both players are active
consumers and zero otherwise.

At a constant rate, ν > 0 a potential consumer considers the possibility of
adopting the new technology. If this were the case, the player uses a myopic
best response to update her strategy. Thus, the player compares the benefits
obtained next period in the case of adopting with those obtained in case of
remaining as a potential consumer. We can think of two different settings:
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• Case 1 (absolute dependence)
In this formulation, players interact with all their neighbors every period. Heuris-
tically, this implies agents are continuously observing at all neighbors and thus
benefits are computed as the sum of the benefits obtained from each bilateral
interaction. Hence, a potential consumer i with connectivity ki and with ai
active consumers among her neighbors becomes an active consumer iff,

aib− ci ≥ 0
Consequently, i’s rate of transition from potential to active consumer is the
probability that agent i’s cost is below her benefits, i.e.

P (ci ≤ aib) = f(ai) =
b
C ai if ai ≤ C

b

1 if ai > C
b

Note that, the reverse transition, i.e. from active to potential consumer, is never
a best response of the player. Nevertheless, we assume that at a rate δ > 0 the
product deteriorates and needs to be replaced. If this were the case, agents have
to re-consider the possibility of adopting it or not.

Observe that, here, the diffusion function only depends on the absolute number
of active consumers among neighbors. In consequence, two agents with the same
number of neighboring active consumers have the same probability of becom-
ing active consumers and this is independent of their respective connectivities.
This feature depends crucially on the specific context considered as illustrated
through the alternative setting presented below.

• Case 2 (frequency dependence)
Assume agents only interact with one of their neighbors in each time period.
Moreover, the individual with whom to interact is selected uniformly at random
across neighbors every period. If we take any potential consumer i with connec-
tivity ki and with ai active consumers among her neighbors. Then, this agent
will become an active consumer iff,

ai
ki
b− ci ≥ 0

In other words, she computes her expected benefits in case of adopting the
product and compares this with her cost.

Consequently, i’s rate of transition from potential to active consumer is the
probability that agent i’s cost is below her benefits, i.e.

P (ci ≤ ai
ki
b) = f(ai, ki) =

b
C
ai
ki

if aiki ≤ C
b

1 if aiki >
C
b

As before, assume that at a rate δ > 0 an agent needs to replace the product
because it is lost or deteriorated.
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Note that, in contrast with the previous case, the diffusion function depends
both on the absolute number of active consumers among neighbors and on the
total number of neighbors. More precisely, it depends on the relative density
of active consumers among neighbors. We will see later in the test that the
results on the diffusion pattern of the product depend crucially on the setting
considered.

In the next section, we return to the general model to study when and how the
product spreads in the population. The analytical results of the exact model are
extremely complicated and thus will not be tackled in this paper. Nevertheless,
to proceed, two complementary approaches can be considered. On the one
hand, the analysis of the model can be simplified using the so-called mean field
theory. This approach is described and studied in detail in the next section.
On the other hand, we can simulate the dynamics in order to obtain numerical
approximations of the results for the exact model. This second alternative will
be tackled in Section 6 below.

4 Mean field theory
The analytical study of this model can be undertaken in terms of a dynami-
cal mean-field theory. Other reports show that mean-field approximations can
be expected to give a reasonable guide to the qualitative behavior of complex
dynamics.

Before describing the theoretical framework, we will present some additional
notation. Let ρk(t) be the relative density of active consumers at time t with
connectivity k. Consequently, ρ(t) = k P (k)ρk(t) is the relative density of
active consumers at time t. From here onwards, the state of the system at any
given time t, will be characterized by the profile (ρk(t))k≥1.

Denote by θ to the probability that any given link points to an active consumer.
Therefore, the probability that a potential agent with k links has exactly a
neighboring active consumers is k

a θa(1 − θ)(k−a) since this event follows a
binomial distribution with parameters k and θ. Obviously, there is an approxi-
mation inherent in this formulation because we have assumed that θ is the same
for all vertices, when in general it too will be dependent on vertex connectivity.
This is precisely the nature of a mean-field approximation.

Consider a potential consumer with k neighbors and a active consumers among
them. She becomes an active consumer at a rate νf(k, a). Thus, the transition
rate from potential to active consumer for an agent with connectivity k is given
by

gν,k(θ) =
k

a=0

νf(k, a) k
a θa(1− θ)(k−a)
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The dynamical mean-field equation can thus be written as,

dρk(t)

dt
= −ρk(t)δ + (1− ρk(t))gν,k(θ) (1)

Roughly speaking, equation (1) says the following: the variation of the relative
density of active consumers with k links at time t equals the proportion of po-
tential consumers with k neighbors at time t that become active consumers (i.e.
(1 − ρk(t))gν,k(θ)) minus the proportion of active consumers with k neighbors
at time t that become potential consumers (i.e. ρk(t)δ).

