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Abstract 23 

Pharmaceuticals such as non-steroidal anti-inflammatory drugs (NSAIDs) have 24 

been found in the marine environment. Although there is a large body of evidence that 25 

pharmaceutical drugs exert negative impacts on aquatic organisms, especially in the 26 

freshwater compartment, only limited studies are available on bioconcentration and the 27 

effects of NSAIDs on marine organisms. Bivalves have a high ecologic and socio-28 

economic value and are considered good bioindicator species in ecotoxicology and risk 29 

assessment programs. Therefore, this review summarizes current knowledge on the 30 

bioconcentration and the effects of three widely used NSAIDs, diclofenac, ibuprofen 31 

and paracetamol, in marine bivalves exposed under laboratory conditions. These 32 

pharmaceutical drugs were chosen based on their environmental occurrence both in 33 

frequency and concentration that may warrant their inclusion in the European Union 34 

Watch List. It has been highlighted that ambient concentrations may result in negative 35 

effects on wild bivalves after long-term exposure. Also, due to food-chain transfer, 36 

higher trophic level organisms may be impacted due to food-chain transfer (e.g., 37 

humans are shellfish consumers). Overall, the three selected NSAIDs were reported to 38 

bioconcentrate in marine bivalves, with recognized effects at different life-stages, 39 

immune responses being the main target of a long-term exposure. The studies 40 

selected support the inclusion of diclofenac on the European Union Watch List and 41 

highlight the importance of conducting research for ibuprofen and paracetamol due to 42 

their demonstrated negative effects, under laboratory conditions, on marine bivalves 43 

exposed to environmental realistic concentrations.  44 

 45 

Keywords: Pharmaceuticals, marine environment, bivalves, metabolism, sub-lethal 46 

effects.  47 
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1. ECOTOXICOLOGICAL IMPLICATIONS OF THE 48 

OCCURRENCE OF PHARMACEUTICAL DRUGS IN THE MARINE 49 

ENVIRONMENT 50 

Pharmaceuticals are compounds used in human and veterinary medicine which, 51 

because of their manufacture, application and inappropriate disposal, combined with 52 

low degradation rates for some of them in Wastewater Treatment Plants (WWTPs), are 53 

present in the aquatic environment (Arpin-Pont et al., 2016; Mezzelani et al., 2018a; 54 

Monteiro and Boxall, 2010; Pazdro et al., 2016). The contamination of water with 55 

pharmaceutical residues is considered an emerging environmental concern in the field 56 

of water policy (Directives 2013, 2008, 2000), suggesting a careful monitoring for some 57 

of these compounds to determine the risk that they may pose to wildlife. 58 

In the aquatic milieu, these compounds are present in freshwater and marine 59 

water bodies, in surface waters, wastewater effluents, groundwater and even in 60 

drinking water, at concentrations ranging between a few ng/L and up to several μg/L 61 

(Brausch et al., 2012; Mezzelani et al., 2018a; Runnalls et al., 2010). Although 62 

pharmaceuticals have been found in seawater from marine/coastal environments, 63 

usually within the same wide range of concentrations as the ones measured in 64 

freshwater environments, fewer studies are available on the occurrence of 65 

pharmaceuticals in the marine system with regard to freshwater ecosystems (Álvarez-66 

Muñoz et al., 2015; Alygizakis et al., 2016; Arpin-Pont et al., 2016; Ebele et al., 2017; 67 

Gaw et al., 2014; Mezzelani et al., 2018a). Furthermore, pharmaceutical drugs have 68 

also been detected in aquatic organisms belonging to different levels of the ecological 69 

hierarchy from algae, bivalves, crustaceans to fish (Álvarez-Muñoz et al., 2015; Ebele 70 

et al., 2017; Mezzelani et al., 2018a). Among these groups, bivalves are of interest due 71 

to their socio-economic value, as they are highly consumed shellfish (Voultsiadou et 72 

al., 2010). Thus, the ingestion of bivalves contaminated with drugs may pose a health 73 

risk to the human population (e.g., potential antibiotic resistance) (Rodrigues et al., 74 

2019). Moreover, bivalves have been commonly used as bioindicator species as they 75 
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exhibit adequate characteristics such as a wide distribution, bioaccumulation potential, 76 

well-known life-cycles, a sedentary lifestyle and filter feeding activity that suit their use 77 

in ecotoxicology and monitoring programs (McEneff et al., 2014; Powell and Cummins, 78 

1985; Viarengo and Canesi, 1991). It has already been demonstrated that several 79 

drugs induce negative impacts on bivalves, due to their biological activity, and high 80 

liposolubility for some of them, with most of the literature focusing on effects on 81 

subcellular and cellular processes (Fabbri and Franzellitti, 2016; Mezzelani et al., 82 

2018a; Prichard and Granek, 2016). Alterations in immunological, antioxidant, 83 

detoxification, neurological and metabolic parameters (either as enzymatic activity 84 

and/or gene expression/transcription), as well as DNA and other biomolecules are 85 

frequently considered endpoints (Gonzalez-Rey and Bebianno, 2014; Lacaze et al., 86 

2015; Martin-Diaz et al., 2009). However, at the individual level, changes in growth, 87 

reproduction and behavior (e.g., filter-feeding and respiratory rates) were reported 88 

(Honkoop et al., 1999; Solé et al., 2010). 89 

Among the pharmaceutical drugs found in the aquatic environment, the non-90 

steroidal anti-inflammatory drugs (NSAIDs): ibuprofen (IBU) and diclofenac (DCF), as 91 

well as the analgesic drug paracetamol (PAR) have been detected with high frequency 92 

in the water bodies of different countries, as a consequence of their high consumption 93 

(reviewed in Mezzelani et al., 2018a). PAR, although it is structurally not a NSAID, 94 

shares its analgesic and antipyretic properties with this class of drugs (Jóźwiak-95 

Bebenista and Nowak 2014) and for this reason is included in the present study. DCF 96 

was already included in the first surface water EU Watch List, published in 2015, 97 

together with other drugs such as three hormones (17-β-estradiol, 17-α-ethinylestradiol 98 

and estrone), and three antibiotics of the macrolide group (erythromycin, clarithromycin 99 

and azithromycin) (EC, 2015). NSAIDs are applied to humans to alleviate pain and 100 

inflammation, through the inhibition of the reaction catalyzed by the cyclo-oxygenase 101 

enzymes (COX-1 and COX-2), decreasing biosynthesis of prostaglandins and 102 

thromboxane from arachidonic acid (Bacchi et al., 2012). In bivalves, the exposure to 103 
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NSAIDs has also been responsible for the modulation of COX enzymes (Bebianno et 104 

al., 2017; Courant et al., 2018; Milan et al., 2013). 105 

DCF, one of the most popular “pain-killers”, has an estimated annual global 106 

consumption of 1443 tons (Acuña et al., 2015). The removal rate of DCF in WWTPs 107 

varies between studies; however, maximal removals of 75% have been reported 108 

(Bueno et al., 2012; Gómez et al., 2007; Zhang et al., 2008). In the marine 109 

environment, this drug has been found at concentrations up to 15 μg/L (Mezzelani et 110 

al., 2018a). In marine bivalves, DCF was found at concentrations between 0.5 and 4.5 111 

ng/g dry weight (DW) (2 and 18 ng/g WW, conversion factor of 4, according to Álvarez-112 

Muñoz et al., 2018, 2019) in mussels Mytilus galloprovincialis and M. edulis collected 113 

along the Portuguese Atlantic coast (Cunha et al., 2017). Capolupo et al. (2017) 114 

reported DCF concentrations between 2.1 and 4.6 ng/g wet weight (WW) in mussels M. 115 

galloprovincialis transplanted to a costal lagoon in Ravenna (Italy), which is in the same 116 

range as concentrations determined by Cunha et al. (2017) in Portugal.  117 

IBU has a consumption rate of about 163 tons per year in the European Union 118 

(Sebastine and Wakeman, 2003). Although this drug was found to be efficiently 119 

removed (>70%) in WWTPs (Bueno et al., 2012), it has been detected in the marine 120 

environment at concentrations up to 2 µg/L (Mezzelani et al., 2018a). Limited data is 121 

available on the detection of IBU in wild populations of marine bivalves, however, 122 

