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Abstract

The electron transport chain is the primary pathway by which a cell generates energy in the form 

of ATP. Byproducts of this process produce reactive oxygen species that can cause damage to 

mitochondrial DNA. If not properly repaired, the accumulation of DNA damage can lead to 

mitochondrial dysfunction linked to several human disorders including neurodegenerative diseases 

and cancer. Mitochondria are able to combat oxidative DNA damage via repair mechanisms that 

are analogous to those found in the nucleus. Of the repair pathways currently reported in the 

mitochondria, the base excision repair pathway is the most comprehensively described. Proteins 

that are involved with the maintenance of mtDNA are encoded by nuclear genes and translocate to 

the mitochondria making signaling between the nucleus and mitochondria imperative. In this 

review, we discuss the current understanding of mitochondrial DNA repair mechanisms and also 

highlight the sensors and signaling pathways that mediate crosstalk between the nucleus and 

mitochondria in the event of mitochondrial stress.
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Introduction

A few decades after the nucleus was discovered in the 1830s [1], another granular-looking 

organelle termed “bioblasts” by Richard Altmann was discovered [2]. In 1898, the term 

mitochondria was coined by Carl Benda who named this organelle after the Greek words 

“mitos” meaning thread and “chondros” meaning granule [2]. The discovery that 

mitochondria contained nucleic acids was made in the 1960s and the development of cloning 

and sequencing techniques aided in a much better understanding of these organelles [3, 4]. 

Despite their primary role in ATP generation, mitochondria also play critical roles in aspects 

of cellular signaling, fatty acid oxidation, calcium signaling, heme biosynthesis, and the 

assembly of iron-sulfur clusters in proteins [5–7]. These essential functions make 
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mitochondria indispensible for cellular function; however, the first example of a eukaryotic 

microorganism that lacks mitochondria was recently reported [8]

The circular ~16.5 kb human mitochondrial DNA (mtDNA) is maternally inherited and 

encodes for 13 polypeptides, 22 tRNAs, and 2 rRNAs that participate in oxidative 

phosphorylation (OXPHOS) via the electron transport chain (ETC) [9]. Unlike nuclear 

DNA, which is packaged into nucleosomes, mtDNA molecules are tightly associated with 

the mitochondrial matrix and form compact structures called nucleoids [10]. Nucleoids are 

composed of mtDNA-protein complexes that include proteins involved in replication and 

transcription such as mitochondrial single-strand binding protein (mtSSB), DNA polymerase 

gamma (POLG), and mitochondrial transcription factor A (TFAM) [11].

Just like its nuclear counterpart, mtDNA is subjected to genotoxic assaults from exogenous 

sources such as exposure to chemotherapeutic drugs as well as from endogenous sources 

including reactive oxygen species (ROS) that form as byproducts of mitochondrial 

respiration [12]. While evidence suggests that mtDNA molecules are likely to be more 

susceptible to oxidized DNA damage than nuclear DNA owing to their proximity to sites of 

oxidative phosphorylation, our current knowledge on the extent of mtDNA damage is 

limited owing to the lack of experimental approaches to accurately detect oxidatively 

generated mtDNA damage [7, 12]. Several DNA repair mechanisms exist within a cell to 

restore DNA integrity and while these pathways have been extensively studied in the nucleus 

(reviewed in [13, 14]), the base excision repair (BER) pathway has been established as the 

primary repair pathway in the mitochondrion [15]. Evidence for DNA repair pathways 

occurring in the mitochondria has been presented where mtDNA repair enzymes are 

encoded by nuclear genes and translocate to the mitochondria [15, 16]. With the exception 

of the 13 mtDNA encoded polypeptides, the mitochondrial proteome comprises an estimated 

>1,500 proteins encoded by nuclear genes that are exported to the mitochondria for mtDNA 

maintenance [17, 18]. Multiple mitochondrial protein import pathways participate in protein 

translocation to the mitochondria [19]. For instance, many proteins possess a mitochondrial 

targeting signal (MTS) that enables the protein to be transported via translocases of the outer 

and inner membranes (TOM and TIM), while others rely on the redox-mediated MIA 

pathway for import into the mitochondria [18–20]. Web servers like MitoProt, MitoFates, 

and TPpred2 that predict mitochondrial localization by analysis of the primary amino acid 

sequence, are becoming useful tools to theoretically evaluate the probability of 

mitochondrial targeting of a protein [21–23].

Mitochondria are unique in their genome organization in that they can contain multiple 

copies of mtDNA molecules within a single mitochondrion. Therefore, mtDNA damage if 

left unrepaired can lead to mutations that could result in heteroplasmy, a condition where 

both undamaged and damaged mtDNA molecules co-exist within the same mitochondrion 

[24]. Mitochondrial mutations can cause coding errors in the 13 polypeptides involved in 

ATP generation via the ETC and in the 22 tRNA molecules encoded by the mitochondrial 

genome [25, 26]. Depending on the extent of DNA damage, heteroplasmy can lead to 

mitochondrial dysfunction and the fine threshold between normal mitochondria and those 

that develop into a disease state remains intriguing [27]. Several chronic human diseases 

including diabetes, aging, neurodegenerative disorders (such as Alzheimer’s and Parkinson’s 
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disease), and cancer are believed to be associated with mitochondrial dysfunction [17, 26, 

28–30]. Mitochondria signal and communicate with the rest of the cell through numerous 

signaling pathways in response to dysfunction caused by physiological stimuli, stresses, and 

biological events [31–33]. In this review, we discuss our current knowledge of mtDNA 

repair and highlight some of the signaling pathways that coordinate stress responses between 

the nucleus and mitochondria in the event of DNA damage.