Assume that the time scale of the dynamics is much smaller than the life-
span of the agents in the population; therefore terms reflecting birth or death
of individuals are not included. Moreover, several assumptions are implicit in
equation (1). First, we assume the size of the population is large, i.e. n→ +∞.
Second, we consider the so-called homogeneous mixing hypothesis. This implies,
on the one hand, no correlation between the connectivity of connected agents
and, on the other hand, an homogeneous distribution of initial adopters in the
population. In consequence, the only source of heterogeneity in the population
is the connectivity of agents.

After imposing the stationary condition dρk(t)
dt = 0 in equation (1) for all k ≥ 1,

the equation, valid for the behavior of the system at large times is,

ρk =
gλ,k(θ)

1 + gλ,k(θ)
(2)

where

gλ,k(θ) =
1

δ
gν,k(θ) =

k

a=0

λf(k, a) k
a θa(1− θ)(k−a)

The exact calculation of θ for general networks is a difficult task. However, we
can calculate its value for the case of a random network, in which there are no
correlations among the connectivities of different nodes.4 For this case, it is
straightforward to see that,

θ =
1

kkl
k

kP (k)ρk (3)

where kkl is the average connectivity of the network, i.e. kkl = k kP (k).

4 It is left for further research to allow for correlations in the connectivity of neighbors in
this model. Pointing in this direction, there are some papers providing answers to this issue
for the SIS model. See Beguña et al. (2002) and Eguíluz et al.(2002). Their main result
is that, allowing for first order correlations among connectivity of nodes does not change
the conclusions obtained in Pastor-Sarorrás and Vespignani (2000) and thus the epidemic
threshold vanishes to zero for scale-free networks.
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The system formed by the equations (2) and (3) determine the stationary values
for θ and (ρk)k. To solve this system, we should simply replace equation (2) in
equation (3) and obtain,

θ = Hλ(θ) (4)

where

Hλ(θ) ≡ 1

kkl
k

kP (k)
gλ,k(θ)

1 + gλ,k(θ)
(5)

The solutions of equation (4) are the stationary values of θ. Note that, these
values correspond to the set of fixed points of the function Hλ(θ). Although the
exact stationary values for θ are generally difficult to obtain, the main questions
raised at the introduction of the paper can be answered by simply analyzing
the shape of all the functions in the family {Hλ(θ)}λ≥0. Upon replacing θ in
equation (2) we also determine the stationary values (ρk)k.

5 Results
In what follows we will present the main results of the paper. For concreteness,
we will define first the concepts of sustainable diffusion, positive diffusion and
unique diffusion of the product.

Definition 2 Given P (k) and m, we say that there is sustainable diffusion of
the product if there exists a locally stable state of the dynamics with a positive
fraction of active consumers.

The concept of stability required in this definition is the standard one. Roughly
speaking, a state is stable if it is a stationary state of the dynamics resistant to
small perturbations. Notice that, sustainable diffusion implies that, under cer-
tain initial conditions, the dynamics converges to a state with a positive fraction
of active consumers. Next, we will define the concept of positive diffusion.

Definition 3 Given P (k) and m, we say that there is positive diffusion of the
product if, starting at any initial state θ0 9= 0, the dynamics converges to a stable
state with a positive fraction of active consumers.

Notice that, positive diffusion does not imply uniqueness of the non-null stable
state. Thus, the long-run behavior of the dynamics can depend on the initial
conditions. However, it implies that, if we slightly perturb the initial state with
no active consumers, i.e. we introduce a “small” number of initial adopters, the
dynamics leads towards a non-null stable state. Finally, the following definition
addresses the global behavior of the dynamics.

Definition 4 Given P (k) and m, we say that there is unique diffusion of the
product if there exists a unique stable state of the dynamics with a positive
fraction of active consumers.
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In other words, in the case of unique diffusion, the long-run behavior of the
dynamics does not depend on the initial conditions.

It is straightforward to show that the following implications hold;

unique diffusion⇒ positive diffusion⇒ sustainable diffusion

Notice that, the existence of a non-null solution of equation (4) implies the exis-
tence of a non-null stable state θ∗ of the dynamics, which also implies sustainable
diffusion of the product.

