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Abstract

In this paper, we focus on the detection of Bladder Cancer (BC) via mid infrared

spectroscopy. Two main contributions, material and methods, are presented. In

terms of material, a new minimally invasive technology, combining fiber evanes-

cent wave spectroscopy and newly patented biosensors, is used for the first time

to acquire mid-infrared spectra from voided urine/bladder wash. This new ma-

chine promises practicality, cheapness and high-quality of spectrum acquisition.

As for classical systems, the data acquired using the new system was highly cor-

related, resulting in a poor classification performance using classical methods.

Therefore, the second contribution consists in developing statistical methods

that alleviate the problem. Three new statistical methods based on Partial

Least Square Discriminant Analysis algorithm (PLSDA) are proposed. PLSDA

is a supervised classifier well-known for its ability to process correlated data.

The key point is the choice of the most discriminant latent variables in the train-

ing step. In this work, we propose three new decision rules in order to select

the most relevant latent variables. These decision rules give rise to three algo-
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rithms, namely bayesian, joint and best model PLSDA. A comparative study

between the proposed methods and standard ones, namely SVM, K-MEANS

and classical PLSDA, confirms clearly the e�ciency of the former. The best

performance in terms of accuracy is achieved by joint and best model PLSDA

(82.35%). Besides, by embedding the proposed statistical methods in the new

machine, we are able to provide a new medical device that is very promising in

terms of automatic bladder cancer detection.

Keywords: bladder cancer, variable selection, infrared spectroscopy,

automatic detection, chalcogenide glass fibers, PLSDA, SVM

1. Introduction

In 2012, the International Agency for Research on Cancer (IARC) has esti-

mated 429.800 new cases and 165.100 deaths from Bladder Cancer (BC) world-

wide (Torre et al., 2015). In the United States, BC ranks 3rd in prevalence and

7th in mortality among men (American Cancer Society, 2015). Although BC is5

sometimes discovered incidentally on imaging studies, the most common symp-

tom is hematuria, that occurs in 80-90% of the cases (Goodison et al., 2013).

BC has a high risk of recurrence that requires a lifelong follow-up, which makes

BC the most costly of all cancers from diagnosis to death (Smith & Guzzo,

2013). For that reason, there is a great need of accurate minimally invasive and10

cost-e↵ective screening methods.

The gold standard to detect BC is cystoscopy, which is an examination

of the bladder with a rigid or flexible endoscope inserted through the urethra

(Badalament et al., 1987). Magnified images of the bladder and/or the tumour

allow the doctor to make an immediate visual diagnosis that will require further15

pathologic confirmation. This test succeeds in detecting most BCs. However,

it can be less conclusive in patients with bladder inflammation in case of an

indwelling catheter or an infection. It can also fail to detect, flat lesions (carci-

noma in situ) and small papillary tumors (Issaq et al., 2008; Smith & Guzzo,

2013). Furthermore, fibroscopy can be cumbersome and painful which can make20

2



patient follow-up hazardous. Generally, cystoscopy is combined with voided uri-

nary cytology since the latter is e�cient in detecting carcinoma in situ. Though

simple and noninvasive, urinary cytology is not used as a screening test because

of low sensitivity and intraobserver and interobserver variability (Badalament

et al., 1987; Moonen et al., 2006). The direct contact with bladder mucosa25

and easy collection of urine have raised interest in the evaluation of urine-based

biomarkers. A number of molecular tests have been developed and approved by

the US Food and Drug Administration (FDA) (Goodison et al., 2013; Smith &

Guzzo, 2013; Schmitz-Dräger et al., 2015; Kamat et al., 2013; Moreira et al.,

2010; Shariat et al., 2008). These tests are more sensitive for lower-grade tumors30

than cytology and detect carcinoma in situ and low grade BC. However, they

still lack diagnosis precision and are approved to be used only in conjunction

with cytology and cystoscopy.

In an e↵ort to explore di↵erent pathways, optical-based methods have been

described: In vivo optical imaging technologies as Photodynamic Diagnosis35

(PDD), Narrow Band Imaging (NBI), Confocal Laser (CLE) and Optical Co-

herence Tomography (OCT) (Liu et al., 2012). PDD and NBI have been shown

to increase the ability to detect carcinoma in situ (Palmer et al., 2013). CLE

and OCT improve the ability to diagnose muscle-invasive BC. These techniques

can only be performed through a cystoscope and have not been conceived to40

replace it. Additional flaws have been also reported such as high false-positive

rates for PDD and NBI, patients layo↵ time caused by the administration of

contrast agents for PDD and CLE, and unaddressed cost-e↵ectiveness issue

(Palmer et al., 2013). An optical method that has also received much inter-

est is Raman Spectroscopy (RS) which is a vibrational spectroscopy technique45

based on the inelastic scattering of light after its interaction with tissue (Ben-

salah et al., 2010; Fleureau et al., 2011; Couapel et al., 2013). RS has been

proven more specific than PDD in discriminating cancerous lesions from benign

inflammations (Draga et al., 2010). The specificity can be enhanced by replac-

ing conventional high-volume probe with confocal probe, allowing deep imaging50

of tissues with less background noise (Barman et al., 2012). A specificity of
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100% has been achieved for confocal RS compared to 79% for high-volume RS.