Mezzelani et al. (2016a) detected this drug at approximately 9 ng/g DW (36 ng/g WW) 123 

in mussels, M. galloprovincialis, collected in the Portonovo bay in the Italian Central 124 

Adriatic Sea.  125 

PAR is one of the leading substances in terms of use, with a consumption 126 

reaching thousands of tons per year. Sebastine and Wakeman (2003) determined a 127 

total consumption of PAR in the United Kingdom in 2000 which was 1136 tons. This 128 

drug has a high removal rate in WWTPs (> 90%) (Moreno-González et al., 2015), but 129 

has still been detected in seawater near the discharge of wastewater effluents with 130 

concentrations up to 200 µg/L, as reported by Togola and Budzinski (2008). However, 131 
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typically, the concentrations of PAR found in marine waters are in the high ng/L 132 

concentration range (Célic et al., 2019; Mijangos et al., 2018; Vidal-Dorsch et al., 133 

2012). Regarding the occurrence of PAR in natural populations of marine bivalves, 134 

concentrations up to 115 ng/g DW (60 ng/g WW) were reported in mussels, M. edulis, 135 

collected on the Belgian coast (Wille et al., 2011). 136 

Considering worldwide distribution, concentrations, the high frequency of DCF, 137 

IBU and PAR occurrence and the inclusion of DCF in the Watch List, the aim of the 138 

present review is to gather published laboratory evidence on bioconcentration and the 139 

effects of these drugs on marine bivalves. Google Scholar, Scopus, ScienceDirect and 140 

Web of Science were selected as databases for the literature search. The 141 

methodological approach selected articles by using, for each pharmaceutical, various 142 

combinations of keywords dealing with their effects on marine bivalves, these were: 143 

pharmaceutical drugs, non-steroidal anti-inflammatory drugs, marine environment, 144 

effects, toxicity, bioconcentration, metabolism, biomarkers and marine bivalves. As 145 

articles on this review topic are available only since 2010, the published literature 146 

selected was from 2010-2020.  147 

 148 

  149 
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2. DCF, IBU AND PAR BIOCONCENTRATION, 150 

METABOLISM AND EFFECTS ON LABORATORY EXPOSED 151 

MARINE BIVALVES 152 

Bivalves are exposed to contaminants discharged into the marine system near 153 

coastal sites where they naturally occur and where they can  also be  harvested. Due 154 

to their filter-feeding habits, they can concentrate pharmaceuticals drugs present in the 155 

water column in their tissues (e.g., gills, digestive gland) (McEneff et al., 2014; 156 

Viarengo and Canesi, 1991). Thus, they provide valuable information not only on the 157 

exposure but also on the effects of the drugs under study (DCF, IBU, PAR), 158 

contributing to the monitoring of the risk they represent to aquatic organisms and also 159 

to humans as shellfish consumers. 160 

 161 

2.1 BIOCONCENTRATION AND METABOLISM OF DCF, IBU AND 162 

PAR IN LABORATORY EXPOSED BIVALVES 163 

 164 

 2.1.1 DCF, IBU and PAR bioconcentration in marine bivalves 165 

The tissue concentrations and bioconcentration factors (BCFs) of the NSAIDs 166 

DCF, IBU and PAR reported in marine bivalves, are summarized in Table 1. Ericson et 167 

al. (2010) reported that DCF was accumulated in M. trossulus exposed for 8 days to 1 168 

µg/L (180 ng/g WW) and 10,000 µg/L (82,000 ng/g WW). Despite the expected higher 169 

accumulation at higher exposures, the BCF was reduced from 180 to 10 L/kg WW at 170 

the highest concentration. In the same species (M. trossulus), Świacka et al. (2019) 171 

related the concentration of DCF to the length of exposure: DCF concentration in 172 

mussels increased from 0 to ~8 µg/g DW (~2,000 ng/g WW) over 3 days and 173 

decreased by a factor of 9 at the end of the exposure period (day 5). Despite the 174 

nominal concentration of 133.3 µg/L, the authors measured the concentration of DCF in 175 

the exposure medium, finding that at a concentration of 102 (day 1) and 15 µg/L (day 176 

5), the corresponding BCF in mussels increased along the 5-day exposure by a factor 177 
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of 3; and after 5 days depuration DCF was approximately 10 fold lower compared to 178 

day 1. Ericson et al. (2010) described a similar BCF trend, with higher values at lower 179 

exposure concentrations. In M. galloprovincialis mussels exposed for 3 days to DCF 1 180 

and 100 µg/L, this drug was bioconcentrated in their tissues, in a dose dependent 181 

manner (1 µg/L: 0.026 mg/kg DW (6.5 ng/g WW); 100 µg/L: 2.08 mg/kg DW (520 ng/g 182 

WW)) (Courant et al., 2018). The previous results were coincident with values reported 183 

by Świacka et al. (2019) within a comparable time frame. In the same mussel species, 184 

Bonnefille et al. (2017) showed DCF levels of 2,008 µg/kg DW (502 ng/g WW) at 100 185 

μg/L and 7,343 µg/kg DW (1,836 ng/g WW) at 600 μg/L. However, only a slight 186 

difference of 1.4-fold in BCF was obtained, with higher BCF values at the lowest 187 

exposure concentration. In a comprehensive study considering the three targeted 188 

NSAIDs, M. galloprovincialis were exposed to 25 μg/L of each drug for 14 days 189 

(Mezzelani et al., 2016a). After this period, mussels showed a DCF tissue 190 

concentration of 14.9 ng/g DW (3.7 ng/g WW) and 9-fold lower IBU concentration, 191 

while PAR was not detectable. In another parallel study by the same authors, carried 192 

out with the same length of exposure but with 50-fold lower drug concentrations, only 193 

DCF was quantified in the mussel tissue, while the other drugs were not detected. 194 

Comparing both studies, the 50-fold lower water DCF levels resulted in a 3-fold lower 195 

tissue concentration but 16-fold higher BCF value in mussels under the lowest dose 196 

(0.5 µg/L). More recently, Mezzelani et al. (2018b), using the same mussel species, 197 

demonstrated that a longer exposure (60 days) to DCF and IBU at the environmentally 198 

relevant water concentration of 2.5 µg/L resulted in different bioaccumulation patterns 199 

for both drugs: IBU was accumulated 16-, 7- and 20-fold more than DCF after 14, 30 200 

and 60 days, respectively. These results differ from the trend described at 25 µg/L by 201 

Mezzelani et al. (2016a) for a comparable exposure period (14 days), in which 202 

bioaccumulation of IBU was 9-fold lower than DCF. With regard to the time trend in 203 

drug uptake over the 60-day exposure period, Mezzelani et al. (2018b) found an 204 

increase in DCF tissue concentrations and its associated BCF until the mid-term of the 205 
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exposure (14 days) and then a decrease towards the end (60 days). Higher fluctuations 206 

on BCFs were associated with drug presence (16-fold, at 0.5 and 25 µg/L) rather than 207 

length of exposure (1.4-fold at 14 with 60 days, at DCF of 2.5 µg/L) (Mezzelani et al., 208 

2018b, 2016b). Overall, Mezzelani et al. (2018b, 2016a, 2016b) studies evidenced that 209 

a 50-fold (0.5 and 25 µg/L) and 10-fold (2.5 and 25 µg/L) difference in DCF 210 

concentration was reflected only in slight changes in BCF values. In the case of IBU, 211 

the same authors (Mezzelani et al., 2018b, 2016a) revealed that tissue concentrations 212 

and associated BCF in exposed mussels decreased by a 159-fold factor with 213 

increasing doses (2.5 to 25 µg/L) after 14 days but only a slight increase (1.7-fold) was 214 

revealed over time (from 14 to 60 days). Recent studies conducted by Freitas et al. 215 

