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Abstract
Skin homeostasis is maintained, in part, through regulation of gene expression orchestrated by
type II nuclear hormone receptors in a cell and context specific manner. This group of
transcriptional regulators is implicated in various cellular processes including epidermal
proliferation, differentiation, permeability barrier formation, follicular cycling and inflammatory
responses. Endogenous ligands for the receptors regulate actions during skin development and
maintenance of tissue homeostasis. Type II nuclear receptor signaling is also important for cellular
crosstalk between multiple cell types in the skin. Overall, these nuclear receptors are critical
players in keratinocyte and melanocyte biology and present targets for cutaneous disease
management.

Mechanisms of action for type II nuclear receptors
Transcriptional control of gene expression is achieved, in part, through protein factors bound
to regulatory elements present on the chromatin. The type II nuclear receptors (NR),
belonging to the superfamily of steroid-thyroid hormone nuclear receptors, contribute to the
cellular responses of physiological demands [1] [2] [3] [4]. Transcriptional modulation is
achieved by structural adjustments initiated through ligand binding. Present throughout the
animal kingdom, this family of environmental sensors contributes both positively and
negatively to gene expression. This differential regulation is useful in organismal
development and homeostasis, though it is also implicated in a variety of pathological
conditions. The present review will only detail the contributions of type II NRs towards
epidermal and follicular development and homeostasis, and in skin diseases. Particular
emphasis is given on melanocyte biology and in melanomagenesis arising from altered
signaling between keratinocytes and melanocytes, while highlighting the potential
therapeutic value of these pliable receptors.

Type II NRs belong to a larger family of steroid hormone receptors, all sharing similarities
in domain structure (Fig. 1) [5] [6]. Distinct variations in domain sequence has allowed for
the diversification and specialization currently present within the family [7]. The DNA
binding domain is highly conserved across the family and contains two zinc finger motifs.
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These domains recognize and bind short response elements, allowing for both homo- and
hetero-dimerization combinations. Two activation domains called AF-1 and AF-2 assist the
receptors in dimerization and DNA binding. Variability is more evident within the carboxyl
terminal ligand binding domain, where individual receptors have evolved to bind a variety
of signaling molecules [8]. Receptors for which ligand specificity has yet to be determined
are labeled as orphan receptors. Endogenous ligands for NRs known to be expressed in skin
include: all-trans retinoic acid (RA) and 9-cis RA for retinoic acid receptor (RAR) [9] [10],
9-cis RA for retinoid-X-receptor (RXR) [2] [11], 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)
for vitamin D receptor (VDR) [12], fatty acids/lipids for peroxisome proliferator-activated
receptor (PPAR) [13] [14] [15] [16], oxysterols for liver X receptor (LXR) [17] and
triiodothyronine for thyroid receptor (TR) [18].

A distinguishing feature of type II NRs is the promiscuity displayed by RXR. All NRs from
this class form heterodimers with an isoform of RXR (α/β/γ) and regulate gene expression
in a ligand dependent fashion. RXRα is able to heterodimerize with some 15 NR family
members and occupy direct repeat response elements present on the promoters of target
genes [19] [20] [21] [22] [23]. The nonsteroidal ligands of RXR/NR heterodimers dictate the
organization of complexes associated with the receptors. Serial combinations of regulatory
proteins allow chromatin remodeling and recruitment of basal factors to initiate and/or
repress transactivation (Fig. 2) [24] [25]. Coactivators include ATP-dependent chromatin
remodelers, histone acetyltrasferases and the Mediator complex [26] [27] [28] [29] [30].
Corepressors comprise the N-CoR/SMRT assembly and histone deacetylases [31] [32] [33]
[34]. The large numbers of regulatory factors, as well as tissue specific localization, allow
NRs to influence a diverse range of gene expression in a cell and tissue specific manner. For
example, the PPARγ cofactor PGC-1 is present in adipose tissue but not fibroblasts,
allowing a cell-type specific activation of genes related to adaptive thermogenesis [35].
Post-translational modifications of co-factors such as phosphorylation, methylation,
sumoylation and ubiquitination are also known to contribute to the extensive specificity of
NR regulation [36].

Skin morphogenesis, epidermal homeostasis and hair cycling
Skin is the largest organ in the body and is comprised of multiple cell types such as
epidermal keratinocytes, dermal fibroblasts and hypodermal adipocytes, besides Langerhans
cells, melanocytes and endothelial cells. It utilizes both autocrine and paracrine signaling for
development and maintenance of tissue homeostasis [37]. The outermost epidermal layer
provides a protective barrier to environmental and physical stresses and constantly
progresses through cycles of proliferation and differentiation. Basal keratinocytes located on
the innermost epidermal basement membrane (separating epidermis from the underlying
dermis) generate daughter cells, which undergo committed differentiation that give rise to
ordered layers of suprabasal early- and late-differentiated keratinocytes. Appendages such as
hair follicles and sebaceous glands (SGs) are invaginated into the mesenchymal-derived
dermal layer. Different resident multipotent skin stem cell (SC) niches contribute to the
renewal, maintenance and repair of the epidermal tissues of the skin, including
interfollicular epidermis (IFE), hair follicles and SGs [38]. Epidermal SCs play a crucial role
in maintaining tissue homeostasis by supplying new daughter cells to replace those
constantly lost during turnover or following injury. Bulge SCs are known to maintain
normal follicle homeostasis and can also contribute to the formation of IFE following skin
injury and during wound healing. Melanocytes are also located within the hair follicles
where they primarily contribute pigmentation to coat color. In humans, IFE melanocyte
populations rely on keratinocytic paracrine signaling for assistance in photoprotection from
solar ultraviolet irradiation [39].
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Type II nuclear receptor signaling contributes to the perpetual renewal of keratinocytic
layers, maintenance of the epidermal permeability barrier (EPB) and follicular cycling.
Impaired expression or function of these receptors is implicated in aberrant proliferation
and/or differentiation of epidermal tissue and alopecia (hair loss). The promiscuous role that
RXRs play in type II NR signaling hints to the impact that impaired RXR expression or
activity influences receptor signal transduction. Although many of RXRs heterodimer
partners are implicated in a wide variety of skin diseases, in many cases these pathologies
could instead be associated with compromised RXR mediated gene regulation. Regardless,
only studies that have specifically indicated a specific role for RXR function will be
discussed here. RXRs play a critical and varied role in epidermal differentiation and EPB
maintenance. RXRα, the primary isoform in skin and hair follicles, has stronger expression
levels compared to RARs, and RXRα/RARγ heterodimer appears to be the major retinoid
transducing element in epidermal biology [40] [41] [42]. RXRα/RARγ heterodimerization
is also critical in the development and formation of epidermal lamellar granules by
repression of target genes, as RARγ agonists promote lamellar granule defects in murine
skin. Similarly, RXRα/PPARβ/δ heterodimers are equally important to stratum corneum
homeostasis through activation of gene transcription [43].

