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Abstract

Antibiotic resistance is a global health crisis linked to increased, and often
unrestricted, antibiotic use in humans and animals. As one of the world's largest
producers and consumers of antibiotics, China is witness to some of the most acute
symptoms of this crisis. Antibiotics and antibiotic resistance genes (ARGs) are widely
distributed in surface water, sewage treatment plant effluent, soils and animal wastes.
The emergence and increased prevalence of ARGs in the clinic/hospitals, especially
carbapenem-resistant gram negative bacteria, has raised the concern of public health
officials. It is important to understand the current state of antibiotic use in China and
its relationship to ARG prevalence and diversity in the environment. Here we review
these relationships and their relevance to antimicrobial resistance (AMR) trends
witnessed in the clinical setting. This review highlights the issues of enrichment and
dissemination of ARGs in the environment, and also future needs in mitigating the
spread of antibiotic resistance in the environment, particularly under the ‘planetary

health’ perspective, i.e., the systems that sustain or threaten human health.
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1. Introduction

Antibiotics are used for treatment or prevention of bacterial infection. Nearly all
classes of antibiotic are based on the structure of antibiotics naturally found in
environmental microorganisms; with many of the antibiotics in widespread use being
synthetic derivatives of these natural structures (Demain 1999). Ever since penicillin
was introduced into medical therapy in 1942, hundreds of other antibiotics have been
isolated or synthesized for the treatment of human and animal infections. Antibiotics
played a significant role in the increase in life expectancy witnessed in the second-
half of the 20th century. Antibiotics transformed modern agriculture and livestock
industries, the latter of which used antibiotics for prophylaxis, meta-prophylaxis,
treatment for infection, and as a growth promoter to enhance feed efficiency in
healthy livestock (Sarmah et al. 2006).

The overuse and misuse of antibiotics stimulated the more rapid emergence of
antibiotic-resistant bacteria (ARB) and antibiotic resistant genes (ARGs), reducing
their therapeutic potential against human and animal pathogens (Wright 2010). World
Health Organization characterises antimicrobial resistance as a global public health
crisis that must be managed with the utmost urgency (WHO 2015).

The problem is particularly acute in China because of its antibiotic prescribing
practices, strong incentives for overprescribing, and the widespread use and misuse of
sub-therapeutic doses of antibiotics in agriculture (Yezli and Li 2012). Multidrug
resistance (MDR) bacteria, or ‘superbugs’, which are resistant to several different
antibiotics have been reported in China and antibiotic-resistant bacteria (ARB)
previously reported in China are now being seen to cause infections in other countries.
For example, Liu et al reported the emergence of the first plasmid-mediated colistin
resistance mechanism, mcr-1, in Escherichia coli from pigs, pork products, and
humans in 2015. At the time, it stated the belief that the gene is “currently confined to
China.” However, since then, scientists have found the MCR-1 gene in countries all

over the globe; additional colistin-resistance genes—MCR-2 and MCR-3—and
2
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variants of those genes have also emerged and spread. The global AMR crisis has
only recently been met by a substantial increase in the number of studies focusing on
antibiotic resistance in the environment, aiming towards bridging the many
knowledge gaps (Singer et al. 2016). Here we aim to consolidate this recently-
acquired knowledge base on antibiotics and ARGs in the Chinese environment with
the intention of informing evidence-based strategies towards mitigating AMR in the
environment, a poorly acknowledged goal at the national and international level

(Singer 2017).

2. Use and abuse of antibiotics in China

China is one of the world's largest producers and consumers of antibiotics, widely
used for disease treatment in humans and livestocks, and as prophylaxis and growth
promoters for the latter. A recent study showed that 92,700 tonnes of antibiotic
(inclusive of 36 antibiotics), were consumed in China in 2013; 48% of which were
consumed by humans, with the remaining by animals (Zhang et al. 2015c).
Approximately 46% of the antibiotics were ultimately released into rivers through
sewage effluent with the remaining to land through manure and sludge land spreading
(Zhang et al. 2015c). These usage estimates exceed usage in the UK and much of
northern Europe (normalised by the defined daily dose), by a factor of 6.