Mitochondrial DNA genome maintenance

Mitochondrial antioxidant pathways present the first line of defense that protects 

mitochondrial genome integrity (reviewed in [34, 35]). These include superoxide 

dysmutases (SODs), and the glutathione (GSH) peroxidase, thioredoxin (Trx), and 

peroxiredoxin (Prx) pathways [36–39]. Manganese SOD, an example of a member of this 

family, is present in the mitochondrial matrix and converts superoxide (O2
•−) to hydrogen 

peroxide (H2O2) [40]. The H2O2 generated can be neutralized to water by either GSH or the 

thiol-specific peroxidases, Prx [39]. If the H2O2 generated in the mitochondria is not 

neutralized to water, it can be readily converted to the hydroxyl radical (•OH), a strong 

oxidant, in the presence of Fe2+ via the Haber-Weiss Fenton reaction [41]. Since the 

mitochondria play a critical role in FeS cluster biogenesis and in iron homeostasis, these 

organelles are likely to be more susceptible to damage by H2O2 [12].

Oxidative stress results when the equilibrium between the antioxidant systems and ROS 

production is perturbed. Guanine has the lowest redox potential of the four DNA bases and 

is prone to oxidatively generated DNA damage produced by one-electron oxidants or singlet 

oxygen species [42–44]. The most common base modification that results from oxidation of 

guanine is 8-oxo-7,8-dihydroxyguanine (or 8-oxoG, Figure 1) [45, 46]. Thymine on the 

other hand is susceptible to •OH-mediated damage resulting in lesions such as 5,6-

dihydroxy-5,6-dihydrothymine [43]. Other modifications including alkylation, bulky 

adducts, and deamination also occur within mtDNA (Figure 1). To combat DNA damage, 

like the nucleus, mammalian mitochondria also possess DNA repair pathways, which 

involve repair proteins encoded by nuclear genes that are transported to the mitochondria 

(see Table 1). Whether these repair enzymes pre-exist in mitochondria at the time of damage 

or translocate into the mitochondria in response to damage signals is still not clear. The 

DNA repair pathways in mammalian mitochondria include base excision repair (BER), 

direct reversal (DR), mismatch repair (MMR), translesion synthesis (TLS), and possibly 

double-strand break repair (DSBR) [16, 47–49]. Thus far, there is no evidence for the repair 

of helix-distorting bulky adducts and ultraviolet-induced photodimers by the nucleotide 

excision repair (NER) pathway in mitochondria [50]. However, in one study, XPD, an NER 

protein was seen to protect mtDNA from oxidative DNA damage [51]. These data need to be 

further clarified and substantiated [52]. Furthermore, bulky adducts such as benzo[a] pyrene 

diol epoxide that are also formed within mtDNA (Figure 1) have no known mechanism of 

repair within the mitochondria, and are susceptible to destruction by autophagy [17, 53]. 

Overall, of the DNA repair pathways available in the mitochondria, BER appears to be the 

major pathway for eliminating ROS-induced oxidative damage.
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Base excision repair (BER)

The BER pathway is a well-characterized, tightly-coordinated process that is carried out in a 

step-wise manner and includes: recognition and excision of the damaged DNA base, 

removal of the resulting abasic (apurinic/apyrimidinc or AP) site, end processing, gap filling, 

and ligation (summarized in Figure 2) [16, 48, 54]. BER can proceed via three sub-

pathways, short-patch repair (SP-BER, 1-nt), long patch repair (LP-BER, 2 or more nt), and 

single-stranded break repair (SSBR) (extensively reviewed in [55–57]).

The initiation step of BER is carried out by DNA glycosylases, specialized enzymes, which 

recognize the damaged base and catalyze the cleavage of the N-glycosyl bond between the 

damaged base and its 2-deoxyribose resulting in an AP site [58, 59]. Glycosylases are either 

monofunctional or bifunctional, depending on whether they possess an intrinsic lyase 

activity. Seven of the eleven known mammalian DNA glycosylases contain an MTS that 

allows them to translocate to the mitochondria (summarized in Table 1 and Figure 2) [54]. 

The translocation of some DNA glycosylases to their respective nuclear and mitochondrial 

compartments is enabled by mechanisms of alternative splicing and different transcription 

start sites as observed with the uracil-DNA glycosylase (UDG), 8-oxoG DNA glycosylase 1 

(OGG1), and MUTYH DNA glycosylase [60–62]. Monofunctional glycosylases excise non-

oxidized damaged bases and rely on AP endonuclease (APE1) to complete the lyase 

elimination reaction whereas bifunctional DNA glycosylases are involved in the removal of 

oxidized DNA bases and nick the DNA backbone 3’ to the lesion [63, 64]. End processing 

following base excision and backbone cleavage by bifunctional glycosylases either involves 

APE1 as is seen in the case of OGG1 and NTHL1 (Nth-like 1) or polynucleotide kinase 

phosphate (PNKP) that processes the ends generated by the NEIL (Nei-like) enzymes [64, 

65]. Both APE1 and PNKP have been identified in the mitochondria and play critical roles 

in mitochondrial BER [66–69]. DNA POLG, the primary polymerase in the mitochondrion, 

is responsible for the gap-filling synthesis step in the mitochondria [70, 71]. During SP-

BER, POLGA, the catalytic subunit of heterotrimeric POLG, possesses lyase activity and is 

able to excise the 5’-phosphodeoxyribose (dRP) moiety generated by APE1 and fills the 1-nt 

gap [72]. During LP-BER, the strand displacement synthesis activity of POLGA is utilized, 

which generates flaps of 2–6 nt that are good substrates for the flap endonuclease 1 (FEN1) 

