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Abstract

Understanding molecular mechanisms that underlie the recent emergence of metabolic diseases 

such as diabetes and heart failure has revealed the need for a multi-disciplinary research 

integrating the key metabolic pathways which change the susceptibility to environmental or 

pathologic stress. At the physiological level these include the circadian control of metabolism 

which aligns metabolism with temporal demand. The mitochondria play an important role in 

integrating the redox signals and metabolic flux in response to the changing activities associated 

with chronobiology, exercise and diet. At the molecular level this involves dynamic post-

translational modifications regulating transcription, metabolism and autophagy. In this review we 

will discuss different examples of mechanisms which link these processes together. An important 

pathway capable of linking signaling to metabolism is the post-translational modification of 

proteins by O-linked N-acetylglucosamine (O-GlcNAc). This is a nutrient regulated protein 

modification that plays an important role in impaired cellular stress responses. Circadian clocks 

have also emerged as critical regulators of numerous cardiometabolic processes, including 

glucose/lipid homeostasis, hormone secretion, redox status and cardiovascular function. Central to 

these pathways are the response of autophagy, bioenergetics to oxidative stress, regulated by 

Keap1/Nrf2 and mechanisms of metabolic control. The extension of these ideas to the emerging 

concept of bioenergetic health will be discussed.
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1. Introduction

Studies of mitochondria were among the first to integrate redox biology into metabolism 

based on the observations that inhibition of mitochondrial respiration with toxic xenobiotics 

or hyperoxia increased hydrogen peroxide [1-3]. Since both were pathological models or 

scenarios this led to two postulates that a) mitochondria are a major source of hydrogen 

peroxide/superoxide in the cell and b) this was a pathological process that led to 

mitochondrial dysfunction [3, 4]. Naturally, over the subsequent 40 years these postulates, 

while still often quoted as dogma, have become much more nuanced. The discovery of the 

NADPH oxidases and their various isoforms now make it abundantly clear that mitochondria 

are by no means the major or only source of hydrogen peroxide in the cell [5]. Indeed, the 

NOX enzymes are generally much higher capacity generators of hydrogen peroxide/

superoxide than mitochondria [6, 7]. It has also become clear that the data derived from 

mitochondrial toxins and hyperoxia are not broadly applicable to normal physiology and 

mitochondrial production of superoxide/hydrogen peroxide are a part of normal physiology 

and cell signaling [8]. Furthermore, the sites of production of hydrogen peroxide/superoxide 

from the mitochondria have rapidly expanded beyond the electron transport chain and are 

intimately linked to metabolism and also offering the potential for independent regulation [2, 

8]. At first glance the early data which showed that partial deletion of SOD2 promoted 

cardiovascular and other pathologies also supported a damaging role for mitochondrial 

superoxide [9]. An alternative explanation is now gaining acceptance and in this paradigm 

the mitochondrial superoxide dismutase (SOD2) is essential for control of mitochondrial 

redox signaling [2, 10, 11]. The role of mitochondria in cell physiology clearly extends 

beyond simply providing ATP to the cell and involves a variety of metabolites which 

integrate the nuclear transcriptome with metabolic requirements [12-14]. We and others have 
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proposed that among these pathways is the mitochondrial production of hydrogen peroxide/

superoxide and is integrated by the regulatory effects of nitric oxide [11, 15, 16]. This 

appears to be a controlled process under physiological conditions and plays a central role in 

the signaling pathways from the organelle to the nucleus often referred to as the “retrograde” 

signaling pathway [6, 8, 14, 17, 18].

It has been known for some time that there are diseases which arise from mutations in 

mitochondrial DNA and these can present with a broad range of symptoms emphasizing 

both the capacity for metabolic plasticity and adaptation [17, 19]. Beyond direct mutations 

in mtDNA the impact of bioenergetic dysfunction is now recognized as a key contributor to 

diabetes, neurodegeneration, cancer and cardiovascular diseases [17, 20-26]. This has 

extended the range of what are considered metabolic or mitochondrial therapeutics which 

can function through different mechanisms. Application of screening technologies has also 

shown that established therapeutics, such as metformin, also modulate bioenergetics [27-33]. 

The mechanisms through which this occurs are still not clear but have been shown in several 

cases to involve the controlled generation of superoxide and hydrogen peroxide from the 

respiratory chain [14, 18, 34, 35]. Interestingly, among the 13 proteins coded for by 

mitochondrial DNA, are critical redox centers in the respiratory chain which offers a 

mechanism through which mutations in mtDNA could modulate superoxide levels in 

response to stress and so impact on pathological processes [36]. Taken together, these 

findings are resulting in the new field of redox bioenergetics.

If the antioxidant networks within the mitochondria are playing a redox regulatory role for 

the purposes of metabolic integration then what are the mechanisms used to mitigate the 

slow but progressive accumulation of damaged or aggregated proteins? The discovery of 

autophagy and the specialized form of the pathway known as mitophagy has given at least a 

partial answer to this question [37, 38]. Autophagy has become a broad field encompassing 

many aspects of metabolism including exercise, the response to starvation and oxidative 

stress [39, 40]. It has a high capacity for removing and detoxifying oxidatively damaged 

proteins and organelles including the mitochondrion and is emerging as an important 

antioxidant pathways [6, 12]. From this background it is clear that the regulatory role of 

redox-dependent pathways in metabolism is now taking on added importance. This also 

includes the findings that link circadian biology to redox networks, autophagy and 

mitochondrial function which will be discussed in a later section.

Temporal partitioning, a component of circadian biology (i.e., chronobiology), of metabolic 

processes occurs due to the combined actions of extrinsic and intrinsic modulators. Various 

neurohumoral factors fluctuate secondarily to sleep/wake and fasting/feeding cycles, such as 

cortisol, growth hormone, catecholamines, and insulin [41]. These extracellular (extrinsic) 

factors exert potent catabolic and anabolic actions on metabolically active tissues in a classic 

stimulus-response coupling manner. More recently, the existence of cell-autonomous 

circadian clocks that have the capacity to modulate processes such as metabolism over the 

course of the day has been exposed [42]. This transcriptionally-based intrinsic mechanism 

confers the selective advantage of anticipation, preparing the cell/organ for a predicted 

stimulus/stress prior to its onset [43]. Importantly, the circadian clock has been linked to 

daily rhythms in oxidative metabolism, antioxidant levels, protein synthesis, autophagy, and 
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even mitochondrial biogenesis as will be discussed in more depth in a later section. It is 

noteworthy that an additional, non-transcriptional, highly evolutionarily conversed clock 

mechanism has been described, involving the redox proteins peroxiredoxins [44]. 