The importance of vitamin A signaling to cutaneous homeostasis has long been observed.
Although, comprehensive studies have investigated multiple proteins along this pathway in
skin (such as retinoic acid binding proteins), this review will focus primarily on RARs in
human and rodent skin, particularly the role of RARγ [40] [44]. RA is widely used as a
therapeutic against various skin diseases due to its inhibitory effects on keratinocytic
terminal differentiation, besides regulating keratinocyte proliferation and apoptosis, through
modulation of RAR target genes [45]. Management of keratin expression, which in turn
dictates status of epidermal differentiation, is a known regulatory mechanism of cutaneous
RARs [46] [47] [48]. Unfortunately, the use of pan-retinoids is limited due to unwanted side
effects such as skin irritation, hypertriglyceridemia, bone toxicity and teratogenicity [49]
[50]. In order to utilize these efficacious compounds in a dermatological setting, receptor-
selective retinoids in parallel with prophylactic lipid management therapies may provide
clinical benefits with decreased risk of toxicities.

Early studies have elucidated the synthesis of pre-hormone 25-hydroxycholecalciferol
(calcifediol) by murine epidermal basal cells that acts in a paracrine manner for the
CYP27B1 and VDR expressing differentiated keratinocytes [51]. Typical of the type II
nuclear receptors, 1,25(OH)2D3-induced VDR activation inhibited proliferation and
promoted differentiation of keratinocytes, though VDR/RXRα heterodimers can
transactivate keratinocytic genes independent of 1,25(OH)2D3 binding [52].
DeltaNp63alpha, a critical regulator of epidermal biology, is known to directly control VDR
expression in murine skin and mediate its function in a ligand-independent manner [53].
Mice bearing a targeted ablation of VDR present a large number of pathological properties
in the skin, including progressive alopecia and dermal cysts as well as decreased expression
of epidermal differentiation markers [54] [55]. By expressing in discrete epidermal
locations, VDR-interacting coactivators contributed divergent roles towards keratinocyte
proliferation and differentiation [56] [57]. VDR and its associated cofactors also contributed
to lipid production and epidermal barrier formation. Genetic network analysis has implicated
VDR as a necessary regulator of skin barrier formation and predicts the phenotype
characterized in the VDR-null mice [58]. Many epidermal genes induced by WNT/β-catenin
contain VDR response elements and were activated independently of TCF/LEF, implying
that it is part of a TCF/LEF-independent aspect of WNT signaling [59]. Likewise, depletion
of follicular keratinocyte populations in VDR-null mice was linked to aberration of the
canonical WNT pathway [60].
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Alopecia is a commonplace in hereditary resistance to 1,25(OH)2D3 and VDR expression is
seen in the outer root sheath keratinocytes and dermal papilla of follicles, increasing during
late anagen and catagen [61]. The transcriptional repressor hairless (HR) co-localized with
VDR in the outer root sheath of hair and has been shown to inhibit target genes leading to
hair cycle progression [62]. Another VDR cofactor and critical subunit of the transcriptional
coactivator complex Mediator (MED), MED1, has been recently linked to hair cycling and
epidermal proliferation and differentiation. Selective ablation of MED1 in keratinocytes
presents a similar phenotype to VDR or HR ablation [63]. miR-125b is a known repressor of
skin differentiation in the bulge region of the hair follicle and expressing miR-125b in SC
progeny significantly downregulated VDR activity [64].

PPARβ/δ expression was seen in both basal and suprabasal layers of the normal human
epidermis, while PPARα and PPARγ expression was confined to suprabasal epidermal cells
and was linked to squamous differentiation [65]. PPARs are transcriptionally regulated by
AP-1, C/EBP family members and p63, the master regulator of epidermal morphogenesis
and differentiation [66] [67]. Mechanistically, inhibition of the PKC/MAPK pathway
through PPAR-mediated PKCα-ubiqutitination has been implicated in reduction of
epidermal proliferation [68]. All PPAR isoforms were expressed in human hair follicle cells
while PPARγ ablation in mice mimicked a human scarring alopecia phenotype [69] [70].

The ability of LXRs to act as environmental cholesterol sensors enables them to contribute
to consistent epidermal turnover which support a sound EPB. LXRα/β are expressed in all
layers of the human epidermis, as well as in the outer root sheath and SG, and the LXR
agonists oxysterols act on epidermal keratinocytes by reducing proliferation and inducing
differentiation [71]. One proposed mechanism of LXR mediated induction of keratinocytic
differentiation is influencing the binding of transcriptional complex AP-1 to target genes.
ChIP-on-chip studies investigating LXRβ/RXRα binding in human keratinocytes revealed a
strong correlation to AP-1 response elements, with up to 77% of all LXRβ/RXRα binding
sites associated with AP-1 motifs [72]. This could indicate LXR involvement in the
pathogenesis of certain diseases that present with abnormal keratinocytic differentiation and/
or compromised barrier function.