Let ρk(λ) be a function that provides for every given value of the effective
spreading rate λ ≥ 0, the relative density of active consumers with connectivity
k predicted in the long-run of the dynamics, when the initial state is taken
to be infinitesimally close to the one with no active consumers. Moreover, let
ρ(λ) = k P (k)ρk(λ) be the degree of diffusion function.

The aim of this section is to describe in some detail the relationship between the
connectivity distribution of the network P (k) and the mechanism of diffusion
m with the spreading behavior of the product. It is straightforward to show
that, given (A-1) the state with no active consumers (θ = 0) is stationary.
Thus, to spread the product in the population there must be an initial shock
of active consumers. This section analyzes a situation where the initial state of
the dynamics is such that there is a “small” proportion of initial adopters, i.e.
θ0 ∼ 0. One interpretation for this is that the firm interested in the diffusion
of the product initially gives it “for free”. It is reasonable to assume that the
firm is going to choose a small number of initial adopters and then rely on the
contagion process for the diffusion of it to a larger fraction of agents. Given the
nature of the question, we will first focus on the concept of positive diffusion
defined above. Unique and sustainable diffusion, will be studied later in the
paper.

Theorem 5 Given a network with connectivity distribution P (k), and a diffu-
sion function f(k, a) satisfying (A-1), there exists a threshold for the effective
spreading rate λp =

kkl
k k

2P (k)f(k,1) such that, there is positive diffusion of the
product if and only if λ > λp.

A detailed proof of the Theorem is presented in the Appendix. The sketch of the
proof, however, is the following. For every value of λ ≥ 0, the stationary states
of the dynamics are given by the fix points of Hλ(θ). Notice that, assumption
(A-1) implies that Hλ(0) = 0 and therefore, as mentioned above, the state
θ = 0 is stationary. Since gλ,k(θ) ≥ 0 then 0 ≤ Hλ(θ) < 1. In particular,
this implies that, positive diffusion occurs if and only if the state θ = 0 is
unstable (i.e. there exist an � > 0 such that Hλ(θ) > θ for all θ ∈ (0, �) ) or
equivalently dHλ(θ)

dθ fθ=0 > 1. The threshold is obtained simply by solving for λ
in the previous equation with the equality condition.
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Several interesting points follow from this result. The threshold that determines
the diffusion of the product, depends both on the connectivity distribution of
the network (i.e. P (k)) and on the particular diffusion function considered (i.e.
f(k, 1)). Specifically, in order to assess the existence or not of some positive
prevalence, it is enough to consider what happens in a neighborhood with only
one active agent. As highlighted above, this is merely a consequence of the fact
that, for positive diffusion to occur, the state with no active consumers has to be
unstable. Notice that, If λ > λp then, in the long-run, the product spreads and
becomes persistent in a fraction of the population. The degree of the diffusion,
however, might depend on the initial conditions. If, on the contrary, we assume
λ ≤ λp then, if there is only a small fraction of initial adopters, in the long-run,
the product will disappear from the market. In other words, we either never
reach a state with a positive fraction of active consumers or, if we do, it must
be because there is a sufficiently high “stock” of initial adopters.

The following corollary is obtained directly from the above result.

Corollary 6 If the transition rate from potential to active consumer is inde-
pendent of the connectivity of the agent (i.e. f(k, a) = f(k3, a) ≡ f(a) ∀ k,
k3 ≥ 0) then the threshold is λp = 1

f(1)
kkl
kk2l .

One of the main conclusions obtained from Corollary 1 is that the threshold
depends on the connectivity distribution P (k). In particular, it depends on
the ratio between its first and second order moments. The examples below
illustrate the main insights of this result. Consider three type of networks -
scale-free, homogeneous and Poisson- and assume they have the same average
connectivity.

1 Scale-free networks

Scale-free networks are characterized by having a power-law connectivity
distribution. In particular,

P (k) ∝ k−γ

where γ ranges between 2 and 3. This property implies that there exists a sig-
nificant proportion of agents with large connectivity with respect to the average
(kkl). Hence, the variance of the connectivity of agents tends to infinity in par-
allel with the size of the population (i.e. k2 → ∞ when n → +∞). These
agents behave as “hubs” and are capable of spreading the product quickly. Con-
sequently, the threshold for the spreading rate tends to 0. In other words, no
matter how small the spreading rate is, positive diffusion of the product in the
population will always occur.5

2 Homogeneous networks
5This result is an extension of the one obtained by Pastor-Satorras and Vespignani (2000)

for linear diffusions functions with the abscence of neighborhood effects.
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Homogeneous networks are such that all nodes have approximately the same
connectivity. In particular,

