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A B S T R A C T

Oxidative potential (OP) of particulate matter (PM) is proposed as a biologically-relevant exposure metric for
studies of air pollution and health. We aimed to evaluate the spatial variability of the OP of measured PM2.5

using ascorbate (AA) and (reduced) glutathione (GSH), and develop land use regression (LUR) models to explain
this spatial variability. We estimated annual average values (m−3) of OPAA and OPGSH for five areas (Basel, CH;
Catalonia, ES; London-Oxford, UK (no OPGSH); the Netherlands; and Turin, IT) using PM2.5 filters. OPAA and
OPGSH LUR models were developed using all monitoring sites, separately for each area and combined-areas. The
same variables were then used in repeated sub-sampling of monitoring sites to test sensitivity of variable se-
lection; new variables were offered where variables were excluded (p> .1). On average, measurements of OPAA

and OPGSH were moderately correlated (maximum Pearson's maximum Pearson's R = = .7) with PM2.5 and
other metrics (PM2.5absorbance, NO2, Cu, Fe). HOV (hold-out validation) R2 for OPAA models was .21, .58, .45,
.53, and .13 for Basel, Catalonia, London-Oxford, the Netherlands and Turin respectively. For OPGSH, the only
model achieving at least moderate performance was for the Netherlands (R2 = .31). Combined models for OPAA

and OPGSH were largely explained by study area with weak local predictors of intra-area contrasts; we therefore
do not endorse them for use in epidemiologic studies. Given the moderate correlation of OPAA with other pol-
lutants, the three reasonably performing LUR models for OPAA could be used independently of other pollutant
metrics in epidemiological studies.

1. Introduction

Ambient air pollution is a mixture of gases, organic and non-organic
particles, and liquid droplets small enough to remain airborne.
Particulates< 2.5 µm (PM2.5) and<10 µm (PM10) in diameter has

widely been associated with a range of health effects (Brunekreef et al.,
2002; Pope et al., 2006; Royal College of Physicians and Royal College
of Paediatricians and Child Health, 2016). PM2.5 is small enough when
inhaled to enter the deeper regions of lung, and has the potential to
oxidize the antioxidants that reside in the respiratory tract lining fluid
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(RTLF) on the surface of the lung (Borm et al., 2007). In-vitro models
investigating the oxidative potential (OP) of PM have been established
in recent years to observe consumption of antioxidants, oxidization of
biomolecules (e.g. proteins, DNA, fatty acids) and as a consequence, the
capacity to elicit health effects (Ayres et al., 2008). Environmental
models of the consumption of antioxidants are related to respirable
PM2.5 that had been collected from air pollution monitors at different
sites types (e.g. major road (street), industrial, urban background,
rural) (Boogaard et al., 2012; Janssen et al., 2014; Kunzli et al., 2006;
Shi et al., 2006). By combining a synthetic representation of anti-
oxidants in the RTLF with diluted PM2.5 in suspension it is possible to
observe the depletion of antioxidants across different monitoring sites
and relate the OP of PM2.5 to different sources including road traffic
(Bates et al., 2015; Janssen et al., 2014; Yang et al., 2015a; Yanosky
et al., 2012) and biomass burning (Bates et al., 2015).

A range of assays have been used to study the OP or oxidative
burden of PM2.5 including ascorbic acid (AA) (Fang et al., 2016; Janssen
et al., 2014; Maikawa et al., 2016; Weichenthal et al., 2016), anti-
oxidant-reduced glutathione (GSH) (Maikawa et al., 2016; Weichenthal
et al., 2016; Yanosky et al., 2012), the consumption of dithiothreitol
(DTT) (Bates et al., 2015; Janssen et al., 2014; Jedynska et al., 2017;
Yang et al., 2015a), and electron spin resonance (ESR) (Janssen et al.,
2014; Yang et al., 2015a). A small number of epidemiologic analyses
have shown oxidative burden of PM2.5 to be more strongly related than
PM2.5 mass concentration to a range of outcomes, in both time-series
and long-term studies. In Atlanta, USA, (Bates et al., 2015) values of
OPDTT were estimated from a time-series of PM2.5 samples from a single
monitoring site. Regression models created to explain variability in
OPDTT included predictor variables for light duty gasoline vehicles,
heavy-duty diesel vehicles, and biomass burning. In an epidemiologic
analysis of emergency hospital admissions (Fang et al., 2016), OPDTT (in
a two pollutant model with OPDTT and total PM2.5) was significantly
associated with asthma/wheeze (1.015 [CI: 1.002–1.027] per IQR in-
crease) and heart failure (1.024 [CI: 1.004–1.044] per IQR increase); no
significant associates were found for PM2.5. In Montreal, Canada, the
OP of PM2.5 (AA and GSH) was determined from PM2.5 personal ex-
posure samples of 62 asthmatic school-aged children collected over 10
days (Maikawa et al., 2016). OPGSH exposure in the previous 24 h was
positively associated (6% increase per IQR change in OPGSH) with
fractional exhaled nitric oxide as an indicator of airway inflammation.
Weichenthal et al. (2016) derived long-term values of OPAA and OPGSH