Thyroid-stimulating hormone receptor signaling is commonly associated with cutaneous
biology, though TR ligand binding is also known to contribute to epidermal homeostasis.
Resistance to thyroid hormones is a syndrome with a wide variety of symptoms and is
connected to TRβ mutations in in both mice and humans [73] [74]. Follicular TRβ is the
predominant isoform expressed within human skin and one phenotype of the disease linked
to aberrant TRβ signaling is alopecia [75] [76]. In support of a role for TRβ in hair cycle
homeostasis, thyroid hormones and TRβ-selective thyromimetics are able to induce hair
growth in both murine and simian models, as well as stimulate intrafollicular melanin
production [77] [78]. TRs bind to conserved keratin response elements located in the
promoter region of epidermal keratin genes and can directly control their transcription. One
proposed mechanism of these genes involves transcriptional repression in the presence of a
liganded TR receptor. In this scenario, proteins typically seen as components of a co-
activator/histone acetylase complex display repressive tendencies in the presence of
liganded receptors while co-repressors act as activators when unliganded TRs are present on
the keratin response element [79]. Transcriptome analyses from epidermal keratinocytes
treated with either thyroid hormone or vehicle display only a small number of genes that are
differentially expressed. Among the suppressed genes (integrin β4, plectin, collagen XVII,
MMP1/3/14) there was significant association to the blistering skin disease epidermolysis
bullosa, implying an inhibitory role of thyroid signaling to extracellular matrix maintenance
[80].
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Inflammatory skin diseases
Cutaneous inflammatory disorders are characterized by inflammation of the skin that can
lead to patient discomfort or disfigurement. Psoriasis is a genetic-based cutaneous syndrome
that involves epidermal hyperproliferation, compromised EPB and an infiltrative immune
response. It is present in up to 5% of the population, affects both sexes equally and is able to
manifest within the first two decades of life [81]. As it is currently incurable, primary
treatment options focus on the control of symptoms and include the use of topical
corticosteroids, phototherapy and moisturizing creams [82]. As proof of concept that type II
NR activation is a feasible therapeutic approach, acitretin and calcipotriol are widely utilized
for psoriasis. Atopic dermatitis (AD) is another chronic inflammatory skin disease that is
characterized by dry and itchy skin, persistent infections and very early onset [83]. AD is
linked to other atopic diseases such as asthma and allergic rhinitis, and defective EPB
function, environmental insults or genetic background are predisposing factors for this
heterogeneous disease [84] [85]. Treatment options are similar to those for psoriasis, while
preventing future allergic reactions is also important. Unfortunately, the roots of these
diseases may be too deeply embedded in immune functions to be eradicated. Due to early
onset and lifelong activity, the use of chronic corticosteroid therapy is discouraged.
Knowledge regarding transcriptional regulation by key factors of EPB and epidermal
proliferation gene networks enhances our retinue of therapeutic strategies in these diseases.
NR ligands may be useful to modulate multiple pathways in order to lessen side effects and/
or concentrations of the more efficacious compounds.

Mice with an epidermal-specific ablation of RXRα (RXRαep−/−) presented epidermal
hyperplasia, alopecia, dermal cysts and a cutaneous inflammatory response [86] [87].
Likewise, mice lacking both RXRα and RXRβ in keratinocytes (RXRαβep−/−) developed a
chronic dermatitis similar to human AD patients, elevated serum IgE/IgG and cytokine
production associated with Th2-type response. Importantly, thymic stromal lymphopoietin
(TSLP) was strongly upregulated from the basal keratinocytes, potentially influencing the
systemic AD phenotype in these mice [88]. To further support the hypothesis that loss of
RXRα contributed to a derepressive mechanism on gene expression leading to inflammatory
responses, expression of RXRα has been reported to decrease in human psoriatic lesions,
with levels in progressive disease further reduced compared to stable stages [89].

Use of the anti-proliferative, pro-differentiative properties of 1,25(OH)2D3 is not ideal due
to harmful calcemic effects. Therefore, synthetic deltanoids represent the best way to initiate
VDR activation for therapeutic or investigative purposes. It was previously discussed that
keratinocytic RXRα/β ablation upregulates production of TSLP leading to an AD-like
phenotype in the mouse. Interestingly, topical application of deltanoids also induces TSLP
in epidermal keratinocytes, suggesting the role of RXR/VDR heterodimers in regulating
TSLP expression in this cell type. That evidence suggests a role for VDR antagonists in the
treatment of human AD patients [90]. Conversely, deltanoids were shown to significantly
improve allergen-triggered eczema in a mouse model through increasing populations of
FOXP3-expressing regulatory T cells [91]. Further evidences are needed to determine how
VDR transactivation can initiate anti-inflammatory mechanisms if deltanoids are to become
accepted therapy for hyperproliferative epidermal disorders in the clinic.

The anti-inflammatory actions of PPARα offer additional treatment modalities for
reoccurring skin conditions such as AD and psoriasis. Stimulation of epidermal
differentiation and reduction of proliferation can potentially treat these conditions without
severe side effects brought on by glucocorticoids (GC). PPARα−/− mice (with a germline
deletion of the Pparα gene) subjected to antigen sensitization exhibit increased epidermal
thickening and inflammatory responses compared to wild-type controls, potentially through
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the loss of IL-2-mediated induction of Treg populations [92]. PPARα−/− skin also display
heightened levels of both Th2- and Th1-related responses, as well as enhanced NF-κB
signaling. Furthermore, PPARα expression is downregulated in lesional skin of human AD
patients compared to non-atopic individuals [93]. Topical application of PPARα agonists
reduces the hyperplastic response in mouse skin brought on by TPA treatment, in part
through the reduction of inflammatory cytokines. Similar results were seen in oxazolone
(OX)-induced allergic dermatitis mouse models, and importantly, combination therapy of
PPARα agonists and GCs for severe dermatitis prevented GC-induced side effects and
inhibited rebound flares [94] [95]. Conversely, activation of PPARβ/δ may trigger psoriasis
pathogenesis within the skin and treatment strategies may include antagonism of this
signaling pathway. PPARβ/δ is upregulated at both the mRNA and protein level in psoriatic
lesions compared to nonlesional skin in human patients and eicosanoid accumulations within
the lesions can activate PPARβ/δ [96] [97]. Also, topical antagonists targeted to cutaneous
PPARβ/δ demonstrated efficacy in a psoriatic mouse model [98]. Alongside other
physiological defects, PPARβ/δ-null mice exhibit an elevated epidermal hyperplastic
response after TPA administration and delayed barrier recovery following acute barrier
disruption [99] [100]. An increase in the release of inflammatory cytokines after wound
healing in murine skin requires upregulation of PPARβ/δ that is otherwise undetected in
normal skin. Interestingly, this pro-inflammatory cascade initiates production of endogenous
PPARβ/δ ligands, reinforcing the activation of PPARβ/δ after skin injury [101] [102].
PPARβ/δ is also linked to UV-induced premature senescence via upregulation of PTEN that
attenuates reactive oxygen species in keratinocytes [103]. Likewise, epidermal PPARγ
signaling is also a target for the UV-induced inflammatory response. UV irradiation of
human keratinocytes produces potent PPARγ agonistic activity and enhances COX-2
expression in these cells. Furthermore, PPARγ activation was seen as a general consequence
to various oxidative stressors in human sebocytes [104] [105].