P (k) ∼ 0 if k 9= kkl
1 if k = kkl

Since the variance in the connectivity of nodes is approximately zero, the thresh-
old for the spreading rate is roughly 1

f(1)
1
kkl . In homogeneous networks there

exists a positive threshold that separates the values of the spreading rate for
which the product spreads from those for which it does not. This threshold is
inversely proportional to the average connectivity of the network. Moreover, it
depends on the transition rate from potential to active consumer when only one
neighbor is consuming the product. Consequently, there are different diffusion
functions that provide the same threshold. For example, consider f1(a) = a1/2,
f2(a) = a and f3(a) = a2. All of them have the same threshold. However, it
is worthwhile mentioning that, whenever the spreading rate of the product is
higher than the corresponding threshold, the degree of the diffusion, is higher
for f2 than for f1 and higher for f3 than for f2.6

3 Poisson networks

Poisson networks are characterized by having a Poisson connectivity distri-
bution. In particular,

P (k) =
1

k!
e−kkl kklk

It is straightforward to show that the threshold for Poisson networks is in be-
tween the threshold for scale-free and homogeneous networks. Thus, the follow-
ing holds:

λSFp < λPp < λHp

In general, any other type of network with the same average connectivity, has a
threshold that lies in between these two. The reason for this is the following: the
variance of the connectivity distribution P (k) is given by var(k) = k2 − kkl2,
thus k2 = var(k)+kkl2. Since λp is inversely proportional to the second order
moment, if we compare two networks with the same average connectivity, the
one with the highest variance has the lowest threshold.

The next corollary is also a consequence of Theorem 5. Consider now the
case where the neighborhood considerations is affected by the neighborhood
size. Despite its significance, this issue has been ignored in the epidemiology
literature. In the present framework the network represents the system of social
contacts. Therefore, it is plausible to assume that agents have a limited amount
of time to spend in social acquaintances. Consequently, the time spent with each

6This is because f1(a) ≤ f2(a) ≤ f3(a) for all a ≥ 0.
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of her neighbors (or intensity of each of her interactions) decreases in parallel
with the total number of neighbors. In this respect, for example, the effect
of having one active neighbor for a very well connected agent is not the same
than for an agent with few neighbors. A natural, although extreme, candidate
to consider as a diffusion function would be the relative number a

k of active
neighbors. This corollary shows that, in this case, the critical spreading rate is
equal to unity, independently of what might be the underlying network (scale-
free, Poisson, homogeneous, etc.).

Corollary 7 If f(k, a) = a
k then λp = 1.

Hence, for scale-free networks, in this case, there exists a positive threshold
determining under which conditions there is prevalence of the product in the
population. The intuition behind this result is that, although scale-free network
have a significant fraction of hubs that facilitate the contagion of the product,
this effect is cancelled out by the fact that a hub agent is very difficult to “con-
vince” given that what matters here is the relative density of active neighbors.

Up to now we have analyzed whether there is or not prevalence of the product in
the population when the initial state is “close” to the state with no active con-
sumers. We now want to go one step beyond and study more general properties
of the dynamics.

5.1 Concave diffusion functions

In this section we find conditions over the diffusion mechanisms that guarantee
a unique long-run behavior of the dynamics. In other words, we analyze the
convergence of the dynamics independently of initial conditions. Consider a
diffusion function satisfying an additional assumption. For all k ≥ 1, f(k, a) as
a function of a is (weakly) concave. In other words, the following must hold:

f(k, a)− f(k, a− 1) ≥ f(k, a+ 1)− f(k, a) for all 0 < a < k (A-2)

Hence, for any given agent, adding one more active consumer among her neigh-
bors has an impact over her probability of obtaining the product, which is
(weakly) decreasing with respect to the existing number of active consumers
among her neighbors.

The following proposition determines the threshold for unique diffusion of the
product.

Proposition 8 Given a network with connectivity distribution P (k), and a dif-
fusion function f(k, a) satisfying (A-1) and (A-2) there exists a threshold for the
effective spreading rate λu =

kkl
k k

2P (k)f(k,1)such that, there is unique diffusion
of the product if and only if λ > λu. Moreover, if λ ≤ λu the dynamics converge
to the state with no active consumer.

admin
16



A detailed proof of Proposition 8 is presented in the Appendix. The sketch of
the proof is the following. Assumption (A-2) implies Hλ(θ) is concave for all
λ ≥ 0 (this is proved in the Appendix). Thus, as illustrated by Figure ??, if
dHλ(θ)
dθ fθ=0 > 1 there is a non-null stationary state which is globally stable.7

However, if dHλ(θ)
dθ fθ=0 ≤ 1 then θ = 0 is the unique stable state.Let λs denote

the threshold for sustainable diffusion. Note that, we obtain:

λs = λp = λu

As a consequence of this result we have the following corollaries.