[73–75]. Although early reports suggested that SP-BER was the primary mitochondrial BER 

pathway, the choice between LP-BER and SP-BER is determined by several factors that are 

present in both the nucleus and mitochondria [64, 74]. For instance, certain types of oxidized 

abasic sites (such as 2-deoxyribonolactone) that are not suitable substrates for POLG 

undergo FEN1-dependent LP-BER [75]. Another enzyme DNA2, also found in 

mitochondrial extracts, assists in the FEN1-mediated cleavage of the DNA flaps by 

maintaining the length of single-stranded flap so that it is not immediately coated by mtSSB 

[76]. In contrast, another study demonstrates that 5’-exo/endonuclease (EXOG) removes 5’ 

flaps during mitochondrial LP-BER independently of FEN1 and DNA2 [77]. The final 

ligation step in the mitochondria, which is common in all BER sub-pathways, is carried out 

by DNA ligase III (LigIII) [78, 79].

The SSBR pathway is considered to be a form of SP-BER that involves detection of SSBs, 

end processing, gap filling, and ligation where the later two steps follow the same path as 
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SP-BER [48, 80, 81]. The SSBR pathway in the nucleus is initiated by the detection of SSBs 

by enzymes of the poly (ADP ribose) polymerase family such as PARP1 that has been 

shown in some studies to localize to the mitochondria [82]. The exact role of PARP1 in 

mtDNA SSBR remains unknown partly due to conflicting reports describing the effects of 

PARP1 depletion on the accumulation and repair of mtDNA damage [82–84]. Although the 

BER enzymes APE1, and PNKP, discussed above, can perform end processing, tyrosyl-

DNA phosphodiesterase 1 (TDP1), and aprataxin (APTX) have also been implicated in the 

end processing steps of mitochondrial SSBR (Table 1) [85–87]. TDP1 activity in the 

mitochondria is required to hydrolyze the bond between a tyrosyl moiety and a 3’ DNA end 

as well as for hydrolyzing other 3’-end alterations such as 3’-phosphoglycolate that are poor 

substrates for APE1 [87]. ATPX catalyzes the removal of chemically adducted 5’-AMP 

moieties generated by aborted DNA ligation reactions and its importance is highlighted in 

human neuroblastoma cells where depletion of APTX resulted in mitochondrial dysfunction 

and an increase in mtDNA damage [85, 86].

Factors other than the core BER enzymes also play a role in mitochondrial BER. For 

instance, mitochondrial TFAM possesses a greater affinity for oxidized lesions like 8-oxoG 

and inhibits the activity of OGG1, uracil-DNA glycosylase (UNG), and APE1 [88]. 

Furthermore, the tumor suppressor p53 is able to bind to TFAM and alter its DNA-binding 

so that the BER glycosylases are no longer inhibited. OGG1 also interacts with the 

Cockayne Syndrome A and B proteins (CSA and CSB), which may localize to the 

mitochondria under oxidative stress [89]. Given that BER is the major repair pathway in the 

mitochondria, disease states associated with mutations and deletions in the BER machinery 

result in aging-related neurodegenerative disorders, ataxia, diabetes, and cardiomyopathy 

reviewed elsewhere [13, 80, 90–92].

Direct reversal (DR)

The DR pathway is a simple one-step repair pathway that is responsible for the repair of 

lesions such as cyclobutane pyrimidine dimers and O6-alkylguanines. In bacteria, the 

enzyme photolyase is responsible for the removal of cyclobutane pyrimidine dimers and 

while this enzyme has been identified in plant and yeast mitochondria, no evidence for 

mammalian homologs has been presented [93, 94]. In mammalian cells, direct reversal of 

O6-methylguanine to guanine is carried out by methylguanine DNA methyltransferase 

(MGMT; Table 1) [95–97]. It has been suggested that a methyltransferase with a similar 

molecular weight as nuclear MGMT may exist in mitochondria, but these results have yet to 

be further substantiated [16, 95, 98–100].

Mismatch repair pathway (MMR)

The MMR pathway is a highly conserved repair process involved with the recognition and 

removal of mismatched bases and slippage errors caused by DNA polymerase during 

replication (reviewed in [101, 102]). The eukaryotic MSH (MSH2-6) or MutS homolog, and 

MUTL (MLH1,3) or MutL homolog proteins, are key components of this pathway in the 

nucleus where MMR ensues with the recognition of DNA mispairs by the MSH proteins 

followed by recruitment of the MLHs and activation of downstream molecules to repair the 

mismatch [102, 103]. Mitochondrial MMR appears to occur independently of the MSH and 

Saki and Prakash Page 5

Free Radic Biol Med. Author manuscript; available in PMC 2017 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MLH proteins but relies instead on the Y-box binding protein (YB-1; Table 1) [104, 105]. 

While there is precedence for the presence of MLH1 in the mitochondria, further evidence is 

warranted to fully understand the role of these enzymes in the mitochondria [106].

Translesion synthesis (TLS)

TLS is an error-prone DNA damage tolerance pathway that utilizes a group of specialized 

DNA polymerases that can bypass DNA lesions and allow DNA replication to proceed [107, 

108]. In eukaryotic nuclei, five polymerases perform TLS including Rev1, polymerases 

kappa, eta, and iota (Polκ, Polη, and Polι) that belong to the Y-family of polymerases and 

polymerase zeta (Polζ), which is a B-family polymerase [108]. The recruitment of these 

polymerases to the site of a lesion is described by two well-supported models, where one 

model proposes a “polymerase switching” mechanism whereas the other involves a “gap-

filling” model (reviewed in [107–110]. Yet, how cells decide which TLS polymerase to use 

remains one of the most perplexing questions in this field.