(2019a, 2019b) reported a BCF for DCF between 7.4 and 10.1 L/kg WW in M. 216 

galloprovincialis exposed for 28 days to 1 µg/L. These results together with those by 217 

Bonnefille et al. (2017), Ericson et al. (2010) and Mezzelani et al. (2018b, 2016b) 218 

coincide on higher BCF values at lower DCF concentrations. The decrease of BCF 219 

values at higher and less realistic DCF exposure concentrations may be possibly 220 

related with a reduction in the filtration rate, a response already reported to occur in 221 

bivalves exposed to pharmaceutical drugs (Solé et al., 2010). At lower exposure 222 

concentrations, possibly, the pharmaceutical drug is not considered “stressful” and 223 

thus, the rate of accumulation is maintained similar to control conditions, resulting in 224 

higher BCFs. In Table 1, differences in BCF values between mussel species are also 225 

evidenced. That is, at a comparable DCF dose, 18-fold higher BCF was measured in 226 

M. trossulus in comparison with M. galloprovincialis, possibly revealing different 227 

mechanisms of drug uptake, detoxification and excretion in the two species (Ericson et 228 

al., 2010; Freitas et al., 2019b), but also depending on the organisms’ condition (e.g., 229 

age, size, nutritional status). However, more studies with different mussel species 230 

exposed to similar conditions are necessary to properly assess this issue. In a recent 231 

study (Costa et al., 2019), DCF was accumulated in the tissues of the clams Ruditapes 232 

philippinarum and R. decussatus exposed to 1 µg/L for 7 days. Comparing both 233 



10 

 

species, R. philippinarum accumulated 2-fold more DCF than R. decussatus. When 234 

comparing BCFs between clams and mussels, values reported for clams after 7-day 235 

exposure were comparable to those found in mussels for the same DCF concentration 236 

but when exposed for 28 days (Freitas et al., 2019a, 2019b). Another study, with 237 

oysters Crassostrea gigas, exposed to IBU for 7 days revealed tissue bioconcentration 238 

was dependent on the exposure concentration (133 times higher at 100 than at 1 µg/L) 239 

but with similar BCFs (Serrano et al., 2015). The differences in DCF and IBU tissue 240 

concentrations in the former studies were related to the ability of bivalves to assimilate 241 

the drug through filtration up to a certain period of time, decreasing afterwards. The 242 

decrease in NSAIDs concentrations and the lack of detection of PAR in the studies by 243 

Mezzelani et al. (2016a, 2016b) was associated with drug metabolism, as will be 244 

discussed in the next section.  245 

 246 

2.1.2 DCF, IBU and PAR metabolism and metabolite bioconcentration 247 

The metabolism of DCF in marine bivalves, compared with other organisms, is 248 

poorly investigated, as reviewed in Sathishkumar et al. (2020). In mammals, 249 

metabolism of DCF partitions between acyl glucuronidation and phenyl hydroxylation, 250 

with the former reaction catalyzed primarily by uridine 5'-diphosphoglucuronosyl 251 

transferase 2B7 while the latter is catalyzed by cytochrome P450 (CYP) 2C9 and 3A4 252 

(Tang, 2003). The main metabolites of phase I biotransformation are 4′-hydroxy-253 

diclofenac (4’-OH) and 5-hydroxy-diclofenac (5-OH). In the second phase of the 254 

detoxification, in mammals, both DCF and its hydroxylated metabolites are conjugated 255 

with glucuronide and/or sulfate. Both, hydroxylated phase I metabolites and conjugates 256 

are rapidly excreted from the body. However, in mammals, DCF and the hydroxylated 257 

DCF metabolites can undergo further oxidation, yielding a reactive and toxic 258 

benzoquinone imine metabolite (Boelsterli, 2003). To prevent toxicity, quinine imines 259 

undergo glutathione conjugation, resulting in the non-toxic 4’-OH and 5-OH DCF 260 

glutathione conjugates. Likewise, the formation of reactive metabolites in acyl 261 
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glucuronidation of DCF, another metabolic pathway, leads to glutathione conjugates 262 

(Boelsterli, 2003). With regard to marine bivalves, only two studies are available on the 263 

identification of DCF metabolites in marine bivalves exposed to laboratory conditions 264 

(Bonnefille et al., 2017; Świacka et al., 2019). The study by Świacka et al. (2019) 265 

determined the concentrations of two DCF metabolites (4’-OH and 5-OH) in M. 266 

trossulus. The previously reported decrease in the concentration of DCF in mussels’ 267 

tissues after 3 days was related with the metabolism of the drug, being confirmed by 268 

the concentration of 4’-OH and 5-OH metabolites. A maximum tissue concentration of 269 

0.73 μg/g DW (183 ng/g WW) for 4’-OH on day 4 and of 1.182 μg/g DW (295 ng/g WW) 270 

for 5-OH on day 3 were reached in the exposed mussels. Comparing the metabolite 271 

tissue concentrations with the maximum levels of the parent compound (2,000 ng/g 272 

WW), 4’-OH and 5-OH levels were, 10-fold and 6.7-fold lower, respectively. The 273 

authors hypothesized the presence of DCF metabolites as resulting from the action 274 

CYP3 enzymes, as they are present in mussels and resemble human CYP3A4 275 

(Zanette et al., 2013), also involved in the metabolism of DCF in humans. Bonnefille et 276 

al. (2017) also determined 13 DCF metabolites in mussels exposed to the drug. Three 277 

of them were phase I metabolites (including 4’-OH and 5-OH) and the remaining 10 278 

were phase II metabolites, mainly sulfate and amino acids conjugates. These 13 279 

described metabolites allowed the authors to propose a partial metabolic pathway for 280 

DCF metabolism in mussels. The authors also revealed that, despite the fact that the 281 

generation of reactive DCF metabolites (glucuronide conjugates, arene oxide or 282 

quinone imines) was not observed in their study, it does not exclude that they were 283 

formed.  284 

 In the case of IBU, there is no information on metabolite identification in marine 285 

invertebrates. However, the IBU biotransformation pathway has been hypothesized to 286 

occur as for vertebrate fish species (Aceña et al., 2017; Lahti et al., 2011). In 287 

mammals, IBU is almost completely metabolized, with little to no unchanged drug 288 

found in the urine. IBU is mainly metabolized by CYP 450 2C9 and 2C8 (phase I) 289 
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biotransformation pathways followed by glucuronidation (phase II), resulting in 290 

metabolites like carboxy-ibuprofen, hydroxy-ibuprofen and acyl glucuronides 291 

(Mazaleuskaya et al., 2015). It has been suggested that, as for other drugs, as bivalves 292 

contain CYP 450 isoforms and conjugation enzymes (e.g., GST) they are likely to 293 

transform IBU into its oxidized or conjugated metabolites (Parolini et al., 2011).  294 

 With regard to PAR, previous studies have suggested that similar detoxification 295 

mechanisms may exist between mammals and non-target organisms that are 296 

environmentally exposed to the drug (Nunes et al., 2014; Parolini et al., 2010). In 297 

mammals, under therapeutic dosages, over 90% of PAR is conjugated with co-factors 298 

(namely with sulphate and glucuronic acid) forming non-toxic conjugated metabolites 299 

that are promptly excreted (Xu et al., 2008). Under these conditions, less than 10% of 300 