Underscoring further the interrelationship between redox biology and circadian rhythms is 

the crosstalk between circadian clocks, peroxiredoxins, and antioxidant potential [45].

Our perspective of mitochondrial function is also rapidly changing as it becomes possible to 

determine function in cells with low oxidative capacity compared to the traditionally studied 

highly active heart and liver cells. An important new area focusses on cells of the innate 

immune system which have an obligatory role for metabolic switching between glycolytic 

and oxidative metabolism in normal function [46, 47]. The long established paradigm in 

which cancer cells exhibit an altered bioenergetic metabolism characterized by aerobic 

glycolysis has now been extended to encompass lymphocytes and monocytes as they adapt 

to their changing biological functions in normal physiology [17, 46, 48, 49]. In this short 

overview we will highlight these emerging themes in redox bioenergetics with a primary 

emphasis on cardiovascular physiology and pathology since this is one of the fields in which 

studies linking redox biology, circadian biology, metabolism and autophagy are reasonably 

extensive.

2. Epigenetics and redox dependent metabolic regulation

An important new area of research in redox biology is that of long-term genetic regulation 

through the process known as epigenetics. This control of gene expression includes post-

translational modifications of the histone proteins used to package DNA and modification of 

the DNA itself, all without changing the underlying genetic code [50]. Epigenetics has 

emerged as a contributing pathway in both normal development as well as in the 

pathogenesis of a number of chronic diseases including obesity, diabetes, cancer, 

neurological disorders, and heart failure [51-54]. In this section we will focus on recent 

advances directly linking changes in the redox status of the cellular environment to specific 

mechanisms by which genes are regulated and then expand upon direct redox regulation 

within multiple pathways (Figure 1A).

One common theme in epigenetics is the communication of environmental influences on 

molecular regulation. Much of this is controlled by metabolic flux through mitochondria and 

the direct utilization of metabolite intermediates and reactive species in the modification of 

transcription factors, histone core proteins, and DNA [55]. A new and interesting aspect is 

the direct role intermediates of the TCA cycle play in the regulation of gene expression [56]. 

In addition to the TCA cycle the role of metabolites of nitric oxide are particularly important 

and also the pharmacological modulators of the NO pathway (eg nitroglycerin) [57]. 

Interestingly, it appears that in patients with cardiovascular disease treated with organic 

nitrates epigenetic and post-translational regulation by downstream signaling occurs. This 

may be mediated by sustained changes in gene expression dependent on nitric oxide and 

peroxynitrite. Treatment of cells with nitric oxide regulates both histone H3 and H4 

methylation and acetylation associated with changes in gene expression [58]. For changes in 

protein methylation, part of the mechanism of action is through the post-translational 

nitrosyliron complex formation in the catalytic pocket of the demethylase lysine 
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demethylase 3A (KDM3A) [59]. Another important post-translational modification 

integrating metabolic redox signaling to epigenetic pathways is protein O-GlcNAcylation 

that will be discussed in the next section [60-62].

The Keap1-Nrf2 pathway is one of the best characterized redox signaling pathways and is 

regulated by epigenetics. Specifically, it was recently shown that in models of the 

inflammatory disease of osteoarthritis, HDAC inhibition (HDACi) reduced symptoms by 

directly increasing acetylation of Nrf2 and histone H3 [63]. These changes occurred in 

parallel with a decrease in inflammatory markers such as IL-6 and TNFα, potentially via 

direct transcriptional regulation. This is not limited to arthritis and a connection between 

HDACi and cancer treatment has identified the potential role for epigenetic regulation of 

Nrf2 and precision medicine for treating colon cancer [64]. The metabolic contribution to 

this combined pathway is further supported by studies where hyperglycemia could 

additionally alter histone H3 via methylation at key regions of Nrf2-mediated transcriptional 

regulation [65], suggesting a mechanistic link between nutrient utilization and epigenetic 

control of key antioxidant defense pathways. It is tempting to speculate that similar 

mechanisms are involved in regulation of obesity and inflammatory diseases with a potential 

therapeutic option of this transcriptional control via Nrf2, epigenetics, and its modulation by 

curcumin [66].

Similar to the link between histone acetylation and Nrf2-mediated regulation, growing 

evidence suggests that oxidative stress in the brain can contribute to Parkinson's and 

Alzheimer's disease pathway through an autophagy-mediated regulation of epigenetics. 

Specifically, histone acetylation is increased in neuronal cells following H2O2 treatment 

concurrent with increased Aβ production [67]. More recently it was found that the changing 

histone acetylation environment is directly regulated by autophagy and HDAC degradation 

likely contributing to disease progression [68]. Autophagy and the link to regulation by 

redox signaling beyond epigenetics will be discussed in more detail below.

3. The GlcNAc pathway and mitochondrial function under stress

The redox signaling mechanisms that integrate metabolism and cellular responses to stress 

are clearly important to understand from both a mechanistic aspect and also as new avenues 

for the development of therapeutics. In this respect the post-translational modification of 

proteins by the attachment of β-N-acetylglucosamine on serine and threonine residues via an 

O-linkage (O-GlcNAc) is achieving particular prominence because of its intimate 

relationship with glycolysis, response to oxidative stress and as a nexus linking nutrient 

signaling to gene expression [60-62, 69, 70]. In contrast to typical glycosylation, O-

GlcNAcylation is a dynamic and reversible modification, regulated by O-GlcNAc transferase 

(OGT), a glycosyl transferase that uses UDP-GlcNAc to catalyze the attachment of O-

GlcNAc to proteins and O-GlcNAcase, a hexosaminidase, which catalyzes its removal. The 

availability of UDP-GlcNAc is a major determinant of overall O-GlcNAc levels and it is the 

product of the hexosamine biosynthesis pathway (HBP), which requires glucose, glutamine, 

acetyl-CoA and high energy phosphates in the synthesis of UDP-GlcNAc.
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As mentioned earlier, epigenetic control is central to the co-ordination of metabolic and 

stress responses. Although it has been well established that O-GlcNAc regulates the activity 

of transcription factors the newest discoveries in this area has been the O-GlcNAc 

modification of histone proteins and the physical interaction of the proteins that regulate O-

GlcNAc cycling and that of DNA hydroxylation to 5-hydroxymethylcytosine (5-hmC) 

(Figure 1B). Specifically, O-GlcNAc transferase or OGT interacts with each of the three 

different methylcytosine dioxygenase ten-eleven translocation proteins (TETs) that are 

involved in addition of DNA 5-hmC [71-73]. Therefore, this novel interaction of OGT and 

TET provides a critical junction of nutrient and oxidative signaling to regulation of gene 

expression. A number of outstanding questions remain as to the location, temporal pattern, 

and regulation of 5-hmC in different tissues and disease states. The regulation of these 5-

hmC levels by changing ascorbate levels links its relevance to redox signaling [74], 

suggesting areas of potential therapeutic intervention.