Despite these interesting results, several reasons have limited RS incorporation

into clinical practice: length of acquisition, high cost and strong fluorescence

background that obscures weak Raman signals. Recent works has proposed to55

circumvent these setbacks (De Luca et al., 2015; Li et al., 2015). RS has been

tested on tissue (De Jong et al., 2006), urine (De Luca et al., 2015) and blood

specimens (Li et al., 2015).

Another optical method that has been a major focus of many researches is

Fourier-Transform Infrared (FTIR) spectroscopy which is a vibrational spec-60

troscopy based on infrared light absorption. High sensitivity, high speed, and

simple and self-calibrated instrumentation are major advantages of FTIR over

the dispersive techniques. FTIR is mostly used in the Mid-InfraRed (MIR) re-

gion where fundamental vibrational modes of most of the interesting biomolecules

are located (Hocdé et al., 2004). Promising results showed the ability of FTIR65

spectroscopy, to characterize BC using blood, tissue and urine specimens (Ollesch

et al., 2014; Hughes et al., 2013; Pezzei et al., 2013; Bird et al., 2008). The use

of optical fibers, transparent in the MIR range, allowed to make measurements

in the Attenuated Total Reflectance (ATR)-mode at a remote location. This

is called Fiberoptic Evanescent Wave Spectroscopy (FEWS). The recent de-70

velopment of chalcogenide-glass optical fiber helped e�cient implementation of

FEWS and provided more informative recorded spectra (Bureau et al., 2005;

Keirsse et al., 2004, 2003). This new technology was proved promising in de-

tecting metabolic alterations in patients (Anne et al., 2009; Le Corvec et al.,

2016; Le Corvec et al., 2016; Albert et al., 2016), but to our knowledge, it has75

not been tested on BC yet.

The first contribution of this study consisted in testing a new device that

implements FEWS and chalcogenide biosensors technologies in a practical and

inexpensive way, in order to explore the automatic diagnosis of BC. The new

device was used to acquire a high-quality MIR spectra from voided urine (non-80

invasive) and (minimally-invasive) bladder wash samples. Statistical methods

should then be developed and embedded in the machine in order to classify the
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acquired spectra. Nevertheless, one flaw was the high-correlation measured be-

tween control and BC groups. Therefore, the challenge was to propose new clas-

sifiers able to “optimally” process highly-correlated data. In statistical analysis,85

the Principal Component Analysis (PCA) has been prevalently used to analyze

bladder samples as a main unsupervised classifier (Barman et al., 2012; De Luca

et al., 2015; Bird et al., 2008; Pezzei et al., 2013; Hughes et al., 2013) or as a

preprocessing step for another classifier such as Linear Discriminant Analysis

(LDA) (Draga et al., 2010; De Jong et al., 2006). Nevertheless, it was shown in90

(Issaq et al., 2008) that Partial Least Square Discriminant Analysis (PLSDA)

outperforms PCA in the classification of urinary bladder samples using high

performance liquid chromatography coupled online with a mass spectrometer

metabolomic approach. Though Both PCA and PLSDA are e�cient in clas-

sifying highly-correlated data, the latter was proved more advantageous as it95

incorporates the labeling of observations in the computation of the uncorrelated

components. Moreover, a key point in PLSDA is the decision rule used to se-

lect the most discriminant components. As a second contribution in this paper,

we proposed to use three new decision rules: the “Bayesian”, the “joint” and

the “best model”, giving rise to three new PLSDA methods, denoted PLSDA
B

,100

PLSDA
J

and PLSDA
BM

, respectively. We conjecture that they are more e�-

cient than the classical decision rules as they rank the components according to

their classification performance in the training step before selecting them in the

prediction step. A comparative study between the proposed methods and the

classical PLSDA as well as standard methods, namely support vector machine105

(SVM) and K-MEANS, were conducted. The proposed methods were shown

to perform better in terms of classification scores. The best accuracy (82.35%)

was achieved by joint PLSDA and best model PLSDA. Hence, the obtained

results suggest that the new acquisition system combined with the new pro-

posed methods presents a potential noninvasive and cost-e↵ective method for110

BC screening and follow-up. It is noteworthy that we are the first to experiment

the new patented MIR bio-sensors developed by the company DIAFIR (Tariel

& Charpentier, 2015).
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2. Data acquisition

2.1. Patients and sample preparation115

A prospective pilot study was carried out in the urology department of CHU

of Rennes, following a given protocol designed and validated therein. Volunteer

patients were fully informed about the study and gave their written consent.