Approximately 50% of hospital outpatients in China are reported to use
antibiotics. Of these outpatients prescribed antibiotics, 74.0% were prescribed one
antibiotic, and 25.3% prescribed two or more antibiotics (Yin et al. 2013). The
prescription of antibiotics accounts for around half of all drugs prescribed by
hospitals, compared with just 10 percent in hospitals in high-income countries (RFA
2015). Cephalexin, amoxicillin, ofloxacin, tetracycline, and norfloxacin were the top
5 antibiotics used for human in 2013 in China (Zhang et al. 2015c). The excessive use
of antibiotics is particularly more problematic in lower-level hospitals and less
developed western China (Yin et al. 2013). About 75% of patients with seasonal

influenza are estimated to be prescribed antibiotics, and the rate of antibiotic
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prescription for inpatients is 80% (Li 2014) which is much higher than the World
Health Organization recommended maximum level of 30%. This over prescription
may be because the drug sales occupy a significant part of hospital revenues (Currie et
al. 2014). Antibiotic prescription in a total of 48 primary health care facilities in China
showed that the most frequently prescribed antibiotics were cephalosporins (28%),
fluoroquinolones (15.7%), penicillins (13.9%), imidazoles (12.6%) and macrolides
(7.3%)(Wang et al. 2014c). The prescribing patterns of antibiotics are not effectively
controlled in China until the human medical system reform initiated by the Ministry
of Health of China in 2011 (Bao et al. 2015). Xiao et al. reported that the percentage
of hospitalised patients who were prescribed antibiotics fell by 10% in just one year,
from 68% in 2011 to 58% by the end of 2012. It also dropped10% in outpatients in
the same time period, from 25% to 15% (Xiao and Li 2013). Sun et al reported a
significant reduction in overall inpatient antibiotic consumption in Chinese public
general tertiary hospitals after the interventions (Sun et al. 2015).

Modern animal husbandry often involves large and densely managed herds—
optimal conditions for the spread of infectious diseases. Antibiotic are routinely used
in an effort to manage this disease risk (Holman and Chenier 2015). Livestock
antibiotic use (52% of total antibiotic use) has been estimated at marginally higher
than human use (48%), as a percentage of antibiotic use in 2013 (subset of 36 highest
use antibiotics) (Zhang et al. 2015¢c). Consumption of veterinary antibiotics increased
from 46% in 2007 to 52% in 2013, totaling approximately 84,240 tonnes.
Amoxicillin, florfenicol, lincomycin, penicillin and enrofloxacin are the majority
veterinary antibiotics consumed at a rate >4000 tonnes in China (Van Boeckel et al.
2015; Zhang et al. 2015c). It has been estimated that the share of global antibiotic
consumption in food animal production for China will increase from 23% in 2010 to
30% in 2030 (Van Boeckel et al. 2015).

For therapeutic usage, animals are typically treated with antibiotics for a period of
3 to 7 days and then treated for another 3 or 4 days at prophylactic dosages (Wei and
Zhong 2011). Nontherapeutic use of antibiotics is the major contributor to usage

(Collignon and Voss 2015). Sub-therapeutic, in-feed antibiotics have been
4
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investigated for livestock production since the late-1940’s, only seven years after the
mass production of penicillin (Stokstad and Jukes 1950) and four years after the
discovery of chlortetracycline (Moore et al. 1946). Its use as a growth promoter
increased year on year, despite the recognition that such a practice selected for
resistance in the animals, farmers and veterinarians (Dibner and Richards 2005;
Marshall and Levy 2011).

The use of antibiotics in animal feeds has been regulated since 1989 in China
(Wang et al. 2008). Antibiotics may be added to feed at concentrations between 2.5
and 125 mg/kg of feed to improve growth for an undefined duration (weeks to
months), depending on the type and size of the animal and the type of antibiotic
(Marshall and Levy 2011). Therefore, the nontherapeutic use of antibiotics might
have played alarger role in the evolution and dissemination of multiple
antibiotic resistance than did therapeutic use since it usually involved long-term,
continuous exposure in a very large number of animals (McEwen and Fedorka-Cray
2002).

In general, antibiotics are poorly metabolised by humans and animals and as such
are excreted as the active parent chemical in the faeces and urine, entering the
environment through wastewater and manure. Antibiotic metabolites can also be
bioactive, and even if they are not bioactive, they can often be transformed back into
the parent compound or another bioactive substance. For example, the composition of
excreted sulfonamides (SAs) may contain approximately 9-30% parent compounds,
and between 5% and 60% acetylated conjugates. The metabolites, N4-
acetylsulfapyridine and N4-acetylsulfamethazine can be converted back to the parent
form (Bonvin et al. 2013; Garcia-Galan et al. 2012). Therefore, it is critical to know
about the environmental fate of antibiotics and their metabolites, which invariably

contribute to the increased prevalence and diversity of antibiotic resistance in China.