Increased flux through the HBP has long been implicated as a major factor mediating the 

adverse effects of hyperglycemia and thus the complications associated with diabetes. For 

example, in endothelial cells hyperglycemia induced increase in mitochondrial superoxide 

was shown to increase HBP flux and O-GlcNAc levels and subsequent activation of genes 

that are associated with diabetic complications [75]. Hyperglycemia has also been shown to 

decrease eNOS activity via direct O-GlcNAcylation of eNOS and a reciprocal decrease in 

phosphorylation of serine 1177, thereby potentially contributing to vascular dysfunction in 

diabetes [76]. Moreover, hyperglycemia induced mitochondrial dysfunction has been linked 

to O-GlcNAcylation of key mitochondrial proteins including subunit NDUFA9 of complex I 

subunits core 1 and core 2 of complex III, and the mitochondrial DNA-encoded subunit I of 

complex IV (COX I) [77]. Increased O-GlcNAc modification of Dynamin-related protein 1 

(DRP1) at threonine 585 and 586 has been shown to induce its translocation to mitochondria 

resulting in reduction of mitochondrial membrane potential and increased mitochondrial 

fragmentation [78]. Mitochondrial dysfunction associated with increased O-GlcNAc levels 

has also been linked to O-GlcNAcylation of VDAC2 [79]. It should be noted however that 

there remains some controversy whether the adverse effects of hyperglycemia on 

mitochondrial function are mediated via increased O-GlcNAcylation [80]. On the other hand 

OGT has been shown to interact directly with complex IV in cardiac mitochondria from 

normal rats and this interaction is markedly decreased in mitochondria from diabetic rats 

[81].

While the above studies link increased O-GlcNAcylation to mitochondrial and cellular 

dysfunction, overall cellular O-GlcNAc levels increase in response to acute stress, including 

oxidant stress and this has been shown to be an endogenous pro-survival response [82]. 

Moreover both in vitro and in vivo acute augmentation of O-GlcNAc levels has been shown 

to be cardioprotective against ischemia/reperfusion injury. Increased O-GlcNAc levels have 

also shown to attenuate the loss of mitochondrial membrane potential induced by hydrogen 

peroxide [83]. While the specific mechanisms underlying the cytoprotective effects of O-

GlcNAc remain open to debate, increased O-GlcNAc levels were associated with attenuation 

of mPTP opening [84, 85]. In the ischemia/reperfusion model increased O-GlcNAcylation of 

VDAC is associated with cytoprotection [85, 86]. Studies have also shown that enhanced 

mitochondrial Bcl-2 translocation occurred in an O-GlcNAc dependent manner [83] and 
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Bcl-2 itself has been reported to be O-GlcNAcylated [87]. Interestingly, protein O-

GlcNAcylation has also been shown to be an important prosurvival signal in cardiac stem 

cells; however, in these cells this appeared to be independent of any effects on mitochondrial 

function [88].

Despite growing evidence that O-GlcNAcylation of mitochondrial proteins contributed to 

cellular response to stress the question remained as to how mitochondrial proteins became 

O-GlcNAcylated? Although a mitochondrial specific isoform of OGT (mOGT) was 

identified in 2003 [89] a mitochondrial O-GlcNAcase had not been found and it was not 

known if UDP-GlcNAc could enter mitochondria. However, in 2015 it was shown that the 

pyrimidine nucleotide carrier transported UDP-GlcNAc from the cytosol into the 

mitochondria. A mitochondrial O-GlcNAcase activity has been identified demonstrating for 

the first time a functional mitochondrial O-GlcNAc cycle [81]. A recent O-GlcNAcome 

profiling study identified 88 mitochondrial proteins as O-GlcNAc targets of which nearly 

half were linked to oxidative phosphorylation [90]. It is becoming increasingly clear 

therefore that O-GlcNAc modification of mitochondrial proteins is important in regulating 

mitochondrial function and provides a critical link between nutrient and redox signaling 

(Figure 1B).

4. Bioenergetic reserve capacity and the response to oxidative stress

Although the impact of oxidative or nitrative stress on mitochondria have long been an 

active theme in redox biology research it has only recently become possible to assess the 

effects of reactive species on cellular bioenergetics [91]. It is now possible to measure the 

time course of effects of oxidative stress on other cellular processes, such as autophagy, and 

integrate these with bioenergetic function [6]. This integrative capability is important 

because metabolism encompasses multiple pathways outside the organelle, which are 

limiting to mitochondrial function by controlling substrate supply or signaling. 

Understanding these mechanisms greatly extends the potential targets through which 

oxidative or nitrative stress can modulate metabolic function which has obvious implications 

for both the development of therapeutics and the mechanisms of pathological processes. It 

has been known for some time that cellular bioenergetic capacity substantially exceeds that 

required for meeting ATP demand [92]. To define cellular bioenergetics, oxygen 

consumption rate is measured during the sequential addition pharmacological inhibitors of 

oxidative phosphorylation [93, 94]. The basic elements of this protocol and the interpretation 

are outlined in Figure 2. One feature of particular interest is the residual oxygen 

consumption rate after the addition of antimycin which is due to non-electron transport 

oxygen consumption and is generally termed non-mitochondrial. This measure is an 

integrated sum of a number of different enzymes and pathways some of which could also 

reside in the mitochondria and varies among cell types [6]. Interestingly, we have few 

quantitative measures of the capacity of non-mitochondrial pathways which consume 

oxygen and largely rely on extrapolated data obtained over 40 years ago. We now know that 

there are multiple controlled enzymatic processes which consume oxygen including the 

NADPH oxidases and nitric oxide synthases. For example, on the basis of experiments with 

isolated liver mitochondria and respiratory chain inhibitors it was calculated in the early 

1970's that mitochondrial superoxide production was 1–2% of oxygen consumption [1, 95]. 
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This was complemented with experiments in hepatocytes in which cell fractionation was 

coupled with measurements of hydrogen peroxide generation in each fraction. From this it 

was calculated that hydrogen peroxide production was 10% of the total oxygen consumption 

by the cell [4]. As we have recently shown these measures underestimates the contribution 

of oxygen consuming pathways beyond mitochondrial cytochrome c oxidase and is 

approximately 30-40% of the basal oxygen consumption in hepatocytes but varies 

dramatically among different cell types [6, 91]. The widely held view, based on these earlier 

studies, that mitochondria are responsible for over 95% of the oxygen consumption clearly 

need to be reconsidered.