PAR is metabolized by the CYP 450 enzymes (primarily CYP 2E1, 1A2, and 3A4) to 301 

produce a toxic intermediate metabolite called N-acetyl-p-benzoquinoemine (NAPQI) 302 

that is further detoxified by intracellular glutathione (Xu et al., 2008). However, a 303 

different scenario can occur at higher amounts of PAR administration and/or deficiency 304 

in intracellular glutathione. Under these conditions NAPQI can accumulate and exert 305 

toxic effects on endogenous proteins, lipids and nucleic acids (Hinson et al., 2004, 306 

Jaeschke and Bajt, 2006). Thus, the toxicity of PAR exposure in non-target organisms 307 

was suggested to be caused by saturation or exhaustion of co-factors involved in 308 

detoxification (Almeida and Nunes, 2019; Nunes et al., 2014). Parolini et al. (2010) 309 

hypothesized a similar mechanism for PAR action in a freshwater mussel, where 310 

NAPQI was likely to interact with proteins and nucleic acids and promote the increase 311 

of reactive oxygen and nitrogen species, together injuring cell macromolecules. More 312 

recently, Bebianno et al. (2017) showed that PAR elicited an inhibition of CYP30C1, 313 

CYP3071A1 and FABP-like transcripts highlighting their role in drug metabolism, and 314 

transport in oyster gills. Despite the association between PAR toxicity and the formation 315 

of the reactive NAPQI metabolite, there are no studies on the identification of PAR 316 

metabolites in marine organisms. 317 
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 318 

Overall, former bivalve studies confirmed a low bioconcentration potential at 319 

higher and less environmentally realistic doses, possibly due to a reduction in the 320 

filtration rate under more stressing conditions. At environmentally realistic 321 

concentrations, most drugs were detected in their tissues, with no clear time- and 322 

concentration-dependent trends but with some marked species particularities, probably 323 

due to differences in biotransformation and/or excretion capacity. However, despite the 324 

low tissue levels detected for some NSAIDs, an ecotoxicological concern cannot be 325 

excluded. Also, more studies on drug metabolite identification are needed to properly 326 

assess their negative impacts, as reactive metabolites and/or reactive oxygen species 327 

could be formed during drug biotransformation and damage essential cell 328 

macromolecules.  329 

 330 

2.2 BIOLOGICAL RESPONSES INDUCED BY DCF, IBU AND PAR 331 

IN LABORATORY EXPOSED BIVALVES 332 

The effects of the selected drugs on marine bivalves (from early-life stages to 333 

adulthood) were studied at concentrations of environment and non-environment 334 

relevance, at the individual and sub-individual level using several physiological, 335 

subcellular and cellular endpoints.  336 

 337 

2.2.1 Sub-lethal effects induced by DCF, IBU and PAR on mussels 338 

In Table 2 studies concerning the sub-lethal effects of the selected NSAIDs on 339 

marine bivalves are summarized. 340 

 341 

2.2.1.1 Early life stages 342 

 NSAIDs effects on larval development  343 
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The early life stages of mussels have also been addressed with NSAIDs 344 

exposures and impacts reflected mostly as development impairment. DCF and IBU 345 

(0.01- 1,000 µg/L) affected larval development and shell formation of M. 346 

galloprovincialis when exposed for 48 h at concentrations as low as 0.01 µg/L of DCF, 347 

showing in an embryotoxicity assay an inverted U-shaped dose response curve, with 348 

no effects at the highest concentration tested (Fabbri et al., 2014). This U-shapped 349 

response, commonly observed in drug toxicity evaluation, is defined as “hormesis” and 350 

it is characterized by stimulation at low doses and inhibition at higher ones (Calabrese, 351 

2008). In order to properly assess the “hormesis” effect, a temporal component should 352 

be incorporated into the examination/equation; however, most of the studies deal with 353 

the effects of multiple doses at a single time-point scale. In the same Fabbri et al. 354 

(2014) study, contrary to DCF observations, embryo development was only 355 

compromised by IBU at higher concentrations (100 and 1,000 µg/L) in a dose 356 

dependent manner. The different responses to DCF and IBU in the early life stages of 357 

mussels are probably attributable  to their distinct mechanisms of action, 358 

bioaccumulation and biotransformation rates, resulting in higher sensitivity to DCF. 359 

Shell malformations in M. galloprovincialis embryos after a 48-h post fertilization 360 

embryotoxicity test were also seen after DCF (1 and 10 µg/L) exposures with the genes 361 

involved in shell formation and biotransformation seen as the most affected (Balbi et 362 

al., 2018). Also, Fontes et al. (2018) found that an ample range of DCF exposures (20 363 

ng/L – 1,000 mg/L) impaired embryo-larval development in Perna perna mussels. IBU 364 

exposures through contaminated sediments (0.15 – 1508 ng/g DW) were also 365 

responsible for slowing down the embryo-larval development of the same mussel 366 

species P. perna after a 2-day exposure (Pusceddu et al., 2018). 367 

 368 

2.2.1.2 Adults 369 

NSAIDs effects on reproduction 370 
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Besides the impacts on early life stages, Fontes et al. (2018) also considered the 371 

effects of DCF exposures (20 ng/L – 1,000 mg/L) in adult mussels P. perna, revealing 372 

that the impairment on reproduction occurred only at the non-environmental 373 

concentrations.  374 

 375 

NSAIDs’ effects on physiological parameters 376 

The effects on physiological parameters due to DCF and IBU exposures were 377 

assessed in M. trossulus, both in environmental (1 ug/L) and non-environmental 378 

(10,000 µg/L) concentrations for up to 21 days (Ericson et al., 2010). For both drugs, it 379 

was shown that the responses in mussels exposed to lower concentrations (1 - 100 380 

µg/L) did not differ from those not exposed. However, higher concentrations (1,000 and 381 

10,000 µg/L) and long-term exposures resulted in lower scope for growth (SFG) and 382 

byssus strength. The reduced SFG in contaminated mussels was related to fewer 383 

energy resources available for biologic processes. Indeed, at higher exposure 384 

concentrations, mortality (16%) was also associated to less energy available for 385 

homeostasis and maintenance. According to these authors, under stress conditions, 386 

mussels can satisfy higher energy demands by increasing their filtration rate, which is 387 

also an energy demanding process that can lead to decreased SFG. The reduced 388 

byssus strength decreases the capacity of the mussels to attach to surfaces, possibly 389 

leading to reduced survival and impairment on recruitment and with detrimental 390 

population consequences. PAR exposure (23 and 403 µg/L) for 10 days affected 391 

mussels’ (M. galloprovincialis) physiology by, in comparison with the control condition, 392 

increasing their feeding rate in a non-concentration dependent manner (Solé et al., 393 

2010). However, comparing the PAR exposure levels (23 and 403 µg/L), a decrease in 394 

the feeding rate was observed at the highest exposure concentration. Also, Piedade et 395 

al. (2020) showed that PAR (0.5 – 500 µg/L, 96 h exposure) increased the ingestion of 396 

food (algal cells) by Mytilus spp. although in a dose-dependent pattern, which is partly 397 

in agreement with the previously published data. The increased food ingestion was 398 
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followed by a significant reduction of the gill’s glycogen levels and a slight (not 399 

significant) reduction in the digestive gland (Piedade et al., 2020). The previous authors 400 

hypothesized that PAR exposure stimulated an energetically demanding response in 401 

mussels, reflected in an increase absorption of nutrients from the media and a 402 

depletion of cellular energetic reserves.  403 

 404 

NSAIDs effects on immunological parameters 405 

In addition to physiological consequences, the most consistence response to 406 

NSAIDs in bivalves at all life stages is the modulation of immunological parameters. In 407 

the previously referred Pusceddu et al. (2018) study but with the mussel Mytella 408 

charruana exposed to IBU contaminated sediment, a decrease of haemocytes 409 

lysosomal membrane stability (LMS) was related to consequences at higher levels of 410 

biological organization since the embryo-larval development depends on the energy 411 

released from the yolk by lysosomal action. Studies by Mezzelani et al. (2018b, 2016a, 412 