3. Antibiotics residues in the environment

Antibiotics enter into the environment via multiple pathways that include

effluents from the disposal of human waste, waste from agricultural food animal
5
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production and aquaculture, direct application to some plants, industrial effluents
from pharmaceutical production, and agricultural run-off.
3.1 Antibiotics in sewage treatment plants (STPs)

Many studies have reported the detection of antibiotics in influent and effluent of
STPs in China (Chang et al. 2008; Chang et al. 2010; Gao et al. 2012; Gulkowska et
al. 2008; Hou et al. 2016; Hu et al. 2012; Jia et al. 2012; Leung et al. 2012; Li and
Zhang 2011; Li et al. 2009; Li et al. 2013a; Peng et al. 2006; Shao et al. 2009; Sun et
al. 2016; Wang et al. 2014a; Xu et al. 2015; Xu et al. 2007; Yan et al. 2014; Zhang et
al. 2013; Zhang et al. 2015b; Zhou et al. 2013b). The frequently reported compounds
include sulfadiazine, sulfamerazine, sulfamethazine, sulfamethoxazole, trimethoprim,
tetracycline, oxytetracycline, ciprofloxacin, enrofloxacin, norfloxacin, ofloxacin,
roxithromycin, and erythromycin-H,O (Figure S1). The concentrations of these
antibiotics in both influents and effluents ranged from a few ng/L to tens of pg/L,
reflecting incomplete removal in conventional STPs. Antibiotic removal efficiencies
varied among different compounds and STPs. However, the reasons for the difference
in removal efficiencies among these STPs remains largely unknown. Different
physicochemical properties and daily loading of antibiotics, the types of treatment
processes and operational conditions of individual STPs, even the rainwater input, can
all affect the removal efficiencies. For example, cephalexin, as one of the most human
consumed antibiotics, the removal efficiencies ranged between 9 and 100%
(Gulkowska et al. 2008; Li and Zhang 2011; Li et al. 2009) in STPs of Hongkong. -
lactams, like cephalexin and ampicillin, are easy to remove due to the
ready hydrolysis of the B-lactam ring and the ubiquity of f-lactamases in wastewater.
Despite the labile nature of some antibiotics, they can still be recovered from
wastewater, suggestive of their pseudopersistence (i.e., the rate of loss closely
matches the rate it enters the wastestream) (Leung et al. 2012). Another three highly
human consumed antibiotics, ofloxacin, norfloxacin and tetracycline were also widely
detected in STPs of China. The highest concentration of ofloxacin, norfloxacin and
tetracycline were found in the STP of Hongkong (7900 ng/L, 5430 ng/L and 1510

ng/L in influent and 7780 ng/L, 3700 ng/L and 1420 ng/L in effluent, respectively)
6
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(Leung et al. 2012). Although their removal efficiencies vary among STPs, the
relatively higher removal rates of fluoroquinolones and tetracyclines (>70%) may
because these more hydrophobic antibiotics experience substantial removal from
wastewater as a result of partitioning to the solid (sludge) phase (Gulkowska et al.
2008; Li and Zhang 2011; Li et al. 2009; Peng et al. 2006; Xu et al. 2007). For many
sulfonamides, sorption to sludge was found to be negligible, therefore removal by
sorption to sludge is unlikely to be a primary removal mechanism for these
compounds. Limited removal of macrolides, like erythromycin-H,O, were reported in
several STPs of China (Gulkowska et al. 2008; Leung et al. 2012; Li and Zhang
2011). It may because macrolides are mainly excreted in bile to faeces and the faecal
materials are digested during biological treatment, consequently increasing the
dissolved mass loads in effluent (Leung et al. 2012). The highest concentration of
ofloxacin (7900 ng/L) and norfloxacin (5430 ng/L) detected in influent of STP in
Hongkong was much higher than those reported in the USA (1000 ng/L) (Brown et al.
2006), Finland (960 ng/L) (Vieno et al. 2007) and Italy (980 ng/L) (Verlicchi et al.
2014). While the highest concentration of erythromycin-H,O (4740 ng/L) was
relatively lower than the maximum concentration detected in influent from United
Kingdom (10025 ng/L) (Kasprzyk-Hordern et al. 2009). Sulfamethoxazole (SMX) is
one of the most frequently detected antibiotic compound in STP. The mean
concentration of SMX in STP influent (650 ng/L) in China was higher than that
reported in Korea (120 ng/L) (Behera et al. 2011), but comparable to that in Germany
(515 ng/L) (Rossmann et al. 2014) (Table S1).