They were aged over 18 (men or women). The tumoural group included BC-

diagnosed patients that were scheduled for endoscopic tumour resection or total120

cystectomy. The control group included patients hospitalized for urolithiasis

surgery, without indwelling double-J stent. Patients who did not fully satisfy

these criteria or were su↵ering from other types of cancer were excluded from

this study, as well as pregnant and breastfeeding women.

Urine specimens were collected twice from each patient. In a first phase,125

voided urine samples were collected in the morning fasting, before getting in

the operation room of urology department in CHU of Rennes (preoperative

time). This noninvasive procedure takes only about 15 minutes. In a second

phase, a bladder washing was achieved in the operation room before the surgical

operation (intraoperative time). Collected samples were frozen at -80�C in the130

Biological Resource Center of Rennes before the analysis.

The final cohort included 40 equally distributed patients (20 diagnosed with

BC and 20 diagnosed with urolithiasis). We denote by PREOP and INTRAOP

the voided urine and the bladder washing samples, respectively. Both were

examined by MIR spectroscopy.135

2.2. FEWS using mid-infrared biosensors

FEWS is an infrared remote spectroscopy that combines the principle of ATR

and the technology of fiber sensors to allow rapid and in-situ analysis of samples.

In FEWS, an infrared signal is transmitted in an optical fiber by total internal

reflection. ATR occurs when a chemical sample is brought into contact with the140

fiber, thereby generating a partial absorption of the infrared signal in the fiber

interface. The spectrum of the attenuated infrared wave picked up at the fiber
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Figure 1: SPID™ spectrometer and LS23™ sensor patented by DIAFIR

output provides the metabolic characteristics of the sample. Chalcogenide glass

fibers enjoy rheological properties that made them an optimal choice for FEWS

implementation. They are flexible and exhibit a large optical transparency in145

the MIR spectral range from 2 to 12 µm with optical losses below 1 dB.m�1

in the 6-9 µm region (Keirsse et al., 2004). Their hydrophobic behavior makes

them especially suitable for application in biology and medicine where water

is a nuisance to detect relevant information. It is shown that the sensitivity

of sensors is highly improved when the diameter of the fiber is locally reduced,150

creating thus a tapered sensing zone that is brought into contact with the sample

to be analyzed (Lucas et al., 2004). DIAFIR managed to develop optical fibers

embedded into a disposable cover. Their fabrication procedure is detailed in

(Houizot et al., 2014). These sensors were used in our experiments, they are

single use and require roughly 7 µl volume of urine per analysis.155

2.3. Instrumentation

The experimental setup consisted of an SPID™ non cooled spectrometer,

coupled with a chalcogenide glass fiber enclosed in LS23™ sensor developed by

DIAFIR (see figure 1) (Tariel & Charpentier, 2015). SPID™ is a FTIR spec-

trometer that was especially conceived to accommodate bio-sensors developed160

by DIAFIR. It is made compact compared to classical spectrometers so that it

can be used in point of care application. For spectrum acquisition, a clean dry

propette was used to place a drop from one thawed aliquot of a given sample
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on the LS23™ sensor.

The FTIR spectra were acquired in the absorption mode in the [4000,400]165

cm�1 frequency range. The nominal spectral resolution was set to 4 cm�1

and a zero-filling factor of 2 was employed, yielding a discrete spectral point

spacing of 2 cm�1. A Blackman Harris three-term apodisation function was

used for Fourier transformation. Sixty-four scans were recorded and averaged

to yield the sample absorption intensity. The optical signal was recorded at170

the output extremity of the fiber, providing the infrared single beam spectra.

A single beam reference spectrum was obtained for the background (without

sample) before each sample analysis, yielding for every wavenumber a reference

intensity. This step is necessary to take into consideration possible side e↵ects

in the experiment such as the entrance/exit conditions of the infrared beam,175

the interaction and attenuation along the optical signal transportation section,

the transition of modes during the taper to the sensing zone, and e↵ects related

to fiber bending or surface roughness (Bureau et al., 2005). The sample and

reference spectra of each patient were processed to derive only one “intensity

ratio” spectrum that was used as input data in the statistical analysis presented180

in section 3.

2.4. Datasets

As described in table 1, there were two datasets (PREOP and INTRAOP) of

40 signals each. In each dataset, BC and control groups were equally distributed

(20 spectra per group). The underlying spectra were displayed, outliers were185

visually spotted and ruled out. Three and 6 outliers were omitted from PREOP

and INTRAOP datasets, respectively. We ended up with 37 spectra in PREOP

(18 BC and 19 control) and 34 spectra in INTRAOP (18 BC and 16 control).

The resulting INTRAOP and PREOP raw spectra are presented in figure 2.

