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ABSTRACT  11 

We couple current findings of pesticides in surface and groundwater to the history of pesticide usage, 12 

focusing on the potential contribution of legacy pesticides to the predicted ecotoxicological impact on 13 

benthic macroinvertebrates in headwater streams. Results suggest that groundwater, in addition to 14 

precipitation and surface runoff, is an important source of pesticides (particularly legacy herbicides) 15 

entering surface water. In addition to current-use active ingredients, legacy pesticides, metabolites and 16 

impurities are important for explaining the estimated total toxicity attributable to pesticides. Sediment-17 

bound insecticides were identified as the primary source for predicted ecotoxicity. Our results support 18 

recent studies indicating that highly sorbing chemicals contribute and even drive impacts on aquatic 19 

ecosystems. They further indicate that groundwater contaminated by legacy and contemporary 20 

pesticides may impact adjoining streams. Stream observations of soluble and sediment-bound 21 

pesticides are valuable for understanding the long-term fate of pesticides in aquifers, and should be 22 

included in stream monitoring programs. 23 

Capsule: Legacy pesticides, particularly sediment-bound insecticides were identified as the primary 24 

source for predicted ecotoxicity impacting benthic macroinvertebrates in headwater streams. 25 
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1. Introduction 28 

More than 85,000 chemicals are in production and use worldwide, with more than 2,200 produced 29 

in amounts exceeding 450 tons per year. Pesticides are second only to fertilizers in the amount of 30 

chemicals applied and extent of use in the environment (Stokstad and Grullon, 2013), with an estimated 31 

1 to 2.5 million tons of active ingredients used each year, predominantly in agriculture (Fenner et al., 32 

2013). Nearly 20,000 pesticide products have entered the market since registration began in 1947 33 

(Lyandres, 2012) and more than 1,000 are sold annually in Denmark (Danish EPA, 2011). 34 

The term pesticide covers a wide range of compounds that are typically broadly categorized on the 35 

basis of their pesticidal actions, including herbicides, fungicides, insecticides, nematicides, plant 36 

growth regulators, and others, or they can be classified on the basis of their general chemical nature 37 

(e.g. organochlorines; organophosphates) or mode of action (Arias-Estévez et al., 2008; Nollet and 38 

Rathore, 2010). Despite their recognized importance, especially for agricultural production and 39 

pathogen control, pesticides are now considered among the most harmful types of compounds 40 

impacting surface waters (Schwarzenbach et al., 2006). In particular, insecticides have been thought to 41 

be one of the principal stressors affecting stream macroinvertebrates, as well as fundamental ecosystem 42 

functions such as leaf litter decomposition (Peters et al., 2013; Schaefer et al., 2012). 43 

The environmental consequences associated with land use intensification are considered one of the 44 

main drivers for increased biodiversity loss and impairment of ecosystem functions (Beketov et al., 45 

2013), and ways to balance the need to feed the world without disastrous effects on soil, water and 46 

habitat are still being sought after. Pesticides are now widely recognized as prevalent (Konstantinou et 47 

al., 2006), including many of their metabolites (Barth et al., 2007) and production impurities (Holt et 48 

al., 2010; Reitzel et al., 2004) – which are typically not considered in ecotoxicological studies – and 49 

consistently detected over time (e.g. corn herbicides in Vecchia et al., 2009). The occurrence of 50 

pesticides is well-documented for specific environmental compartments, such as in soils (Olsen et al., 51 

2011) and streambed sediment (Kronvang et al., 2003), groundwater and surface water (Gilliom, 2007; 52 

Roy and Bickerton, 2012), or rainwater (i.e. atmosphere) (Vogel et al., 2008).  53 
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More recently, studies have begun to focus on the transport and ultimate fate of these compounds as 54 

they move through the different media, for example from agricultural application to soils (cropland) 55 

into the atmosphere (Asman et al., 2005) or into groundwater (Arias-Estévez et al., 2008), from 56 

groundwater to drinking water supply wells (Levi et al., 2014) or groundwater-dependent ecosystems 57 

(Ejrnaes et al., 2014), and then considering the ecotoxicological impacts once these compounds are 58 

present in surface water (Schaefer et al., 2013). Although studies exist that focus on linking pesticide 59 

transport from groundwater to surface water (e.g. Squillace et al., 1993; Kolpin et al., 2001), studies 60 

which endeavor to disentangle the contributions and importance of this entry pathway for aquatic 61 

ecosystems relative to the contribution of other routes, such as pesticide runoff from agricultural land, 62 

are still needed.  63 

Moreover, it has become clear that a proper ecotoxicological understanding of the history of low-64 

dose contamination, impacting stream environments over successive generations, is lacking (Artigas et 65 

al., 2012). This is due in part to the fact that pesticides are specifically designed for topsoil conditions 66 

and subsequently tested under controlled settings that do not accurately reflect the long history of 67 

pesticide exposure. This has contributed to the established viewpoint that contamination of surface 68 

waters by pesticide residues is transitory (occurring primarily during and immediately after application) 69 

(Capel et al., 2001; Holvoet et al., 2007), thus serving to emphasize contemporary pesticides in the 70 

aqueaous phase and their related effects on aquatic communities (Schaefer et al., 2011; Schaefer et al., 71 

2012) with a focus on run-off from rain events (Wittmer et al., 2010; Wittmer et al., 2011). 72 

Importantly, recognition of sediments as an important delivery pathway for pesticide contamination is 73 

increasing (Kuivila et al., 2012; Warren et al., 2003), but studies are still lacking which include a wider 74 

range of legacy pesticides. In addition, a dearth of both chronic and sediment toxicity values has 75 

complicated a more holistic evaluation. A re-examination of the history and legacy of pesticide usage 76 

together with trends in measured pesticide concentrations in groundwater, surface water and the 77 

sediment-phase is therefore crucial to our understanding how to mitigate their impacts. 78 

Our main objective was to couple current findings of pesticides in Danish streams and groundwater 79 

(McKnight et al., 2012; Rasmussen et al., 2013) to the history of pesticide usage, in particular focusing 80 

on whether legacy pesticides contribute to the overall predicted toxicity impacting aquatic benthic 81 

macroinvertebrates. This is driven especially by the hypothesis that an examination of only the recent 82 

pesticide application history (one decade or less) may not be sufficient to guarantee the sustainable 83 
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management and restoration of impaired aquatic resources. This could have ramifications for our 84 

understanding of pesticide fate, pathways and resulting ecotoxicological effects. More specific 85 

objectives were to: (i) assess pesticide trends using five decades of agricultural application data, as well 86 

as stream concentrations for the pesticides found in 14 Danish headwater streams, (ii) evaluate 87 

observed stream water concentrations collected under different hydrological conditions to identify the 88 

role of the groundwater route for pesticides in streams, and (iii) identify which pesticides 89 