(% depletion / μg) of PM2.5 for 30 provincial monitoring sites across
Canada to study oxidative burden of PM2.5 and the risk of cause-specific
mortality in the CanCHEC cohort. Exposures to the OP of PM2.5 were
assigned to individuals living within 5 km of a monitoring site. For lung
cancer, OPGSH was associated with a 12% (95% CI: 5–19) increased risk
of mortality compared to a 5% (95% CI: .1–10) increased risk for PM2.5

mass concentration.
Modelling is commonly used to reveal the spatial contrasts in ex-

posures that cannot be determined from monitoring sites. Unlike other
measured pollutant metrics (e.g. NO2, NOX, PM2.5, O3, SO2), it is not
possible to deterministically model (e.g. dispersion modelling) OP due
to a lack of information on source emissions. Alternatively, land use
regression modelling (LUR) - using univariate or multiple regression to
establish a relationship of geographical predictors (e.g. road traffic,
land use, population distribution) and measured pollutant concentra-
tions (Hoek et al., 2008) - has potential for modelling spatial contrasts
in OP. LUR models have been widely used to estimate exposures to
regulatory pollutants such as NO2 and PM2.5 (Aguilera et al., 2015;
Amini et al., 2014; Beelen et al., 2013; Eeftens et al., 2012a; Henderson
et al., 2007; Hoek et al., 2008; Liu et al., 2016) and have been used to
produce models for novel metrics such as ultra-fine particles
(Abernethy et al., 2013; Hankey et al., 2015; Hoek et al., 2011;
Montagne et al., 2015; Rivera et al., 2012; Wolf et al., 2017). LUR
models for the OP of PM are less common, but have emerged in Europe
in the last few years, and have been developed for different assays

including GSH (Yanosky et al., 2012) DTT (Jedynska et al., 2017; Yang
et al., 2015a, 2015b), and ESR (Yang et al., 2015a, 2015b).

In a multi-area study on the ‘exposome’ of air pollution (www.
exposomicsproject.eu) (Vineis et al., 2016) we aimed to evaluate the
spatial variability of the OP of measured PM2.5 (on filters from ESCAPE
(Eeftens et al., 2012b) and SAPALIDA (Eeftens et al., 2015) projects)
using AA and GSH. Subsequently we aimed to develop OPAA and OPGSH

LUR models for each area, and combined-areas models, to explain this
spatial variability, and use the LUR models to estimate exposures to OP
of PM2.5 for cohorts in the EXPOsOMICS project. In order to assess the
extent to which OP of PM2.5 is an independent metric, we also aimed to
assess the correlation of each metric (OPAA and OPGSH) with other
pollutants measurements at the same sites, including PM2.5 mass con-
centration, NO2, and elemental constituents (Cu, Fe, K, Ni, S, Si, V, Zn).

Due to the logistics of establishing a monitoring network with
limited monitoring equipment, there often are relatively few sites per
study area to develop a LUR model, especially in geographically-wide
and multi-center cohort studies (Beelen et al., 2013; de Hoogh et al.,
2013; Eeftens et al., 2012a; Tsai et al., 2015). In studies with a rela-
tively low number of monitoring sites there has been a tendency to use
all sites to develop a single model for each area and evaluate model
performance with leave-one-out-cross-validation (LOOCV) (Beelen
et al., 2013; de Hoogh et al., 2013; Eeftens et al., 2012a’ Henderson
et al., 2007; Zhang et al., 2015). Model performance has been shown to
be weaker with low numbers of monitoring sites and the robustness of
predictor variables chosen in a single model has been questioned
(Basagaña et al., 2012; Wang et al., 2012). To address the issue of low
numbers of monitoring sites (e.g. 20) in some of these locations, we also
aimed to test the robustness of variable selection and variability in
performance of the models. The aim was to repeatedly and randomly
select a sub-sample of the monitoring sites to recalculate the coeffi-
cients of the models and see if any variables become statistically in-
significant.

2. Materials and methods

2.1. PM2.5 measurements

PM2.5 sampling using Harvard impactors with Teflon Filters (SKC
Inc., USA) has previously been described (Eeftens et al., 2012b, 2015).
In brief, measurements took place for three, two-week periods
(summer, winter, intermediate season) over one year: Basel (05/11-03/
12), Catalonia (01/09–01/10), the Netherlands (whole country) (02/
09–02/10), London-Oxford (an area including London, The Thames
Valley, and Oxford) (01/10–01/11), and Turin (02/10–01/11). The
number of valid filters for each two-week period varied and was de-
pendent on the total of number of sites in each area, typically 4–6 for
areas with 20 sites and 8–12 for areas with 40 sites. The mass of PM2.5

collected on each filter was subsequently determined and then annual
average values of PM2.5 mass (μg m−3) were estimated using filters
from different seasons; see also Table S1, supporting information. This
provided data on PM2.5 for between 20 and 40 sites per study area
which we were limited to in this study.

2.2. Processing of filters

The PM2.5 was extracted from the Teflon filters by water-bath so-
nication into methanol at King's College London. The extracted mass
was deduced by weighing of tubes used for the extraction both before
and after extraction (Appendix SA.1; supporting information). The Te-
flon filters from Basel were supplied as half-cuts, and as such were not
robust enough for the sonication extraction procedure. These half-cut
filters were placed directly in the synthetic RTLF. The Teflon filters
collected in the Netherlands were extracted at the National Institute for
public health and the environment (RIVM) (following a similar me-
thanol sonication methodology as that used above) (Yang et al., 2015b).
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The PM2.5 once extracted from the filter was initially re-suspended
to 150–500 µg/mL and when required for the experimental exposure
procedure was diluted to 55.56 µg/mL (to provide a final experimental
concentration of 50 µg/mL). The PM2.5 suspensions that displayed very
high levels of oxidative activity at 50 µg/mL within the RTLF exposure
model were further diluted and re-exposed to obtain reliable OP data
(< 90% oxidation of antioxidant) at an appropriate concentration of
25, 12.5 or 6.25 µg/mL.