An increased accessibility of environmental antigens through epidermal tissue can activate
cutaneous immune responses that potentially drive inflammation. Creation and maintenance
of the EPB is a multistep process involving lipid production and lamellar body formation
and LXR activation appears to hold key functions in many of these stages [106] [107]. EPB
function is tightly linked to cholesterol levels in the epidermis and LXR has been shown to
regulate the storage and efflux of lipid species. Members of the ATP-binding cassette
transporter family such as ABCA1, ABCA12 and ABCG1, as well as the glycerol channel
AQP3, are transcriptionally regulated by oxysterols [108] [109] [110] [111]. Environmental
toxins present in cigarette smoke have been linked to several skin diseases including
psoriasis and melanoma [112] [113]. Translocation of LXR to the nucleus in HaCaT cells
after exposure to cigarette smoke facilitated an increase in cholesterol trafficking as a result
of increased ABCA1 expression [114]. The ability of the synthetic LXR agonist T1317 to
prevent physical changes inherent to photoaging and chronological skin aging has been
investigated. T1317 inhibited the expression of cytokines and metalloproteinases in cell-
based models of skin aging. Furthermore, LXRβ-null murine skin mimics some of the
characteristics seen in chronologically aged human skin and the topically applied agonist
reduced UV-induced skin thickness and wrinkle formation in a mouse model [115].

The anti-inflammatory actions of LXR activators have been demonstrated in both irritant
and oxazolone (OX)-induced allergic dermatitis mouse models, in part through the
inhibition of proinflammatory cytokines that are specific to LXRβ [116] [117]. Similarly,
global gene expression studies using primary human keratinocytes from psoriatic lesions,
non-affected skin of the same patients and healthy control subjects, indicates a role for
LXRα in regulating inflammatory response. Along the same line, knocking down LXRα in
human keratinocytes lead to a genomic profile similar to that seen in psoriatic skin lesions
[118]. Even if LXRs are not directly involved in disease pathogenesis, the receptors might
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still be utilized as therapeutic tools to modulate cellular lipid levels. For example, a human
sebaceous cell line treated with LXRα agonists increased lipid synthesis and induced the
lipogenic gene SREBP-1, potentially useful for the treatment of seborrhea and acne [119].
Selective LXR agonists that are isoform and tissue-specific could provide localized and
specific cutaneous effects that do not influence other LXR receptor pools [120] [121].

Epidermal carcinogenesis
Non-melanoma skin cancers arise from both the basal and squamous cells of the epidermis.
Basal cell carcinoma (BCC) is the most common neoplasm related to the Caucasian
population and its incidence rate is increasing yearly [122]. Though considered malignant
due to its ability to invade deep into tissue, it rarely metastasizes from the primary location.
Risk factors include fair skin disposed to freckling, family history of BCC and exposure to
ultraviolet radiation. Patients with BCC also tend to be prone to other types of skin cancer
including malignant melanoma [123]. Disease progression typically arises from UV-induced
actinic keratosis or mutations in the hedgehog signaling pathway. Surgical excision is the
treatment of choice though pathway specific compounds such as vismodegib provide
additional therapy options [124]. Cutaneous squamous cell carcinoma (SCC) is the second
leading cause of skin cancer, yet unlike BCC it tends to exhibit metastatic behavior [125].
Again, exposure to ultraviolet radiation is the predominant risk factor for this disease,
though immunosuppressed patients are at increased risk for metastatic spread [126].
Treatment options include surgical removal, radiation therapy and in certain cases
chemotherapeutics such as 5-fluorouracil or imiquimod [127]. Investigations into pathways
regulating keratinocytic proliferation and differentiation may lead to additional treatment
options useful in treating these disfiguring diseases.

The transcription factor KLF4 is required for proper EPB formation in mice and
dysregulated KLF4 activity is shown to be oncogenic [128]. KLF4 regulates expression of
RXRα and KLF4-induced malignant transformation is sensitive to retinoids in vitro.
Importantly, rexinoid application drastically prevented formation of SCC in a KLF4-
activated transgenic mouse line [129]. These results suggest existence of a crosstalk between
RXR and KLF4 signaling, where KLF4-mediated expression of RXRα contributes to tumor
suppressor activity within the epidermis. RXRαep−/− mice, selectively lacking RXRα in
epidermal keratinocytes, subjected to a 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-
tetradecanolyphoral-13-acetate (TPA) induced two-step chemical carcinogenic protocol
developed higher numbers of epidermal tumors compared to control mice [130]. The
RXRαep−/− papillomas progressed towards SCC in a murine model, further validating the
role of RXRα as a cutaneous tumor suppressor.

Both keratinocytes and melanocytes downregulated expression of RARs when subjected to
UV exposure, potentially initiating cellular responses to ionizing radiation through the
removal of repressive transcriptional controls [131] [132] [133]. A similar downregulation
of RAR in mouse skin was seen after application of TPA, as well as when normal human
skin progresses through premalignant actinic keratosis to invasive SCC [134] [135] [136]. A
loss of RARγ expression exacerbated carcinogenic effects of tumor promoters and enhances
malignant transformation [137] [138]. Topical application of RA during the promotion stage
of carcinogen treatment in mice reduced the yield of papilloma and carcinoma formation
[139]. Likewise, the RARβ/γ retinoid tazarotene displayed anti-tumoral activity when
topically applied to BCC and may inhibit psoriatic proinflammatory gene networks [140]
[141] [142]. Above results indicate important roles of retinoids and retinoid receptors in the
control of epidermal homeostasis and prevention of hyper-proliferative diseases and skin
cancer.
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The regulatory nature of VDR in hair cycle progression and barrier formation is critical to
maintain skin homeostasis, therefore defects in the transactivating function of the receptor
allow pathological conditions to manifest. Multiple VDR polymorphisms have been
associated with a broad spectrum of cutaneous disease, including SCC, BCC and vitiligo
[143] [144] [145] [146] [147] [148]. Indeed, inactivation of VDR in mice enhanced
sensitivity to both chemical and solar-induced skin carcinogenesis, potentially through
activation of the hedgehog pathway [149] [150].