3.2 Antibiotics in receiving aquatic environment

There exist large differences in antibiotic emission from both human and
agricultural sources within each of the river basins of China (Zhang et al. 2015c).
Pearl River basin, located in south China, has the highest emission densities, followed
by the Haihe River basin, located in north China, and Taihu Lake and Qiantang River,
located in east China. The megacities of Guangzhou and Shenzhen are located in

Pearl River basin, while Beijing is located in the Haihe River basin. The east and west
7
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China basins are separated by the "Hu Huanyong line" (i.e., a line that runs from
Tengchong in the south to Aihui in the north), where the basins to the east of the line
have 94% of the population of China, but only 43% of the land area. In general, the
average emission densities of antibiotics followed the general population trends set by
the "Hu Huanyong" line, with six times higher emission in the east and south, than in
the west. This spatial trend is consistent with the antibiotic monitoring results for the
surface water in China. Most studies reported the occurrence of antibiotics in the fast
developing areas of China, such as Pearl River basin, however, little information is
available in western China (Zhao et al. 2016).

A wide range of human and animal antibiotics have been detected in surface
water and sediments of major Chinese rivers (Chen et al. 2013a; Chen and Zhou
2014; Jia et al. 2012; Li et al. 2014a; Luo et al. 2011; Tong et al. 2014; Xu et al. 2013;
Xue et al. 2013; Yan et al. 2013; Yang et al. 2010; Yang et al. 2011; Zhang et al.
2012; Zheng et al. 2011; Zhou et al. 2011; Zhu et al. 2013a). The concentrations of
antibiotics in surface water were found to range from below the detection limit
(i.e.,<10's ng/L) to the low pg/L (Figure S2). Among them, sulfamethoxazole,
oxytetracycline, ciprofloxacin, norfloxacin, ofloxacin, clarithromycin, and
erythromycin-H,O were frequently detected in the aqueous phase of rivers with
concentrations up to a few ug/L. A wide range of antibiotics at the upper end of
environmental concentrations are typical of rivers routinely receiving urban
wastewater discharge and animal waste. The concentrations of antibiotics in
sediments ranged from below detection limits (i.e.,<10's ng/g) to the low pg/g (Figure
S3). Zhou et al. reported relatively low concentrations for sulfonamides (maximum 22
ng/g) and macrolides (maximum 67 ng/g), but high concentrations for
fluoroquinolones (maximum 5770 ng/g) and tetracyclines (maximum 653 ng/g) in the
sediments of the Yellow River, Hai River and Liao River in northern China (Zhou et
al. 2011). Yang et al. reported similar results in the Pearl River in the southern China
(Yang et al. 2010). Antibiotics, like fluoroquinolones and tetracyclines, strongly
adsorb to suspended particles and sediment (Kiimmerer 2009), indicating sediment

could be a reservoir of antibiotics in the environment. Extremely high concentrations
8
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of antibiotics were found in Haihe River, especially for sulfonamides, the highest
concentration of sulfachloropyridazine and sulfamethoxazole in tributaries of Haihe
River was 37000 ng/L. and 3900 ng/L, respectively (Luo et al. 2011). The highest
concentrations of tetracyclines (oxytetracycline and tetracycline) and macrolides
(erythromycin-H,O and roxithromycin) were all above 1500 ng/L level in tributaries
of Haihe River (Luo et al. 2011). Relatively high concentrations were also found in
the Pearl River (Yang et al. 2011), indicating the effects of a high population density.
Notwithstanding the high concentrations of antibiotics in the Haihe River,
environmental concentrations of antibiotics in surface waters in China are comparable
to or slightly higher than those reported in USA (Arikan et al. 2008; Kim and Carlson
2007), France (Tuc Dinh et al. 2011), Germany (Christian et al. 2003), Finland (Vieno
et al. 2007), Italy (Verlicchi et al. 2014) and Korea (Kim et al. 2007) (Table S1).

3.3 Antibiotics in livestock farm wastes

The great boom in the number of concentrated animal feeding operations
(CAFOs) for swine, poultry, and cattle production has driven demand for antibiotics.
Antibiotics use in animal husbandry ends up in the manure, due to the combination of
poor absorption and metabolism of the antibiotic in vivo. The total usage of
antibiotics for animals was 84240 tonnes in China (Zhang et al. 2015c), with a large
fraction of this held within the manure, which exceeds 2000 million tonnes for nearly
all animals in 2011 in China (Zhu and Ma 2014). Hence, livestock manure is a major
source of antibiotics, which enters through their application as fertilisers and soil
enhancers in agricultural fields and as diffuse pollution in stormwater runoff from
manure-amended fields.