In the mitochondria, POLG exhibits TLS activity and is able to bypass lesions such as 

cyclobutane pyrimidine dimers by incorporating purines opposite the lesion [111]. POLG is 

also able to bypass 8-oxoG and exocyclic DNA adducts that gives rise to increased 

mutagenicity [112, 113]. Both Polζ and Rev1 have been identified to have a role in yeast 

mitochondrial genome maintenance where overexpression of these enzymes led to a 

reduction in point mutations in the mtDNA [114, 115]. More recently, Polζ was detected in 

the mitochondria of mammalian cells and elevated expression of the enzyme in breast 

tumors was associated with cell migration and invasion [116]. PrimPol, a DNA primase-

polymerase, was identified in the mammalian mitochondria [117] and evidence for its ability 

to bypass DNA lesions such as 8-oxoG was presented [118]. A conflicting report suggests 

that while PrimPol is unable to promote DNA damage bypass at a replication fork, its 

interactions with proteins involved in mtDNA replication, such as the Twinkle helicase, may 

be important for mtDNA metabolism [119].

Double-strand break repair (DSBR)

DNA double-strand breaks (DSBs) that occur in nuclear DNA are repaired by homologous 

recombination (HR), microhomology-mediated end-joining (MMEJ), and non-homologous 

end joining (NHEJ) pathways (reviewed elsewhere [48, 120]). While HR-mediated repair of 

mtDNA has been reported in plants and yeast, the occurrence of a bonafide HR repair 

mechanism in mammalian mitochondria has been debated and remains to be elucidated 

[121–125]. Some evidence for HR occurring within mammalian mitochondria was presented 

in studies using mitochondrial extracts where a recombinase RecA-mediated recombination 

event was observed [126]. The presence of recombination intermediates in mtDNA from 

human heart muscle were reported and suggest that an HR-like mechanism may occur in 

these cells [127]. Other studies revealed that if recombination events do occur, they do so at 

a low frequency, primarily under conditions where mtDNA is first depleted by treatment 

with either ethidium bromide or restriction endonucleases [128, 129].

NHEJ and MMEJ are relatively more error-prone when compared with the HR pathway and 

result in large deletions in the DNA. In yeast, direct-repeat-mediated deletions were seen to 

Saki and Prakash Page 6

Free Radic Biol Med. Author manuscript; available in PMC 2017 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accumulate in mtDNA thereby implicating the existence of the DSB repair pathways in the 

mitochondria [130, 131]. Another report in yeast also indicated that NHEJ proteins such as 

the MRX (Mre11p, Rad50p, Xrs2p) and Ku70/80 (Ku70p, Ku80p) complexes were observed 

in the mitochondria at the site of induced DSBs [132]. End-joining activity of linearized 

mtDNA substrates was observed using mammalian mitochondrial protein extracts where 

most of the molecules were end joined accurately, but regions containing direct repeat 

sequences displayed deletions [133]. While some mammalian DSB proteins have been 

observed in the mitochondria (Table 1), overall, it appears as though DSB repair in 

mammalian mitochondria may exist as a minor pathway under certain conditions, and 

further evidence is required to support the existence of these pathways within this organelle.

Signaling between the nucleus and mitochondria

For efficient DNA repair to take place in the mitochondria, DNA repair proteins are first 

transcribed in the nucleus, synthesized as precursors in the cytosol, and then imported 

through the outer mitochondrial membrane aided by the TOM translocase complex [19]. 

Further transport into the inner membrane of the mitochondria is aided by the translocase of 

the inner membrane (or TIM23 complex) [19]. Since a majority of the mitochondrial 

proteome comprises genes synthesized by the nuclear machinery, the flow of information 

from the nucleus to the mitochondria can be described as a way for the nucleus to inform the 

mitochondria about changes in the cellular environment, energetic requirements, and to 

signal stress responses [134, 135]. The stream of information from the nucleus to the 

mitochondria is termed anterograde signaling and the reverse process is called retrograde 

signaling or mitochondrial stress signaling (summarized in Figure 3) [136–138]. Gene 

expression of mitochondrial-targeted proteins drives mtDNA replication, maintenance, and 

energy homeostasis [135, 137, 139]. In return, mitochondrial dysfunction resulting from loss 

of mtDNA, damage accumulation, and oxidative stress trigger signals (such as elevated Ca2+ 

and NAD+ levels) that then orchestrate a nuclear gene expression response to mitigate the 

defect [138]. In mammalian cells, the first report of inter-organellar signaling between the 

nucleus and the mitochondria was described by differential expression of respiratory chain 

complexes between wild-type and mtDNA depleted fibroblasts [139, 140]. Signaling 

between the two organelles is essential for deciding cellular fate and for the remainder of 

this review, we will discuss some of the damage sensors, metabolite signals, and pathway 

cascades that are triggered upon DNA damage.

Ca2+ signaling

The importance of calcium (Ca2+) uptake by mitochondria is known to have critical 

functions in metabolism, stress signaling, and cell survival (reviewed in [141, 142]). 

Stressors such as depletion of mtDNA and treatment with ionophores result in perturbation 

of membrane potential (ΔΨm) thereby causing a change in Ca2+ efflux [143, 144]. This was 

observed in work performed in mouse myocytes where elevated cytosolic Ca2+ levels 

prompted a nuclear response that included reduced levels of nuclear factor-κB (NF-κB) and 

activation of the calcineurin dependent nuclear factor of activated T-cells (NF-AT) [144]. 