2.3. Determination of oxidative potential

A 50 µL aliquot of synthetic RTLF containing equi-molar con-
centrations of AA and GSH was added to the exposure tubes containing
450 µL of the diluted PM2.5 in suspension (Appendix SA.2; supporting
information). The RTLF, now containing 200µmoles/L of each anti-
oxidant and 50 µg/mL PM2.5 (or its equivalent 1 in 2 dilution) was
incubated for 4 h at 37 °C with constant mixing. In-house controls of
particle-free, negative (M120) and positive (urban particulate NIS-
T1648a–NIST, USA) PM, extracted laboratory filter and probe sonica-
tion blanks, were incubated in parallel to the PM2.5 samples to control
for background antioxidant oxidation, delivery of expected oxidation
by the –ve and +ve controls in the RTLF exposure model, and for
checks of cross-contamination from the laboratory blanks (Appendix
SA.3; supporting information). To eliminate as much background an-
tioxidant oxidation as possible from the model system, HPLC-grade
water that had been treated previously with Chelex-100 resin (Sigma,
London-Oxford) was used throughout for preparation of stocks and
dilutions. The RTLF/PM2.5 exposure experiments were undertaken, at
pH7.0. Immediately following the 4-h incubation the micro-tubes were
centrifuged at 13,000 rpm for 1 h at 4 °C, followed by removal of ali-
quots into 100 mM phosphate buffer pH7.5 (for GSH analysis) and 5%
v/v meta-phosphoric acid (for AA analysis). All tubes were immediately
stored at −70 °C. A summary of the measured OP (m−3) totals (i.e. the
sum of OPPAA and OPGSH) for each country is provided in Appendix
SA.4 (supporting information). OPTOTAL m−3 was determined from
OPTOTAL μg−1 (OPAA μg−1 + OPGSH μg−1) multiplied by the ambient
PM2.5 mass concentration (μg m−3).

The number of filters collected at sites in each study area and the
number of available values (m−3) of OPAA and OPGSH is shown in Table
S2 (supporting information). Values of OP m−3 for AA and GSH were
temporally adjusted, following established procedures (Eeftens et al.,
2012b, 2015) as the basis for calculating annual average (i.e. the
average of up to three, two-week measurements) values of OPAA and
OPGSH for each site (Appendix SA.5, supporting information). The re-
quirement for annual average OP was valid filter measurements fol-
lowing temporal adjustment for two or more two-week periods re-
presenting different seasons. The main source of missing filters (Table
S2) was a lack of reference site data (and a relationship too weak be-
tween OPAA or OPGSH and PM2.5 to impute reference site data) or ne-
gative values following temporal adjustment.

To evaluate whether OPAA and OPGSH are useful as independent air
pollution metrics for epidemiological studies we assessed their corre-
lation with existing measurements (with the exception of Basel
(SAPALDIA) all other measurements came from the ESCAPE study) of
PM2.5, PM2.5absorbance, NO2, and eight selected elements (Cu, Fe, K,
Ni, S, Si, V, Zn) from XRF analysis.

2.4. GIS predictor variables

Using a GIS (Geographical Information System) and data from the
same years as measurements, predictor variables (Table S3, supporting
Information) were generated locally for each measurement site and
linked to the annual average values of OP. Predictor variables and
buffer sizes were similar to those used in the ESCAPE study (Beelen
et al., 2013; Eeftens et al., 2012a). Road traffic predictors were gen-
erated within buffers of radii 50, 100, 300, 500, 1000 m, and from

measures of inverse distance from the nearest major road, using the best
available local data on road geography and traffic flows. Data on po-
pulation (European Environment Agency) and land cover (COoRdina-
tion of Information on the Environment; CORINE) were generated
within buffers of radii 100, 300, 500, 1000, and 5000 m.

2.5. Development of LUR models

We implemented a strategy for development and evaluation of LUR
models in response to concerns that having a low number of sites raises
doubt about the robustness and generalizability of models (Basagaña
et al., 2012; Wang et al., 2012). Models for each study area were de-
veloped using the following steps:

1) All sites (i.e. one value of OPAA and OPGSH per site) by area were
used to select the set of variables that gave the highest overall ad-
justed-R2 (explained variability in measured OPAA and OPGSH), with
the proviso that each variable added at least 1% to the adjusted-R2,
values of p for each variable on entry were< .05 and remained< .1
with the final set of variables, the pre-defined direction of effect (+
or -) remained unchanged, and values of variance inflation factor
(VIF) were< 3. This is similar to the set of rules used in the ESCAPE
study.

2) A repeated, random sub-sampling (RSS) procedure was used to
create variations of the initial model (i.e. the model from step 1)
using all sites, where 90% of sites were used each time to recalculate
variable coefficients and 10% of sites were reserved each time (and
later pooled) for hold-out (i.e. out-of-sample) validation (HOV).

In step 2) above, the remaining 90% of sites were used to recalculate
the coefficients of the all sites LUR model. New variables were only
allowed at this stage if variables from the models based on all sites were
dropped due to no longer being significant (p> .1). Monitoring sites
were randomly left out (and then replaced for the next iteration of RSS)
up to N number of times, which varied depending on the number of
monitoring sites (10% of the total number of sites in each case). It was
ensured in advance that a site could only be left out a maximum of N
times (e.g. 2 times for a sample size of 20; 4 times for a sample size of
40; etc.) over all iteration cycles to reduce possible bias. The iteration
process stopped when all sites had been left out N times. This means, for
example, that a model developed on 20 sites will result in 40 sites for
HOV (i.e. 10% of the total number of sites (n = 2) in each of 20
iterations of RSS); values for 10% site selection were rounded to the
nearest integer (e.g. 3.9–4 in the case of the Netherlands). Values of
min, 10th%ile, median, 50th%ile, and maximum R2 (coefficient of de-
termination), RMSE (root mean squared error), NRMSE (RMSE nor-
malized by mean of measurements) for each model, and p-values for
each variable from each model, were pooled (i.e. to test robustness)
across all models. We also evaluated values of Cook's D for each model
iteration to identify influential observations (D>1) in relation to
specific monitoring sites. Finally, model residuals were checked for
normality.