The bioenergetic reserve capacity can be estimated from the parameters using the cellular 

mitochondrial stress test as the difference between the basal and uncoupler stimulated 

oxygen consumption rate (Figure 2). The effects of redox stressors vary depending on the 

reactivity of the oxidants and also the cell type [91]. For example, in the comparison of the 

response of different cell lines to 4-hydroxynonenal we found that basal respiration was 

suppressed in SH-SY5Y cells but stimulated in rat ventricular cardiomyocytes. An 

uncoupling effect was evident in MES13 cells but not SH-SY5Y cells. In vascular smooth 

muscle cells the threshold at which 4-hydroxynonenal adducts increased over 5 fold and 

induction of heme oxygenase-1 was suppressed was the concentration at which reserve 

capacity was lost and bioenergetic dysfunction occurred.

The combination of the bioenergetic measurements shown in Figure 2 with measures of 

signaling or metabolic changes reveals the sequence of events in the response to mediators 

of oxidative stress. This is illustrated in Figure 3 in which the prosthetic group in 

hemoglobin, hemin, is exposed to endothelial cells and changes in oxygen consumption rate 

(OCR) monitored with time and correlated with measures of autophagy and apoptosis [96]. 

From these data it is evident that one of the earliest responses in response to hemin is a 

change in energetics followed by the initiation of autophagy then ultimately apoptosis. 

Hemin toxicity is important in the pathologies associated with blood transfusions and in 

hemolytic anemias [96]. In further support of the hypothesis that reserve capacity is 

important in combatting oxidative stress the response to stress can be modulated by 

controlling mitochondrial fuel supply [97]. Interestingly, it is the loss of bioenergetic reserve 

capacity which appears to establish the threshold at which protective pathways fail and cell 

death ensues. Reserve capacity is then a critical determinant of the ability of cells to respond 

and adapt to oxidative or nitrative stress perhaps through the energetic demands needed for 

repair pathways such as autophagy or perhaps through other signaling related mechanisms. 

The reserve capacity is sensitive to the substrate supply and can potentially be manipulated 

by changing the fuel availability [97, 98]. These data then establish a direct link between 

cellular bioenergetic function and the response to oxidative stress.

An emerging concept in the energetics field is that the mitochondrial stress profile can be 

used as an index of mitochondrial health [49, 99-104]. By indicating how close a cell is to 

operating at its bioenergetic limit, predictions can be made regarding the cellular response to 

stress or increased energy demand. This has been demonstrated in model systems in the 

cellular response to oxidative stress, as well as clinically in patients with diabetes, sickle cell 

disease, asthma, autism and following cardiac surgery [49, 99-107].
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The extent to which changes in pathological conditions represent a bioenergetic dysfunction 

or metabolic adaptation is an area which will require more in depth research. This is 

particularly evident in the cancer field since metabolic plasticity is emerging as a potentially 

important mechanism in the development of resistance to chemotherapy. One of the clearest 

examples is in the development of resistance to telozomide, which is a front line treatment 

for glioma. Resistance to this drug is associated with reversal of the Warburg effect due to 

changes in the mitochondrial respiratory chain (predominantly at cytochrome c oxidase) and 

an increase in reserve capacity [108].

5. The regulatory role of the Keap1-Nrf2 (NF-E2–related factor) system in 

metabolism

Studies with isolated mitochondria and more recently with cellular bioenergetics have 

clearly shown that mitochondrial metabolism is a target, regulator, and generator of reactive 

species. In a cellular context, these findings imply that the regulation of redox dependent 

pathways should cross-talk with metabolic pathways. In support of this hypothesis, it is now 

becoming clear that the Keap1/Nrf2 pathway is intricately linked with metabolism. Keap1 

has over 20 redox sensitive thiols [35, 109-111], and can form a complex with NF-E2-

related factor (Nrf2) and directs its ubiquitination and degradation by the Cullin-3-dependent 

proteasome. Modification of the redox active thiols on Keap1 results in loss of this adaptor 

function for the ubiquitin ligase complex releasing Nrf2 from the complex ultimately 

facilitating its nuclear entry and activation of electrophile response element (EpRE-also 

called the antioxidant response element)-dependent transcription. The versatility of Keap1 as 

a redox sensor allows endogenous stress to be surveyed by phylogenetically conserved 

sensors responsive to nitric oxide, zinc and alkenals [112].

A key concept that is emerging in redox signaling is that the site for generation of the redox 

signal is in close proximity to the redox sensor. This appears to be the case for a sub-

population of Keap1/Nrf2 which is associated with the outer membrane of the 

mitochondrion [113]. In addition, the redox regulation of mitochondrial thiols in the reduced 

state is required for the transcriptional regulation of heme oxygenase-1, an antioxidant 

protein regulated by the Keap1/Nrf2 system [114]. The increased production of 

mitochondrial hydrogen peroxide in response to exercise provides a potential component in 

the signaling pathways which integrate both mitochondrial and cytosolic redox status 

utilizing dynamic redox sensors such as Keap1/Nrf2 [115, 116].

Nrf2 dependent signaling varies with age and is important in cardiac remodeling in response 

to exercise. In the heart, extensive endurance exercise elevates the levels of NOX4, SOD2, 

NRF2, but not NOX-2 or SOD1 protein levels in WT young mice, and the mRNA of Nqo1, 

catalase, Gclm, Gclc, Gpx-1, Gsr, G6pdx without changing the mRNA of heme 

oxygenase-1. While the expression of these mRNAs are all similar between young Nrf2-/- 

and WT mice in the heart without exercise, their induction in response to exercise was 

attenuated in Nrf2-/- mice [117]. Consistent with these data G6PD, GCLM, heme 

oxygenase-1 but not catalase protein levels are elevated by exercise in the WT young heart. 