These responses in turn stimulate other transcription factors that drive nuclear transcription 

of genes involved in Ca2+metabolism and glycolysis. Notably, restoration of mtDNA 

resulted in the reversal of these signals, thereby strengthening the relationship between 
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mtDNA stress and nuclear transcription [144, 145]. Elevated calcium levels resulting from 

mtDNA damage can also directly influence pathway activation including protein kinase C 

(PKC), and c-Jun N-terminal kinase (JNK)/p38 as well as activation of Ca2+/calmodulin-

dependent protein kinases (CAMKIV) that modulates phosphorylation of the cAMP-

responsive element-binding protein (CREB) [146, 147]. Both NF-κB and the JNK signaling 

pathways have been linked to the DNA damage response and are involved with the post-

translational modifications of DNA repair proteins [148, 149]. It still remains to be 

elucidated whether activation of these pathways influences import of DNA repair genes into 

the mitochondria.

Signaling mediated by NAD+/ NADH

Nicotinamide adenine dinucleotide (NAD) in its oxidized (NAD+, electron acceptor) and 

reduced (NADH, electron donor) forms is an essential metabolite and coenzyme that is 

involved in the regulation of pathways such as glycolysis, the ETC, and the tricarboxylic 

acid (TCA) cycle [150–152]. NAD+ content appears to be unevenly distributed throughout 

the cell with the lowest concentrations observed in the nucleus in comparison to the 

mitochondria and cytosol [151, 152]. NAD+ is a substrate for two families of enzymes that 

serve critical roles in the DNA repair response: the PARP family and the sirtuin family of 

NAD+-dependent deacetylases (SIRTs) [7, 153–155]. Three of the 17-membered PARP 

family of enzymes (PARPs1–3) have known roles in DNA repair where PARP1 and PARP2 

play a role in BER, while PARP3 senses DSBs and is involved in DSBR [81, 156–159]. The 

PARP enzymes synthesize poly(ADP-ribose) or PAR by utilizing NAD+ as a substrate to 

transfer the ADP-ribose moiety of NAD+ to acceptor proteins. This type of post-translational 

modification occurs when nuclear DNA damage in the form of DNA strand breaks (SSBs 

and DSBs) is sensed. Both PARP1 and PARP2 auto PARylate themselves, interact with the 

DNA, and further recruit and PARylate other repair enzymes [157]. This consumption of 

NAD+ drives NAD+ synthesis presumably by either the de novo synthesis pathway or the 

salvage pathway to keep up with cellular demand [160]. Localization of PARP1 to the 

mitochondria has been reported but its function in this organelle is still a matter of debate 

[82]. PARP1 appears to have an inhibitory negative role in the mitochondria where it 

interacts with and PARylates POLG, and EXOG and inhibits BER, a function that is 

opposite to its roles in the nucleus [83].

The sirtuin family of proteins use NAD+ as a substrate to deacetylate proteins by the 

removal of acetyl groups from lysine residues [161]. Of the 7 sirtuin family members, 

SIRT1, SIRT6, and SIRT7 are localized in the nucleus, SIRT2 is mainly present in the 

cytoplasm and SIRT3, SIRT4, and SIRT5 are mitochondrial proteins [153, 161]. Despite this 

compartmental segregation, these enzymes can shuttle between the two organelles and the 

cytosol in response to cellular stimuli. SIRT1, the most studied sirtuin enzyme, plays a role 

in mitochondrial biogenesis, where it deacetylates key proteins such as peroxisome 

proliferator-activated receptor-γ co-activator 1α (PGC-1α), and in DNA repair via DSBR 

by deacetylating and activating proteins such as Ku70 [162–164]. Another target of SIRT1 

deacetylation is the hypoxia inducible factor 1 alpha (HIF-1α), which belongs to the 

hypoxia-inducible transcription factor family of proteins that are regulators of cellular 

responses to oxygen deprivation [165, 166]. This SIRT1-mediated deacetylation event 
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inactivates HIF-1α signaling under normal conditions, but allows for activation of this 

pathway when SIRT1 levels are low and under hypoxic conditions where NAD+ levels are 

also diminished [166]. Since both PARP1 and SIRT1 are involved in DNA repair and use 

NAD+ as a substrate for their respective activities, they compete for NAD+ in an interplay 

that is not completely understood. Furthermore, the rivalry between SIRT1 and PARP1 is 

also observed in NF-κB regulation where SIRT1 deacetylates the transcription factor and 

inhibits its activity whereas PARP1 activates and stimulates NF-κB activity [167]. Recent 

evidence presented in pulmonary artery endothelial cells indicates that an increase in Ca2+ 

levels in the mitochondria influences the NAD+/NADH ratio in the cytoplasm by causing an 

efflux of NADH from the mitochondria to the cytosol [168]. This change influences the 

NAD+ consuming SIRT family of enzymes, and provides a link between Ca2+ fluctuations, 

NAD+ levels, DNA damage, and mitochondrial dysfunction [168].

Energy homeostasis mediated by AMP-activated protein kinase signaling

AMP-activated protein kinase, AMPK, is referred to as the energy sensor of the cell as it is 

highly sensitive to changes in intracellular energy levels (or the ATP:AMP ratio) [169]. 