2.6. Combined area OP models

To develop “all areas” OP models, we combined data on OPAA from
all sites and OPGSH from all sites except London-Oxford where no
average OPGSH was available. In addition to the procedures for local
models we also stratified by study area. We used multiple regression
with and without fixed-factors for study area, and subsequently linear
mixed-effects regression modelling, specifying random intercepts to
account for differences in background concentrations between coun-
tries (study areas). We also undertook leave-one-area-out analysis (i.e.
iteratively dropping one area from the “all areas” models).
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2.7. Model evaluation

The 10% of sites left out of each RSS iteration (i.e. HOV) were
combined and used for a single, overall evaluation in terms of R2

(coefficient of determination; i.e. 1-(MSE / variance of observations))
and RMSE. Thus, each observation (measurement of OP) was compared
with 10% of model predictions for the same site. We also compared
HOV following RSS with LOOCV (R2 and RMSE) on the all sites models
as it is commonly used in other studies.

3. Results

3.1. Quality control

Teflon lab blanks and field blanks were included in all areas except
Basel (not available) and treated in the same way in the PM2.5 sus-
pension as described above for all other filters (Table S1; Appendix
SA.1; supporting information). For OPGSH the %CV (coefficient of var-
iation) of analysis was less than 10% with a minimum detection limit of
.3µmoles/L. For OPAA the %CV of analysis was less than 5% with a
minimum detection limit for ascorbic acid of .5 µmol/L. Values of OP in
µmoles/L were converted to µg and subsequently converted to OP
concentrations (m−3).

3.2. Differences related to study area and type of monitoring site

Median OPAA was more than two-fold higher in Turin (93.1 m−3; SD
= 34 m−3) than in Catalonia (44.4 m−3; SD = 31.2 m−3) and the
Netherlands (41.0 m−3; SD = 14.1 m−3), and approximately three-fold
higher in Turin than in London-Oxford (33.2 m−3; SD = 16.1 m−3) and
Basel (28.4 m−3; SD = 5.1 m−3) (Fig. 1). Median OPGSH was more than
two-fold higher in Turin (10.2 m−3; SD = 7.5 m−3) than in Basel
(4.7 m−3; SD = 1.3 m−3), and about three-fold higher in Turin than in
the Netherlands (3.9 m−3; SD = 1.4 m−3) and Catalonia (3.4 m−3; SD
= 4.8 m−3). Although values of OPAA and OPGSH varied by study area
(p< .001), excluding the Turin sites negates any OPGSH variation by
study area (p = .39). In all locations OPTOTAL was dominated by OPAA;
median OPAA is approximately 15, 11, 9 and 6 times higher than
median OPGSH in Catalonia, the Netherlands, Turin, and Basel (OPGSH

not available for London-Oxford), respectively. The large differences in
both OPAA and OPGSH between Turin and other locations were not re-
lated to differences in the ratio of either metric to PM2.5 (μg m−3),

which was similar in magnitude for OPAA in Turin, Catalonia and
London-Oxford, and similar for OPGSH in Turin, Basel and Catalonia.

Measured OPAA and OPGSH at street (S) sites were on average 1.5
(p< .01) and 1.4 (p> .05) times higher than at urban background
(UB) sites, and 2.0 (p< .01) and 2.2 (p< .05) times higher than at
regional background (RB), respectively (Table S6, supporting in-
formation). Turin is the only area where there was a non-significant
difference (p> .05) between S and UB sites, hence the overlap in IQRs
for site type (Fig. 1). With the exception of the Netherlands, all ratios of
S/UB for OPGSH for individual areas were non-significant (p> .05).
Ratios between site types for OPAA and OPGSH were broadly comparable
to those for PM2.5absorbance and NO2, whereas Cu and Fe had sub-
stantially higher ratios for both S/UB and UB/RB (Table S6; supporting
information).

3.3. Correlations between measured pollutant metrics

Correlations between OPAA and OPGSH and PM2.5, PM2.5 absorbance,
NO2, and elemental constituents were highly variable between areas
(Table 1). OPAA was on average (of correlations from each area) mod-
erately correlated (.48) with OPGSH. The average correlations across all
areas were strongest but still moderate (r ~.6) for OPAA and PM2.5,
PM2.5 absorbance, NO2, Cu and Fe, being strongest in London-Oxford,
and weakest in Basel, Catalonia and Turin. Correlations of OPGSH and
other metrics were generally weak, in the region of ~.3 for PM2.5,
PM2.5absorbance, NO2, Cu and Fe, and non-significant by individual
area, except in the Netherlands. In pooling data from all areas, OPAA

explained about 50% of the variability (R2) (r ~ .7) in OPGSH, PM2.5,
PM2.5absorbance, NO2, Cu and Fe.

3.4. LUR models

Distributions of OPAA and OPGSH were near-normal so we did not
undertake data transformation (e.g. Ln) prior to model development.

3.4.1. OPAA LUR models
Values of R2 for the model using all sites (Table 2) were .44 (Basel),

.64 (Catalonia), .84 (London-Oxford), .60 (the Netherlands), and .56
(Turin); see also Table S4, supporting information. All models for OPAA

included at least one variable on traffic load and/or road length ac-
companied in some cases by additional variables on population dis-
tribution (the Netherlands), urban green space/natural land (Catalonia
and Turin), and residential land (Basel). In Catalonia site-specific, fixed
factors were included for the reference sites (i.e. describing background
concentrations) relating to the three distinctive areas where monitoring
sites were located.

3.4.2. OPGSH LUR models
For OPGSH (Table 3 and Table S5, supporting information) values of

initial model R2 were .51 (Catalonia), .22 (Turin) and .44 (the Neth-
erlands). Models included at least one variable on traffic with the ad-
dition of semi-natural land (the Netherlands) or industrial land (Turin).
It was not possible to develop a statistically significant model for Basel,
and for London-Oxford no model was possible due to the lack of annual
average measurements on OPGSH.