While no significant differences in GCS, G6PD, or SOD1 mRNA between young WT and 
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Nrf2-/- skeletal muscles except NQO1 mRNA is significantly decreased and catalase mRNA 

is significantly increased in Nrf2-/- mice, GCS, G6PD, SOD1, NQO1 and catalase mRNA 

are all significantly decreased by 20-50%, GSR, catalase, GCS, G6PD and NQO1 proteins 

are all significantly decreased in old Nrf2-/- compared to WT skeletal muscles [118]. 

Importantly, the normal aging process is also accompanied by a similar reduction in Nrf2 

transcriptional activity as the electrophile responsive element (EpRE) gene products are 

decreased in the skeletal muscle of aged WT mice [118, 119] highlighting the impact of age 

on pathologies with an oxidative stress component [118-120]. Although cardiac function is 

maintained in Nrf2-/- mice without exercise, these animals are highly susceptible to 

oxidative stress. For example, pathological cardiac remodeling occurs in the Nrf2-/- upon 

intense exercise stress [121].

Nrf2 has also been shown to be important for mitochondrial function and ROS production in 

cultured cells [115]. Although mechanisms unclear, Nrf2 knockout has been shown to 

impact mitochondrial membrane potential and ATP [122]. Interestingly it has been 

demonstrated that UCP3 has an EpRE and Nrf2 binds to UCP3 promoter after exposure to 

hydrogen peroxide. This suggests that UCP3-mediated proton leak in response to hydrogen 

peroxide may influence cell survival [123]. Furthermore, nuclear respiratory factor (NRF)-1 

also has EpRE and is under Nrf2 regulation in cardiomyocytes. Carbon monoxide stimulates 

Nrf2 nuclear translocation, Nrf2 binding to the Nrf-1 promoter, and mitochondrial 

biogenesis [124]. With the potential for therapeutic intervention, the interplay between 

mitochondrial deficiencies with age related changes in Nrf2 activity warrants further 

investigation.

While endogenous Nrf2 function decreases with age, chronic exercise training can restore 

Nrf2 transcriptional activity. In addition to the many benefits of exercise, preservation of 

Nrf2 signaling may represent an important non-pharmacological strategy to combat the 

typical incidence of oxidative stress seen with cardiac aging [120]. However, exercise 

training variables are of critical importance when considering prescription of physical 

activity for pathological conditions characterized by oxidative stress. For example, aged WT 

mice exposed to high intensity acute exercise exhibit impairment in the antioxidant response, 

and fail to meet the demands of increased ROS production induced by exercise. 

Interestingly, this phenomenon is reversed when aged mice are subjected to chronic training 

regimen of moderate intensity [120]. As a direct test of the requirement for Nrf2 in the 

response to training we demonstrated that over-expression of Nrf2 protein in aged mice 

coupled with moderate training restored the exercise-dependent induction of EpRE regulated 

genes. Further, enhanced nuclear translocation of Nrf2 in these animals directly induces 

expression of antioxidant genes that are typically downregulated with advancing age [118, 

120]. Interestingly, reports have demonstrated a relationship between heme oxygenase-1, 

Nrf2 and mitochondrial biogenesis in cardiac tissue [124]. The transcriptional co-activator 

PGC1-α is among the most widely studied factors mediating the beneficial mitochondrial 

adaptations following exercise. PGC1-α is a transcriptional target of Nrf2, elucidation of 

molecular mechanisms responsible for Nrf2 mediated PGC1-α induction and the resultant 

effects on mitochondrial parameters would be interesting in the context of adaptation to 

exercise in aged populations.
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6. Autophagy, Redox Regulation and Metabolic Health

Recycling of cellular materials is an essential aspect of cell biology and keeping the cells 

mitochondria healthy is a complex and integrated process known in general as autophagy 

and mitophagy when referring to the mitochondrion. This pathway is a lysosomal mediated 

process that plays an essential role in the response to metabolic and oxidative stress in 

addition to clearance of damaged proteins and organelles. Indeed, it was first discovered 

during development and in response to nutrient starvation and later found to be responsive to 

epigenetic and post-translational regulation, redox regulation, cellular bioenergetic status 

and circadian rhythm [125-139]. More than 40 AuTophaGy related (ATG) genes have been 

identified. Part of the core machinery involved in the autophagy process includes the mTOR 

pathway which senses glucose and amino acid starvation and is intrinsically linked to 

metabolism and proteotoxic stress. In support of this overexpression of Atg5 in the whole 

body and Atg7 in the heart has been shown to prolong lifespan or confer cardiac protection 

against accumulation of protein aggregates, respectively [140, 141].

Furthermore, autophagy protein Atg5 deficiency in the heart led to accumulation of 

ubiquitinated proteins, increased ER stress and apoptosis, cardiac hypertrophy, left 

ventricular dilatation and contractile dysfunction [142]. We have in the past shown that 

autophagy is regulated by oxidants, nitric oxide, mitochondrial inhibitors and proteotoxic 

stress and inhibition of autophagy is detrimental to cell survival [143-150] (Figure 4). In beta 

cells with insulin 2 gene mutation and misfolding, decreased mitochondrial quality is 

associated with decreased p62 and PARKIN and accumulation of LC3-II in the mitochondria 

[145]. Similarly, exposure of endothelial cells to hemin resulted in mitochondrial 

dysfunction, protein modification by oxidized lipids, autophagosomal accumulation and 

increased LC3 localization to the mitochondria and inhibition of autophagy exacerbates 

hemin cytotoxicity [150].

Cardiac transgenic mice overexpressing PINK1 exhibited attenuated mitochondrial 

fragmentation, decreased myocardial infarction, and preserved cardiac function in response 

to ischemia-reperfusion [151]. Parkin translocation to the mitochondrial has been 

demonstrated in HL-1 cells in response to simulated ischemia, in Langendorff-perfused rat 

hearts, and in mice subjected to regional ischemic preconditioning [152]. Parkin 

overexpression ameliorates mitochondrial and cardiac functional decline in aged hearts, 

decreases senescence-associated β–galactosidase activity and proinflammatory phenotypes 

[153]. In the heart, Parkin translocation and mitophagy may also occur independent of 

PINK1 [154] (Figure 5).