(contemporary; legacy) and phases (dissolved, sediment-bound) contribute to predicted 90 

ecotoxicological potential in streams. 91 

2. The legacy of pesticide usage 92 

Although the first recorded use of pesticides dates back to ca. 2500 BC when farmers began using 93 

chemical sulfur to kill pests on crops (Unsworth, 2010), the modern-day development and application 94 

of pesticides was initiated after the Second World War.  Earlier pesticidesconsisted predominantly of 95 

inorganic substances derived from natural sources containing large quantities of metals, e.g. arsenic, 96 

copper, and lead,  and were heavily in use up until the 1940s  (Nollet and Rathore, 2010; Uneke, 2007). 97 

Their application led to the accumulation of metals in the subsurface that could potentially re-mobilize 98 

depending on the prevailing geochemical and climatic conditions. Early organic pesticides such as 99 

nitrophenols, chlorophenols and petroleum oils were by-products of industrial processes such as coal 100 

gas production, and were used against fungal infections and insect pests (Rathore and Nollet, 2012; 101 

Unsworth, 2010). Disadvantages to the use of these substances included the high rates of application, 102 

non-specificity and resulting high (phyto-)toxicity.  103 

In order to combat these disadvantages,  the 1940s led to an accelerated growth in the development 104 

of natural (plant-based) pesticides, as well as the introduction of synthetic organic compounds with the 105 

discovery of the effects of organochlorines, such as DDT, and phenoxy acids, e.g. dichlorprop. These 106 

chemicals were effective and inexpensive, with DDT being the most popular due to its broad-spectrum 107 

activity, and were thought to consist of less dangerous substances since they appeared to be less toxic 108 

to mammals and reduced insect-borne diseases such as malaria (Unsworth, 2010). However, many of 109 

these chemicals were later found to vary in aquatic (acute) toxicity from moderately toxic (U.S. EPA 110 

category II (Kegley et al., 2008), e.g. DDT; organophosphates: chlorpyrifos) to extremely toxic (U.S. 111 

EPA category I (Kegley et al., 2008), e.g. organochlorines: lindane; dinitrophenols: dinoseb) depending 112 
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on the specific properties of the substance, such as biodegradability, tendency to bioaccumulate, and 113 

carcinogenicity (e.g. DDT, lindane). Many of the organochlorines have now been banned or 114 

discontinued because of these traits (DG SANCO, 2014). 115 

Organophosphates, triazines (e.g. atrazine), phenoxy acids (MCPA), carbamates (pirimicarb), 116 

triazoles (propiconazole) and pyrethroids (λ-cyhalothrin) have been used in contemporary pest control 117 

since the 1940s. These compounds are often characterized as being more stable, albeit less persistent 118 

than the organochlorines, with a mode of action that is less specific compared to the compounds 119 

developed during the 1970s. Pesticides first introduced in the 1970s have been further adapted to 120 

contain only organic substances without metals, must now pass more stringent controls (transport; 121 

degradation; ecotoxicity), and are typically developed for a specific target (e.g. endocrine disruption, 122 

electron transport inhibition); examples include isoproturon, glyphosate and metamitron. Their frequent 123 

use in modern agricultural and urban areas is attributed to their exceptional pesticidal activity greatly 124 

reducing application rates (Uneke, 2007). However their increased selectivity has led to increased 125 

problems with resistance, leading to the need for management strategies to combat this negative effect 126 

(Unsworth, 2010). 127 

More recently, pesticides are being developed solely by genetic engineering. These pesticides are 128 

hypothesized to be safer than previously developed compounds (Uneke, 2007), but their environmental 129 

impacts are still largely unknown (e.g. as a part of the cocktail of pesticides impacting non-target 130 

organisms). New pesticide chemistry utilizing traditional (eco)toxicological methods, has also allowed 131 

better resistance management (in part through the implementation of integrated pest management 132 

systems), improved selectivity and better environmental and toxicological profiles (Unsworth, 2010). 133 

3. Methods 134 

3.1 Study catchments 135 

Fourteen headwater streams in four catchments located on Sjaelland, Denmark were selected (Fig. 136 

1A), and the concentrations of pesticides – including selected metabolites and impurities – were 137 

determined for the dissolved and sediment-bound phases. Two of these streams were chosen as least 138 

disturbed control sites, representing (sub)catchments with >90% forested or natural lands (CS1-2; Fig. 139 

1A). Eleven streams were chosen in the Hove catchment (Fig. 1B), where agriculture represents 80% of 140 
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the catchment land use (Rasmussen et al., 2013). One stream is located in the Skensved catchment (Fig. 141 

1C), where agriculture represents ca. 99% of the total land use (McKnight et al., 2012). 142 

Although the Hove and Skensved catchments differ in catchment size (and thus number of 143 

tributaries) and degree of physical in-stream (habitat) degradation, they are similar in that the dominant 144 

arable crop types are wheat, barley and canola (visual observations 2010-2012). There is no substantial 145 

input from waste water treatment plants in the investigated first-order streams, but storm water run-off 146 

from the scattered settlements may contribute to stream water quality (McKnight et al., 2012). 147 

Discharge from contaminated sites, and in particular abandoned landfill sites, can include pesticides at 148 

specific locations (Milosevic et al., 2012). All catchments are characterized by low elevations, 149 

clayey/loamy soils, a temperate climate, and an average regional precipitation of 600 mm yr
-1

 (Hansen 150 

et al., 2011). Tile drains, triggered by storm-flow events and wet seasons, are present in agricultural 151 

fields in both catchments. 152 

 153 

 154 

Fig. 1: Location of the study catchments (A) on Sjaelland, Denmark, including their relation to the six least disturbed 155 
control catchments (labelled CS1-6); the (B) Hove and (C) Skensved catchments together with their respective stream 156 
networks. In Fig. (a), green and gray areas indicate natural and urban areas, respectively. In Figs. (B) and (C), green, orange, 157 
light gray and dark gray areas indicate natural areas, cultivated lands, uncultivated lands and residential settlements, 158 
respectively. Black crosses indicate sampling locations within each catchment. Note that streams CS1-2 were actively 159 
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sampled during this field campaign; all other control catchments was taken from the NOVANA database (Danish EPA, 160 
2011). 161 

3.2 Pesticides  162 

The chemicals in the study were generally selected to represent the most relevant pesticides with 163 

respect to legacy (e.g. banned herbicides now commonly found in groundwater) and contemporary-use, 164 

different physicochemical properties (SI Table S1) and toxicity. We included a range of pesticides 165 

determined by evaluating the probable relationships between pesticide, crops and spraying practice (SI 166 

Tables S2-S3), and sales statistics expected to be used in the catchments during 2010-2012. Nine of the 167 

pesticides on the Danish top 15 sales list for 2010 were included (based on metric tonnes active 168 

ingredient sold; SI Table S4). We did not include glyphosate in this study because it has an extremely 169 

low aquatic toxicity (LC50D.magna = 40 mgL
-1

; University of Hertfordshire (2014)), so will not affect the 170 

toxicity calculations (see Section 3.4), and requires an extra analytical protocol. 171 