Multiple classes of antibiotics have been recovered in the manure of swine,
chicken and cattle (Hou et al. 2015; Hu et al. 2008b; Hu et al. 2010; Huang et al.
2013b; Ji et al. 2012; Li et al. 2013c¢; Li et al. 2012; Pan et al. 2011; Qiao et al. 2012;
Zhang et al. 2015a; Zhao et al. 2010; Zhou et al. 2013a; Zhou et al. 2012; Zhou et al.
2013c¢). Fluoroquinolones (FQ), sulfonamides (SA) and tetracyclines (TC) were the

most frequently detected antibiotics and exhibited a broad concentration range (Figure

9
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S4). Zhao et al. (2010), recorded the maximum concentration of enrofloxacin in
chicken litter ever reported in China, 1421 mg/kg. The authors also reported
the highest ever recorded concentration of norfloxacin in chicken manure, 225 mg/kg
(Zhao et al. 2010). Notably, the authors reported no appreciable sulfonamide
antibiotic concentrations (less than 10 mg/kg) in any animal dung. Zhang (2015),
reported oxytetracycline and chlortetracycline were the two most frequently recovered
antibiotics in animal manures and the highest concentration was 417 mg/kg in chicken
manure (Zhang et al. 2015a) and 764 mg/kg in swine manure (Pan et al. 2011),
respectively. In general, tetracyclines and fluoroquinolones were detected with higher
occurrence and higher concentrations than SAs; likely a result of the recalcitrance and
high partitioning of TC and FQ in manure. The highest concentrations of veterinary
antibiotics (enrofloxacin 1421 mg/kg and chlortetracycline 764 mg/kg) exceeded
those reported from Turkey (enrofloxacin 0.06 mg/kg and chlortetracycline
0.38mg/kg) (Karci and Balcioglu 2009), Austria (enrofloxacin 8.3 mg/kg and
chlortetracycline 46  mg/kg)(Martinez-Carballo et al. 2007), Germany
(chlortetracycline 50.8 mg/kg)(Holzel et al. 2010) and Canada (chlortetracycline 0.4
mg/kg)(Aust et al. 2008) (Table S1).

3.4 Antibiotics in soil

Antibiotics can be introduced into soil through irrigation with reclaimed water,
sludge and manure land application to crops or landfill, and the use of livestock
wastes as soil fertilisers. The concentration of antibiotics varies greatly across soils of
different origins, typically in the mid- to high- pg antibiotic per kg soil (Chen et al.
2014; Hou et al. 2015; Hu et al. 2010; Huang et al. 2013b; Ji et al. 2012; Li et al.
2014c; Qiao et al. 2012; Wang et al. 2014b; Wu et al. 2013; Wu et al. 2010; Zhou et
al. 2013a; Zhou et al. 2012; Zhou et al. 2013¢) (Figure S5). Higher concentrations of
antibiotics were detected in soils adjacent to feedlots. For example, the maximum
chlortetracycline concentration (12.9 mg/kg) was found in soil near the effluent
discharge from a swine farm (Zhou et al. 2013a). Oxytetracycline was found with the

highest concentration of 4.24 mg/kg in an agricultural field adjacent to a swine farm
10
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(Ji et al. 2012). Sulfadiazine and sulfamethoxazole from sulfonamide (SA) groups
were also found with the highest concentration of 2.45 mg/kg and 2.41mg/kg in soils
adjacent to a poultry farm (Ji et al. 2012). Antibiotic residues in organic vegetable
production are of particular concern since ‘organic’ sources of fertiliser (e.g., manure)
is often preferred over chemical fertilisers for building soil organic matter (Xie et al.
2016). Higher residues of FQs have been reported in an important vegetable-growing
region in Shandong province, China, with the maximum ciprofloxacin and ofloxacin
concentration of 0.652 mg/kg (Li et al. 2013b) and 0.288 mg/kg (Li et al. 2014c),
respectively. Accumulations of antibiotics were also found in soils irrigated with
either reclaimed water (Fang et al. 2015) or wastewater (Li et al. 2014c), but the
concentrations were lower as compared to soils sampled around feedlots. The
concentration of oxytetracycline in Chinese soils were similar to those in Turkey (20-
510 ng/g) (Karci and Balcioglu 2009), but lower than those in UK (322-1691 ng/g)
(Kay et al. 2004). Concentrations of sulfonamide in Chinese soils were comparable
with many other countries (Aust et al. 2008; Garcia-Galan et al. 2013; Ok et al. 2011;

Shelver et al. 2010; Watanabe et al. 2010) (Table S1).