Controlling mitochondrial morphology is an essential element in the mitochondrial life cycle 

and required for mitophagy. Cardiomyocyte-specific deletion of Drp1 leads to decreased 

contractility and P9-P11 lethality with enlargement of mitochondria and decreased 

mitochondrial respiration [155]. Cardiac deletion of fission protein Drp1, or double deletion 

of fusion protein Mfn1 and Mfn2, leads to increased autophagy substrate P62, changed 

mitochondrial morphology and cardiomyopathies [156]. Cardiac inducible deletion of Drp1 

leads to mitochondrial elongation, suppression of autophagic and mitophagic flux, left 

ventricle dysfunction, and enhanced sensitivity to fasting and ischemia-reperfusion [157]. 
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Interestingly, Mfn1 deficient myocytes exhibit small spherical mitochondria and resistance 

to hydrogen peroxide induced cell death [158], while Mfn2 deficient cardiomyocytes have 

large mitochondria and better recovery following reperfusion injury [159]. One explanation 

for the enlargement of mitochondria in Mfn2 deficient cardiomyocytes is that Mfn2 is a 

receptor for Parkin and thus Mfn2 deficiency leads to decreased elimination of damaged 

mitochondria [160] (Figure 5).

Because of the importance to regulate autophagy in response to metabolic and redox stress, 

the level and activities of the autophagy proteins are highly regulated at epigenetic, 

transcriptional, post-transcriptional and post-translational levels. Histone acetylation and 

DNA methylation have been found to regulate the expression of various autophagy genes, 

including ATG16L2, LC3A, ULK2, BNIP3 and GABARAPL1 [161-168]. Histone 

deacetylase (HDAC) inhibitor trichostatin A (TSA) has been reported to attenuate cardiac 

hypertrophy and suppress LC3II increase in response to pressure overload induced by 

transverse aortic constriction (TAC) [169]. However, an increase in autophagy flux has been 

found to be associated with, and required in mediating, cardioprotection by histone 

deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) in ischemia-

reperfusion [170]. However, the mechanisms of the involvement of histone deacetylase in 

autophagy may not always be related to epigenetic regulation of autophagy genes. Post-

translational modification of cytosolic proteins may also play a role in mediating HDAC 

effects. In the cytosol, HDAC1 is involved in the conversion of LC3-I to LC3-II and HDAC6 

is involved in autophagosome maturation [171, 172]. A key regulatory role of protein O-

GlcNAcylation on autophagy has also been demonstrated by a recent study that SNAP-29, a 

protein regulating autophagosome-lysosome fusion is O-GlcNAcylated and decreasing its O-

GlcNAc modification promotes autophagy [173]. As a central regulator of metabolism, 

bioenergetics and redox signaling, circadian rhythm also has a strong impact on autophagy, 

as key autophagy proteins, including ATG14, ULK, BNIP3, GABARAPL1, and LC3-II are 

regulated by the circadian clock, and transcription factors including BMAL1 [174, 175]. The 

cross regulation of autophagy and cellular redox status has been highlighted by findings 

demonstrating that autophagy adaptor protein p62 is transcriptionally regulated by Nrf2. 

Reciprocally, autophagy is important for degradation of KEAP1, a cytosolic sequester of 

Nrf2 and an important protein for Nrf2 degradation by the proteasomes [130] (Figure 6).

The heart is one of the major organs that exhibit significant autophagic response in 

starvation. Vacuoles containing lysosomal cathepsin D appear in cardiomyocytes as early as 

12 hours after starvation of 8-10 week old GFP-LC3 transgenic mice [176]. LC3II, cathepsin 

D and ubiquitin are increased [176]. The importance of the autophagic response to starvation 

has been demonstrated by the observation that inhibition of autophagy by bafilomycin has 

no effect in fed mice but depressed cardiac function and caused left ventricular dilation in 

starved mice [176]. Prolonged caloric restriction (40% for 30 weeks) also increased the 

LC3II/I ratio, but the increase was dampened by bafilomycin consistent with suppressed 

autophagic flux [177]. Akt2 knockout alleviated cardiac phenotypes and augmented mTOR 

inhibition induced by caloric restriction [177]. It should be noted that autophagy inhibition 

has also been associated with cardioprotection during starvation. For example, IGF-1 and 

salvianolic acid B are cardioprotective for cell survival despite their inhibition of autophagy 

[178, 179]. However, it is unclear in these studies whether inhibition of autophagy plays an 
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active role in decreasing pathology or only reflects a consequence of decreased oxidative 

and metabolic stress in response to the cardioprotective agents.

Deterioration in mitochondrial quality is not simply a matter of the loss of energy producing 

capacity. Indeed, studies with exogenous stressors or models of diabetes have shown that 

ATP synthesis is maintained in the presence of mitochondrial DNA damage, increased 

hydrogen peroxide production, thiol oxidation and loss of bioenergetic efficiency [96, 180, 

181]. It appears that it is a “gain of function” of the deteriorating mitochondrial population 

rather than simply the loss of ATP generating capacity that is contributing to the pathological 

effects of mitophagy failure. For example, it has been shown that mitochondrial DNA that 

escapes the mitophagic process leads to Toll-like receptor 9-mediated inflammation and 

cardiomyopathy, with a phenotype promoted by lysosomal DNase II deficiency and 

attenuated by TLR9 ablation [182]. The loss of control of the redox signals from the 

mitochondrion due to damaged complexes generating uncontrolled hydrogen peroxide or 

superoxide may also be a contributory element. If these dysfunctional mitochondria are not 

removed by the controlled process of mitophagy then release from damaged cells can 

exacerbate an underlying pathology.

7. Integration of Mitochondrial Function, Autophagy and Circadian Control 

of Metabolism

Metabolism is exceedingly dynamic in nature, allowing rapid and dramatic changes in flux 

in response to the biological and temporal variation in stimuli and physiological and 

pathological stressors[183]. Recent studies are beginning to define the temporal changes that 

occur in redox biology and how these interface with bioenergetics and metabolism in 

general. Indeed, a central concept in the contemporary view of metabolism is that cells/

organs/organisms not only respond to changes in their environment, but also anticipate these 

fluctuations before they occur. In general, mammals have two primary behavioral 

oscillations to contend with on a daily basis; namely awake/sleep and feeding/fasting cycles. 

Foraging for food, avoidance of predation, and reproduction during the awake period are 

energetically demanding, and these energetic demands remain even if the animal in the wild 

is not successful in its forage for food. Organisms with the molecular machinery that can 

anticipate this scenario (i.e., physical activity/energetic demand rhythms independent of 

feeding status) have an evolutionary selective advantage.