3.3 Pesticide sampling and analyses 172 

Sampling was conducted in May-August from 2010-2012 during the main pesticide application 173 

period in Denmark. Dissolved-phase pesticides were sampled using opaque 1-L event-triggered water 174 

samplers as described in Liess and von der Ohe (2005) during May and June to capture surface runoff 175 

and flow through tile drains during heavy precipitation events, resulting in 8 storm-flow event samples. 176 

The bottles were retrieved within 24 h after each precipitation event, not filtered, and stored at 4 ᵒC 177 

until analysis by Eurofins Miljoe A/S Laboratories. One grab-sample was collected at each site in 178 

August 2010 after a period with little to no precipitation and restrictions on the application of pesticides 179 

(close to harvest), representing base-flow conditions. Sediment-bound phases aiming to capture the 180 

most lipophilic pesticides were collected using two methods: suspended sediment (typically fine 181 

particles, e.g. silts; colloidal aggregates) was collected using passive suspended particle samplers (SPS) 182 

placed in 4 selected streams during May-June 2011 (Laubel et al., 2001). The top 2-5 cm of 183 

(stream)bed sediment (BS) (typically coarse particles, e.g. sands; gravel) was collected manually at one 184 

site in August 2012 using Kayak corers following the method described in Kronvang et al. (2003). The 185 

sample consisted of ca. 25 sub-samples collected in depositional areas to meet minimum analytical 186 

requirements for sample mass. Further details of the study catchments, sampling methods and pesticide 187 

screening are provided elsewhere (McKnight et al., 2012; Rasmussen et al., 2013). Analysis of water 188 
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samples for non-polar compounds were conducted using liquid-liquid extraction followed by 189 

quantification on GC-MS. Polar compounds were solid-phase extracted and quantified by liquid 190 

chromatography tandem mass spectrometry (LC-MS/MS), as described in Jansson and Krueger (2010). 191 

An overview of analytes in the different phases and sampling campaigns is presented in SI Table S5. 192 

3.4 Toxicity calculation 193 

The predicted toxicity for dissolved-phase pesticides was estimated using the toxic unit (TU) 194 

approach (Tomlin, 2001) with Daphnia magna as the benchmark organism (OECD, 2010): 195 

TU=Ci/LC50i,, where Ci is the measured concentration of pesticide i, LC50i the corresponding acute 196 

48h LC50 value for D. magna exposed to pesticide i (see SI Table S6 for ecotoxicity data). In the 197 

absence of ecotoxicity data for metabolites/impurities, the LC50 values were assigned the same value 198 

as the parent compounds.  199 

We calculated the sum of all TUs (∑TU) in order to produce a conservative estimate for the 200 

toxicity, in line with the principle of screening-level risk assessments. For this reason, if a single 201 

substance had multiple test values, the lowest value reported was used. ∑TU is based on the 202 

assumption of toxic additivity, neglecting potential synergistic and antagonistic effects between 203 

chemicals. Although studies have shown that this approach can result in an overestimation of mixture 204 

toxicity, it is generally within a factor of two or three of the observed toxicity and is as such defendable 205 

as a precautionary default assumption (Faust et al., 2003; Belden et al., 2007). Moreover, Schaefer et 206 

al. (2013) showed that ∑TU generally correlated as well or better than other toxicity predictions (i.e. 207 

independent action) to an ecological indicator of pesticide pollution (SPEAR) suggesting that the ∑TU 208 

is a reasonable predictor for actual toxic pressure to aquatic biota. Liess and von der Ohe (2005) and 209 

Schaefer et al. (2012) have suggested logTU≥-3.0 as a threshold value for acute observed effects on the 210 

aquatic macroinvertebrate community structure in the field. However, their studies were based on 211 

TUmax; thus it should be noted that our use of ∑TU is probably slightly more conservative. Note that 212 

samples without pesticides measured at or above the detection limit were assigned a very low TU-value 213 

(-8.0). 214 

The predicted toxicity of the sediment-bound pesticides was estimated using measured bulk 215 

sediment concentrations of contaminants, which were converted into aqueous concentrations according 216 

to the equilibrium-partitioning approach for non-ionic organic chemicals (see SI Table S1). The TU 217 



9 

 

could then be determined in accordance with the dissolved-phase approach. This approach is in line 218 

with previous studies focusing on the partitioning, bioavailability and toxicity of pyrethroid 219 

insecticides, suggesting that equilibrium partitioning theory could be used to reasonably predict 220 

sediment toxicity (Maund et al., 2002). It should be noted that this method entails considerable 221 

uncertainty, since the compounds may not be in equilibrium in stream sediment and it is difficult to 222 

measure Koc for highly hydrophobic compounds. Direct calculation for predicted sediment toxicity was 223 

not possible due to a lack of data (e.g. using chronic 28d NOEC sediment toxicity values) for many of 224 

the detected compounds. 225 

We calculated TU for the sediment samples using Chironomus riparius as the benchmark organism. 226 

We assembled data for three exposure scenarios: acute 96h LC50, chronic 28d NOEC (spiked water) 227 

and chronic 28d NOEC (spiked sediment) (SI Table S6). Where no data was available, we 228 

supplemented with data for other test organisms (Chironomus tentans; Chironomus dilutus (previously 229 

called C. tentans); Gammarus lacustris; Hyalella azteca). For the calculation of ∑TU for sediment 230 

samples, we prioritized data in the following order: 1) chronic 28d NOEC for Chironomus sp., 2) 96h 231 

acute LC50 for Chironomus sp. and 3) chronic exposure tests for alternative species. Moreover, we 232 

assembled data for 21-d NOEC for D. magna for all compounds detected in a sediment sample. For 233 

some compounds, no values could be found (SI Table S7), and our toxicity estimates are therefore 234 

likely to underestimate the potential toxicity of the samples. 235 

We calculated the average log∑TU for permitted pesticides and compared them to the average 236 

log∑TU for all detected pesticides (t-test, α=0.05) for base-flow, storm-flow and the sediment samples. 237 

Additionally, we compared the average log∑TU of all detected pesticides in storm-flow samples with 238 

the average log∑TU of base-flow samples (t-test, α=0.05). The tested data fulfilled the requirements for 239 

normality (Shapiro-Wilk) and equal variances (Bartlett’s test; α=0.05); the two sampled control sites 240 

were not included in any of the statistical analyses. 241 

4. Results and discussion 242 

4.1 Historical use of pesticides in Denmark 243 

The historical agricultural use of pesticides in Denmark is presented by an overview of sales data for 244 

the active ingredients sold from 1956-2010 (Fig. 2). Specifically, we give an overview for the 32 245 

pesticides detected in this study, with the addition of glyphosate.  It can be seen that sales peaked just 246 
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under 4,400 metric tonnes in 1983. In comparison, the total amount of pesticides sold during this period 247 

peaked at ca. 9,200 tonnes in 1983 of which ca. 5,000 tonnes were herbicides (SI Figure S1). The 248 

pesticides detected in this study thus comprise ca. 45% of the total pesticides sold. The specific 249 

pesticides used have changed greatly over time. Herbicides such as trichloroacetic acid (TCA), 250 

dichlorprop and MCPA dominated the sales from 1960-1970, to be substituted by compounds such as 251 

glyphosate and isoproturon in the early 1980s and 1990s. Further details on the historical use trends in 252 