2016b) also described a decrease in the LMS in M. galloprovincialis at DCF and IBU 413 

concentrations of 25 µg/L, and IBU at a much lower one (0.5 µg/L). A decrease in LMS 414 

was also confirmed after PAR exposure in the same species (Mezzelani et al., 2016b). 415 

More recently, Munari et al. (2019) reported that DCF (0.05 and 0.50 μg/L) affected the 416 

overall immune haemocyte response of M. galloprovincialis, compromising their 417 

defense capacity against pathogens. 418 

 419 

NSAIDs effects on oxidative stress related parameters  420 

Another consequence of exposure to NSAID in marine bivalves is the production 421 

of reactive oxygen species (ROS) responsible for oxidative stress, cellular damage, 422 

DNA strand break formation and inactivation of enzymes when the antioxidant 423 

defenses become overwhelmed (Regoli and Giuliani, 2014). In the previously referred 424 

work by Fontes et al. (2018) with P. perna, lower concentrations (0.02 – 2 µg/L) of DCF 425 

were also responsible for DNA damage, cellular damage (increased lipid peroxidation; 426 
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LPO) and decrease in antioxidant defenses (glutathione peroxidase; GPX) and the 427 

cytochrome P450 related ethoxyresorufin O-deethylase (EROD) activity. A study with 428 

M. galloprovincialis hemocytes treated and non-treated with ultrasounds and exposed 429 

for only 1 h to DCF (5 ng/L- 20 µg/L) showed that at higher concentrations (>100 ng/L) 430 

the drug induced cell mortality, while at lower concentrations (<100 ng/L) it significantly 431 

increased the levels of superoxide anions, nitric oxides (NO) and LPO products 432 

(Toufexi et al., 2016). The induction of ROS in DCF exposed mussel hemocytes was 433 

considered an unspecific mode of action related to the activation of NADPH oxidase 434 

and NO synthase in the hemocytes alleviated by the partial DCF degradation after 435 

ultrasound treatment. However, no clear consensus has been reached on the effects of 436 

DCF on the antioxidant defense system in marine mussels, since responses have been 437 

shown to be tissue-specific and transient. That is, Gonzalez-Rey and Bebianno (2014) 438 

found transient and tissue-specific antioxidant responses and LPO levels in M. 439 

galloprovincialis exposed for 15 days to 250 ng/L of DCF. An increase in LPO at the 440 

third day of exposure was counteracted by the effectiveness of antioxidant enzymes in 441 

the elimination of ROS, leading to reduction of cellular damage; however, estrogenic 442 

disturbances in DCF exposed females were suggested as altered alkali labile 443 

phosphate levels. Studies by Freitas et al. (2019a, 2019b) with whole tissue of mussel 444 

M. galloprovincialis exposed to DCF (1 µg/L) for 28 days showed a decrease in the 445 

energy metabolism (reduction in the electron transport system activity-ETS), an 446 

increase of the activity of the antioxidant and detoxification enzymes (namely, catalase-447 

CAT, superoxide dismutase-SOD and glutathione S-transferases-GSTs) and no LPO 448 

occurrence confirming effectiveness of the antioxidant defenses, as pointed out by 449 

Gonzalez-Rey and Bebianno (2014). Other pathways such as the detoxification and 450 

defense system (enhanced GSTs) and oxidative stress (DNA damage and LPO 451 

occurrence) were reported in blue mussels (Mytilus spp.) after 96h injection with non-452 

environmental concentrations of DCF (Schmidt et al., 2011). In a more realistic 453 

approach, prolonged water exposure (14 days) of the same mussel species to DCF (1 454 
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and 1,000 µg/L) resulted in DNA damage, induced oxidative stress and decreased 455 

GSTs activity (only at 1,000 µg/L at day 14) (Schmidt et al., 2014). In the same study, 456 

after an additional 7 days of depuration period, a recovery of LPO to control values was 457 

reached although a certain oxidative stress status was still evident through the 458 

presence of oxidized aconitase, an enzyme involved in the mitochondrial tricarboxylic 459 

acid cycle, and considered as a marker of cellular stress. Mezzelani et al. (2018b) also 460 

addressed the effects of 2.5 μg/L DCF and IBU for up to 60 days, showing that neither 461 

acetylcholinesterase (AChE; indicator of neurotoxicity), nor antioxidant defenses (e.g., 462 

CAT, glutathione reductase-GR, glutathione peroxidase-GPX) showed significant 463 

variations with the two drugs and exposure times. Also, their results on total oxyradical 464 

scavenging capacity supported the lack of prooxidant effects induced by DCF and IBU. 465 

The previously referred study, Gonzalez-Rey and Bebianno (2012, 2011) also 466 

investigated the impacts of IBU on the antioxidant and endocrine system of the 467 

mussels M. galloprovincialis exposed for 14 days to the same environmental 468 

concentrations of the drug (250 ng/L). IBU caused significant fluctuations of several 469 

oxidative stress biomarkers in the mussels: increased SOD activity, reduced CAT, GR 470 

and GSTs activities (antioxidant and detoxification enzymes) and increased LPO 471 

levels. The oxidative effects of short-term exposure (96 h) to increasing concentrations 472 

of PAR (0.5 – 500 µg/L) of Mytilus spp. were assessed by Piedade et al. (2020). As no 473 

significant alterations were observed in their oxidative stress parameters, the authors 474 

hypothesized that the activation of the defensive adaptive mechanisms limited the 475 

action of the drug on antioxidant defenses and oxidative damage. 476 

  477 

 NSAIDs effects on multiple general stress responses  478 

 In addition to the biochemical responses previously reported, Omics analyses 479 

were performed to complement and unravel the mechanistic actions of NSAIDs in 480 

mussels. Jaafar et al. (2015) applied a proteomic approach using a two gel 481 
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electrophoresis analysis that revealed changes in the presence and expression of 4 482 

oxidized proteins (caspase 3/7-4; cytosolic heat-shock cognate protein 70; a predicted 483 

enolase-like protein and arginine kinase) indicative of key structural, metabolic and 484 

stress-response protein alterations. Also, Mezzelani et al. (2018b) applied several 485 

biological endpoints including transcriptomic analysis and observed that biological 486 

effects measured at both molecular and cellular level confirmed the immune system, 487 

lipid metabolism and cellular turnover as the main biological targets of NSAIDs in 488 

mussels. Koagouw and Ciocan (2019) showed changes in mRNA expression of 489 

signaling pathways involved in apoptosis (e.g., heat shock protein-70, caspase-8, B-490 

cell lymphoma-2, Fas cell surface) that were down-regulated in M. edulis gonads after 491 

7 days of exposure to PAR (40 ng/L, 250 ng/L and 100 µg/L). Former studies in 492 

mussels by Mezzelani et al. (2016a, 2016b) and more recently by Munari et al. (2019, 493 

2018) showed similar molecular and cellular responses after exposure to DCF, IBU and 494 

PAR (0.05 - 25 μg/L) after the same exposure period. The coincident changes revealed 495 

by the previously mentioned authors were alterations in the immune system, lipid 496 

metabolism and genotoxicity as the main targets of the referred NSAIDs with an early 497 

onset of responsiveness at low drug levels and increased effects at higher doses. The 498 

association between DCF and IBU and lipid metabolism was due to the high affinity of 499 

these drugs for peroxisome proliferator-activated receptors (PPARs), a response 500 

already long reported in mussels by Lehmann et al. (1997), suggesting the reduction of 501 

β-oxidation pathways and a concomitant consumption of energy reserves. However, 502 

even though previous studies using cellular parameters showed that pro-oxidant effects 503 

are not the main consequences of these drug exposures, the previously referred study 504 

by Schmidt et al. (2014), reported changes in protein expression dealing with oxidative 505 

stress (e.g., down-regulation of glyceraldehyde-3-phosphate dehydrogenase, GADPH; 506 

down-regulation of aconitase; up-regulation of class 1 alcohol dehydrogenase, ADH), 507 

and involved molecular chaperones in mussels exposed to DCF.  508 
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 509 