At a cellular and molecular level, increased energetic demand could be anticipated by 

increased oxidative metabolism (for ATP generation) at that time and/or concomitant 

decreases in ATP utilization by processes that do not immediately benefit locomotion and 

cognitive function. One such process is cellular growth and repair. Protein and organelle 

turnover are energetically demanding processes, which could potentially compete with 

contractile/cognitive function during the active period, in terms of ATP utilization. It is 

noteworthy that during periods of increased physical activity, the likelihood of protein 

damage (e.g., by reactive oxygen/nitrogen species) is increased. One would therefore predict 

that cells would upregulate antioxidant defenses during the active period in anticipation of 

increased oxidative stress at this time. Replacement of damaged proteins/organelles 
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immediately following physical activity (e.g., during the sleep phase) would likely facilitate 

preparation of the subsequent active/awake period. Accordingly, processes such as 

autophagy, proteolysis, mitochondrial fission/fusion and biogenesis, as well as protein 

synthesis would be predicted to be increased during the sleep phase. In this section will 

discuss the potential mechanisms orchestrating temporal partitioning of metabolic processes, 

and highlight their interplay with redox biology.

As mentioned above, oxidative metabolism and mitochondrial function are likely increased 

at the beginning/middle of the active period, in anticipation of increased energetic demand 

and oxidant production at this time. At the whole body level, oxygen consumption rises 

sharply at the onset of the sleep-to-wake transition, and remains elevated throughout the 

active period, concomitant with increased physical activity and food intake [184]. However, 

when oxidative metabolism capacity is assayed in isolated tissues, similar temporal patterns 

are often observed, suggesting that intrinsic properties fluctuate. For example, murine liver 

homogenates exhibit greatest fatty acid oxidation rates at the sleep-to-wake transition [185]. 

In the murine heart, rates of glucose oxidation peak in the middle of the active period [186]. 

Although few studies have directly assessed oscillations in mitochondrial function over the 

course of the day, Simon et al revealed a greater respiratory control ratio of rat brain 

mitochondria during the active period, indicating a better coupling of mitochondria at this 

time [187]. Interestingly, this can be interpreted as an increased efficiency for ATP 

production but also regulation of mitochondrial superoxide and hydrogen peroxide for cell 

signaling and the production of heat.

A number of studies of examined the oscillation of key redox sensitive pathways in 

metabolically active tissues, with respect to time-of-day. Lapenna et al reported increased 

glutathione levels and glutathione transferase activity in the rat heart at the beginning of the 

active period, although this was not sufficient to suppress oxidative stress induced cardiac 

damage at this time [188]. Different organs appear to have distinct oscillatory patterns. For 

example, glutathione levels, as well as the expression of glutathione peroxidase, glutathione 

transferase, and catalase are elevated during the light/sleep phase in the mouse liver 

consistent with a time-of-day dependent regulation of the Keap1-Nrf2 pathway [189]. In the 

liver this is functionally important and may explain the decreased acetaminophen 

hepatotoxicity during the light/sleep phase [190]. Interestingly, hepatic metallothionein 

levels peak at the beginning of the active period, which may afford some level of enhanced 

antioxidant defense at this time [191].

Mitochondrial oxidative metabolism is clearly elevated in tissues such as the liver and heart 

during the active period. During this period of time, there is an elevation in muscular 

contraction and blood pressure, as well as nutrient signals such as insulin and amino acids in 

an ad libitum fed animal, all of which are known to promote protein synthesis. Consistent 

with this milieu, skeletal muscle protein synthesis peaks during the active period [192]. 

However, liver protein synthesis is elevated at the beginning of the sleep phase, while 

cardiac protein synthesis increases closer to the middle of the sleep phase [192-194]. These 

observations suggest that that there is tissue-specific control of protein synthesis, in terms of 

time-of-day-dependent oscillations. Although little is known regarding daily oscillations in 

protein degradation, evidence exists in support of the concept that both proteasome activity 
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and autophagy likely exhibit 24-hr rhythms [195, 196]. In the latter case, histologic and 

biochemical approaches suggest increased autophagic flux in the liver and heart during the 

sleep phase [197].

It is clear that an evidence-based model for the temporal partitioning of metabolic processes 

is emerging although the cross-talk to redox regulated pathways is less well understood. 

Studies in the heart have shown increased oxidative metabolism and antioxidant potential 

during/at the beginning of the active period, while protein synthesis and autophagy peak 

during the sleep phase. Moreover, these rhythms are likely orchestrated by the 

synchronization of extrinsic (e.g., neurohumoral factors) and intrinsic (e.g., circadian clock) 

influences. The selective advantage of circadian clocks is anticipation, thus preparing cells/

organs prior to the onset of stimuli/stresses. Disruption of these rhythmic mechanisms 

invariably results in cardiometabolic diseases, such as obesity, type 2 diabetes mellitus, and 

cardiovascular disease.

8. Summary

Shown schematically in Figure 7 are the key elements discussed in this review linking 

together Redox Biology, Bioenergetics and Chronobiology. Taken together these findings 

suggest that the reversibility of redox-dependent deleterious changes in the reserve capacity 

through removal of damaged mitochondria by mitophagy and stimulation of biogenesis may 

be critical for recovery. These concepts are readily translatable to the human population. 

With the development of methods to measure bioenergetic health the impact of 

chronobiology and the response to oxidative stress could be integrated in human populations 

subject to sleep disturbance such as shift workers.
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ARE Antioxidant reponse element

ATP Adenosine triphosphate

5-hmC Hydroxymethylcytosine
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ATG AuTophaGy related