Corollary 9 Given a network with connectivity distribution P (k), and a dif-
fusion function f(k, a) satisfying (A-1) and (A-2), then the degree of diffusion
function ρ(λ) is continuous.

The proof of this result is straightforward. Notice that, as aforementioned, for
all λ ≥ 0, Hλ(θ) is concave. Moreover, for all θ ∈ [0, 1], Hλ(θ) as a function of
λ is increasing and continuous. This implies that, the solution of equation (4),
i.e. θ(λ), as a function of λ is also continuous, and by the same token the degree
of diffusion function ρ(λ) is continuous as well.

As an example, consider a diffusion function satisfying (A-1) and (A-2) and such
that it is independent of the connectivity of agents (i.e. f(k, a) = f(k3, a) ≡ f(a)
∀ k, k3 ≥ 0). Then, the degree of diffusion function for the three types of
networks aforementioned -scale-free, homogeneous and Poisson- is continuous
(see the graphs represented in Figure 1). Notice that, for low values of λ the
degree of diffusion is higher for scale-free networks than for Poisson networks
and higher for Poisson than for homogeneous networks.

Corollary 10 If f(k, a) = a
k then ρ(λ) =

λ
1−λ if λ > λp and ρ(λ) = 0 otherwise.

The proof of this result is attained by simply substituting f(k, a) = a
k in the

expression for gλ,k(θ). That is,

gλ,k(θ) =
1

k

k

a=0

λa k
a θa(1− θ)(k−a) =

1

k
λθk = λθ

Notice that, gλ,k(θ) does not depend on k. Then, replacing gλ,k(θ) in equation
(5) the following holds:

Hλ(θ) =
λθ

1 + λθ
(6)

7A state θ is globally stable if for any initial state θ0 ∈ (0, 1), the dynamics converges to
this state.
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Figure 1: Degree of diffusion function for scale-free, homogeneous and Poisson
networks when f(k, a) = f(k3, a) ≡ f(a) ∀ k, k3 ≥ 0.

It can be easily shown that, equation (6) has a unique non-null solution when
λ > 1 which is θ∗ = λ−1

λ . Thus, after simple algebraic operations, the degree of
diffusion is:

ρ(λ) =
0 if λ ≤ 1
λ
1−λ if λ > 1

It is worthwhile mentioning that, in this case, the degree of diffusion function
does not depend on the connectivity distribution of the network (see Figure 2).

5.2 Other diffusion functions: phase transition

Assume that for all k ≥ 1, f(k, a) as a function of a is (weakly) convex. The
following must hold:

f(k, a+ 1)− f(k, a) ≥ f(k, a)− f(k, a− 1) for all 0 < a < k
Hence, for any given agent, adding one more active consumer among her neigh-
bors has an impact over her probability of obtaining the product, which is
(weakly) increasing with respect to the existing number of active consumers
among her neighbors.

Due to its operational complexity, general results for convex diffusion functions
are not easy to obtain. In what follows, we analyze an illustrative example to
highlight the difference with the results obtained for concave diffusion functions.
The diffusion function considered is,

f(k, a) =
a

k

2

(7)
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Figure 2: Degree of diffusion function for scale-free, homogeneous and Poisson
networks when f(k, a) = a

k

This contagion mechanism takes into account the relative density of active con-
sumers among an agent’s neighbors in a convex way. The threshold for positive
diffusion in this case is equal to the average connectivity, λp = kkl (see The-
orem 5). To study the threshold for unique and sustainable diffusion we will
analyze the shape of the family of functions {Hλ(θ)}λ≥0. Note that, in this
case, function gλ,k(θ) is equal to the expression,

gλ,k(θ) = λ
k

a=0

(
a

k
)2 k

a θa(1− θ)(k−a) =
λ

k2
E[χ2]

where χ is a random variable that follows a binomial distribution with param-
eters θ, k. That is, χ ∼ Bin(k, θ). Therefore, the following holds,

E[χ2] = V ar[χ] +E[χ]2 = kθ(1− θ) + (θk)2 = (k2 − k)θ2 + kθ
and thus,

gλ,k(θ) =
λ

k2
((k2 − k)θ2 + kθ) = λ

k
((k − 1)θ2 + θ)