NSAIDs mode of action on COX and other metabolic pathways  510 

As indicated before, the main mode of action of NSAIDs in humans is the 511 

inhibition of cyclooxygenases (COX-1 and COX-2), thus preventing the formation of 512 

prostaglandins and thromboxane from arachidonic acid (Gierse et al., 1995). This 513 

mode of action was also confirmed in bivalves, where prostaglandins were reported to 514 

be involved in several physiological functions including immunity and reproduction 515 

(Deridovich and Reunova, 1993; Stanley-Samuelson, 1987). To evaluate the NSAIDs’ 516 

mode of action on bivalves, biochemical and Omics analyses were performed. 517 

Evidence of COX modulation by the inhibition in the synthesis of prostaglandin-E2 518 

(PGE2) was revealed in M. galloprovincialis exposed for 72 h, more significantly at 100 519 

than at 1 µg/L DCF (Courant et al., 2018). Another NSAID mode of action, different 520 

from COX inhibition, was proposed in M. galloprovincialis exposed to DCF (Bonnefille 521 

et al., 2018). Through a metabolomic approach, the authors indicated two altered main 522 

metabolic pathways: (1) a down-regulation of the tyrosine (e.g., catecholamines) 523 

metabolism and (2) an up-regulation of the tryptophan (e.g., serotonin) metabolism, 524 

which were, in turn, related with the impairment of byssus formation, osmoregulation 525 

and reproduction in mussels. The down-modulation of catecholamines itself was also 526 

related to the impairment of byssus formation, giving further support to former 527 

observations on byssus strength reduction after NSAIDs exposures by Ericson et al. 528 

(2010). Through a transcriptomic approach, a similar mode of action of IBU was 529 

revealed in mussels, M. galloprovincialis, and humans in genes associated with the 530 

Nuclear Factor kappa B (NF- κB) pathway (involved in immune and inflammation 531 

responses) in the study of Maria et al. (2016).  532 

 533 

2.2.2 Sub-lethal effects induced by DCF, IBU and PAR on clams 534 

 535 



21 

 

2.2.2.1. Early life stages 536 

NSAIDs effects on larval development 537 

In clams R. philippinarum, larval development was affected by DCF (0.5 µg/L) 538 

after 96 h exposure (Munari et al., 2016), which is in accordance with the previous 539 

study by Fabbri et al. (2014) on mussels at which DCF impacted their larval 540 

development at concentrations as low as 0.01 µg/L (50-fold lower).  541 

 542 

2.2.2.2. Adults 543 

 544 

NSAIDs effects on immunological parameters  545 

As reported for mussels, the influence of NSAIDs in the modulation of immunity 546 

related parameters was also consistently demonstrated in the clams R. philippinarum 547 

(Aguirre-Martínez et al., 2013; Matozzo et al., 2012; Munari et al., 2019, 2018). That is: 548 

DCF (0.05 and 0.50 μg/L) affected their overall haemocyte response with a reduced 549 

immune surveillance against pathogens (Munari et al., 2019, 2018); while in the study 550 

by Aguirre-Martínez et al., (2013) IBU (0.1-50 µg/L) was responsible for the alteration 551 

of clams' immune parameters already at environmental concentrations, as revealed by 552 

the decrease in LMS in a concentration- and time-dependent manner. However, in the 553 

same clam species R. philippinarum, significant effects on immunotoxicity (evaluated 554 

as total haemocyte count and pinocytic activity decreases and haemocyte proliferation 555 

and lactate dehydrogenase activity increases) were only significant at non-556 

environmental concentrations (>500 µg/L) (Matozzo et al., 2012).  557 

 558 

NSAIDs effects on oxidative stress related parameters 559 

In R. philippinarum DCF and IBU (15 µg/L) independent exposures were followed 560 

up (from 3 h up to 21 days and including 7 days of depuration) in the Trombini et al. 561 

(2019) study. The authors evidenced an induction of oxidative stress and neurotoxicity 562 

in the exposed clams already in the first 24 h. Another recent study by Costa et al. 563 
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(2019), with R. philippinarum and R. decussatus adult clams exposed to DCF (1 µg/L) 564 

for 7 days showed greater variation in the antioxidant defenses than in the energetic 565 

pathways that resulted in no oxidative damage in contaminated clams. Exposing also, 566 

R. philippinarum, for 14 days to IBU (0.1-50 µg/L), showed that despite a clear 567 

induction of the detoxification enzymes (EROD and GSTs activities) and increased 568 

antioxidant defenses (GPX activity), LPO still occurred while DNA damage and 569 

neurotoxicity signs were not detected (Aguirre-Martínez et al., 2016). Furthermore, the 570 

previously referred authors described the occurrence of the “hormesis” effect due to the 571 

increase of the responses at low concentrations of the drug followed by a decrease at 572 

higher ones, as previously described in mussels (Fabbri et al., 2014). A neurotoxicity 573 

marker (decreased AChE activity) and antioxidant defense capacity (decreased SOD 574 

activity) was described in R. philippinarum exposed to IBU (100 and 1,000 µg/L) for up 575 

to 7 days in the study of Milan et al. (2013). PAR (0.05-5.0 mg/L) exposure for 96 h did 576 

not cause increased LPO levels in the clams R. decussatus and R. philippinarum, 577 

thanks to the efficiency of the antioxidant GR and GSTs enzymes (Antunes et al., 578 

2013). Neither LPO occurred under a prolonged exposure (28 days) to these same 579 

drug concentrations (0.05-5.0 mg/L) in the Manila clam R. philippinarum, with an 580 

increase in the antioxidant enzymes SOD and CAT already observed at 0.05 and 0.5 581 

mg/L (Correia et al., 2016). In the study by Nunes et al. (2017) with R. philippinarum 582 

clams, an exposure of 96 h of PAR (0.25-25 µg/L) was performed and clams were 583 

allowed a further 10 days in non-contaminated water for recovery. These authors 584 

observed that, after the PAR contamination, the antioxidant defenses, metabolism and 585 

energy reserves were compromised, however, after the depuration period, they 586 

recovered from the stress to pre-pulse values. 587 

 588 

NSAIDs effects on multiple general stress responses  589 

The previously mentioned study by Milan et al. (2013) also reported changes in 590 

the transcription of multiple genes involved in biotransformation, eicosanoid 591 
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metabolism (e.g., phospholipase A2, prostaglandin D synthase), apoptosis, 592 

peroxisomal proliferator-activated receptor signaling pathway, inflammatory and 593 

immune responses that were justified by a similar mode of action of IBU in vertebrates 594 

and bivalves.  595 

 596 

2.2.3. Sub-lethal effects induced by DCF, IBU and PAR on oysters 597 

 598 

2.2.3.1 Adults 599 

 600 

Effects on oxidative stress related parameters 601 

 With regard to antioxidant defenses, Serrano et al. (2015) observed a decrease 602 

in GR activity in IBU exposed oysters, possibly affecting the recycling of the antioxidant 603 

GSH. However, as no impacts were seen in GPX activity (which requires GSH as co-604 

factor), it was suggested that GSH might be supplied by other mechanisms such as 605 

GSH biosynthesis. The previously mentioned Bebianno et al. (2017) study, also 606 

assessed biochemical parameters related to oxidative stress in C. gigas exposed to 607 

PAR (1 and 100 µg/L) for 1, 4 and 7 days showing that no oxidative stress occurred in 608 

gills, which was in accordance with their former  studies that showed that pro-oxidant 609 

mechanism do not seem to be the primary toxicity mode of action of PAR and other 610 

NSAIDs in bivalves as previously pointed out by Gonzalez-Rey and Bebianno (2014, 611 