AMPK is a serine/threonine kinase that is activated in response to increased levels of AMP 

and ADP and triggers a cascade of orchestrated responses that are able to restore ATP levels 

and maintain energy balance [169, 170]. To mention two examples, both p53 and the 

oxidative stress/ DNA damage sensor protein, ataxia telangiectasia mutated (ATM), can 

phosphorylate and activate AMPK (Figure 4) [171–173]. AMPK is activated by the Sestrin 1 

and 2 proteins, which are targets of p53 activation upon genotoxic stress [172]. Incidentally, 

p53 is also a target of AMPK phosphorylation where this phosphorylation event triggers 

several outcomes including cell cycle-dependent checkpoint activation, and accumulation of 

mitochondrial p53 that promotes apoptosis via the Bak-Bcl-xL complex [174, 175]. ATM 

can phosphorylate AMPK in response to oxidative stress via the liver kinase B1 tumor 

suppressor protein [173, 176]. Phosphorylated AMPK in turn can phosphorylate a number of 

factors involved in nuclear-mitochondrial signaling responses including SIRT1, PGC-1α, 

and HIF-1α (Figure 4) [177–179]. Additionally, the mitochondrial SIRT4 protein regulates 

cellular ATP levels thereby contributing to mito-nuclear crosstalk via AMPK-mediated 

signaling [180]. These studies coupled with reports describing the role of redox molecules in 

triggering AMPK response mechanisms, further strengthens the importance of this signaling 

pathway in the maintenance of cellular homeostasis [169].

Redox signaling: Reactive oxygen, nitrogen species, and APE1

Both ROS and reactive nitrogen species (RNS) are highly reactive and are generated during 

normal cellular metabolism as byproducts of processes such as respiration, and by enzymatic 

processes involving nitric oxide synthases (NOS), and NADPH oxidase [181]. Some forms 

of ROS including •OH and singlet oxygen species are highly reactive and are able to react 

with and damage DNA bases whereas H2O2 in the presence of metals (such as Fe2+) 

generates •OH via the Fenton reaction [43, 182]. Several antioxidant mechanisms (discussed 

above) exist to combat ROS including natural antioxidants such as vitamins A, E, and C 

obtained from the diet and endogenous enzymes like glutathione peroxidases and superoxide 

dismutases, which reduce free H2O2 to H2O and cause the dismutation of O2•− to H2O2 and 

O2, respectively [183, 184]. Increased levels of ROS can overwhelm the antioxidant 
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responses and trigger the activation of transcription factors including NF-κB, HIF-1α, p53, 

and nuclear factor E2-related factor 2 (NRF2) [185–189]. An example of signaling between 

the mitochondria and nucleus under conditions of high levels of ROS is witnessed by the 

stimulation of over 100 target genes such as glutathione S-transferases mediated by the 

binding of NRF2 to antioxidant response elements [189]. Furthermore, the triggering of 

TFAM expression for driving mitochondrial transcription by NRF1 occurs in response to 

increased levels of ROS [190].

RNS such as nitric oxide (NO), which is biosynthesized by NOS readily diffuse across cell 

membranes and function as signaling molecules between the nucleus and mitochondria [191, 

192]. Mitochondria also possess NOS (mtNOS) that is capable of generating NO in the inner 

mitochondrial membrane and modulates diffusion of NO from the mitochondria to the 

cytosol [193, 194]. NO can impart toxicity in a cell via its oxidation products that damage 

DNA as well as by the inhibition of mitochondrial respiration [195]. NO reacts with O2
•−to 

produce peroxynitrite (ONOO−), which can lead to the nitrosative deamination of DNA 

bases, nitrated DNA bases (8-nitroguanine), and the nitration of tyrosine residues that blocks 

signaling cascades [195]. Mitochondrial NO binds to and inhibits cytochrome C oxidase 

(Complex IV) thereby modulating respiration by directly competing with intracellular O2 

[196, 197]. One way that NO mediates mito-nuclear signaling under conditions of oxygen 

deprivation, is by destabilizing HIF-1α, which inhibits its transcriptional activity [198]. 

Furthermore, an increase in NO signaling correlates with an elevated number of 

mitochondria and is consistent with an upregulation in the levels of the mitochondrial 

biogenesis master regulator, PGC-1α that mediates downstream activation of factors such as 

TFAM [199, 200]. This increase in PGC-1α regulation by NO can also be influenced by the 

binding of NO to AMPK (Figure 4) [201] and is particularly useful for scrutinizing 

mitochondria-rich tumors such as thyroid oncocytoma [202]. While increased RNS levels 

can elicit harmful effects in a cell, their role in immune responses and as anti-tumor agents 

has been previously described [203].

Redox activities are not limited to ROS and RNS. Incidentally, the only known DNA repair 

protein that is able to regulate other proteins via a redox mechanism is APE1 [204, 205]. As 

a DNA repair protein, APE1 functions in the BER pathway (discussed above), and as a 

redox regulator, it plays roles in processes such as immune inflammatory responses, 

angiogenesis, and in tumor progression [206]. Cysteine residues 65, 93, and 99 have been 

implicated in mediating the redox activities of APE1 [207–209]. Cys 65 and 93 are not 

solvent exposed residues based on the crystal structure of APE1, implicating that a 

conformational change has to occur within APE1 in order for these cysteine residues to 

serve as nucleophiles during the redox process [210]. APE1 maintains downstream targets 

such as HIF-1α [211], NF-κB [212], and p53 [213] in their reduced forms to promote 

stabilization and enhanced DNA binding. APE1 can also negatively regulate the activity of 

the NRF2 protein that is involved in the oxidative stress response, thereby serving a critical 

role as a regulator in DNA repair, transcriptional control, and genome maintenance [214]. 