The function Hλ(θ) in this case has the form,

Hλ(θ) ≡ 1

kkl
k

kP (k)
λ
k ((k − 1)θ2 + θ)

1 + λ
k ((k − 1)θ2 + θ)

The shape of Hλ(θ) depends crucially on P (k). Therefore, for the sake of
simplicity, we will focus on two specific types of networks: (i) a scale-free network
with γ = 3, i.e. P (k) ∝ k−3 and (ii) an homogeneous network.
It is straightforward to show that, if kkl is sufficiently high (higher than 5) for
both cases (i) and (ii) the family of functions {Hλ(θ)}λ≥0 exhibits the following
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pattern. For low values of λ the function is convex. As λ increases the function
has an S-shape, i.e. convex for low values of θ and concave for high values of
θ. Finally, if λ is sufficiently high Hλ(θ) is concave. For simplicity, a family of
functions {Hλ(θ)}λ≥0 satisfying this property is referred as an S-shape family.
Note that, if {Hλ(θ)}λ≥0 is an S-shape family of functions, the following holds:

positive diffusion⇔ unique diffusion

and thus λp = λu.

Moreover, there exists a threshold λ (concavity threshold) for the spreading rate
such that, if λ > λ then Hλ(θ) is concave. This value is implicitly obtained by
the expression H 33λ(0) = 0. After some simple algebraic operations we obtain
the following expression,

H 33λ (0) =
λ

kkl
k

P (k)
2k(k − 1)− 2λk2

k

It is straightforward to show that, the two types of networks considered satisfy,

H 33λp(0) > 0

This implies, in particular, that the threshold for positive diffusion is below the
threshold for concavity, i.e. λp < λ. In other words, the function associated
with the threshold for positive (or unique) diffusion, has an S-shape. Therefore,

λs < λp

The main consequences of this result are the following:

• If λs < λ < λp, there are two different (non-null) stationary states of the
dynamics; an unstable state, denoted by θ∗1 and a stable state denoted
by θ∗2. The convergence to the stable state depends crucially on the ini-
tial conditions since initial conditions above θ∗1 would lead the dynamics
towards θ∗2, whereas initial conditions below θ∗1 would lead the dynamics
towards θ∗ = 0. Two effects take place when the spreading rate becomes
higher. On the one hand, the proportion of active consumers in the non-
null stable state (θ∗2) increases. On the other hand, its basin of attraction
also becomes larger.

• There is a phase transition or discontinuity in the degree of diffusion func-
tion. In other words, when the spreading rate λ is “slightly” above the
threshold λp, the degree of diffusion ρ(λ) is significantly positive.

• The effect of varying the value of the spreading rate λ can be analyzed
using a different approach. Assume that the contagion dynamics has al-
ready reached a certain stable state. Where would the dynamics converge
if there was an increase or decrease of the effective spreading rate? In other
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Figure 3: Hysteresis phenomenon for homogeneous and scale-free networks (with
γ = 3) and f(k, a) = (ak )

2

words, taking as initial condition the previously established stable state,
what would be the new long-run prediction of the dynamics? As illus-
trated by the graph represented in Figure 3 if the spreading rate increases
(upward arrows in the figure) then the long-run behavior of the dynamics
would coincide with the one exhibited by function ρ(λ), thus, having a dis-
continuity at λ = λp. However, if the spreading rate decreases (downward
arrows in the figure), the degree of diffusion will continue to be positive
until λ reaches the threshold for sustainable diffusion λs. The existence of
two different thresholds depending on the direction of the spreading rate
is a well-known occurrence, present in many other phenomena referred as
hysteresis.

6 Simulations
In this section we have developed some simulations to test the validity of the
mean-field approximations used throughout the paper. We have generated two
different random networks in terms of their connectivity distributions: (i) a
scale-free (specifically, P (k) ∝ k−3) network (ii) a Poisson network.8 Both net-
works have a total of 1000 nodes and an average connectivity of approximately
9 neighbors per node. We have considered the discrete version of the contin-
uous dynamics used to derive the theoretical results. In this respect, we have
assumed that, in every period one (and only one) agent is chosen to revise her
“strategy”. For the sake of concreteness, we have focused on testing the contents
of Corollaries 6 and 7.

All figures presented below have in common the following characteristics. We

8Both of these networks were generated using the program Pajek, software package for
Large Network Analysis.
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Figure 4: Number of active consumers n(t) for the scale-free network when
f(k, a) = a, λ = 0.05, 0.5 and 5, and t ∈ [1, 105]

represent how the number of active consumers (n(t), ordinate) changes as a
function of time (t periods, abscissa) at different values of the spreading rate
λ. The data are the average of 40 simulations. For each simulation, the initial
condition is randomly chosen such that individuals are active in round t = 1
with probability 0.01.