BNIP Bcl-2/adenovirus E18 19-kDa-interacting protein

Drp1 Dynamin related protein 1

EpRE electrophile response element

eNOS Endothelial Cell, Nitric Oxide Synthase 3

G6PD Glucose-6-phosphate dehydrogenase

GCLC/GCLMGlutamate cysteine ligase

GCS glutamylcysteine synthetase

GPX1 Glutathione peroxidase 1

GSR glutathione-reductase

GTN Nitroglycerin

HO-1 heme oxygenase-1

HBP Hexosamine Biosynthesis Pathway

HDAC Histone deacetylase

H2O2 Hydrogen peroxide

IGF Insulin growth factor-1

KDM3A Lysine Demethylase 3A

KEAP1 Kelch-like ECH-associated protein 1

mTOR Mammalian target of rapamycin

LC3 Microtubule associated protein 1 light chain subunit 3

mPTP mitochondrial permeability transition pore

•NO Nitric Oxide

eNOS endothelial nitric oxide synthase

NOX NADPH oxidases

NQO1 NAD(P)H:quinone oxidoreductase 1

NRF-1 Nuclear respiratory factor-1

Nrf2 Nuclear factor (erythroid-derived 2)-like 2

O-GlcNAc O-linked N-acetylglucosamine

OGT O-GlcNAc Transferase
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PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PINK1 PTEN-induced kinase 1

p62 Sequestosome 1

SAHA Suberoylanilide hydroxamic acid

SOD Superoxide dismutase

TET Methylcytosine Dioxygenase Ten-eleven Translocation

TLR9 Tolllike receptor 9

TAC Transverse aortic constriction

TSA Trichostatin A

UCP3 uncoupling protein 3

ULK Uncoordinated family member (unc)-51-Like Kinase

VDAC Voltage dependent anion channel
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Highlights

Cellular Bioenergetics represents an integrated metabolic program.

Integration is mediated through epigenetics, autophagy and the Keap1/Nrf2 pathway.

Post-translational modification by O-GlcNAc modulates metabolic responses to stress.

Circadian control of metabolism is a critical element in maintaining physiological 

metabolism.
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Figure 1. Redox and metabolic control of epigenetic modifications and molecular function
(A) Redox control of gene expression as explained in the text. Central focus is on cellular 

nitric oxide (•NO) signaling. (B). Metabolic control of gene expression through 

mitochondrial superoxide (O2•−) signaling via hexosamine biosynthesis pathway (HBP) flux 

increasing UDP-GlcNAc and protein O-GlcNAcylation (O-GlcNAc). Including both 

cytosolic endothelial cell, nitric oxide synthase 3 (eNOS) to reduce nitric oxide signaling 

and mitochondrial proteins of oxidative phosphorylation (I, II, III, IV, and V). Additional 

recent focus has been on the tet methylcytosine dioxygenases (TETs) to regulate DNA 

methylation (5-m) to hydroxymethylation (5-hm).
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Figure 2. The mitochondrial stress test
A typical profile is shown in which basal oxygen consumption rate (OCR) is allowed to 

stabilize before the sequential addition of oligomycin which inhibits ATP synthase 

preventing protons returning to the mitochondria and so decreasing OCR (ATP linked). The 

OCR remaining after oligomycin is ascribed to movement of ions across the mitochondrial 

inner membrane and proton translocation not involving the ATP synthase-collectively 

termed proton leak. The addition of the uncoupler, FCCP allows protons to flow into the 

mitochondrion increasing OCR to the level which can be sustained by endogenous 

substrates. The final addition of antimycin A and/or rotenone results in a residual OCR is 

ascribed to oxygen consuming processes outside mitochondrial electron transport. The insert 

shows a simplified proton circuit for oxidative phosphorylation showing how the proton 

gradient controls OCR. This time course is annotated to show the relative contribution of 

non-respiratory chain oxygen consumption, ATP-linked oxygen consumption, the maximal 

OCR after the addition of FCCP, and the reserve capacity (Maximal – basal OCR) of the 

cells.
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Figure 3. Integrating Bioenergetics and Cellular Responses to Stress
These data have been adapted from [96] and show the injection of hemin (25 μM) onto 

bovine aortic endothelial cells. Panel A: measurement of OCR (oxygen consumption rate) 

following hemin injection at 24 minutes followed by the mitochondrial stress test following 

the protocol shown in Figure 2. Panel B: time dependent decreased in basal OCR showing 

detectable changes 30 min after hemin addition. Panel C: in a parallel plate protein samples 

were prepared at the times shown and the LC3 conversion to LC3-II determined. The arrow 

shows the 2 hour point at which time a detectable change in the levels of LC3-II were found. 

Panel D: Samples were also taken for measurement of the loss of Procaspase 9 as one 

marker of apoptosis and the arrow shows that these changes were not detectable until the 4 

hour time point. Panel E: Reserve Capacity decreases dramatically after 4 hours exposure at 

the concentration which is the threshold for toxicity.
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Figure 4. Autophagy and the response to oxidative stress
Redox, mitochondrial and proteotoxic stress damage cellular proteins and organelles and if 

not cleared by autophagy, cell death occurs and contributes to metabolic and cardiovascular 

pathologies. Upregulation of autophagy has been shown to provide beneficial effects on cell 

survival.
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Figure 5. Mitophagy mechanisms have been shown to involve PINK1-PARKIN, DRP1, and 
MFN1/2 mediated mechanisms
Mitophagy plays an important role in mitochondrial quality control and the involvement of 

PARKIN-PINK1, as well as fission/fusion proteins has been demonstrated. PINK1 

stabilization in the mitochondria is facilitated by mitochondrial membrane depolarization. 

PINK1 phosphorylates ubiquitin and enables PARKIN translocation to the mitochondria, 

leading to ubiquitination of several mitochondrial proteins, resulting in p62 and LC3 

recruitment and autophagosomal engulfment of the mitochondrion. Interaction between 

MFN2 and PARKIN may play a key role in integrating fusion machinery and PARKIN 

mediated mitophagy.
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Figure 6. Autophagy is regulated by epigenetics, protein O-GlcNAcylation, circadian clock, and 
cellular redox status
Histone deacetylases have been shown to participate in autophagy regulation although 

whether their activities in the nucleus or the cytosol are important for autophagy regulation 

is still being investigated. HDAC6 recruits an actin-remodeling machinery, and stimulates 

autophagosome-lysosome fusion and substrate degradation. P62 interaction with HDAC6 

regulates its activity. Inhibition or disruption of HDAC1 leads to the conversion of LC3-I to 

LC3-II. Methylation of ATG16L2, ULK2, LC3A, BNIP3, and GABARAPL1 is associated 

with their downregulation. In addition, transcription regulation of p62 by antioxidant 

transcription factor Nrf2, and regulation of ATG14, ULK1, BNIP3, GABARAPL1, and LC3 

by clock and BMAL1 have been demonstrated. Post-translational regulation of SNAP29 by 

O-GlcNAcylation has been shown to attenuate autophagosome-lysosome fusion.
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Figure 7. Interactions between Redox Signaling and Metabolic Networks
In this review we have described the interactions between redox dependent pathways 

encompassing the signaling node controlled by the GlcNAc pathway, regulation by 

biological clocks, mitochondrial metabolism and epigenetics.
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