Initial portion before 900 cm�1 was removed due to the limited visibility of the190

optical fiber (>800 cm�1) and the high e↵ect of water. The portion between

2800 cm�1and 1800 cm�1 was also omitted to eliminate the contribution of

the environmental CO2. Visual inspection of the two datasets did not reveal
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any remarkable di↵erence between INTRAOP and PREOP spectra. Moreover,

we noticed that, for both, spectra of BC and control groups were similar in195

Table 1: A two explored MIR signals datasets

40 Patients

40 PREOP 40 INTRAOP

20 BC 20 control 20 BC 20 control

Outliers omission

18 BC 19 control 18 BC 16 control

37 PREOP 34 INTRAOP
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Figure 2: PREOP (top) and INTRAOP (bottom) MIR spectra of BC (red) and control (blue)

groups, and their corresponding averages (black).
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average. Therefore intergroup correlations were expected to be high. The hy-

drophobic property of chalcogenide glass fibers helps to minimize the e↵ect of

water, but it does not remove it completely, especially when the analyzed sam-

ples are biofluids as in our context. The influence of water was noticed in the

presence of a baseline (slow wave) and a significant lobe after 3000 cm�1 in all200

spectra. This internal artifact was very disturbing since it might screen small

details that would be important for discrimination. Moreover, it increased the

intergroup correlations and brought a spurious similarity into the intragroup

samples. In figure 3, we clearly notice the homogeneity between the diagonal

and the o↵ diagonal blocks (intragroup and intergroup correlations, respectively)205

in the PREOP correlation matrix. This homogeneity was less present in the IN-

TRAOP correlation matrix where the blocks were distinguishable. However, the

correlation was still considered significant which made the discrimination task

very complicated.
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Figure 3: Correlation matrix of PREOP (left) and INTRAOP (right) spectra: correlation

coe�cients > 0.95 are set to 1 (green), 0 otherwise (blue).
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3. Classification methods

We built a classification scheme based on three main stages involving a tun-

able preprocessing step, an appropriate classifier and a strategy to evaluate the

classification performance. Let’s denote by X the M ⇥ N matrix of dataset,

where M and N are the number of patients and the length of one spectrum,215

respectively. y denotes the M -length discrete vector of labels assigned to pa-

tients.

3.1. Preprocessing

First, we normalized the signals by dividing each spectral point by the area

of the total intensity of the spectrum to ensure their comparability. We then220

considered baseline correction using a classical method. The latter consisted in

computing the first derivative of signals as the di↵erence between two consecu-

tive samples, followed by a 5 point Salvitzky-Golay smoothing. The classifica-

tion procedure was separately applied on raw data and its first derivatives.

3.2. Partial Least Square Discriminant Analysis225

3.2.1. Overview of the classical approach

PLSDA is a linear supervised classifier that was proposed by Sjötröm et

al. as an extension of the PLS Regression algorithm (PLSR) to the discrimi-

nant analysis paradigm (Sjöström et al., 1986). PLSR aims to predict a set of

continuous dependent variables (the responses) from a set of independent vari-230

ables (the predictors) by extracting from the latter a reduced-dimension set of

orthogonal components called Latent Variables (LVs) that have the best predic-

tive power (Abdi, 2010). This algorithm is advantageous when predictors are

numerous and redundant, which generally happens when the number of predic-

tors is larger than the number of observations. In this case, classical regression235

algorithms such as multiple linear regression are no longer feasible. Moreover,

the main asset of PLSR is that LVs are constructed using the covariance between

both responses and predictors, whereas in principal component regression, de-

fined as a truncated PCA (Jolli↵e, 1982), they are determined using solely the
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covariance of predictors. In PLSDA, responses are no longer continuous but dis-240

crete variables. In the binary case, the discrete response vector y is transformed

into an M ⇥ 2 dummy matrix Y where each binary entry Y (m, c) represents

the membership of the mth sample to the cth class (c = {1, 2}); i.e. if the mth

sample belongs to class c then Y (m, c) = 1, otherwise 0 (Ballabio & Consonni,

2013).245

As a supervised method, the PLSDA requires a training step where a regres-

sion model M is formed between predictors X and responses Y as it follows

X = T P T +E (1)

Y = T QT + F (2)

where T and P denote the M ⇥L scores matrix and the N ⇥L loadings matrix

of predictors, respectively. Q is the 2 ⇥ L loadings matrix of responses (Y -

weights). The scalar L refers to the number of LVs retained in the model. E and

F are considered as residuals. The computation of this model is achieved using

algorithm 1. We used the algorithm implemented in the PLSDA classification250

toolbox (Ballabio & Consonni, 2013). Notice the common use of the score

matrix T in decomposing both X and Y (regression mode of PLSDA). It is also

noteworthy that LVs in algorithm 1 are extracted in a descending explanation

power, i.e. the elements M{:, l} = {W (:, l),Q(:, l),T (:, l),P (:, l)} explain the

cross-covariance of (X,Y ) more than M{:, l+1}. Here, W denotes the N ⇥L255

loadings matrix of predictors (X-weights). Once built, the model M is used to

label new samples X
new

in the prediction step as described in algorithm 2.