3.4.3. Combined areas LUR models
Initial combined areas models using linear mixed effects (i.e.

random intercepts on a variable defining country) were created for
OPAA (R2 = .65) and OPGSH (R2 = .39). Most of the explained variance
was due to study area: adjusted R2 is .21 and .07 for the respective
models without study area. In both cases the main variables are traffic
load on major roads within a 50 m circular buffer with OPAA having
additional variables on length of all roads and semi-natural land. For
combined-areas, regression without fixed factors did not yield statisti-
cally significant models. Residuals from area-specific and combined

Fig. 1. Boxplots of measured annual average concentration (% consumption) of OPAA and
OPGSH by study area.
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models were normally distributed and all area-specific and combined-
areas models produced values of Cook's D<1 with the exception of one
monitoring site in Turin.

3.4.4. Repeated sub-sampling
In RSS, median values of R2 for OPAA (Table 2) and OPGSH (Table 3)

were either the same or very close (< 5% change) to those from models
using all monitoring sites, but using different combinations of sites
there was substantial variation in R2 especially in locations with lower

numbers of monitoring sites (e.g. 20). None of the variables in the in-
itial Catalonia model for OPGSH were statistically significant in any
combination of monitoring sites in RSS (Table 3). The proportion of
values of Cook's D>1 were very low (< 2%) with the exception of the
OPAA model for Turin (~6%). These sites did not significantly affect the
magnitude of coefficients for the different variables so they were re-
tained. In RSS, most variables selected for initial models remained
significant (Fig. S1, supporting information) and where variables were
dropped there were no new variables or changes to buffer sizes of

Table 1
Pearson (R) correlation of measured values of OPAA (n = 138) and OPGSH (n = 114) with measured values of PM2.5, PM2.5 absorbance, NO2, Cu, Fe, K, Ni, S, Si, V, and Zn: the average
(min, max) of all areas, each area individually (Basel, Catalonia, London-Oxford (only OPAA), the Netherlands, and Turin), and all areas pooled.

Basel Catalonia London-Oxford The Netherlands Turin Average (min, max) of all areasa All areas pooled

OPAA OPGSH OPAA OPGSH OPAA OPGSH OPAA OPGSH OPAA OPGSH OPAA OPGSH OPAA OPGSH

N 20 20 39 35 20 - 39 39 20 20 138 114
OPGSH .20 - .67b - - - .42 .61 - .48 (.20, .61) - .71c

PM2.5 .32 .21 .43 .11* .81 - .57 .42 .51 .37* .59 (.32, .81) .28 (.11, .42) .73 .52
PM2.5absorbance .55 .30 .54 .13* .84 - .70 .41 .54 .37* .63 (.54, .84) .30 (.13, .41) .72 .40
NO2 .49 .35 .55 .15* .88 - .75 .39 .43* .43* .62 (.43, .88) .33 (.15, .43) .62 .37
Cu .35 −.17 .45 .14* .93 - .71 .47 .53 .42* .59 (.35, .93) .22 (−.17, .47) .71 .46
Fe .74 .05 .52 .25* .95 - .72 .43 .56 .50 .70 (.52, .95) .31 (.05, .50) .71 .48
K −.20 .13 .29* .13* .18* - −.02* .15* .22* −.10* .09 (−.20, .29) .08 (−.10, .13) .62 .48
Ni .09 −.07 .15* −.23* .02* - .32* −.08* .36* .50 .19 (.02, .36) .03 (−.23, .50) .38 .06*
S .67 .37 .34 −.13* .09* - .23* −.05* .45 .09* .36 (.09, .67) .07 (−.13, .37) .57 .21
Si .59 −.39 .36 .12* .58 - .45 .42 .36* .38* .47 (.36, .59) .13 (−.39, .42) .57 .35
V −.24 −.26 .02* −.38 .31* - .29* −.02* .32* .11* .14 (−.24, .32) −.14 (−.38, .11) .10* −.22
Zn .37 .14 .20* −.16* .67 - −.04* .02* .54 .32* .35 (−.04, .67) .08 (−.16, .32) .34 .06*

Values in bold are significant at the 95% level (p> .05)
a Average of within area correlation (hence levels of significance not applied).
b N = 35.
c N = 118.

Table 2
Performance statistics for the OPAA LUR models.

Model stage Statistic Basel Catalonia London-Oxford The Netherlands Turin Combineda

Derivation using all
sites

N (sites) 20 39 20 39 20 138
Variables ROADLENGTH25 REFSITE TRAFLOADMAJOR50 TRAFLOAD50 TRAFLOADMAJOR100 TRAFLOADMAJOR50

LDRES5000 TRAFLOADMAJOR100 ROADLENGTH1000 POP5000 URBGREEN500 ROADLENGTH500
UGNL5000 NATURAL1000 NATURAL5000

R2 0.44 0.64 0.84 0.60 0.56 0.65
RMSE 3.77 18.76 6.53 8.82 22.42 18.35
NRMSE 0.13 0.35 0.20 0.20 0.23 0.36

LOOCV R2 0.32 0.58 0.82 0.54 0.31 0.60
RMSE 4.14 19.98 6.90 9.33 26.67 19.60

Repeated sub-sampling
(RSS)b

N (models) 20 39 20 39 20 138
Min R2 0.35 0.53 0.50 0.48 0.40 0.60
10th%ile R2 0.36 0.60 0.79 0.55 0.45 0.63
Median R2 0.43 0.64 0.84 0.60 0.53 0.65
90th%ile R2 0.65 0.67 0.87 0.64 0.63 0.68
Max R2 0.70 0.70 0.89 0.68 0.68 0.72
Min RMSE 2.78 17.44 5.58 7.69 19.71 16.66
10th%ile
RMSE

2.98 18.08 5.99 8.32 20.82 17.48

Median
RMSE

3.86 18.80 6.70 8.85 22.65 18.32

90th%ile
RMSE

3.99 19.48 6.92 9.14 23.66 18.94

Max RMSE 3.99 19.82 6.93 9.22 23.90 19.27
% Cook's
‘D’>1

0 0 1.9 0 5.6 0

Hold-out validation
(HOV)