4. Antibiotic resistance in the environment and its potential health

impacts

ARGs are a natural component of all environments (e.g., soil, water,
microbiomes). However, their increased prevalence as a result of human activities has
led to their characterisation as an emerging environmental contaminant (Pruden et al.
2006). The ARG burden in the environment has serious implications for human health
owing to the potential transfer of ARGs from environmental bacteria to human
pathogens, thereby impairing the efficacy of antibiotic treatment and compromising
public health. The frequent detected ARGs and their abundance levels in different
environmental media of China are listed in Table S2.
4.1 ARGs in sewage treatment plants (STPs)

STPs contribute to a reduction in the load of antibiotics and pathogenic
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microorganisms into the receiving water body, however, this might not translate into a
significant reduction in overall risk, as the ratio of ARGs to total bacteria in STP
effluent can increase during treatment as could the frequency of recovering multi-drug
resistance (Czekalski et al. 2012). STPs are a highly favourable environment for the
selection of ARB or the horizontal gene transfer and propagation of ARGs because of
high microbial density, high nutrient content and sub-inhibitory concentrations of
antibiotics, biocides and metals.

Based on culture-dependent methods, 109 lactose-fermenting Enterobacteriaceae
(LFE) strains, important human pathogens, were isolated from the activated sludge of
the STP in Hong Kong and tetracycline-resistant LFE accounted for 32% of the total
109 LFE strains (Zhang et al. 2009a). Huang et al. investigated the antibiotic tolerance
of total heterotrophic bacteria and the concentration distribution of bacterial resistance
to six different antibiotics in the secondary effluent of the STP in Beijing. The
average percentages of chloramphenicol-, penicillin-, cephalothin-, ampicillin-,
rifampicin- tetracycline-resistant heterotrophic bacteria in the effluents were: 69%,
63%, 55%, 47%, 11% and 2.6% respectively. Above six ARB species were widely
distributed in four types of enterobacteria (Aeromonas, Enterobacter, Escherichia or
Shigella, and Klebsiella) from the secondary effluent (Huang et al. 2012).

DNA-based techniques, like PCR and quantitative real-time PCR, are
increasingly used to detect and quantify resistance genes in environmental samples in
addition to culture-based methods. Tetracycline (fef) and sulfonamide (su/) ARGs are
commonly detected because of the widespread use of the corresponding antibiotics
and their persistence in the environment. Mobile elements, such as integrons and
transposons, were also included in many studies because of their significant
contribution to the horizontal transfer of ARGs among bacterial species. The integrase
gene (intll), belonging to class 1 integrons, was proposed to serve as a proxy of
pollution for resistant bacteria and other anthropogenic pollutants because of its rapid
response to diverse environmental pressures (Gillings et al. 2015). Among the
tetracycline resistance genes, three efflux pump genes (tetA, fetC and tetG), four

ribosomal protection proteins gene (tetM, tetO, tetQ and tetW) and one enzymatic
12
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modification gene (fefX) seem to be the most common tet genes in the STPs of China
(Chen and Zhang 2013a; Du et al. 2014; Wen et al. 2016; Zhang et al. 2009a).
Sulfonamide-resistance genes: sull and su/ll were detected at high frequency across
China STPs. The ARG concentrations in STPs varied significantly across a range of
STPs; normalized by sample volumes, the concentrations of zet genes ranged from 102
to 10'° copies/mL (Chen and Zhang 2013a; Du et al. 2014; Li et al. 2016¢; Pu et al.
2009; Wen et al. 2016; Zhang et al. 2009a). The maximum concentration of fet gene
in influent was found in a STP in Zhejiang province, in the east of China, 1017
copies/mL (Li et al. 2016¢). The concentrations of ARGs in effluent samples (from
10! to 107 copies/mL) can decrease by 0.3 to 3 orders of magnitude (Chen and Zhang
2013a; Du et al. 2014; Li et al. 2016¢c; Mao et al. 2015; Pu et al. 2009; Wen et al.
2016; Zhang et al. 2009a). Compared to influent and effluent samples, sludge samples
had higher ARG abundance (from 107 to 10!' copies/g) and diversity (Chen and
Zhang 2013a; Du et al. 2014; Li et al. 2016c; Mao et al. 2015; Pu et al. 2009; Wen et
al. 2016; Zhang et al. 2009a; Zhang and Zhang 2011). TetA and tetC, with a broad
host range, were often detected with high concentrations (Huang et al. 2015a; Zhang
et al. 2009a). Horizontal co-transfer of tetA and class I integrons have been observed
among some species like Aeromonas in fish farms (Schmidt et al. 2001). A positive
correlation between efflux pump gene (tetA, tetG) and int/1 was also observed in
some STPs, indicating the role of class I integrons in efflux pump genes (Chen and
Zhang 2013b; Huang et al. 2015b). In general, the abundance of su/ was higher than
that of tet, likely because sul/l is often associated with class I integrons. Based on the
normalized concentration of ARGs (relative to the total 16S rRNA gene copy
number), higher total loads of ARGs was observed in pharmaceutical STPs (10-4-10°
copies/copy 16SrRNA gene) than in municipal STPs (10-°-10! copies/copy 16STRNA
gene) (Huang et al. 2015a; Li et al. 2016a; Liu et al. 2012; Xu et al. 2015; Zhai et al.
2016).