There are two focal “parallel” steps in building the PLSDA classifier: i) the

estimation of model complexity aiming to find out the number of selected LVs

that best describe the data without redundancy, and ii) the assessment of the260

overall quality of the model (Szymáska et al., 2012). In step i), the parameter L

is estimated by corssvalidation where several models with di↵erent dimensions

are generated and evaluated. The optimal LVs number corresponds to the one

of the best performing model in terms of classification scores. The step ii) is

motivated by the properties of regression models where predicted responses Ŷ265
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are not perfectly binary. Therefore, a decision rule is established to deduce

class assignments using properly estimated thresholds. Several decision rules

were derived and it was shown that the choice of the decision rule may deeply

a↵ect the discrimination results (Szymáska et al., 2012).

A pivotal point in PLSDA is the choice of the most discriminant LVs. In270

the conventional strategy described before, LV selection is tackled in terms of

optimal number (how many LVs should be kept?), which implies that LVs are

selected in the same order of their extraction. In other words, if L is the optimal

estimated number, then the L first extracted LVs are retained for the prediction

step. This strategy is justified by the fact that the explanation power of a given275

LV is correlated to its discrimination power, which is not always true. Indeed,

in some cases, discriminative features may lie in the small details captured by

distant LVs (Fargeas et al., 2013). This observation motivated us to develop

new strategies of LVs selection.
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Algorithm 1 M = plsr (X,Y , L)

1: for l = 1 to L do

2: Initialize U(:, l) and T (:, l) with random column vectors from Y and X

respectively, initialize T
old

with random vector > than T (:, l) in norm,

E = X and F = Y

3: while T 6= T
old

or number of iteration max is not reached yet do

4: T
old

 T (:, l)

5: W (:, l) ET U(:, l)/(U(:, l)TU(:, l)) (compute X-weights)

6: W (:, l) W /(W (:, l)TW (:, l))

7: T (:, l) E W (:, l)/(W (:, l)TW (:, l)) (compute X-scores)

8: Q(:, l) F T T (:, l)/(T (:, l)TT (:, l)) (compute Y -weights)

9: U(:, l) F Q(:, l)/(Q(:, l)TQ(:, l)) (compute Y -scores)

10: end while

11: P (:, l) ET T (:, l)/(T (:, l)TT (:, l))

12: E  E � T P T and F  F � T QT

13: end for

14: M {W ,Q,P }

Algorithm 2 Ŷ = plsr pred (X
new

,M)

1: Initialize Ŷ  0

2: for l = 1 to L do

3: T
new

(:, l) X
new

W (:, l)/(W (:, l)TW (:, l))

4: Ŷ  Ŷ + T
new

(:, l) Q(:, l)T

5: X
new

 X
new

� T
new

(:, l) P (:, l)T

6: end for

3.2.2. New strategies of LV selection in PLSDA280

We proposed a modified PLSDA algorithm with a new cross-validation step

where LVs were ranked according to their discrimination (and not explanation)

power before selecting the most relevant for an optimal model. As in the classical

approach, the dataset was divided into three complementary subsets X
tr

, X
v
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and X
ts

that were used for training, validation and testing, respectively.285

In the training step, a regression model M of L
max

LVs was built using

algorithm 1, where L
max

is the maximum number of extracted components. It

is generally set to the smallest dimension of X
tr

. In a three-stage validation

step, the extracted LVs were i) evaluated in terms of discrimination power, ii)

ranked, and then iii) combined to find out an optimal subset for classification.290

In order to assess the discrimination power of each LV l 2 [1, · · · , L
max

], the

elementary responses {Ŷ
l

}
l=1:L

max

were first estimated by algorithm 2 using the

validation set X
v

and the elementary model M{:, l}. A decision rule was then

applied to assign classes and to evaluate the underlying performances in terms

of sensibility, specificity and accuracy. We proposed to use three decision rules:295

the “Bayesian”, the “joint” and the “best model” decision rules.

In the “Bayesian” decision rule, two thresholds �B

1 and �B

2 are separately

defined for classes 1 and 2, respectively (Ballabio & Consonni, 2013). They are

calculated on the basis of Bayes theorem, assuming that the estimated values

in each class follow a relatively normal distribution. Each threshold is selected300

at the point where the number of false positives and false negatives of the

underlying class is minimized. When Ŷ (m, c) is greater than �B

c

, themth sample

is assigned to the cth class, otherwise not. When a given sample m is assigned

to both classes or conversely to none of them, it is defined as ‘not assigned’.

In the proposed strategy, the “Bayesian” decision was applied to each response305

matrix Ŷ
l

, which resulted in estimating 2 ⇥ L
max

thresholds �B

l1 and �B

l2 and

their corresponding performances.