N (sites) 40 156 40 156 40 1918
R2 0.21 0.58 0.45 0.53 0.13 0.60
RMSE 4.47 19.90 11.41 9.54 30.52 19.62
NRMSE 0.16 0.37 0.34 0.22 0.31 0.37

Variable names followed by values of radii (m) of circular buffers: LDRES – low density residential land; NATURAL – semi-natural and forested areas; POP – number of inhabitants;
REFSITE – ID of reference site (Catalonia had three reference sites); ROADLENGTH – length of all roads; TRAFLOAD – traffic load on all roads; TRAFLOADMAJOR – traffic load on all
major roads; UGNL – sum of URBGREEN and NATURAL; URBGREEN – urban green space.

a Combined model includes all areas using linear mixed effects to derive a model where random intercepts are used to differentiate between the effect of country.
b Variables from the initial models are repeatedly offered into regression analysis using a sub-set of measurement sites (N-10%) until all sites have been re-entered the maximum

number of times (e.g. for 20 sites, N-10% is a maximum of 2 entries per site yielding 20 models).
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existing variables. Boxplots of the variability in p-values for individual
variables for models in RSS are shown in Fig. S2 (supporting informa-
tion).

3.4.5. Hold-out validation
Compared to values returned in the models using all sites, there was

moderate (i.e. < 20%) inflation in HOV RMSE for Basel, Catalonia, the
Netherlands, and combined-areas OPAA models (Table 2) and all HOV
OPGSH models. HOV RMSE increased by 36% and 75% in Turin and
London-Oxford, respectively, hence the associated substantial drop in
values of HOV R2 (Table 3). Values of R2 were within 6–7% (of 100%
possible explained variability) of those from the initial model in Cata-
lonia (.58) and the Netherlands (.53) and 5% for the combined model
(.60) for OPAA. Substantial reductions in values of R2 from initial
models were seen in Basel (.21), Turin (.13), and London-Oxford (.45).
HOV for OPGSH yielded reduction of the total possible explained var-
iance (in R2) by 13% in the Netherlands (.31) and 12% in the combined
model (.27). The model for Turin for OPGSH performed very poorly (R2

= −.03) in HOV. Scatterplots of measured versus modelled OP metrics
for HOV are shown in Fig. S3 (supporting information).

4. Discussion

Substantial spatial variation in estimated annual average values of
OPAA and OPGSH within- and between-site type (S, RB, UB) and between
countries was identified. We developed and evaluated OPAA models for
five areas but only produced two single area models for OPGSH, one of
which (Turin) performed very poorly in HOV. Combined-areas model-
ling produced models dominated by area effects with weak local pre-
dictors. This is the first time LUR models have been developed for OPAA

and the second time for OPGSH (Yanosky et al., 2012).

4.1. Comparison between measurements of OP by site type and with other
metrics

We found ratios of 1.5 and 2.0 for OPAA and 1.4 (but not statistically
significant) and 2.2 for OPGSH between S/UB and S/RB sites, respec-
tively, using a much larger and geographically diverse number of
measurements sites than have been previously published for OP. In the
Netherlands (Yang et al., 2015b), using the same sites and extracts from
the same PM2.5 filters as in the present study, ratios for S/UB are 1.2
(p< .05) and 1.4 (p< .01) for OPDTT and OPESR, respectively. Our
ratios for S/UB are of similar magnitude for the Netherlands (Table S6,
supporting information) for both OPAA and OPGSH. Ratios for S/UB are,
in contrast, lower (< 1.2) for OPDTT in a ten area study across Europe
(Jedynska et al., 2017) with some sites showing higher values of OPDTT

at UB sites than S sites, with little variance overall in the difference in
OPDTT between UB and RB sites. There is a tendency for measurements
of OPDTT to have relatively low contrasts between S and UB sites
(Janssen et al., 2014; Jedynska et al., 2017; Yang et al., 2015a, 2015b).
Other metrics such as OPAA and OPESR may therefore have greater
potential for differentiating pervasive sources of exposures such as road
traffic in near-roadway studies. OPDTT may be useful in explaining
spatial contrasts in other sources such as biomass burning (Bates et al.,
2015; Fang et al., 2016) and may relate better to background PM mass
and organic carbon than road traffic components of PM (Fang et al.,
2016; Janssen et al., 2014). We and others (Yang et al., 2015b) found
larger spatial gradients for OP than PM mass within urban areas. In
applying data in an epidemiologic analysis, Weichenthal et al. (2016)
found that spatial gradients in PM2.5 oxidative burden (OPAA and
OPGSH) were higher than for PM2.5 mass concentrations.

We found that on average (i.e. the average of correlations from each
area) OP explains< 40% (r ~.6) of the variability in measurements of
other metrics (Table 1). In Yang et al. (2015a), based on the same PM2.5

samples as used in the present study (n = 40), correlations were

Table 3
Performance statistics for the OPGSH LUR models.

Model stage Statistic Basel Catalonia London-Oxford The Netherlands Turin Combineda

Derivation using all sites N (sites) 20 35 - 39 20 114
Variables REFSITE INTMAJORINVDIST TRAFLOAD1000 TRAFLOADMAJOR50

TRAFLOADMAJOR100 NATURAL5000 INDUSTRY1000
R2 - 0.51 - 0.44 0.22 0.39
RMSE - 3.35 - 1.07 6.61 3.80
NRMSE - 0.67 - 0.27 0.60 0.68

LOOCV R2 - 0.38 - 0.35 0.05 0.28
RMSE - 3.74 - 1.14 7.61 4.13

Repeated sub-sampling (RSS)b N (models) - * - 39 20 114
Min R2 - * - 0.23 0.12 0.25
10th%ile R2 - * - 0.38 0.13 0.33
Median R2 - * - 0.44 0.20 0.36
90th%ile R2 - * - 0.49 0.29 0.40
Max R2 - * - 0.59 0.32 0.46
Min RMSE - * - 0.92 6.14 3.34
10th%ile RMSE - * - 1.02 6.22 3.65
Median RMSE - * - 1.09 6.54 3.91
90th%ile RMSE - * - 1.12 6.62 4.03
Max RMSE - * - 1.13 6.64 4.06
% Cook's ‘D’>1 - * - 0.3 1.1 0