Due to evidence of PPAR signaling in the development of aberrant growths in differing
tissue types, studies have investigated the role of these receptors in cutaneous neoplasms.
Tumor formation and size were increased after chemical carcinogen application in PPARβ/
δ−/− mice, while those selectively lacking PPARγ in epidermal keratinocytes show an
increase in benign tumors, SCC and BCCs [130] [151]. Ligand activation of PPARβ/δ
inhibits chemically induced skin tumorigenesis, most likely through induction of
keratinocytic differentiation, and the addition of COX-2 inhibitors may result in synergistic
efficacy [152] [153].

In mice, TRβ expression is detected in normal and TPA-treated hyperplastic skin. Loss of
TRβ expression is seen in benign papillomas generated by the DMBA/TPA protocol and
completely abrogated in subsequent SCC formation. Importantly, skin tumors from mice
lacking both TRα and TRβ were more likely to develop in situ carcinoma and SCC than
those from wildtype mice, supporting TRs role as a tumor suppressor [154]. In order to
determine the role TRs have in the hyperproliferative response, TRα/β-double null mice
were subjected to both TPA and RA treatments [155] [156]. Reduced hyperplasia with a
decreased expression of cyclin D1 was seen in the TRα/β−/− skin after TPA treatment. That
profile was correlated with increases in cell cycle inhibitors p19 and p27, as well as
induction of proinflammatory cytokines and phosphorylation of p65/NF-κB and STAT3.
This phenotype is opposite to that seen in PPARβ/δ−/− mice and elucidates the
combinatorial mechanisms RXR/NR heterodimers regulate within the skin. Similarly, a
typical retinoid response requires the presence of ligand-bound TR in mouse skin. Decreases
in skin hyperplasia and expression of keratins 5/6, alongside increased transcription of
inflammatory and chemotactic cytokines, are also seen in TRα/β−/− mice treated with 9-cis
RA. Since TPA and retinoids are modulating separate signaling cascades, it is possible that
TRs are involved in the cellular responses to both these compounds.

Melanocyte homeostasis and melanomagenesis
Melanocytes are neural crest-derived pigment producing cells that contribute
photoprotective properties to the skin. Cutaneous melanoma is the deadliest form of skin
cancer, with a diagnosis of metastasis indicating a median survival rate of less than a year
[157]. Solar ultraviolet irradiation, especially childhood sun exposure, is an important
etiological risk factor of melanoma [158]. Surgical excision prevents growth of the primary
lesion, yet once transformed melanocytes spread to distal organs and this disease is
refractory to current therapeutics. Recent evidence supports the use of MAPK inhibitors and
immunomodulatory treatments with the goal of increasing lifespan [159] [160]. Therefore,
any research directed towards key regulators of melanocytic activity could potentially open
up new avenues for disease management.

Type II NR-mediated signaling via RXR dimerization is essential to melanocyte biology.
RXRα and β expression has been detected in B16 and S91 murine melanoma cells, with
RXRβ being the predominant isoform [161] [162]. Interestingly, loss of melanocytic RXRα
expression was seen in human primary and metastatic melanoma compared to benign nevi,
indicating the importance of this signaling pathway to the differentiation of these cell types
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[163]. RARβ expression was also downregulated in melanoma and its RA-induced
expression was linked to growth inhibition and differentiation in these cells. Sequential
occupation of the RA response element located on the Rarβ promoter by RXR/RXR and
RXR/RAR combinations is believed to be a molecular switch responsible for Rarβ
transcriptional activation in these cells. Since ligand activation of RXR heterodimeric
partners regulates transcriptional activity of target genes involved with differentiation and
growth arrest, it is possible that combinatorial activation of both dimer partners may assist in
melanoma therapy. Rexinoid treatment alongside glitazones (PPARγ agonists) have
displayed efficacy against melanomagenesis in in vitro and xenograft models, potentially
through the inhibition of matrix metalloproteases and increases in S100A2 calcium binding
activity [164] [165] [166].

Our own work has demonstrated the role of keratinocytic RXRα in manipulating
melanocyte activation and proliferation through modulation of the cutaneous
microenvironment [167]. RXRα/NR heterodimer binding regulates transcriptional
repression of soluble mitogens and cytokines, making it a critical factor in the ultraviolet
radiation (UVR) induced cellular responses. The loss of keratinocytic RXRα in RXRαep−/−

mice relieves transcriptional repression and allows overexpression of keratinocytic soluble
factors that act on melanocytic cell-surface receptors. Higher numbers of epidermal
melanocytes were seen after UVR exposure in RXRαep−/− mice compared to controls,
suggesting contribution of soluble factors in the cellular microenvironment for melanocyte
activation and migration out of the hair follicle. Indeed, increased expression of Edn1, Fgf2
and Kitlg, that are known to be upregulated by keratinocytes and influence melanocyte
activation, migration and proliferation, were seen in RXRαep−/− skin post-UVR [167].
Interestingly, in a two-step carcinogenesis model, RXRαep−/− mice developed a higher
number of dermal melanocytic growths (nevi) compared to control mice, implicating
contribution of keratinocyte-derived factors in melanomagenesis. Only nevi from RXRα
mutant mice progressed to melanoma-like tumors, suggesting that RXRα-mediated distinct
non-cell autonomous actions suppressed nevi formation and melanoma progression in mice
[130]. Similarly, VDR−/− mice undergoing identical treatments also developed higher
numbers of melanocytic lesions, indicating RXRα/VDR heterodimerization may be the
causative factors, at least in part, in these non-cell autonomous events [130]. Finally, the loss
of keratinocytic RXRα alongside an activated-CDK4 mutation enhanced the metastatic
transformation of cutaneous melanoma after chemical carcinogenesis. Expression of Edn1,
Hgf, Fgf2, Pomc and Kitlg were all upregulated in the skin of RXRαep−/−/CDK4R24C/R24C