The “best model” and the “joint” decision rules are based on ROC curves

computation where each sample is always a↵ected to one class at the end of

the process. In both approaches that we denoted by the “best model” decision

and the “joint” decision, two thresholds are defined for classes 1 and 2 and are

calculated on the basis of the ROC curves plotted for the estimated responses

Ŷ (:, 1) and Ŷ (:, 2), respectively. In the “best model” decision, thresholds �BM

1

and �BM

2 are defined as the optimal thresholds that independently maximize

the performances of responses Ŷ (:, 1) and Ŷ (:, 2), respectively. Whereas in
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the “joint” decision, the optimal thresholds �J

1 and �J

2 are jointly fixed such

that they maximize the performance of both Ŷ (:, 1) and Ŷ (:, 2). Applying

the “best model” decision (the “joint” decision) to each response matrix Ŷ
l

resulted in estimating 2 ⇥ L
max

thresholds �BM

l1 and �BM

l2 (�J

l1 and �J

l2), and

their corresponding performances.
8
><

>:

�BM

l1 = argmaxPerf
l1

�BM

l2 = argmaxPerf
l2

l = 1, · · · , L
max

and

(�J

l1,�
J

l2) = argmax(Perf
l1 + Perf

l2), l = 1, · · · , L
max

where Perf
l1 and Perf

l2 denoted the performances deduced from Ŷ
l

(:, 1) and

Ŷ
l

(:, 2), respectively.

In the ranking stage ii), the di↵erent components are sorted in a descending310

order of discrimination power, which amounts to building a mapping function

that assigns a new index l0 to component l. Unlike the “Bayesian” and “joint”

decisions where only one rank is assigned to a given component l, the “best

model” decision assigns two di↵erent ranks l01 and l02 as the two responses Ŷ
l

(:, 1)

and Ŷ
l

(:, 2) are independently used. Hence, the index mapping of the “Bayesian”315

and “joint” decisions denoted respectively by iB and iJ are L
max

-length vectors,

whereas, the index mapping of the “best model” decision is an L
max

⇥ 2 matrix

of two columns iBM

1 and iBM

2 (see figure 4).

The final stage of validation step consists in estimating the optimal number

L of rearranged components in the final model. To this end, the ranked LVs320

are sequentially combined, evaluating each time the classification scores of the

generated model onX
v

. The optimal model corresponds to the most performing

in terms of classification scores. In “the best model” scenario, the use of two

rankings, iBM

1 and iBM

2 , yields two di↵erent independent performances; the

optimal model is then given by the best performance.325

We denote by PLSDA
B

, PLSDA
J

and PLSDA
BM

the PLSDA-based algo-

rithms when using the “Bayesian”, the “joint” and the “best model” decision

rules, respectively, and by MB , MJ and MBM the underlying generated opti-
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mal models. The latter are evaluated in the testing step, using X
ts

subset, in

terms of prediction power. Obviously, the decision rule used in this step is the330

same rule used to construct the model in the validation step.

3.3. Performance evaluation

Due to the limited cohort size (less than 20 patients for BC and control

groups), it seemed less relevant to divide the dataset into three complementary

sets. Therefore, a training/testing scheme was rather used where the dataset335

was only divided into two complementary sets X
tr

and X
ts

, and the training

dataset X
tr

was used for both training and validation. Moreover, a leave-

one-out cross-validation (LOOCV) scheme was implemented to evaluate the

classification scores. In LOOCV, one patient is removed from the given dataset,

in turn, and used as a testing set.340

3.4. Significant predictors selection

For a given spectrum and after omitting irrelevant intervals (see section 3.1),

there were N = 933 wavenumbers (predictors) used in classification, which is rel-

atively a high number compared to the available cohort size M (37 for PREOP,

34 for INTRAOP). There is also a probability that the e↵ective information is345

confined in only few discriminative wavenumbers. In order to check this pos-

sibility, we proposed a second scenario (test II) where an intermediate step of

wavenumbers selection was established inbetween preprocessing and classifica-

tion. In this additional step, the One-Way ANOVA test was implemented to

help identifying the most discriminant predictors. In this test, we compared350

the intergroup variation to the intragroup variation for each given wavenum-

ber n 2 [1, · · · , N ]. If the ratio of the intragroup variation to the intergroup

variation is significantly high, then we conclude that the group means are sig-

nificantly di↵erent from each other and the underlying wavenumber is expected

to deeply influence the classification result. The significance of each test was355

measured with the P-value parameter where the latter was compared to a fixed
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Table 2: The di↵erent achieved tests

Raw spectra First derivative

without One-Way ANOVA Test I.A Test I.B

with One-Way ANOVA Test II.A Test II.B

�
p

cuto↵. A wavenumber n was selected when its P-value is lower than �
p

. The

�
p

cuto↵ was fixed to one of the standard values, namely {0.05, 0.02, 0.01, . . .}.