Thioredoxin, the antioxidant enzyme interacts with APE1 and mediates its redox activities 

by reducing the oxidized form of APE1 [215]. The importance of APE1 as an essential 

regulator of cellular processes is evidenced by the fact that knockdown of APE1 in mice 

leads to embryonic lethality [216]. Although the mitochondrial translocation of APE1 has 

Saki and Prakash Page 10

Free Radic Biol Med. Author manuscript; available in PMC 2017 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



been documented previously, recent evidence suggests that APE1 translocates to the 

mitochondria in a redox-dependent manner via interaction with Mia40, the mitochondrial 

import protein that is also used by p53 to translocate to the mitochondria [217, 218].

Mitochondrial unfolded protein response-like pathway

The maintenance of protein homeostasis via the unfolded protein response (or UPR) is 

tightly controlled in the cytosol, endoplasmic reticulum, as well as in the mitochondria and 

involves crosstalk between these organelles and the nucleus [219–221]. Mutations and 

deletions in mtDNA yield misfolded or mutant proteins that are unable to form 

stoichiometric complexes with the nuclear encoded proteins being transported to the 

mitochondria for OXPHOS. This can place a large amount of stress on the protein folding 

machinery in the mitochondria [220]. The UPR in mitochondria (UPRmt) has been studied 

extensively in yeast and in C. elegans and is reviewed in [219, 222, 223]. In C. elegans, 

UPRmt is triggered when ROS levels increase and involves expression of nuclear genes such 

as the heat shock proteins (hsp) hsp-6 and hsp-60, which encode for chaperone proteins 

[224]. In mammalian cells there are two modes of UPRmt that have been proposed in order 

to understand the key players involved in this process. The first pathway described by 

Hoogenraad and colleagues describes a UPRmt where unfolded proteins accumulate in the 

mitochondrial matrix and result in the expression of nuclear encoded proteins including 

HSP60 (chaperone 60), and the ClpP mitochondrial protease [225]. This process is mediated 

by activation of the CHOP (C/EBP homology protein) transcription factor [226]. The second 

CHOP-independent UPRmt model was described by Germain and colleagues in MCF-7 

mammalian cells where protein aggregates accumulate in the inter-membrane space and 

trigger a response involving estrogen receptor α [227, 228].

Another level of regulation that occurs with the accumulation of misfolded proteins, 

depletion of mitochondrial chaperone proteins, or disruption of mitochondrial membrane 

potential, is mitochondrial autophagy (or mitophagy) [229]. In normal mitochondria, the 

multifunctional PINK1 kinase that regulates mitophagy is imported into the mitochondrial 

matrix via an MTS and is degraded by proteases [230, 231]. However, under conditions of 

inner membrane stress, PINK1 cannot cross the inner membrane and instead is integrated 

into the outer membrane where it recruits the ubiquitin ligase Parkin [232]. Parkin is 

phosphorylated and activated by PINK1 and is able to ubiquitilate multiple mitochondrial 

proteins that further leads to mitophagy [233]. However, while much is known about the 

unfolded protein response and mitophagy, the precise mechanisms of these processes still 

need to be resolved since many disease states have been attributed to a malfunction in 

UPRmt signaling and mitophagy including neurodegenerative disorders such as Parkinson’s 

disease, aging, and Friedreich’s ataxia [30, 222, 234].

Concluding remarks and unanswered questions

In this review, we have summarized the current knowledge of the DNA repair mechanisms 

that exist in the mitochondria and highlighted some of the signals that connect the two 

organelles during stress responses. Despite the vast body of literature on this subject, 

numerous questions still remain to be answered [7]. In terms of DNA repair, although we 
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know that nuclear genes are responsible for the maintenance of the mitochondrial genome, 

how and when these proteins are targeted to the mitochondria remains unclear. Furthermore, 

the chaperone proteins responsible for the proper folding and further processing of these 

enzymes are still largely unknown. The role of post-translational modifications of DNA 

repair proteins either within the mitochondria, or in the cytosol that enables mitochondrial 

targeting, also remains an area of interest.

From our current understanding of mitochondrial biology, it is evident that numerous factors 

are responsible for the well-being and proper functioning of mitochondria. As presented here 

by us and in reports by other groups, the signaling cascades that occur between the 

mitochondria and the rest of the cellular milieu, represent a “web” of interactions that are 

interconnected and influence each other. When one of these pathways is disrupted, in the 

case of mitochondrial stress, we can easily fathom progression of a disease state or the 

triggering of pathways that lead to apoptosis. The recent development of mitochondrial-

nuclear exchange (MNX) mice has helped us cultivate a better understanding of the 

contribution of damaged, mutated, and variant mtDNA to disease progression [235]. In these 

mice, the nuclear and mitochondrial genomes from different mice strains were interchanged, 

and from these animal models, and subsequent studies, it was evident that mtDNA 

contributes to increased levels of ROS, vulnerability to cardiovascular stress, and changes in 

lipid metabolism in chronic liver disease, independently of nuclear DNA [235, 236]. 