Denmark for detected compounds are given in SI Table S2. 253 

Comparing trends for agricultural land use in Denmark over three decades revealed only a slight 254 

decline in the total area cultivated (from ca. 2.5 M-ha to 2.2 M-ha); thus only small changes were seen 255 

in the total treatment frequency (SI Table S3) and the total number of pesticides sold (e.g. 1,168 in 256 

1990; 1,153 in 2010). However, for some crop types major changes are evident, which could also 257 

reflect the changing use patterns of pesticides, and changes in agricultural practice (Hansen et al., 258 

2011). For example, for one of the dominant crop types in Denmark (winter cereals) and for corn, the 259 

treatment frequency has been cut by over 60%; whereas for potatoes, it has increased by ca. 35%. 260 

Herbicides, in all cases, are by far the most widely applied pesticides, followed by fungicides and 261 

insecticides. 262 
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 263 

Fig. 2. Sales of detected active ingredients (incl. glyphosate) in Denmark for agricultural use between 1956-2010, shown as 264 
stacked shaded areas. Hexachlorobenzene is not present, as it was never authorized for use as a fungicide in Denmark. 265 
Adapted from Tuxen et al. (2013). 266 

4.2 Overview of current pesticide findings 267 

Figure 3 presents the findings for all stream site locations sampled in 2010-2012 for both the 268 

dissolved and sediment samples. In total, 32 pesticides were detected at least once and these findings 269 

are composed of 18 herbicides, 7 fungicides and 7 insecticides. In addition to hexachlorobenzene, 270 

another 9 compounds were detected comprising metabolites, intermediates, potential impurities or 271 

isomers of a pesticide (see also SI Table S8). 272 

4.2.1 Dissolved-phase pesticide findings 273 

The number of compounds found per stream site ranged from 5 to 24 for storm-flow samples, and 274 

from 1 to 10 for base-flow samples (SI Table S9). SI Table S9 furthermore gives an overview of which 275 

compounds were most widespread (found in multiple streams) and in which phase, as well as which 276 

stream locations were the most impacted (most compounds present per site). DNOC (last sold in 1987), 277 
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TCA (1988), simazine (2004), 2,6-dichlorobenzamide (BAM, metabolite) and MCPA (4th most sold 278 

pesticide in 2010; SI Table S4) were by far the most prevalent compounds detected in the water 279 

samples. Metamitron additionally belongs to this group as it was detected at 11 of the 12 agriculturally-280 

impacted sites, although it was detected only during one storm-flow event in 2010 (see Fig. 4).  281 

Notably, 4 to 5 compounds were also detected in the control (least disturbed) sites during storm-282 

flow events, including BAM. BAM is a metabolite of dichlobenil, which is typically associated with 283 

urban applications and not with agricultural use (Clausen et al., 2007) and is one of the most common 284 

contaminants in Danish aquifers (Malaguerra et al., 2012). This finding was expected considering that 285 

scattered settlements are typical of the Danish rural landscape (see Fig. 1).  286 
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 287 

Fig. 3. Overview of (a) maximum and (b) median pesticide concentrations in the water (dissolved phase – striped bars) and 288 
associated with sediments (bound-phase – solid bars), for herbicides (H), insecticides (I) and fungicides (F) measured 289 
during the field campaign (excluding control sites). Note the dotted black line that marks the transition from not authorized 290 
to permitted status according to Danish legislation, although some may still be permitted within the European Union. We 291 
consider some pesticides as not being authorized when the yearly registered sales are below 4 metric tonnes (i.e. 2,4-D, 292 
MCPP), indicating these chemicals are being phased out. SI Table S8 provides an overview of the maximum concentrations 293 
and features of compounds detected in this study. SI Table S9 presents an overview of the extent of detected compounds in 294 
streams in the study area. Note that endosulfan-alpha was found above the detection limit in one bed sediment sample, but 295 
below the quantification limit: its inclusion here is to document its presence, i.e. trace concentration. 296 

4.2.2 Pesticides in the sediment-phase 297 
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Eleven different chemicals in total were detected in the sediment samples (Fig. 3), where 298 

hexachlorobenzene, chlorpyrifos and diflufenican were the most prevalent (SI Table S9). Six of these 299 

chemicals are no longer authorized for use in Denmark. Although four chemicals were detected in the 300 

bed sediment, only diuron was measured above the limit for quantification (SI Table S8). The total 301 

number of compounds ranged from 4 to 6 per site. For site 7-V1 (SI Table S9), where both sediment 302 

sampling methods were carried out, chlorpyrifos was additionally detected in the suspended sediment, 303 

which was not present in the streambed sample. The herbicide diuron was the only pesticide found in 304 

all the phases considered in this study (SI Table S5). Notably, many of the (lipophilic) fungicides (e.g. 305 

fenpropimorph) and insecticides (e.g. chlorpyrifos) detected in this study were only found in the 306 

sediment-phase. Findings were similar to the dissolved-phase, showing a mix of banned and 307 

contemporary pesticides. 308 

The presence of hexachlorobenzene, never authorized for use in Denmark, could be due to the 309 

importation of products which contain it, such as biocide-treated woods, PVC, fireworks or synthetic 310 

rubber (Paludan et al., 2004). It could also be present since it is a known by- and combustion-product in 311 

the production process for chlorinated solvents and organochlorine pesticides (Gilbert, 2012; Lützhøft 312 

et al., 2012). Chlorpyrifos, banned in 2006 in Denmark but still permitted within the EU (SI Table S2), 313 

is a broad-spectrum chlorinated organophosphate insecticide and biocide (e.g. incorporated in paint as a 314 

means of vector control) (Mackay et al., 2014). 315 

4.2.3 Priority pollutants 316 

Eight of the nine pesticides included on the European 33 priority pollutant list were detected, 317 

including atrazine, chlorpyriphos, diuron, endosulfan-alpha, hexachlorobenzene, isoproturon, lindane 318 

and simazine. Most of the maximum concentrations measured in the study streams fall close to the 319 

reported median value for European streams (SI Table S8). The maximum detected aqueous 320 

concentration for diuron and isoproturon was above or close to the EU aquatic PNEC, respectively 321 