In addition to the tet and sul genes, the occurrence of other ARGs including
quinolone (gnr), macrolide resistance gene (erm) and multidrug-resistant New Delhi

metallo-B-lactamase genes (NDM-1) have also been reported in the effluent and
13
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dewatered waste sludge in STPs of northern China (Luo et al. 2014; Mao et al. 2015).
In recent years, high-throughput sequencing-based metagenomic analysis has been
applied to simultaneously investigate the broad-spectrum profiles and fate of ARGs in
STPs, yielding a significantly higher diversity of ARGs than could be demonstrated
by qPCR alone. For example, a total of 271 ARGs subtypes belonging to 18 ARGs
types were identified in a typical full-scale STP in Hong Kong (Yang et al. 2014).
Influent had the highest ARGs abundance, followed by effluent, anaerobic digestion
sludge and activated sludge (Yang et al. 2014). Seasonal and geographical distribution
of antibiotic resistome from Chinese urban sewage were also characterised based on
metagenomic analysis. The demographic "Hu Huanyong line" separated the regional
ARG burden into two main regions, suggesting human activities might be the major
driver of antibiotic resistance burden distribution (Su et al. 2017).

Extensive studies have illustrated the change in abundance of typical ARGs and
intl1 in STPs of China (Chen and Zhang 2013a; Du et al. 2014; Ju et al. 2016; Li et al.
2016¢c; Mao et al. 2015; Pu et al. 2009; Wen et al. 2016). The removal efficiency
varied among different ARGs and different treatment processes. For example,
selected tet genes were significantly reduced by almost 2 to 3 orders of magnitude
(Chen and Zhang 2013b) which exceeds the removal efficiency observed for six
ARGs (0.3-2.7) (Wen et al. 2016). However, fet genes (1.2-2.7) were found to be
more readily lost in STP treatment than su/ genes (<1) (Wen et al. 2016). Measuring
removal of ARGs from the STP influent by sampling the effluent is complicated by
the fact that ARGs accumulate in the sludge which has another disposal route into the
environment (Zhang and Zhang 2011). It has been reported that the total load of
ARGs discharged through dewatered sludge was 7 to 308 fold higher than that in the
raw influents and 16 to 638 fold higher than that in the final effluents (Wang et al.
2015). ARGs have also been shown to proliferate through biological treatment stages
(Du et al. 2014; Luo et al. 2014; Pu et al. 2009; Zhang et al. 2009a), such as
conventional activated sludge, due to microbial growth. Therefore, more advanced
technologies such as Advanced Oxidation Processes (AOPs) which have been

recommended to improve the removal of ARGs in STP (Chen and Zhang 2013a;
14
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Zhang et al. 2016b).

4.2 ARGs in receiving aquatic environment

Discharges from STPs, antibiotic production plants, livestock farms and
aquaculture contribute to the ARBs and ARGs reported in aquatic environment.
However, it is largely unknown the extent to which each one contributes to the
ARGs/ARBs recovered in any particular location (Singer et al. 2016)

Many studies focused on antibiotic resistance within Escherichia coli in the
aquatic environment owing to its relevance to environmental standards and human
health. For example, E. coli resistant to one or more antibiotics among nine antibiotics
was screened from Wenyu River Basin in Beijing, China, with mean frequency of
48.7+8.7% of 388 isolates in summer and 47+6% of 236 isolates in winter. The
highest proportion of resistance appeared for sulfonamides, tetracycline, and
ampicillin (Hu et al. 2008a). E. coli isolates from several rivers in Southern China,
including Minjiang River, (Chen et al. 2011a) Dongjiang River (Su et al. 2012) and
Jiulongjiang River (Ou et al. 2015), were screened for susceptibility to a range of
antibiotics, and MDR. MDR was also found in strains of E. coli isolated from Taihu
Lake based on culture-dependent approaches (Zhang et al. 2015¢). Through a
combination of culture-dependent approaches and qualitative PCR methods,
tetracycline, sulfonamide, fluoroquinolone, ampicillin, extended-spectrum beta-
lactamase-producing bacteria, chloramphenicol-resistant bacteria and associated
ARGs were detected in fresh and marine water in China (Dang et al. 2008; Li et al.
2010; Sun et al. 2012; Tao et al. 2010; Zou et al. 2012), supporting the hypothesis that
human activities contributed to the dispersal and maintenance of antibiotic resistance
in the aquatic environment in China.