For Corollary 6, we considered a diffusion function that depends linearly on the
absolute number of active consumers in the neighborhood of an agent. Specif-
ically, f(a) = a. We wanted to test if the threshold for the scale-free network
tends to zero and if it is lower than the threshold for the Poisson network.

The graph in Figure 4 represents how the number of active consumers changes
over a total of 105 periods for the scale-free network at three different values
of the spreading rate (λ = 0.05, 0.5 and 5; green, blue and red line, respec-
tively). Observe that, as expected, the degree of diffusion is higher the higher
the spreading rate is. Moreover, as the period increase, the number of active
consumers increases as well. Also note that, for λ = 0.05 there is prevalence
of the product in the long-run, thus this could indicate that, in this case, the
threshold for positive diffusion tends to zero.

The graph in Figure 5 represents how the number of active consumers changes
over a total of 5×104 periods for the Poisson network at three different values of
the spreading rate (λ = 0.05, 0.5 and 5; green, blue and red line, respectively).
In contrast with the previous case, for λ = 0.05 there is no prevalence of the
product in the long-run. This indicates that the threshold for positive diffusion
in the Poisson network is above 0.05 and thus higher than for the scale-free
network.
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Figure 5: Number of active consumers n(t) for the Poisson network when
f(k, a) = a, λ = 0.05, 0.5 and 5, and t ∈ [1, 5× 104]

These simulations also provide relevant information concerning the rate of con-
vergence to the stationary state, an aspect of the dynamics that has not been
addressed in the theoretical analysis. Observe that, there is a significant evi-
dence reflecting a higher rate of convergence in the Poisson network than in the
scale-free network.

For Corollary 7, we considered the diffusion function f(k, a) = a
k . We wanted

to test if the diffusion threshold for the scale-free and Poisson networks is equal
to 1.

The graph in Figure 6 represents how the number of active consumers changes
over a total of 105 periods for the scale-free network at four different values
of the spreading rate (λ = 0.8, 1, 1.2 and 1.4; yellow, green, blue and red
line, respectively). Notice that, the threshold for positive diffusion is close to 1
(between λ = 1 and λ = 1.2) and thus significantly higher than the threshold
obtained for the diffusion function considered previously as predicted by the
theoretical results.

The last set of simulations, presented in Figure 7 represent how the number of
active consumers changes over a total of 105 periods for the Poisson network
at four different values of the spreading rate (λ = 0.8, 1, 1.2 and 1.4; yellow,
green, blue and red line, respectively). The threshold for positive diffusion is
approximately at λ = 1, thus, in this case, “close” to the threshold obtained for
the scale-free network.
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Figure 6: Number of active consumers n(t) for the scale-free network when
f(k, a) = a

k , λ = 0.8, 1, 1.2 and 1.4, and t ∈ [1, 105]

Figure 7: Number of active consumers n(t) for the Poisson network when
f(k, a) = a

k , λ = 0.8, 1, 1.2 and 1.4, and t ∈ [1, 105]
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7 Conclusion
The objective of this paper is to analyze how the diffusion of a new product or
technology takes place on a social complex network. The network is character-
ized by one of its large-scale statistical properties -the connectivity distribution-
rather than by a specific geometric form (such as lines, circles, lattices and so
forth). A wide class of diffusion dynamics (or mechanisms) has been considered.
In all of them, the probability of agents adopting the product depends on the
product’s spreading rate and the behavior of the agents’ closest neighbors.

The main contribution of this paper is to characterize the contagion (diffusion)
threshold in terms of the properties of the network and the diffusion mechanism.
One of the principal findings is that, the threshold depends crucially on the
network considered when the intensity of each interaction is assumed to be
independent of the neighborhoods size. More specifically, the higher the variance
in the connectivity distribution of the network, the lower the threshold. This
implies, in particular, that scale-free networks are optimal for spreading the
product. In contrast with this result, if the diffusion mechanism considered
is such that the intensity of each interaction is inversely proportional to the
neighborhoods size, the variance of the connectivity distribution of the network
has no effect over the threshold. In other words, all networks (with the same
average connectivity) have the same positive threshold. Finally, we also show
that, for some particular diffusion mechanisms, there is a phase transition in
the degree of the diffusion function. In other words, there is a discontinuity in
the fraction of active consumers in the contagion threshold.