(Klein et al., 1999). The fungicide/impurity hexachlorobenzene and the insecticides lindane and 322 

endosulfan-alpha (isomer of endosulfan) were detected in the sediment at concentrations well-above 323 

the EU sediment PNEC (Klein et al., 1999). Furthermore, the maximum measured concentration of 324 

hexachlorobenzene was double the existing Danish freshwater guideline value of 10 µgkg
-1

 (SI Table 325 

S2) (Danish EPA, 2010), and it was found at all sampled locations (SI Table S9). 326 
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4.3 Complex picture for pesticide entry to surface water  327 

Pesticide application methods vary widely and can strongly affect how much of the applied 328 

chemical reaches the target site (Vogel et al., 2008), where potentially only 0.1% of the pesticides 329 

applied to crops actually reach the target pest (Arias-Estévez et al., 2008). Important factors affecting 330 

the transport of pesticides within a catchment include the meteorological conditions, land use, 331 

physicochemical properties and the conditions of the soil surface (Asman et al., 2005; Holvoet et al., 332 

2007; Rodrigues et al., 2013). Once released, the fate of pesticides is then determined by environmental 333 

processes such as volatilization (from soil and plant surfaces) and degradation (biotic and abiotic), with 334 

the effect that pesticides will enter different compartments in different quantities and subsequently be 335 

removed at different rates, resulting in widely varying transport distances and residence times. Here we 336 

discuss the contributions and thus importance of different entry pathways for selected compounds, 337 

relying on literature findings to supplement our conclusions for relevant pathways not directly 338 

investigated in this study. 339 

4.3.1 Indications for a groundwater transport route 340 

Almost all pesticides (17 from 22 detected) not authorized for use in Denmark, and metabolites and 341 

impurities, were detected during base-flow conditions when groundwater discharge is expected to be 342 

the most dominant source of inflow to the streams. This is shown in Fig. 4, which separates the storm-343 

flow and base-flow water samples for pesticides (Fig. 4A) and detected metabolites/impurities (Fig. 344 

4B). Our main criteria for inferring groundwater as a relevant pathway for specific compounds is that 345 

(i) we find it under base-flow conditions in similar concentrations, if not higher, to storm-flow values 346 

(see Table 1), (ii) we find them in groundwater, and (iii) maximum storm-flow and base-flow 347 

concentrations were detected at the same sampling location (i.e. stream), as is discussed further below.  348 
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 349 

Fig. 4. Overview of dissolved-phase (a) pesticides and (b) metabolites and/or impurities, identified either during the base-350 
flow event (blue-striped bars) or during a storm-flow event (gray-scale bars). Note the dotted black line that marks the 351 
transition from not authorized to permitted status according to Danish legislation. 352 
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We can make the strongest case for BAM, dichlobenil, mecoprop (MCPP). 2(4-353 

chlorophenoxy)propionic acid (4-CPP), and MCPA. For BAM, the highest detected concentration was 354 

in the groundwater, with comparable concentrations in the base-flow (Table 1). BAM is highly soluble 355 

and non-volatile (University of Hertfordshire, 2014), in contrast to its parent compound dichlobenil (SI 356 

Table S1), so that its presence in groundwater is expected. Dichlobenil was found in lower 357 

concentrations in groundwater (Table 1), compared to its metabolite BAM (by one order of magnitude, 358 

Table 1), and was detected in higher but similar concentrations during storm-flow events compared to 359 

base-flow. This could be due to the fact that dichlobenil is typically found in the upper few meters of 360 

soil (Clausen et al., 2007) from where it could be released during heavy rain events. 361 

The detected concentrations for MCPP in storm- and base-flow were comparable to concentrations 362 

detected in groundwater wells for the Hove catchment (Table 1, see also SI Table S10). Although the 363 

storm-flow concentrations were highest for MCPP, these values were close to the value for base-flow. 364 

In the case of MCPP, this could indicate that, although we have classified it as not authorized, MCPP-P 365 

is still in “restricted” use, although the amounts are low (below 4 metric tonnes, SI Fig. S1, SI Table 366 

S1). MCPP is highly soluble and nonvolatile, further supporting this pathway as being relevant in 367 

explaining its presence in the investigated streams.  368 

A similar case can be made for 4-CPP (metabolite/impurity of dichlorprop), although it was only 369 

detected in one groundwater well in the survey (SI Table S10). However, it was found in a later study 370 

in at least one monitoring or drinking water well close to a stream in the Hove catchment (Levi et al., 371 

2014). In addition, a parallel study conducted at one of the Hove stream locations (8-Ri) confirmed the 372 

existence of groundwater discharge zones entering the stream. Specifically, phenoxy acid herbicides 373 

(MCPP, dichlorprop, 4-CPP) were detected in groundwater impacted by landfill leachate which enters 374 

the stream particularly during dry periods, i.e. when stream concentrations reached groundwater 375 

concentration levels (Milosevic et al., 2012).  376 

MCPA, representing decades of both contemporary and historical use, was found at the highest 377 

concentration of all detected pesticides in water samples. Interestingly, base-flow concentrations for the 378 

restricted-use herbicide MCPA were only ca. 50% lower than the storm-flow concentrations at the 379 

same locations (e.g. maximum detected: 6.9 µgL
-1

 and 3.4 µgL
-1

, respectively, for 7-V1), indicating the 380 

high importance of groundwater inflow for this compound in addition to the inflow via surface run-off 381 

and tile drains during storm-flow events. This pattern was also seen for three of the other compounds, 382 
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i.e. maximum storm-flow and base-flow concentrations were found at the same location for 4-CPP (8-383 

Ri), BAM (5-In) and dichlobenil (7-V1), suggesting that groundwater is an important contributor for 384 

these compounds based on our criteria.  385 

A lesser case can still be made, however, for bentazone, as well as for atrazine, 2,4-D and its 386 

metabolite 2,6-dichlorophenol and isoproturon (but see also Section 4.3.2). Bentazone and 2,4-D are 387 

highly soluble, compared with isoproturon (moderately soluble) and atrazine (low solubility); all of 388 

these compounds are non-volatile with a low persistence in soils (DT50s) except for atrazine 389 

(moderately persistant) (SI Table S1). For bentazone, although the highest concentration was detected 390 

in a storm-flow event, concentrations were in the same order of magnitude for both base-flow and 391 

groundwater (Table 1), which indicates that groundwater is most likely contributing to the presence of 392 

bentazone in streams. For 2,4-D, the highest concentration detected was in groundwater (Table 1) with 393 

similar concentrations detected in base-flow and storm-flow (same order of magnitude). The case for 394 

isoproturon is similar to 2,4-D, with similar concentrations detected in base-flow and storm-flow (same 395 

order of magnitude), which could indicate that groundwater is contributing to this compound’s 396 

presence in the investigated streams. In the case of atrazine, its highest concentration was detected in 397 

groundwater followed by base-flow; it was not detected in storm-flow events, which could be due to 398 

the fact that its use has been discontinued since 1994 in Denmark.  399 

Table 1: Overview for maximum and median pesticide concentrations, including metabolites/impurities (right-justified), 400 
detected in the storm-flow, base-flow and groundwater (Hove catchment only). Note that median equals maximum for base-401 
flow, since this was only sampled once. The maximum concentration detected per pathway is highlighted in bold. 402 

Compound 

Maximum conc. detected per compound 

[µgL
-1

] 

Median conc. detected per 

compound [µgL
-1

] 

Storm-flow Base-flow Groundwater Storm-flow Groundwater 

DNOC (H) 0.31 0.054 0.10 0.21 0.01 

TCA (H) 0.95 0.11 0.01 0.17 0.01 

Dinoseb (H) 0.013 0.048 0.10 0.011 0.01 

4-nitrophenol 0.096 n.d. n.d. 0.066 n.d. 