2012, 2011) for DCF and IBU in mussels. 612 

 613 

NSAIDs effects on multiple general stress responses  614 

Changes in the transcription of genes related to the cytochrome P450 system 615 

have been studied on the oyster, C. gigas exposed to IBU (1 and 100 µg/L) for 7 d 616 

(Serrano et al., 2015). The changes in the transcription of fatty acid binding protein-like 617 

(FABP-like), CYP isoforms (e.g., CYP365A1), GSTs (-ω and -π) proteins were 618 
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associated with IBU transport and biotransformation in the cells affecting the clearance 619 

of IBU, especially at lower concentrations. Once more, this response was related to the 620 

“hormesis” effect, characterized by a low-dose stimulation and high dose-inhibition as 621 

described previously for the effects of NSAIDs in marine mussels (Fabbri et al., 2014) 622 

and clams (Aguirre-Martínez et al., 2016). In the same oyster species, C. gigas, 623 

Bebianno et al. (2017) assessed gene transcription responses (related to oxidative 624 

stress and biotransformation) as a consequence of PAR (1 and 100 µg/L) exposures 625 

for 1, 4 and 7 days revealing that transcriptional changes were also concentration and 626 

tissue dependent.  627 

 628 

Overall, the effects of the NSAIDs: DCF, IBU and PAR were studied in the marine 629 

mussels: M. galloprovincialis, M. trossulus, M. edulis, P. perna and M. charruana, 630 

clams: R. philippinarum and R. decussatus, and the oyster: C. gigas at a wide range of 631 

concentrations (DCF: 0.005 – 10,000 µg/L; IBU: 0.25 – 10,000 µg/L; PAR: 0.25 – 5,000 632 

µg/L). The larger number of reports on DCF is likely related to its proven acute toxicity 633 

and controversial inclusion in the Watch List of Chemicals of environmental concern. 634 

Although some of the tested concentrations (e.g., 10,000 µg/L) do not have 635 

environmental relevance, they were selected as tools to unveil specific responses to 636 

drugs, with more recent reports covering scenarios that are more realistic. As far as 637 

time of exposure refers, most of the studies are chronic (over 7 days) with some of the 638 

most recent ones including a depuration phase to evaluate recovery to pre-exposure 639 

conditions. Among marine bivalves, the most frequently investigated organisms were 640 

by far mussels, followed by a few species of clams and oysters. However, as for all the 641 

tested NSAIDs, even at low concentrations, negative impacts were recorded in all 642 

bivalve species. Therefore, it is difficult to predict which will be the most affected 643 

species and by which drug. Possibly, the limited number of studies performed with 644 

clams and oysters is related with ease of capture and maintenance of mussels; 645 

however, since all are important shellfish species which are highly appreciated for 646 
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human consumption, their study deserves consideration. In general, the tested NSAIDs 647 

showed impact in several endpoints such as larval development, reproduction, 648 

osmoregulation, immune parameters, genotoxicity and oxidative stress in addition to 649 

the changes associated with their particular mode of action. 650 

The ecotoxicological risk of pharmaceutical drugs for marine bivalves will be 651 

linked to the uptake, bioaccumulation, metabolism and detoxification of the parental 652 

drug; however, their toxicity also depends on the drugs particular mode of action and 653 

the biotransformation processes of drugs. The latter leading to the generation of 654 

reactive metabolites and/or reactive oxygen species and probably leading to changes 655 

in the species’ metabolism that can ultimately result in unpredicted consequences. 656 

Moreover, since shellfish are an important food resource, the toxicity related to parental 657 

NSAIDs and their metabolites may also have consequences for human health.   658 

 659 

3. CONCLUSIONS AND FUTURE PERSPECTIVES 660 

The presence of pharmaceuticals in aquatic systems is a well-recognized and 661 

growing problem worldwide, since the release of these contaminants can lead to 662 

alterations from molecular to population level in their aquatic inhabitants. However, due 663 

to heterogeneous and fragmented data it is difficult to define a list of environmental 664 

priority substances. In this review, the NSAIDs DCF and IBU and the analgesic PAR 665 

were selected taking into account both the controversial inclusion of DCF in the EU 666 

Watch List, for its demonstrated acute toxicity, as well as the high consumption and/or 667 

frequent occurrence in the aquatic environment in the case of all of these. Marine 668 

bivalves were selected because of their suitability as bioindicators that provide valuable 669 

information not only on the presence but also on the harm pharmaceutical drugs can 670 

cause. NSAIDs bioaccumulation potential is of great relevance although some of the 671 

studies assessing the effects of these drugs in marine bivalves still lack this 672 

information. Even though tissue concentrations may not be well correlate with exposure 673 
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time or concentration, due to the biotransformation/excretion in bivalves, still it provides 674 

useful information on the levels accumulated and highlights the need to include the 675 

identification of metabolites. The investigation of the effects of the selected 676 

pharmaceutical drugs in marine bivalves (from early life stages to adulthood) was 677 

assessed acutely and chronically mainly by using sub-individual (biochemical and 678 

Omics parameters) and developmental endpoints indicative of larval development in 679 

early life stages. Parameters related to cytotoxicity, oxidative stress, immunological 680 

status and genotoxicity, were among the most investigated in adults. In general, the 681 

studies on the effects of the selected NSAIDs showed a non-consistent oxidative 682 

challenge, supporting that the prooxidant mechanisms do not represent the primary 683 

mode of action of these pharmaceuticals. However, immune responses appeared to be 684 

the main target of the long-term of these exposures. Despite an evident effort in recent 685 

studies to apply environmentally realistic scenarios (in the low µg/L range and longer 686 

exposure times, up to 28 days), some studies were still performed with non-687 

environmentally concentrations (e.g., 1 mg/L), short time exposures (1h) and non-688 

relevant pathways (intraperitoneal injection), not properly estimating the effects of 689 

these drugs on bivalves. Moreover, even in studies applying realistic approaches, most 690 

of them lack the evaluation of the effects within a time-frame that would provide key 691 

information on how the organisms react to the drugs and the consideration of the 692 

“hormesis” effect. The inclusion of metabolite determinations and the toxic evaluation of 693 

drug mixtures under combined climatic scenarios also deserve further consideration. 694 
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M. trossulus 555 (1 d), 1948 (3 d), 215 (5 
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3.05 (1 d), 9.57 (5 d) Świacka et al. 

(2019) 
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galloprovincialis 
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PAR 

25 14 d  M. 

galloprovincialis 

3.7 (DCF) 

0.4 (IBU) 

ND (PAR) 

0.149 (DCF)** 

0.0163 (IBU)** 

Mezzelani et al. 

(2016a) 

DCF

IBU

PAR 

0.5  14 d  M. 

galloprovincialis 

1.19 (DCF) 

ND (IBU) 

ND (PAR) 

2.4 (DCF)** Mezzelani et al. 

(2016b) 

DCF 

IBU 

2.5  60 d M. 

galloprovincialis 

DCF: 0.41 (14 d), 0.91 (30 

d), 0.56 (60 d) 

IBU: 6.4 (14 d), 6.1 (30 d), 

11.3 (60 d) 

DCF: 0.16 (14 d), 0.36 (30 d), 

0.22 (60 d)** 

IBU: 2.6 (14 d), 2.5 (30 d), 4.5 

(60 d)** 

Mezzelani et al. 

(2018b) 

DCF 1  28 d M. 

galloprovincialis 

7.1 7.4** 

 

Freitas et al. 

(2019a) 

DCF 1 28 d M. 

galloprovincialis 

9.7 10.1** 

 

Freitas et al. 

(2019b) 

DCF 1 7 d R. philippinarum, 

R. decussatus  

22 (R. philippinarum) 

10 (R. decussatus) 

22 (R. philippinarum)** 

10 (R. decussatus)** 

Costa et al. 