bigenic mice. Direct binding of RXRα on the promoter of Edn1 and Hgf was also seen in ex
vivo primary murine keratinocytes. Gene expression analyses on mRNA isolated from
melanocytic lesions from the bigenic skin using laser-capture microdissection demonstrated
reduced apoptotic and enhanced invasive responses within bigenic melanomas. Loss of
epidermal RXRα was also seen in human melanoma progression and could potentially be
utilized as a therapeutic biomarker [168]. These results indicated a crucial role of RXRα/NR
signaling in melanocytic homeostasis and in cellular responses to tumor promotion.

All RAR isoforms were expressed in melanocytes and treatment of retinoids, particularly
RARγ-specific agonists, inhibits growth and initiates apoptosis in melanoma cells [169]
[170] [171]. RA treatment increases expression of RARβ and PKCα while stimulating AP-1
transcriptional activity in melanoma cells. RARα specific agonists were most effective in
upregulating RARβ levels and combinatorial RAR/RXR activation demonstrate the
strongest induction of both PKCα and AP-1 function in murine melanoma cells [172] [173]
[174]. Loss of RARs, especially RARβ and its tumor suppressor activities, was observed
during melanomagenesis and could account for RA resistance in this disease [163] [175]
[176]. That disruption of RARβ or RARγ signaling in benign nevi may predispose a lesion
towards malignant transformation. Co-treatment of retinoids with histone deacetylases also
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counteracted the epigenetic silencing of RARβ often seen in RA resistant melanoma cell
lines and provides increased antitumor activity [177]. Another mechanism implicated in RA-
resistant melanoma cells is an increase in intracellular reactive oxygen species (ROS) that is
inversely related to RAR activity. RA-sensitivity was restored when ROS levels were
lowered, potentially through improved RXR/RAR promoter binding activity [178]. RA
treatment in combination with polyl:C synergistically increased the toll-like receptor 3
chemokine responses in human melanoma cells and induced migration of antigen-presenting
cells [179]. Decreased expression of collagenolytic-enzymes and alterations in mobility-
associated cell surface receptors were consequences of RAR activation in melanoma cells
[180] [181]. Further evidence of RARγ-mediated inhibition of melanoma invasion came
from microarray analysis of murine melanoma cells treated with RARγ agonists, which
identified the sulfotransferase CHST10 as being directly regulated by RARγ through RA
response elements located in its promoter region. CHST10 synthesizes a HNK-1
carbohydrate that was involved with cell adhesion in the nervous system and RA-mediated
embryonic plasticity [182]. Altogether, RAR-specific agonists present a potential therapeutic
candidate for the treatment of metastatic melanoma if mechanisms of RA resistance can be
elucidated and exploited.

Skin is both a target and producer of 1,25(OH)2D3, the secosteroid ligand of VDR and
regulation of melanocyte homeostasis is a physiological role that is attributed to VDR
signaling. The use of vitamin D analogs to combat vitiligo depigmentation has been well
reviewed [183]. It is hoped that Vitamin D agonists might protect melanocyte loss in this
disease through inhibition of immune response and modulating calcium flux. VDR
activation may also promote re-pigmentation processes by upregulating melanogenic
cytokines that drive pigment production. Due to insufficient knowledge on what drives the
etiology of this disease, any research implicating driver mutations is important for
developing effective therapeutics. Genomic DNA isolated from vitiligo patients, as well as
age and sex-matched controls, demonstrated the TaqI VDR polymorphism is a risk factor for
the disease. Haplotype BsmI/ApaI/TaqI/FokI/Cdx2 was also overrepresented in those
patients [148].

The use of low-calcemic deltanoids for treatment of melanocytic lesions is another potential
candidate for future therapies. Sunlight generates DNA damage within melanocytes yet also
produces anti-proliferative 1,25(OH)2D3 ligands. This physiological dichotomy provides
endogenous regulation of melanomagenesis and may offer directions on how to manage
cutaneous melanoma. Human melanoma cell lines have been shown to posses different
expression levels of VDR and different growth inhibitory responses to 1,25(OH)2D3.
Importantly, melanoma cells demonstrate increased sensitivity to deltanoids compared to
normal melanocytes [184]. Similar to some other type II NRs, a loss of VDR expression was
seen during the progression of melanocytic lesions and that attenuated VDR signaling was
linked to decreased overall survival time [185]. Likewise, a retrospective cohort study of
large numbers of melanoma patients associated higher serum 1,25(OH)2D3 levels with
thinner presenting melanomas and improved survival from melanoma [186]. In addition to
investigations associating VDR polymorphisms to keratinocytic pathologies, extensive
studies have shown VDR mutations as a critical contributing factor towards melanoma
susceptibility and outcome, in particular the BsmI, FokI and TaqI polymorphisms [187]
[188] [189]. Not all melanoma cell lines were sensitive to 1,25(OH)2D3 treatment though.
Resistance to 1,25(OH)2D3 treatment may be attributed to epigenetic mechanisms that
abrogate VDR signaling in those cell lines. An inverse relationship has been shown to exist
between VDR mRNA expression and level of microRNA miR-125b, most likely through
posttranscriptional regulation of VDR by miR-125b interacting with a recognition element
in the 3′-UTR of human VDR mRNA. Treatment of these cells with a DNA
methyltransferase inhibitor reduces expression of miR-125b and may prove efficacious
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alongside other chemical therapies [190] [191]. In short, aberrant VDR signaling appears to
contribute significantly to the development of melanoma in humans and 1,25(OH)2D3
analogs may provide additional targeted chemotherapeutics in the treatment of that disease.