Atrazine (H) n.d. 0.015 0.10 n.d. 0.01 

Desethylatrazine 0.081 0.046 0.10 0.081 0.01 

Desisoproylatrazine 0.032 n.d. 0.10 0.023 0.01 
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Hydroxyatrazine 0.069 0.057 0.10 0.057 0.01 

Hexazinone (H) 0.011 n.d. n.d. 0.011 n.d. 

MCPP (H) 0.59 0.34 0.12 0.10 0.01 

Dichlorprop (H) 0.23 0.069 0.06 0.056 0.018 

4-CPP 
0.39 0.69 0.011 

0.35 
only 1 finding 

above DL 

Dichlobenil (H) 0.051 0.025 0.02 0.017 0.01 

BAM 0.19 1.7 2.1 0.14 0.036 

2,4-D (H) 0.046 0.014 0.1 0.022 0.01 

2,6-dichlorophenol n.d. 0.064 n.d. n.d. n.d. 

Isoproturon (H) 0.23 0.11 0.029 0.038 0.029 

Simazine (H) 0.11 0.02 0.04 0.1 0.02 

Diuron (H) 0.15 0.056 0.026 0.028 0.01 

Dimethoate (I) 0.011 n.d. n.d. 0.011 n.d. 

Terbutylazine (H) 0.23 0.026 0.015 0.067 0.01 

MCPA (H) 6.9 3.4 0.012 0.81 0.012 

4-chlor-2-methylphenol 0.085 n.d. 0.10 0.058 0.05 

Bentazone (H) 0.092 0.016 0.023 0.043 0.018 

Metamitron (H) 0.92 n.d. 0.02 0.33 0.01 

Pendimethaline (H) 0.027 n.d. n.d. 0.027 n.d. 

Propiconazole (F) 0.082 n.d. n.d. 0.075 n.d. 

Tebuconizole (F) 0.038 n.d. n.d. 0.031 n.d. 

Epoxiconazole (F) 0.055 n.d. n.d. 0.055 n.d. 

Boscalid (F) 0.11 n.d. n.d. 0.051 n.d. 

 403 

4.3.2 Indications for an atmospheric transport route 404 

TCA and DNOC have been banned in Denmark since 1988 and 1987, respectively (SI Table S2), 405 

and they are not found above the detection limit in groundwater in the Hove catchment (SI Table S10). 406 
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Moreover, maximum storm-flow and base-flow concentrations were found at different locations, e.g. 407 

TCA (3-Kr/storm-flow; 11-V2/base-flow), DNOC (3-Kr/storm-flow; 9-Bi/base-flow) or metamitron 408 

(3-Kr/storm-flow; not detected in base-flow), so the groundwater pathway is considered less likely. 409 

TCA is highly water soluble (SI Table S1) and has been linked to both wet and dry deposition from the 410 

atmosphere, although sources and fate for this compound are still not completely understood (Cape et 411 

al., 2006). Asman et al. (2005) found in a Danish study that the overall wet deposition of nitrophenols 412 

(e.g. DNOC, 4-nitrophenol) were much higher than that for pesticides. Nitrophenols comprise a group 413 

of compounds that are emitted by cars, but can also be formed in the atmosphere by the photochemical 414 

reaction of nitrogen oxides with hydrocarbons (Asman et al., 2005) indicating that DNOC could also be 415 

transported via the atmospheric pathway.  416 

Metamitron was found in 11 of the 12 agricultural streams (i.e. Hove; Skensved) during one storm-417 

event measurement. Metamitron is a pre- and post-emergence herbicide used for weed control in sugar 418 

beet and strawberry fields (SI Table S2). Strawberry fields are indeed found scattered throughout the 419 

area, but are not among the dominant crop type for these catchments and these crops were not observed 420 

directly bordering the sampling locations. Potentially it is transported via the atmosphere, e.g. via wind 421 

drift from nearby fields. This conjecture is supported by previous studies in Danish catchments on 422 

Sjaelland, which showed statistically significant losses of metamitron due to primary (droplet) and 423 

secondary drift (evaporation) (Carlsen et al., 2006a; Carlsen et al., 2006b). 424 

Chlorpyrifos, well-known for its persistence and ability to undergo long-range transport (Mackay et 425 

al., 2014), was detected in all four suspended sediment samples, but not in the streambed sediment. 426 

Although it is still permitted within the EU, it has been banned for use as an insecticide in Denmark 427 

since 2006 (SI Table S2), but may still be found in material protection products, e.g. paint as a biocide. 428 

Nearby scattered settlements (Fig. 1) could therefore act as sources emitting chlorpyrifos via storm-429 

flow runoff to streams. In addition, the atmosphere is also a likely transport pathway; chlorpyrifos was 430 

among the 10 most frequently detected compounds in rainwater in four agricultural watersheds in the 431 

United States (Vogel et al., 2008). 432 

Several of the legacy herbicides for which there is weaker evidence for the groundwater pathway 433 

(Section 4.3.1) could come in part from the atmosphere, but could also then partly have leached into 434 

groundwater and from there entered the stream water. In particular, atrazine, its metabolites, 435 

isoproturon, and 2,4-D were detected in rainwater in the study by Asman et al. (2005). In our study, 436 
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these compounds were detected in the highest concentrations in either base-flow or groundwater, 437 

lending support to the importance of groundwater as a contributor of these compounds to stream water.  438 

However, further work is still needed to properly disentangle the relevance of the different sources 439 

and their contribution to the presence of pesticides in surface water. This includes a closer look at the 440 

influence of biocides applied in urban settings, since it is probable that some compounds which are no 441 

longer permitted for agricultural use may still be allowed in biocides (e.g. diuron, mecoprop, Wittmer 442 

et al., 2010, see also Section 4.2.2). Specifically, a much higher temporal and spatial resolution of all 443 

sampling sites for each of these potential sources (e.g. base-flow, storm-flow, groundwater, 444 

precipitation) is essential, preferably also extending the dataset to include more catchments (e.g. mixed 445 

land use for e.g. presence of biocides) in order to support a more statistical evaluation of the data.  446 