(2019) 

IBU 1; 100  7 d C. gigas 0.22 (1.0 µg/L) 

29.4 (100 µg/L) 

0.22 (1.0 µg/L)** 

0.29 (100 µg/L)** 

Serrano et al. 

(2015) 

DCF, diclofenac; IBU, ibuprofen; PAR, paracetamol; WW, wet weight, NQ, not quantified, ND, not determined; DW, dry weight  

Note: The tissue concentrations levels and the bioconcentration factors (BCFs) (*) were converted to equal units (µg/g WW for 

concentrations and L/kg for BCFs). In the absence of reported BCFs, the values indicated (**) were calculated based on the information 

provided by the studies (tissue and water concentrations), applying a conversion factor of 4. The experimental BCFs were reported, 

whenever possible.  

Table 1: Tissue concentration and bioconcentration factor (BCF) of the NSAIDs DCF, IBU and PAR in marine bivalves 

exposed under laboratory conditions.  



 

Drug Exposure 

concentration 

(µg/L)  

Days of exposure (d) 

and depuration (D) 

Species Endpoints Reference 

DCF 133 5 d + 5 D 

 

M. trossulus Bioconcentration, metabolites identification  Świacka et al. 

(2019) 

DCF 100; 600  7 d M. galloprovincialis Bioconcentration, metabolites identification  Bonnefille et al. 

(2017) 

DCF 

IBU  

0.01-1000  2 d M. galloprovincialis Embryotoxicity (developmental effects) Fabbri et al. 

(2014) 

DCF 1; 10  2 d M. galloprovincialis Embryotoxicity (developmental effects), 

mRNA transcription of genes involved in 

shell formation and biotransformation 

Balbi et al. 

(2018) 

DCF 0.02-1× 10
�  1 d P. perna Embryo-larval development effects, 

oxidative stress biomarkers, xenobiotic 

metabolism 

Fontes et al. 

(2018) 

IBU 0.15-1508 ng/g DW 

(sediment) 

2 d (P. perna) 

1 d (M. charruana) 

P. perna 

M. charruana 

Embryo-larval development effects, 

lysosomal membrane stability 

Pusceddu et al. 

(2018) 

DCF 

IBU 

1, 1000, 10000 21 d M. trossulus Bioconcentration, physiological indicators Ericson et al. 

(2010) 

PAR 23; 403  10 d M. galloprovincialis Behavior (feeding rate), drug metabolism, 

oxidative stress related parameters 

Solé et al. 

(2010) 

PAR  0.5-500 µg/L 3 d Mytilus spp. Food uptake and nutritional reserve status, 

oxidative stress related parameters 

Piedade et al. 

(2020) 

DCF 

IBU  

PAR 

25 14 d  M. galloprovincialis Bioconcentration, immunotoxicity, 

neurotoxic responses, oxidative stress 

biomarkers, genotoxic effects 

Mezzelani et al. 

(2016a) 

DCF 

IBU  

PAR 

0.5  14 d  M. galloprovincialis Bioconcentration, immunotoxicity, oxidative 

stress biomarkers, genotoxicity, fatty acid 

metabolism, neurotoxic effects, 

transcriptomic analysis 

Mezzelani et al. 

(2016b) 

DCF 

IBU 

2.5  60 d M. galloprovincialis Bioconcentration, immunotoxicity, 

neurotoxic effects, oxidative stress 

biomarkers, genotoxicity, transcriptomic 

analysis 

Mezzelani et al. 

(2018b) 

DCF 0.05; 0.50  14 d M. galloprovincialis 

 

Immunotoxicity, oxidative stress biomarkers, 

genotoxicity 

Munari et al. 

(2019, 2018) 

DCF 0.005-20  1 h M. galloprovincialis Cytotoxicity, oxidative stress biomarkers, 

genotoxicity  

Touxefi et al. 

(2016) 

DCF 0.25  15 d M. galloprovincialis Oxidative stress biomarkers Gonzalez-Rey 

and Bebianno 

(2014) 

DCF 1  28 d M. galloprovincialis Bioconcentration, energy metabolism, 

oxidative stress biomarkers 

Freitas et al. 

(2019a, 2019b) 

DCF 1; 1000  4 d Mytilus spp. Oxidative stress and reproduction Schmidt et al. 

Table 2:  Sub-lethal effects of the NSAIDs (DCF, IBU and PAR) in marine bivalves exposed under laboratory conditions.  



biomarkers, genotoxicity  (2011) 

DCF 1; 1000  14 d + 7 D Mytilus spp Oxidative stress biomarkers, genotoxicity, 

proteomic analysis 

Schmidt et al. 

(2014) 

IBU 0.25  15 d 

 

M. galloprovincialis Oxidative stress biomarkers, endocrine 

disruption 

Gonzalez-Rey 

and Bebianno 

(2012, 2011) 

DCF  200; 1000 7 d M. edulis Oxidative stress biomarkers, proteomic 

analysis 

Jaafar et al. 

(2015) 

PAR  0.04; 0.25, 100 7 d M. edulis Histology, gene expression Koagouw and 

Ciocan (2019) 

DCF 1; 100  3 d M. galloprovincialis Bioconcentration, modulation of 

prostaglandin biosynthesis 

Courant et al. 

(2018) 

DCF 100  7 d M. galloprovincialis Metabolite identification, metabolism 

pathways identification 

Bonnefille et al. 

(2018) 

IBU 0.25  15 d   M. galloprovincialis Transcriptomic analysis related with 

metabolic processes and 

inflammation/immunity 

Maria et al. 

(2016) 

DCF  0.5  4 d R. philippinarum Embryotoxicity (developmental effects), 

oxidative stress biomarkers 

Munari et al. 

(2016) 

IBU 0.1-50  35 d R. philippinarum Immunotoxicity  Aguirre-

Martinez et al. 

(2013) 

IBU 100-1000  7 d R. philippinarum Immunotoxicity, cyto-genotoxicity Matozzo et al. 

(2012) 

DCF 

IBU 

15  14 d + 7 D R. philippinarum Oxidative stress biomarkers, neurotoxicity  Trombini et al. 

(2019) 

DCF 1 7 d R. philippinarum, R. 

decussatus  

Bioconcentration, physiological parameters 

(respiration rate), energy metabolism, 

oxidative stress biomarkers, neurotoxicity 

Costa et al. 

(2019) 

IBU 0.1-50  14 d R. philippinarum Oxidative stress biomarkers, genotoxicity, 

neurotoxicity 

Aguirre-

Martínez et al. 

(2016) 

IBU 100; 1000  7 d R. philippinarum Oxidative stress biomarkers, neurotoxicity, 

gene transcription 

Milan et al. 

(2013) 

PAR 50; 500; 5000  4 d R. decussatus,  

R. philippinarum 

Oxidative stress biomarkers Antunes et al. 

(2013) 

PAR 50; 500; 5000  28 d  R. philippinarum Oxidative stress biomarkers Correia et al. 

(2016) 

PAR 0.25-25  4 d + 10 D R. philippinarum Oxidative stress biomarkers, energy 

metabolism 

Nunes et al. 

(2017) 

IBU 1; 100  7 d C. gigas Bioconcentrations, gene transcription, 

oxidative stress biomarkers, genotoxicity 

Serrano et al. 

(2015) 

PAR 1; 100  7 d C. gigas Cyto-genotoxicity, oxidative stress 

biomarkers, gene transcription 

Bebianno et al. 

(2017) 

DCF, diclofenac; IBU, ibuprofen; PAR, paracetamol; DW, dry weight 



Highlights   

• NSAIDs, some included in the Watch List, are of concern in the marine environment.  

• Studies on bioconcentration and effects of NSAIDs on marine organisms are limited.  

• NSAIDs accumulated by marine bivalves, showed mainly sub-lethal effects. 

• Immune responses are the main target of long-term exposure to NSAIDs. 
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