Due to importance of lipid metabolism in skin homeostasis, PPAR signaling in skin has been
thoroughly investigated, including its role in melanocyte homeostasis. All PPAR isoforms
are expressed in human melanocytes, though PPARγ signaling appears to be a primary
possible drug target for melanoma. Two common PPARγ polymorphisms implicated in
susceptibility of the malignant disease were evaluated as influences in melanoma risk,
though it appeared that inactivating mutations do not appear to be a significant risk factor for
the disease [192]. Recently a link was shown between α-MSH signaling and PPARγ nuclear
translocation that reduced proliferation rates and increased melanogenesis through the
Pi(4,5)P2/Plcβ pathway [193]. Glitazones are known to activate PPARγ and promote
melanocyte differentiation. One mechanism to induce melanocyte differentiation is through
β-catenin mediated upregulation of MITF levels. Phenotypic changes that occured in
melanoma cells post-ciglitazone treatment include dendritic morphology and increased
tyrosinase functions, possibly linked to large increases of Mitf promoter activity. β-catenin
protein levels in ciglitazone-treated murine melanoma cells followed the same trend of
transient increase followed by gradual decrease pattern as seen with MITF, suggesting that
depleted levels of nuclear β-catenin was influencing the downregulation of MITF activity in
these cells [194]. In addition to its pro-differentiative properties, inhibition of proliferation
was seen in melanoma cells after ciglitazone treatment and is also associated with induction
of apoptosis [195]. PPARγ agonists regulate the WNT3A/β-catenin signaling pathway and
inhibits human melanoma cell proliferation through direct inhibition of β-catenin activity
[196]. Though PPAR functions as a tumor suppressor at times, two studies screening large
numbers of melanocytic lesions determined that both PPARγ and COX-2 expression was
increased during progression from benign nevi to metastatic melanoma and may indicate
therapy response levels of this disease [197] [198]. That conflicting role of PPARγ in
tumorigenesis has yet to be elucidated but provides an exciting investigative target in the
treatment of metastatic melanoma.

Few reports demonstrate a role of LXR activation in melanocytes, though known LXR
target genes are important in melanocyte biology. LXRα appears to be the predominant
isoform and could provide LXR-oriented strategies of melanoma therapy. LXRα expression
was also localized adjacent to the follicular dermal papilla, suggesting a contribution to hair
follicle melanocyte activity [199]. LXRα expression was seen in both human melanocytes
and in melanoma cells. Moreover, LXRα mRNA and protein levels were increased in
melanocytes present in the skin surrounding vitiligo lesions compared to normal skin,
suggesting LXRα is modulating the melanocytic response to this disorder [200] [201].
Interestingly, LXRα has been linked to immunoevasion of melanoma through inhibition of
dendritic cell (DC) migration to lymphoid organs. Production of LXR ligands from both
human and mouse tumors were shown to hinder CCR7 expression on DCs that is required
for lymphoid homing. Conditioned media from the human melanoma cell line MSR3 was
shown to inhibit CCR7 expression in DCs, though not affecting other aspects of DC
activation. Also, the media from MSR3, as well as from another melanoma cell line MR255,
was able to activate LXRα reporter constructs, suggesting the presence of ligands expressed
in the media. Use of the sulfotransferase enzyme SULT2B1b, which inactivates natural
oxysterols, was able to protect CCR7 inhibition from the conditioned media. Similarly, mice
receiving bone marrow transplants from an LXRα-null line demonstrated an enhanced
ability of tumor rejection [202]. Altogether, studies indicate an important immuno-
modulatory role of LXR signaling in melanocytic lesions and in melanoma primarily
mediated by LXRα. Additional studies are required to establish the receptor functions in
melanocyte homeostasis and in melanomagenesis.
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Evidence for a role of TR in melanocyte biology is limited, though thyroid-stimulating
hormone expression is seen in epidermal melanocytes. Of note, one study involving patients
with uveal melanoma demonstrated that 60% of the cohort contained a loss of
heterozygosity in the TRβ alleles in both the ciliary body and choroidal melanomas [203].
Further in vivo studies are needed to determine how TR signaling is impaired in epidermal
diseases and in skin cancer, as well as the severity of any non-autonomous actions that affect
the malignant transformation of melanocytic cells.

Conclusion
RXR/NR signaling makes important contributions to both the development and homeostasis
of keratinocyte and melanocyte biology (Table 1). The ability of epidermal tissue to
maintain a rigorous cycle of proliferation and differentiation utilizes complex transduction
pathways that rely on tight transcriptional control of key target genes. Ligand activated
regulation of gene transcription and/or repression by type II NR heterodimers is one
example of how skin is able to continually replenish itself while at the same time inhibiting
neoplastic transformation. Extensive research presents a scenario where type II NRs are
critical tumor suppressors that regulate the sequential differentiation of maturing
keratinocytes. With the exception of TR, which does not appear to play a major role in skin
biology, loss of RXR/NR activity through inactivating mutations or epigenetic silencing
leads to hyperproliferation and immune responses. Likewise, activation of NR heterodimers
through endogenous ligand binding, or exogenous topical application of synthetic agonists,
typically provides anti-inflammatory actions. Modulation of these receptors could provide
supplemental therapy for inflammatory skin disease that is usually treated with potent GCs.
The development of tissue specific NR ligands may provide additional relief for diseases
such as psoriasis and AD that are not currently curable. RXR/VDR regulation of genes such
as TSLP provides strong drug targets that could significantly alter the micro-environmental
milieu that drives skin inflammation. Abolishing keratinocytic derived paracrine signaling
utilized by melanocytes and immune cells may provide additional options in curative
techniques for skin diseases including melanoma. Overall, RXR/NR signaling has evolved
as extensive and dominant signaling networks within skin, the largest organ and most
important barrier to environmental damages and insults. Utilizing these regulatory
checkpoints through the use of synthetic ligands will be an important focus of cutaneous
research in the immediate future.
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Figure 1. Schematic representation of functional domains in type II nuclear receptors
Transcriptional activation function 1 (AF-1) domain initiates at the amino terminus,
followed by the DNA-binding domain (DBD). A flexible hinge region (H) assists in DNA
binding, dimerization and transactivation functions. Variable ligand-binding domains (LBD)
and a second activation function (AF-2) are present at the carboxyl terminus.
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Figure 2. Putative mechanisms of transcriptional regulation by type II nuclear receptors
Repression of gene expression by nuclear receptor heterodimers involves association with
co-repressor protein complexes, including NCoR/SMRT and histone deacetylases (HDAC).
Positive transactivation occurs after ligand binding when co-repressor complexes are
replaced by co-activator proteins such as ATP-dependant chromatin remodelers (ADCR),
histone acetyltransferases (HAT) and the Mediator complex (MC). DBD, DNA-binding
domain; LBD, ligand-binding domain; NRRE, nuclear receptor response element; TSS,
transcriptional start site.
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Table 1