The simulations presented in the last section of the paper show that, the theo-
retical results, obtained using mean field approximations provide a reasonable
guide of the qualitative properties and long-run predictions of the diffusion dy-
namics.

8 Appendix
Proof of Theorem 5:
Assumption (A-1) implies that θ = 0 is a stationary state of the dynamics (i.e.
Hλ(0) = 0). In addition, 0 ≤ Hλ(θ) ≤ 1 for all θ ∈ [0, 1] since gλ,k(θ) ≥ 0.
Therefore, given λ ≥ 0, there exists a non-null stable state of the diffusion
dynamics if and only if θ = 0 is unstable. Formally, this means that there must
exist an ε > 0 such that, θ < Hλ(θ) for all θ ∈ (0, ε). Equivalently,

dHλ(θ)

dθ
fθ=0 ≡ H 3λ(0) > 1 (8)

Let us now calculate the exact value for the threshold.
Recall that,

Hλ(θ) ≡ 1

kkl
k

kP (k)
gλ,k(θ)

1 + gλ,k(θ)
(9)
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where

gλ,k(θ) =
k

a=0

λf(k, a) k
a θa(1− θ)(k−a).

Then, using equation (9) we express H 3λ(θ) as follows,

H 3λ(θ) =
1

kkl
k

kP (k)
g3λ,k(θ)

(1 + gλ,k(θ))2
(10)

where

g3λ,k(θ) =
k

a=0

λf(k, a) k
a (aθa−1(1− θ)(k−a) − θa(k − a)(1− θ)(k−a−1)). (11)

If θ = 0 is substituted in equation (10) we obtain that,

H 3λ(0) =
λ k k

2P (k)f(k, 1)

kkl > 1⇔ λ >
kkl

k k
2P (k)f(k, 1)

.

Proof of Proposition 8:
It is straightforward to show that, for every given 0 ≤ θ ≤ 1, Hλ(θ) as a function
of λ, is increasing. That is,

Hλ(θ) ≤ Hλ (θ)⇔ λ ≤ λ3. (12)

Let us show that, given λ ≥ 0, assumption (A-2) implies Hλ(θ) is concave for
all θ ∈ [0, 1]. Notice that,

Hλ (θ) =
1

kkl
k

kP (k)
gλ,k(θ)(1 + gλ,k(θ))− 2(g3λ,k(θ))2

(1 + gλ,k(θ))3
.

Thus, it is enough to prove that gλ,k(θ) ≤ 0, since this would imply thatHλ (θ) ≤
0 as well. If we group the coefficients of the same polynomial on θ in equation
(11) we obtain,

g3λ,k(θ) =
k−1

a=0

λ(−f(k, a) k
a (k − a) + f(k, a+ 1) k

a+1 (a+ 1))θ
a(1− θ)(k−a−1).

(13)

Note that, the coefficients of f(k, a) and f(k, a+1) are equal but with opposite
sign since

k
a (k − a) = k

a+1 (a+ 1) =
k!

a!(k − a− 1)! .

admin
26



Therefore, we can simplify equation (13) as follows:

g3λ,k(θ) =
k−1

a=0

k!

a!(k − a− 1)!λ(f(k, a+ 1)− f(k, a))θ
a(1− θ)(k−a−1)

whose second derivative is,

g33λ,k(θ) =
k−1

a=0

k!

a!(k − a− 1)!λ(f(k, a+ 1)− f(k, a))

(aθa−1(1− θ)(k−a−1) − θa(k − a− 1)(1− θ)(k−a−2))

Again, grouping the coefficients of the same polynomials on θ we obtain,

g33λ,k(θ) =
k−1

a=0

λ( k
a+1 (k − a− 1)(a+ 1)(f(k, a+ 2)− f(k, a+ 1))

− k
a (k − a)(k − a− 1)(f(k, a+ 1)− f(k, a)))θa(1− θ)(k−a−2).

Since,

k
a+1 (k − a− 1)(a+ 1) = k

a (k − a)(k − a− 1) = k!

a!(k − a− 2)!
we thus can simplify g33λ,k(θ) as follows:

g33λ,k(θ) =
k−2

a=0

k!

a!(k − a− 2)!λ((f(k, a+ 2)− f(k, a+ 1)

−(f(k, a+ 1)− f(k, a))θa(1− θ)(k−a−2).

To conclude, observe that assumption (A-2) implies that g33λ,k(θ) ≤ 0.
It is straightforward to show that, the concavity of Hλ(θ) for all λ ≥ 0, assump-
tion (A-1) and condition (12) completes the proof.
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