4.4 Contribution of banned pesticides to predicted ecotoxicity 447 

The log∑TUD.magna for permitted pesticides is depicted as a function of the log∑TUD.magna for all 448 

compounds for each sample in Fig. 5. For the storm-flow samples, the addition of banned compounds 449 

significantly increased the log∑TUD.magna by up to one order of magnitude (P=0.014, Table 2). Storm-450 

flow samples generally exhibited a higher log∑TUD.magna compared to base-flow (P<0.001). The higher 451 

log∑TUD.magna in storm-flow samples compared to base-flow samples was due in part to the herbicide 452 

metamitron and in part to several fungicides (see SI Table S9). These compounds have low-to-453 

moderate toxicity to D. magna, similar to many of the herbicides detected in the base-flow samples (SI 454 

Table S6). The general increase in log∑TUD.magna of storm-flow samples was therefore due primarily to 455 

the presence of higher concentrations of compounds with similar toxicity (not more toxic compounds). 456 

For the base-flow samples, the addition of banned compounds significantly increased the 457 

log∑TUD.magna by up to four orders of magnitude (P<0.001, Table 2). Importantly, contaminated 458 

groundwater inflow constitutes a chronic source of pollution, and given the relatively short time span in 459 

which standard toxicity tests are conducted, the estimated toxicity of these compounds may be 460 

underestimated. Studies using longer exposure durations are needed to fully comprehend the 461 

ecotoxicological potential of groundwater-based pollution in streams. Importantly, these findings show 462 

that non-authorized substances, including metabolites and impurities increase the log∑TUD.magna of 463 

water samples irrespective of the entry pathway.  464 

4.5 Contribution of sediment-bound pesticides to predicted ecotoxicity 465 
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Using TU based on 48h acute toxicity tests with D. magna, all suspended sediment samples (SPS) 466 

were characterized by a log∑TUD.magna ≥-3.0 (converted to water concentrations) when all compounds 467 

were included (Fig. 5). In contrast, only two of the four SPS samples exceeded a log∑TUD.magna of -3 468 

when considering only permitted compounds. Macroinvertebrate community changes have been 469 

observed at log TUD.magna  of -3 (Liess & von der Ohe, 2005; Schaefer et al., 2012), and this low 470 

threshold for observed effects has been proposed to be due in part to concomitantly acting 471 

environmental stressors and indirect pesticide effects facilitated through community interactions (Liess 472 

& von der Ohe, 2005). Our results suggest that one possible explanatory factor governing this low 473 

threshold for observed community effects in the field could be due to chronic exposure of legacy 474 

pesticides especially via sediments.  475 

For the bed sediment sample (Site 7-V1, Table 2), the predicted toxicity value is similar to the more 476 

toxic storm-flow samples, remaining just below the threshold regardless of the inclusion of e.g. legacy 477 

pesticides. Higher log∑TUD.magna in suspended sediment compared to the bed sediment sample is 478 

probably due to the fact that the bed sediment sample was comprised of the top 2-5 cm in depositional 479 

zones. Given that particle-associated pesticides are likely to be primarily associated with the upper few 480 

millimeters of newly deposited sediment, the volume of deeper sediment may dilute the pesticide 481 

concentrations compared to SPS sampling (Liess et al., 1996). The log∑TUD.magna for all compounds 482 

detected in the sediment-phase (both suspended and bed sediment) was higher, but not statistically 483 

different (P=0.055), than the log∑TUD.magna when only contemporary pesticides are included. The lack 484 

of a statistically significant difference was most likely due to the small sample size. The log∑TU for 485 

suspended and bed sediment samples were generally higher compared to the log∑TU of water samples, 486 

and the influence of banned pesticides on log∑TU appeared to increase (SI Fig. S2). 487 
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 488 

Fig. 5. Log∑TUD.magna for all pesticides detected, compared with the log∑TUD.magna considering only the currently permitted 489 
pesticides in Denmark for all pathways analyzed. Solid lines indicate the threshold for acute observed effects on 490 
macroinvertebrate community structure in the field (logTU≥-3.0) (Schaefer et al., 2012); dotted line shows 1:1 ratio.  491 

Our findings, supported also by other published studies (Kuivila et al., 2012; Warren et al., 2003), 492 

indicate that sediment-bound pesticide residues could be important for both acute and chronic 493 

exposures of the biota since they consistently harbored high toxic potential. However, both the 494 

suspended and bed sediment samples were analyzed for a broader spectrum of insecticides that was not 495 

included in the aqueous samples. Aqueous samples could therefore have a higher toxic potential to D. 496 

magna than our results indicate. We furthermore suggest that future research should address chronic 497 

exposure of pesticides that have been adsorbed to particles for several months or even years to evaluate 498 

whether the predicted toxicity of the sediment-associated pesticides, in particular for the legacy 499 

pesticides, detected in agricultural streams is valid. Moreover, we emphasize the need to further 500 

develop our knowledge of the temporal dynamics in particular of legacy pesticide concentrations in 501 

stream sediments. 502 

Table 2: Log∑TUD.magna for all 14 streams based on water samples collected during base-flow, storm flow or in the 503 
sediment-phase (SPSs: n=4; kayak coring: n=1, bed sediment). Gray shaded cells represent samples where the calculated 504 
toxicity is very close to (n=1) or exceeds (n=7) the threshold (logTU≥-3.0) for observed effects on macroinvertebrate 505 
community structure. N/A=not analyzed, indicating streams where pathways were not sampled for a particular phase (i.e. 506 
base-flow; storm-flow; suspended sediment; bed sediment). 507 
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Sampling 

pathways 

log∑TUD.magna 

1-Ra 2-Ba 3-Kr 4-El 5-In 6-Se 7-V1 8-Ri 9-Bi 10-O 11-V2 12-Sk 13-R 14-Fa 

Base-flow: 

permitted 
-6.14 -6.98 -8 -8 -8 -8 -4.61 -6.18 -8 -8 -5.27 -6.24  N/A N/A  

Base-flow: 

total 
-5.53 -4.69 -3.72 -6.78 -4.89 -4.62 -4.34 -4.55 -5.33 -4.98 -4.73 -3.59  N/A  N/A 

Storm-flow: 

permitted 
-5.69 -4.86 -3.73 -4.43 -4.21 -4.11 -3.48 -4.28 -4.43 -3.94 -4.15 -4.14 -6.61 -5.43 

Storm-flow: 

total 
-4.51 -3.44 -3.43 -4.29 -3.71 -3.27 -3.07 -4.01 -4.02 -3.82 -3.77 -3.61 -5.93 -5.20 