Description of pathologies associated with alteration of skin keratinocytes and melanocytes homeostasis and
mechanisms influenced by type II nuclear receptor signaling. Summary of references from the primary
literature reviewed regarding keratinocyte or melanocyte-associated NR signaling. AD, atopic dermatitis;
BCC, basal cell carcinoma; EPB, epidermal permeability barrier; Hh, hedgehog; SC, stratum corneum; SCC,
squamous cell carcinoma; TSLP, thymic stromal lymphopoietin; UVR, ultraviolet radiation.

RXR

Pathology Mechanism Ref.

EPB defects Lamellar granule formation in epidermis 43

Alopecia Follicular destruction and hair cycling defects, epidermal hyperplasia 86, 87

AD TSLP derepression and Th2-type inflammation 88, 90

Psoriasis Stage-related loss of expression 89

SCC Cell-autonomous suppression of epidermal tumorigenesis and progression 130

Stage-related loss of expression 136

Melanoma Stage-related loss of expression 163, 175

Growth and invasion arrest by NR ligands 164

Growth arrest by NR ligands 165, 166, 172

Keratinocyte-derived paracrine effects in melanomagenesis 130, 167, 168

RAR

Pathology Mechanism Ref

EPB defects Lamellar granules formation in epidermis 43

Aging UVR-induced loss of expression 131, 132

AD TSLP derepression and Th2-type inflammation 90

Psoriasis Negative gene regulation via retinoids 140

SCC Stage-related loss of expression induces malignant progression 136, 138

BCC Anti-proliferative and pro-apoptotic effects of retinoids 141

BCC Tumor suppressor activities of basal RAR signaling 142

Melanoma Stage-related loss of expression 163, 175

Epigenetic silencing of RARβ 176

Anti-proliferative and pro-differentiative properties 165, 169, 172, 174

Induction of apoptosis by retinoids 170, 171

Regulation of cell surface receptors 180, 182

Modulates HLA-DR expression on melanoma 169

Increase in chemokine and IFNβ secretion 179
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VDR

Pathology Mechanism Ref

EPB defects VDR genetic network linked to EPB function, inflammation 58

Alopecia VDR−/− mice display progressive hair loss 55

Alopecia VDR drives mammalian hair cycle through gene repression 62

AD TSLP derepression and Th2-type inflammation 58, 90

AD Low-calcemic VDR agonist improves allergen-induced eczema 91

SCC VDR polymorphisms linked to SCC development, tumor susceptibility 58, 143, 147

SCC VDR−/− mice susceptible to carcinogen-induced SCC through Hh pathway 149, 150

BCC VDR polymorphisms linked to BCC development 146, 147

BCC VDR−/− mice susceptible to carcinogen-induced BCC through Hh pathway 150

Vitiligo VDR polymorphisms linked to vitiligo susceptibility 148

VDR targets the epidermal melanin unit 183

Melanoma Stage-related loss of expression of VDR 185, 186

miRNA associated epigenetic silencing 190, 191

Anti-proliferative and pro-differentiative properties of vitamin D analogs 184

VDR polymorphisms linked to melanoma development 187, 188, 189

PPAR

Pathology Mechanism Ref

EPB formation Lamellar granules formation 43

PPAR agonists regulate involucrin and CD36 expression 65

PPARβ/δ is required for EPB homeostasis 100

Activators stimulates lipid synthesis and processing 107

Regulate expression of cholesterol and water transporters 109, 110, 111

Alopecia PPARγ ablation in hair follicles displays a scarring alopecia phenotype 69

Aging PPARδ/γ provides resistance to UV-induced cellular senescence through PTEN upregulation 103

PPARγ is necessary for production of UV-induced epidermal prostaglandins 104

AD PPAR regulates IL-2-mediated Treg induction 92

PPAR negatively regulates skin inflammation through TH1 and TH2 responses 93

PPAR agonists as therapy in murine AD models 94, 95, 117

Psoriasis Activation of epidermal PPAR linked to psoriatic gene regulation 96, 97

Inhibition of PPAR signaling as therapy for psoriasis 98

SCC Loss of expression induces malignant progression 130

Inhibition of PPAR signaling as therapy for SCC 152, 153

BCC Loss of expression during progression 130

Melanoma Growth and invasion arrest by PPARγ ligands 164

Growth arrest by PPARγ, RAR and RXR agonists 165, 166

PPAR-mediated downregulation of β-catenin downregulates MITF 194

Growth arrest and induction of apoptosis by PPARγ ligands 195

PPARγ agonists inhibit proliferation and modulate Wnt/β-catenin mediated signaling 196
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LXR

Pathology Mechanism Ref

EPB defects LXR/AP-1 crosstalk in lipid production and barrier formation 72

EPB formation Acidification of SC 106

EPB formation Activators stimulates lipid synthesis and processing 107

EPB formation Regulate expression of cholesterol and water transporters 108, 109, 110, 111

Aging Cigarette smoke inhibits LXR translocation 114

Aging Phenotype of chronically aged skin 115

AD LXR agonists display anti-inflammatory effects 116, 117

Psoriasis Loss of LXRα expression stimulates psoriatic gene profile 118

Vitiligo Increased expression in vitiligo perilesional skin 201

Melanoma LXR ligands inhibit CCR7 expression on maturing DCs and their migration to lymphoid organs 202

TR

Pathology Mechanism Ref

Alopecia Hair follicles are direct targets of thyroid hormone 76, 77, 78

SCC TRs inhibit tumor progression and suppress metastasis 154
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