Hold-out validation (HOV) N (sites) - * - 156 40 1243
R2 - * - 0.31 −0.03 0.27
RMSE - * - 1.17 7.85 4.14
NRMSE - * - 0.29 0.71 0.74

INTMAJORINVDIST – product of inverse distance to- and traffic intensity on- nearest major road. Variable names followed by values of radii (m) of circular buffers: NATURAL – semi-
natural and forested areas; INDUSTRY – area of industrial land; REFSITE – ID of reference site (Catalonia had three reference sites); TRAFLOAD – traffic load on all roads;
TRAFLOADMAJOR – traffic load on all major roads.

a Combined model includes all areas using linear mixed effects to derive a model where random intercepts are used to differentiate between the effect of country.
b Variables from the initial models are repeatedly offered into regression analysis using a sub-set of measurement sites (N-10%) until all sites have been re-entered the maximum

number of times (e.g. for 20 sites, N-10% is a maximum of 2 entries per site yielding 20 models).
* Statistically significant model could not be derived.
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notably higher (R: .72–.92) between OPESR and some metrics (PM2.5,
PM2.5absorbance, NO2, Cu, Fe) but not for OPDTT (R< .7), and this
pattern did not especially change when comparing these metrics in
terms of predicted residential exposures from LUR models. In our study,
(Table 1), the highest correlations (.57–.75) were also between OPAA

and PM2.5, PM2.5absorbance, NO2, Cu, Fe (Table 1) but they were no-
tably lower than for OPESR. These results suggest that OPAA and OPESR

in the Netherlands were reacting to different components of PM2.5 that
result in OPAA being more independent of other pollutants (including
PM2.5 mass) than OPESR. Our results also suggest that OPAA should be
able to differentiate exposures to traffic-related air pollution and other
sources.

4.2. LUR model performance

Due to the low number of sites (i.e. 20) in some areas, we repeatedly
built different versions of the all sites models using a sub-sample (RSS)
of all the measurement sites (N-10%), to test the robustness of variables
selected for initial models where we used all sites. K-fold model de-
velopment and evaluation (i.e. the measurement data are systematically
separated into groups of sites, separate models are built for each group,
and each model produced is used to predict on the held-out data each
time) are not new to LUR modelling (Amini et al., 2014; Gulliver et al.,
2013; Wang et al., 2016), but this is the first time such an approach has
been used for OP. We used RSS to select groups (not simply splitting the
data once into groups) of monitoring sites to increase the number of
iterations of models. We chose to use k = 10% for N-k in RSS to provide
a number of models equivalent to the number of measurement sites. We
could have chosen other values of k but felt that a higher proportion of
held-out sites would too greatly reduce the N in those areas where there
was a low number of total measurements sites (e.g. 20). In RSS, values
of R2 for OPAA varied more in terms of inter-decile range (i.e. absolute
difference between the 90th%ile and 10th%ile of values) for areas with
20 sites (Basel = 29%; Turin = 18%) than those with larger numbers of
sites (Catalonia = 7%, the Netherlands = 9%), with the exception of
the London-Oxford (8%). London-Oxford had, however, the largest
range of values of R2 (39%) that relate to the inclusion/exclusion of one
S monitoring site with a substantially higher level of OPAA than other
sites (Fig. S3, supporting information). For OPGSH model, R2 was
weaker and more variable in terms of the inter-decile range with lower
numbers of sites in Turin (16%) than the Netherlands (11%).

The performance of models is thus sensitive to the number of
measurement sites and inclusion/exclusion of specific sites consistent
with findings of other studies (Basagaña et al., 2012; Wang et al., 2012).
We suggest that where monitoring site numbers are low (e.g. 20), RSS
could be used to test variable robustness, and information on the
variability in model performance (R2, RMSE) from RSS and HOV can be
used to inform the “quality” of exposure in epidemiological studies.
Based on RSS and HOV, our models of OPAA worked well in some areas
(Catalonia, the Netherlands, London-Oxford) but not in others (Basel
and Turin). We recommend using the initial model with all sites and
then an average of the permutations (RSS) of the all sites model could
be used in epidemiological studies in sensitivity analysis.

We had less success in developing models of OPGSH, being unable to
produce statistically significant models for Basel (given the relatively
small number of sites and the limited spatial contrasts in OPGSH) and
London-Oxford (due to the lack of measurements). Although we pro-
duced all-sites models for Catalonia and a combined-areas model, these
models became non-significant in RSS and HOV. There is a OPGSH

model for the Netherlands but the performance in HOV was moderate
(R2 = .31). Measurements of OPGSH significantly (p< .05) differ-
entiated UB from RB sites but not S from UB sites, which may explain,
given the localized nature of variables offered in our models, the
weaker performance of OPGSH LUR than OPAA LUR. The only other
study (Yanosky et al., 2012) to develop a model of OPGSH was in
London, UK, based on the amount of GSH lost in a 50 μg mL−1

concentration of suspended PM, using PM10 filters from TEOMmonitors
collected in the period 2002–2006. The spatial model (annual average
based on measurements sites with at least 40 weeks of data) resulted in
a cross-validation R2 of .73. The high value of R2 may relate to the
combined benefits of continuous monitoring for 40 weeks, the number
of monitoring sites (n = 34), large spatial contrasts in OPGSH relative to
source activity, the selected predictors they were able to offer (e.g.
differentiating between emissions of PM from tailpipe and brake/tire
wear), three categories of vehicles (separating light and heavy goods
vehicles, and all other vehicles), and errors that are small relative to
mean OPGSH.