Using di↵erent preprocessing steps with tests I and II yielded several scenar-

ios that are summarized in table 2: tests I.A and I.B refer to running classifiers360

on raw data and its first derivatives, respectively, without significant predictors

selection; and tests II.A and II.B correspond to running classifiers on raw data

and its first derivatives, respectively, with significant predictors selection. An

overview of the proposed classifiers and the di↵erent scenarios is given in figure

4.365

3.5. Comparative study

In order to assess the improvement introduced by the proposed algorithms,

we compared the latter with the classical PLSDA (PLSDA
C

) implemented in the

the PLSDA classification toolbox where the LVs are arranged according to their

extraction order and the classification scores are computed using the “Bayesian”370

decision rule (Ballabio & Consonni, 2013). To guarantee the comparability

of scores between the di↵erent methods, samples labeled as “not assigned” in

PLSDA
C

and PLSDA
B

were switched to the misclassified categories so that

not-assigned samples amongst BC samples and control samples were assigned

to false negative and false positive categories, respectively.375

The PLSDA-based algorithms were as well compared to two other standard

classifiers. The first classifier, K-MEANS, is an unsupervised method where a

dataset is partitioned into k clusters by minimizing a certain distance (Bishop,

2006). In our case, we had two clusters (k = 2) and the criterion was set to the

Euclidean distance. The second classifier was a support vector machine (SVM).380
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Figure 4: Overview diagram
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The latter is based on learning models (kernel functions) in the training step to

build a hyperplane separating data in two classes (Bishop, 2006). In our tests,

we set a linear kernel and applied a LOOCV scheme to evaluate classification

scores.

To sum up, six classifiers (K-MEANS, SVM, PLSDA
C

, PLSDA
B

, PLSDA
J

385

and PLSDA
BM

) were involved in all the tests enumerated in table 2. Classifi-

cation scores were compared and discussed in the next section.

4. Results and discussion

In this section, we applied the proposed procedure in section 3 to PREOP

and INTRAOP databases. Performance evaluation was achieved via the com-390

putation of usual classification scores, namely, Specificity (Sp), Sensibility (Se),

Accuracy (Acc), Positive Predictive Value (PPV) and Negative Predictive Value

(NPV). The purpose of these experiments was, first, to confirm our conjecture

that FEWS can be considered as a BC diagnostic tool. Secondly, we were also

interested to find out which of the two samples, PREOP and INTRAOP, would395

be more informative. All the obtained results were summarized in figure 5.

4.1. Test I: without One-Way ANOVA

Looking to the bar plots of tests I.A and I.B (figure 5), we clearly see that

all the classifiers failed to achieve good scores on both raw and first derivative

PREOP spectra (top and second left plots). The best achieved accuracy was400

limited to 51% (test I.A, K-MEANS). In the meanwhile, good performances

were globally observed for INTRAOP data (third ans bottom left plots), which

suggests that the latter are more informative than the PREOP samples. This

finding was expected since bladder wash samples are richer with exfoliated cells

than voided urine. Therefore, more information can be collected about the405

uroepithelium state.

Focusing more on the results obtained for INTRAOP spectra, PLSDAs were

obviously performing better than standard methods, K-MEANS and SVM, ex-

cept for test I.B (bottom left) where SVM outperformed PLSDA
C

and PLSDA
BM

.
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  K-MEANS              SVM                 PLSDAC                    PLSDAB                   PLSDAJ                    PLSDABM 

Test I. Test II. 
PR
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P 

A
 

B
 

IN
TR
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P 
A

 
B

 

No selected variables 

Figure 5: Classification scores of K-MEANS, SVM, PLSDAC , PLSDAB , PLSDAJ and

PLSDABM obtained in the tests described in table 2 for PREOP and INTRAOP datasets
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The new proposed methods achieved better classification scores than PLSDA
C

410

proving the e�ciency of the new strategy for LVs selection. More precisely, for

the three proposed methods, we noticed in one hand that the first extracted

LV was always ruled out from the optimal model. On the other hand, the sec-

ond extracted LV always ranked first in performance and therefore was usually

selected in the model. The rejection of the first extracted LV from the opti-415

mal model was quietly expected. In fact, this component incorporates the high

correlation existing between the spectra and brought by the presence of water.

Contrariwise, in PLSDA
C

, the first component was unavoidably selected in the

model resulting in slight decrease of classification scores. Generally, the new

proposed methods generated optimal models composed of utmost two LVs (L =420

2) where the second extracted LV always ranked first (in performance) and the

third extracted LV ranked second in 80% of cases. The optimal model size L

in the case of PLSDA
C

was estimated to three components in 90% of cases. It

is noteworthy that in the case of PREOP database, the selected LVs from one

LOOCV to another was quasi-random whatever the used method was, which425

explains again the underlying low classification scores.