Sediment 

(SPS): 

permitted 

N/A N/A -2.67 N/A N/A -5.00 -3.43 N/A N/A N/A N/A -2.89 N/A N/A 

Sediment 

(SPS): total 
N/A N/A -0.76 N/A N/A -2.79 -1.81 N/A N/A N/A N/A -1.02 N/A N/A 

Bed sediment: 

permitted 
N/A N/A N/A N/A N/A N/A -4.35 N/A N/A N/A N/A N/A N/A N/A 

Bed sediment: 

total 
N/A N/A N/A N/A N/A N/A -3.21 N/A N/A N/A N/A N/A N/A N/A 

 508 

5. Implications of pesticide findings in streams  509 

5.1 Historical versus contemporary use 510 

Our study investigates both the occurrence and pathways for pesticides in stream water. The results 511 

provide a snapshot of the pesticides found in Danish streams, recording only presence/absence of a 512 

small percentage of the total number of chemicals that have been, or currently are on the market. These 513 

findings contribute to a more holistic understanding of stressors potentially impacting freshwater 514 

ecosystems, revealing the presence of legacy pesticides in different media to which aquatic organisms 515 

are exposed. 516 

Pesticide concentrations in surface water bodies are consistent with trends in current agricultural 517 

use (Thurman et al., 1992; Vecchia et al., 2009), particularly for run-off associated with rain events, 518 

when only contemporary pesticides are included in the sampling campaign. However, studies of 519 

pesticides in groundwater present similar conclusions to our work, with concentrations being related to 520 
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the time when these compounds were first introduced (Tesoriero et al., 2007). Here we have clearly 521 

documented the presence of pesticides that have, in some cases, been removed from the Danish and/or 522 

European market for over several decades. Notably, predicted toxicity increased by up to four orders of 523 

magnitude when detected legacy pesticides, and their metabolites and impurities, were included in the 524 

calculation. 525 

A closer look at the top 15 pesticides sold over the last decade in Denmark indicates that these 526 

accounted for ca. 63% of all pesticides sold in Denmark in 2000 (or ca. 75% of all herbicides), rising to 527 

ca. 90% in 2010 (ca. 93% of all herbicides; SI Table S4). Seven out of the 9 analyzed pesticides from 528 

this group were detected in this study. Notably, there were no insecticides among these 7 compounds; 529 

in fact, boric acid was the top insecticide sold (in 2010, but since banned in the EU), placing 21st 530 

overall, with cypermethrin – detected in this study – placing 25
th

 (Tuxen et al., 2013). This information 531 

is relevant to our findings, where both historical and contemporary insecticides were only rarely 532 

detected in the dissolved-phase, but consistently in the sediment-phase, which also exhibits the highest 533 

predicted toxicity. Herbicides dominate the total sales, are more mobile and thus more likely to be 534 

found in groundwater (SI Table S10). The higher concentrations of herbicides observed in our samples 535 

are likely related to the higher use of herbicides in agriculture, noting that we did not analyze for or 536 

detect many insecticides or fungicides in the dissolved-phase (SI Table S5). This is due to the fact that 537 

insecticides and fungicides found around detection limits in the solid phase will not allow 538 

quantification in the water phase due to their highly lipophilic nature.  Groundwater is thus likely to 539 

continue to be an important pathway in particular for herbicides in surface water for decades to come.   540 

5.2 Considerations for determining toxicity 541 

Although our study presents only predicted chemical toxicity findings, which alone can only 542 

support the possibility that chemical stressors may have contributed to impacts on aquatic ecosystems, 543 

we speculate that the role of chronic exposure of pesticides from groundwater and sediments are 544 

currently underestimated (Bundschuh et al., 2014; Peters et al., 2013). We were surprised to discover a 545 

huge paucity of data for chronic sediment toxicity values for benthic macroinvertebrates. Although 546 

there are reasons for this, i.e. non-standardized methods, this is important considering the number of 547 

compounds detected in the sediment-phase in our study. Indeed, current risk assessment methods – 548 

based on no-observed-adverse-effect-levels for single chemicals – do not provide sufficient information 549 
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about the effects of chronic exposure – over macroinvertebrate generations (Artigas et al., 2012) – to 550 

low-concentration mixtures punctuated by seasonal high-concentration pulses (Gilliom et al., 1999). 551 

They also do not consider the adjuvants pesticides are sold in – i.e. only active ingredients are tested for 552 

ecotoxicity, as the adjuvant is thought to be inert (Benachour and Seralini, 2009) – representing 553 

potential important gaps in our knowledge of the impacts of pesticides on aquatic ecosystems. 554 

5.3 Considerations for monitoring programs for streams and groundwater 555 

Our findings indicate that monitoring programs comprised only of current trends in agricultural 556 

pesticide use (one decade or less), will not be representative of what actually exists in streams and 557 

groundwater. The principle of ‘you find what you look for’ is certainly valid here, as assumptions about 558 

the fate and transport of pesticides, including dominant sources and entry pathways, must clearly be 559 

reevaluated. We suggest that legacy pesticides and their metabolites/impurities should be included in 560 

monitoring programs if the ‘true’ toxic effect of pesticides in streams is to be assessed. 561 

The importance of the groundwater pathway for headwater streams indicates that stream sampling 562 

during base-flow conditions can provide valuable information about the long-term fate of pesticides in 563 

groundwater. Both aqueous and sediment phases should be sampled to assess the health of streams and 564 

rivers. Ideally, integrative approaches should be developed with monitoring strategies simultaneously 565 

involving chemical analyses, ecotoxicological tools and the study of population/community responses 566 

(Connon et al., 2012) in order to obtain a more holistic picture. 567 

6. Conclusions 568 

This study aimed to link the history of pesticide usage to current findings for legacy and 569 

contemporary pesticides in surface and groundwater. We investigated, in particular, how legacy 570 

pesticides contribute to the ecotoxicological impact on stream water ecosystems. Findings comprised a 571 

range of both banned legacy and contemporary pesticides in 14 Danish headwater streams. 572 

Groundwater has been identified as a significant pathway especially for herbicides entering streams, 573 

and should be assessed together with input from atmospheric sources and run-off from rain events to 574 

get the full picture of stream water quality. Legacy pesticides contribute to predicted aquatic 575 

ecotoxicity, which was increased substantially (up to four orders of magnitude) when these pesticides, 576 

and their metabolites and impurities, were included in the toxicity estimations.  577 
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Sediment-bound insecticides, such as chlorpyrifos and deltamethrin, were a major source for the 578 

estimated ecotoxicity. Their presence could be due either to long-range transport in the atmosphere or 579 

to storm-flow run-off to streams from e.g. urban applications such as biocides. Our results corroborate 580 

other published studies indicating that sediment-bound pesticide residues could be important for both 581 

acute and chronic exposures of the biota. We suggest, however, that chronic toxicity scenarios are 582 

potentially more representative of the overall conditions found in streams, demonstrating the 583 

importance of the lack of long-term chronic exposure data in the literature. Thus monitoring programs 584 

comprised only of current trends in agricultural pesticide use (i.e. one decade or less), will not be 585 

representative of actual conditions in streams. Legacy pesticides and their metabolites and/or impurities 586 

should therefore be included in stream water monitoring programs in order to provide a “true” 587 

assessment of pesticide impact on streams. 588 
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