Our combined-areas models for OPAA and OPGSH had large area
effects and a low level of explained variability related to local GIS
predictor variables. Even including study area effects, the combined
OPGSH model performed relatively poorly in HOV (r2 = .27). Based on
the differences in intercepts for some countries (Fig. S3, supporting
information) we also attempted to recreate combined-areas models for
both OPAA and OPGSH by iteratively leaving one area out. It was not
possible, however, to produce statistically significant models for any
combination of areas. A combined OPDTT model produced for ten Eur-
opean areas (Jedynska et al., 2017) using fixed effects on some areas
produced R2 = .26 in LOOCV. Performance of combined models could
be affected by differences in timing of PM2.5 measurements between
areas. In our study PM2.5 measurements were not all made in the same
year: (predominantly in) 2009 for Catalonia and the Netherlands, 2010
for London-Oxford and Turin, 2011 for Basel. Spatial patterns are
known to change between years, especially for regional pollutants such
as PM2.5 (Eeftens et al., 2012b), but we are unable to assess any po-
tential implications of this on our data.

The performance of our models may also be affected by not allowing
spatial predictors to initially change in RSS. In RSS we only allowed
new variables from the full list (Fig. S3) to replace those that were
dropped due to being non-significant (p> .1). Otherwise we did not
allow new variables in RSS as this would have caused a further re-
duction of sites to develop models, meaning only 18 sites for RSS in
some areas. This may have resulted in an inability to represent some
types of source contributions in OP models (e.g. industrial land which
was present only in OPGSH for Turin). Studies (Amini et al., 2014; van
Nunen et al., 2017; Wang et al., 2016) that allowed variables to change
in developing multiple models had the advantage of a larger number of
sites (> 40). It may also be the case that model performance was
compromised by being limited to one reference site for each study area
(or each distinctive area in Catalonia). A single reference site may not
always be sufficient to provide background values of OP, which may
explain why we had negative temporally adjusted values of OP for some
filters which resulted in a reduction of sites in some areas (e.g. four sites
removed in Catalonia for OPGSH). Values of R2 and RMSE from LOOCV
(Tables 2, 3) were notably higher (e.g. 11–37% for OPAA) than those
from HOV (following RSS) in areas with 20 sites but almost the same in
areas with>= 39 sites. Furthermore, LOOCV statistics are presented
for OPGSH in Catalonia whereas none of the variables remained sig-
nificant in RSS. This suggests that studies with low numbers of sites may
have overestimated model performance if using LOOCV. In reflecting
on the performance of models, we reproduced models where the p-
value for variable inclusion was relaxed to .1. This did not result in
improvements, as in a few instances where we were able to produce
models with different combinations of variables, LOOCV, RSS and HOV
performance was worse than with the original inclusion criteria.

There are a number of other possible reasons for the overall rela-
tively low performance of our models. We noted that OPAA and OPGSH

were, at best, moderately correlated to other pollutants for which LUR
models have been successfully developed. It may be that OPAA and
OPGSH relate to some other sources and atmospheric processes that we
have not accounted for in our models such as biomass/wood burning.
We were not aware of any significant influence of biomass/wood
burning close to sites used in this study, but there may have been some
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diffuse emissions from these sources that we were unable to represent
in our models. Spatial contrasts of OPGSH are also relatively low, with a
higher level of uncertainty (ratio of limit of detection of OPGSH to es-
timated values of OPGSH) than OPAA, which may have exacerbated the
influence of relatively large errors on OPGSH model derivation. We also
attempted to create models for OPTOTAL but this did not produce dif-
ferent models than for OPAA as ~90% of measured OPTOTAL is OPAA.
The question also arises whether our filter based OP measurements
provided a sufficiently precise and reliable measure of the oxidative
property of ambient air as do measurements of particle mass or gaseous.
If the time between deposition of particles on filters and/or the storage
and handling of filters affect the oxidative properties, this may add non-
systematic variation to the measures ultimately used in the models.
Data quality of GIS variables offered into LUR models is unlikely to
explain model performance as they have successfully been used to de-
velop models for other pollutant metrics (Beelen et al., 2013; de Hoogh
et al., 2013; Eeftens et al., 2012a).

4.3. Comparison with other OP LUR modelling studies

Our work is the first to develop LUR models for OPAA, whilst the
only other study (Yanosky et al., 2012) to develop LUR models for
OPGSH was a model for 34 sites in London, UK, where traffic variables
(NOX exhaust emissions from heavy goods vehicles within 100 m and
PM10 brake and tire emissions within 50 m) were the sole spatial pre-
dictors in the model. Information on road traffic also provided the
highest partial R2 of variables included in LUR (40 sites) for OPDTT (.33
out of a total of .55) and OPESR (.37 out of a total of .64) in the Neth-
erlands (Yang et al., 2015a), with good performance in model evalua-
tion (LOOCV R2 of .47 and .60 for OPDTT and OPESR, respectively). In
contrast none of the OPDTT LUR models in five European areas (Athens,
Catalonia, the Netherlands, Oslo, Paris) included predictor variables for
road traffic (Jedynska et al., 2017); in an additional five areas it was not
possible to develop statistically significant models. Generally poor
model performance was attributed to low levels of variability in OPDTT,
low numbers of sites in each area (16 in the Netherlands), and a lack of
GIS variables specific for OPDTT. This again points to the number of
monitoring sites being crucial in model development, hence the need
for a methodology, such as RSS applied here, to make an assessment of
the robustness of variables included in models where the number of
sites is especially low. Nevertheless, in general, LUR performance is not
likely to be as good for OP as for pollutants such as NO2 and PM2.5 /
PM10 where values of LOOCV or HOV R2 often exceed .7 (Beelen et al.,
2013; Eeftens et al., 2012a; Liu et al., 2016). OP may, however, have
the capability to differentiate exposures for S, UB, and RB sites where
valid LUR models can be produced.
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