The best classification scores were obtained in test I.A using PLSDA
J

and

PLSDA
B

where the former has achieved the highest specificity and accuracy

(87.5% and 82.35% respectively), while the latter had a good sensitivity reaching

83.3%. Nevertheless, the best sensitivity was obtained by PLSDA
J

in test I.B430

(88.89%). Globally, the use of first derivative did not improve the performance of

the classifiers except for SVM whose specificity was significantly improved with

the first derivative (from 68.75% to 81.25%). The slight decrease in PLSDAs’

performances can be justified by the fact that PLS framework is tailored mainly

for highly-correlated signals. Whereas, by using the first derivative, a significant435

part of this correlation is omitted. This also explains why these classifiers tended

to select larger models more often than with raw spectra.
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4.2. Test II: with One-Way ANOVA

In this test, the �
p

cuto↵ was fixed to 0.05 for both II.A and II.B. The total

set of variables (spectrum length) was of N = 933 wavenumbers. Unsurprisingly,440

no significant variable was selected when applying the One-Way ANOVA test

to PREOP database (test II.A), whence the empty case in top left of figure 5.

This result confirms one more time the poor performance found in test I.A with

the same database. However, a set of 20 variables was selected among the N =

933 in test II.B. In terms of classification score, performance has considerably445

improved for all algorithms. The new proposed methods performed better than

PLSDA
C

that was poorly specific (68.4%). The best performance was achieved

by PLSDA
BM

with a specificity a sensitivity and an accuracy reaching 83.3%,

79% and 81% respectively. Unlike the previous tests, the behavior of PLSDAs

was more stable in terms of LVs selection: i) the second extracted exponent was450

dominantly selected in the first rank by the proposed methods and ii) PLSDA
C

was constantly selecting the two first extracted components (L = 2). These re-

sults show that PREOP data can be potentially used in BC screening especially

that the underlying samples were noninvasively collected.

In the case of INTRAOP database, 455 and 431 variables were selected in455

tests II.A and II.B respectively. No significant change was noticed in classifica-

tion scores of test II and the di↵erent algorithms behaved globally the same as

in test I. The best result was equally achieved by PLSDA
J

and PLSDA
BM

(Se

= 77.7%, Sp = 87.5% and Acc = 82.35%).

Test II indicates that useful information can be confined in a limited set460

of wavenumbers. Significant variables spotted in INTRAOP database largely

exceeded the ones in PREOP database. This observation is coherent with the

expectations supposing that bladder wash is biochemically richer than voided

urine. Preprocessing ANOVA test was not very relevant in the case of IN-

TRAOP database since no significant improvement was noticed in classification465

scores in test II. The best result could be practically obtained with raw full

spectra (test I.A with PLSDA
B

and PLSDA
J

). Contrariwise, test II was very

relevant in the case of PREOP database. The first derivative helped to rule
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out variables detrimental to classification and resulted in a performance quasi-

equivalent to the one of INTRAOP database. Hence, according to this test,470

PREOP dataset is also eligible for BC diagnostic.

5. Conclusion and perspectives

In this paper, a preliminary study of BC detection via MIR spectra was

carried out on two di↵erent categories of collected samples, bladder wash (IN-

TRAOP) and voided urine (PREOP). A new system based on FEWS technology475

was used for spectrum acquisition. Three PLSDA classifiers, namely PLSDA
B

,

PLSDA
J

and PLSDA
BM

, with new LV selection strategy and decision rules

were developed and evaluated in a carefully designed batch of tests. Across the

di↵erent tests, INTRAOP spectra constituted an informative dataset for the

di↵erent classifiers, mainly for our proposed methods that outperformed the480

classical ones in all the proposed tests. Though the PREOP dataset was less

informative and consequently more di�cult to exploit, a promising result was

obtained after two preprocessing steps: smoothed first derivative and One-Way

ANOVA test. An asset of PREOP dataset is the noninvasive collection of sam-

ples, which makes it more attractive to use especially for the follow-up. Based485

on the formerly described experimental outcome, we can corroborate that, by

embedding the proposed statistical methods in the new machine, we are able

to provide a new minimally invasive medical device that is very promising in

terms of fast and automatic BC detection. Moreover, the low price of the used

biosensors (0.05 euros) helps reduce the screening and follow-up costs.490

Although very promising, results reported in this study are still preliminary

given the small used cohorts. All these tests should be reproduced with larger

cohorts in order to ensure about the robustness of the derived conclusions.

Typically, in the case of PREOP dataset, where the proposed methods were

less e�cient compared to the INTRAOP case, using larger cohort may improve495

their robustness. In this case, a completely noninvasive medical device may be

provided by analyzing only the spectra recorded from voided urine (avoiding
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the use of bladder wash). In addition, the selection of significant variables in

test II will be achieved more robustly paving the ground to the next step that

aims to biochemically interpret and identify the significant selected variables.500

The proposed methods may also be extended to the characterization of BC

in order to check if they are able to discriminate the di↵erent stages of the

tumor. Other tumors can be investigated such as Nonalcoholic Steatohepatitis

(NASH) (Bensaid et al., 2016). Finally, it would be very interesting to broaden

the comparison and include more sophisticated approaches dedicated to extract505

hidden relevant information by mining such as deep learning based on recent

convolutional neural networks.
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