Furthermore, the importance of mtDNA repair is highlighted in studies that indicate that 

some repair enzymes are transported to the mitochondria not only to maintain mitochondrial 

genome integrity, but also to protect against tissue injury such as ventilator induced lung 

injury in mice [237–239]. In other animal models, a neuroprotective role was suggested for 

mitochondrial BER enzymes where increased levels these enzymes protected against 

ischemic brain injury [240]. It is therefore apparent that mtDNA serves a protective role in 

controlling cell fate in response to a variety of oxidative stresses and is essential for proper 

cellular maintenance and function. Unfortunately, in this review, we were unable to cover the 

all facets of mitochondrial signaling including mitophagy, apoptosis, mitochondrial fusion 

and fission, and mitochondrial diseases that result from dysfunction. In summary, despite the 

wealth of knowledge that exists in the fields of DNA repair and mito-nuclear signaling, 

much is left to be determined to deconvolute the complex array of interactions that maintain 

cellular homeostasis.
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Figure 1. Types of DNA lesions found in the mitochondria
Damage to mtDNA can occur in the form of alkylation, oxidation, spontaneous deamination, 

and bulky adducts. Examples of lesions from each of these categories are shown.

Saki and Prakash Page 26

Free Radic Biol Med. Author manuscript; available in PMC 2017 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Overview of base excision repair in the mitochondria
This figure displays the step-wise repair of DNA base damage via the BER pathway by 

enzymes identified in the mitochondria. Initially, the lesion is recognized by either mono or 

bifunctional DNA glycosylases depending on the type of damage. Of the eleven known 

mammalian DNA glycosylases, only seven have been identified in the mitochondria. These 

include: the monofunctional glycosylases AAG (alkyladenine DNA glycosylase), UNG 

(uracil N-glycosyalse), and MUTYH (MutY glycosylase homolog) as well as the 

bifunctional glycosylases OGG1 (8-oxoG DNA glycosylase 1), NTHL1 (Nth-Like 1), 
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NEIL1 (Nei-like 1), and NEIL2 (Nei-like 2). The resulting AP sites are further processed 

either by APE1 in case of the monofunctional, OGG1, and NTHL1 glycosylases or by 

PNKP that processes the ends after the NEIL enzymes, thereby leaving suitable ends for 

gap-filling by POLG. Ligase III then seals the DNA nick and completes the process in SP-

BER. In the long-patch (or LP, >2 or more nt) repair pathway, a 2–6 nt flap is generated by 

POLG that is further processed by DNA2/FEN1. Alternatively, EXOG may function as the 

major 5’ flap-processing enzyme in the mitochondria in both SP- and LP-BER. The final 

ligation step is carried out by LIGIII.
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Figure 3. Signaling between the nucleus and mitochondria
Crosstalk between the nucleus and mitochondria occurs not only to signal oxidative stress, 

DNA damage, and mitochondrial dysfunction but also occurs during normal cellular 

metabolism. The flow of information from the nucleus to the mitochondria (termed 

anterograde signaling) involves the transcription and translocation of genes involved with 

mitochondrial biogenesis. Anterograde regulation also includes responses to stressors that 

trigger an antioxidant response by regulating the expression of genes involved with Ca2+ 

metabolism and glycolysis. Mitochondria can signal to the nucleus (in a process called 

retrograde signaling) in times of stress via signals such as changes in the levels of NAD+/

NADH, ROS, cytosolic Ca2+, and ATP/AMP as well as changes in membrane potential. ER 

stands for endoplasmic reticulum. The arrow within the nucleus signifies the transcriptional 

activation of nuclear genes either during normal conditions, or upon stress induced 

signaling.
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Figure 4. Schematic of AMP-activated kinase (AMPK) signaling triggered by changes in cellular 
metabolites and DNA damage
AMPK is activated upon increased levels of AMP/ADP, ROS, and cytosolic calcium. 

Activation of AMPK can be triggered by the ataxia telangiectasia mutated (ATM) kinase that 

is activated upon oxidative stress or DNA damage. ATM triggers a DNA damage response 

that activates other factors such as p53 that can also directly activate AMPK. The activation 

of AMPK elicits downstream responses regulated by proteins including PGC-1α, SIRT1 and 

HIF-1α. These responses manifest in an upregulation of mitochondrial processes such as 

glycolysis, fatty acid oxidation, and responses to hypoxia.
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Table 1

Mammalian proteins and enzymes involved in the repair of mtDNA

Pathway Protein/Enzyme Function Reference

BER

NEIL1 DNA glycosylase (Bifunctional) [241]

NEIL2 DNA glycosylase (Bifunctional) [69]

OGG1 DNA glycosylase (Bifunctional) [242, 243]

NTH1 DNA glycosylase (Bifunctional) [242]

MUTYH DNA glycosylase (Monofuctional) [242]

AAG DNA glycosylase (Monofuctional) [244]

UNG DNA glycosylase (Monofuctional) [60, 245]

TFAM Mitochondrial transcription factor A
stimulates glycosylase activity

[88]

TDP1 DNA end processing [87]

PARP1 Senses SSBs, PARylates itself and other
proteins

[82, 84]

APE1 DNA end processing endonuclease [68]

PNKP DNA end processing [67, 69]

APTX DNA end processing [85]

POLG Mitochondrial DNA polymerase [246]

FEN1 Flap endonuclease, flap processing [75]

EXOG Flap processing [77]

LIGIII DNA ligase [133]

DR MGMT Methytransferase [98, 100]

MMR YB-1 Mismatch binding and repair [104, 105]

MLH1 Mismatch binding and recruitment of
downstream proteins

[106]

TLS PrimPol DNA primase-polymerase [117]

Polymerase zeta Error-prone B family DNA polymerase [116]

DSBR RAD51 Central catalyst of HR [247]

XRCC3 Participates in HR and maintains
chromosome stability

[247]

BRCA1 DNA binding and protein interactions [248]

Ku70/80 DSB binding during NHEJ [249, 250]

MRE11 mtDNA binding and end processing [251]

NER NONE to DATE
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