Among the detected ARGs, tet and sul are the most common resistance genes
quantified by qPCR. For example, two sulfonamide ARGs (su/l and su/Il) and seven
tetracycline ARGs (tetA, tetC, tetG, tetX, tetO, tetQ and tetM) were quantified in 20
water samples collected in the Beijiang River, South China (Ling et al. 2013) The

levels of sull were higher than su/ll (p < 0.05), with the mean values of (1.41 = 1.12)
15
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x 1072 and (1.58 = 1.71) x 1073 copies/16S rDNA, respectively. Among tet genes,
tetC had the highest concentration, ranging from 8.30 x 1072 to 13.20 copies/16S
rDNA (Ling et al. 2013). Jiang et al. also quantified two sulfonamide ARGs (su/l and
sulll), eight tetracycline ARGs (fetA, tetB, tetC, tetG, tetX, tetO, tetQ and tetM) and
one B-lactam ARG (TEM) in the Huangpu River, Shanghai, China (Jiang et al. 2013).
The average concentrations of ranged from 3.66 x 10! copies/mL (zerB) to 1.62 x 10°
copies/mL (sulll). Lake water samples from the northern part of Taihu Lake contained
a significant number of fetA (10%-10° copies/ml) tetC (10° copies/ml) genes and class
1 integron (103 copies/ml) (Zhang et al. 2009b). The absolute abundance of ARGs
(sull, sulll, tetA, tetB, tetE, tetW, tetM and tetZ) in the urban rivers in Beijing, China,
ranged from 7.0x10' to 5.9x10% copies/mL in surface water, and from 4.2x10? to
2.0x108 copies/g in the sediment (Xu et al. 2016). A positive correlation was observed
between infl and sull genes in many studies (Chen et al. 2015; Lin et al. 2015; Luo et
al. 2010; Na et al. 2014), confirming that the class 1 integron plays an important role
in the proliferation of the sull gene.

As compared to water samples, sediment samples can contain higher
concentrations of ARGs. For instance, Luo ef a/ showed that su/l and su/ll
concentrations in sediments were 120 to 2000 times higher than those in water
collected from the Haihe River in China (Luo et al. 2010). Similar results were also
found in samples from the Northern Yellow Sea where the su/l and su/ll
concentrations in sediments were 103 times higher than those in water, indicating
sediment was an important reservoir of some ARGs (Na et al. 2014). On a volumetric
basis, the Taihu lake sediments contained higher concentrations of intl1, zetA and tetC
genes by four to five orders of magnitude than the overlying water samples. While
copy numbers normalized to DNA mass from sediment samples were similar to those
from water samples, which highlights the question of the most informative measure of
ARG abundance (Zhang et al. 2009b). In this particular case, it might be that
differences in the microbial diversity between the sediment and the overlying
freshwater or the differential extractability of DNA from the two matrices impacts the

comparisons. Tetracycline, sulfonamide, and macrolide resistance genes, as well as
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integrons in the sediments were also detected at a catchment scale (Dongjiang River
basin of South China), and su/ll was the most abundant resistance gene, with the
concentration of 10® copies/g (Su et al. 2014a).

The resistance genotype and mechanisms recovered by metagenomics in the
sediments from the highly human-impacted Pearl River Estuary (PRE) and the
relatively pristine deep South China Sea (SCS) were more diverse and the ARG
abundance was much higher in the polluted PRE sediments than in the relatively
pristine SCS sediments (Chen et al. 2013a). In comparison, the three most abundant
ARGs in the PRE sediments were related to commonly used antibiotics including
sulfonamides, fluoroquinolones, and aminoglycosides, indicating the significant
anthropogenic impact on the dissemination of ARGs in this region (Chen et al.
2013a). Culture-based methods and high-throughput qPCR quantified, the abundance
of MDR bacteria and ARGs in water samples collected from an urban stream and
source of Jiulongjiang River, China. The total abundance of ARGs in urban samples
(ranging from 9.72x10'° to 1.03x10!" copies/L) was over two orders of magnitude
higher than that in pristine samples (7.18x108 copies/L) (Ouyang et al. 2015). ARGs
were also profiled in sediments from 18 estuaries over 4,000 km of coastal China
(Zhu et al. 2017). The high abundance and enrichment of diverse ARGs and MGEs
further demonstrated the contribution of anthropogenic activities to the emergence
and dissemination of ARGs (Ouyang et al. 2015; Zhu et al. 2017).

4.3 ARGs in livestock farm wastes

Livestock manure has routinely been shown to be an important reservoir of
resistant bacteria (Bibbal et al. 2007; Enne et al. 2008; Schwaiger et al. 2009),
antibiotic resistance genes (Binh et al. 2010; Duriez and Topp 2007; Heuer et al.
2008) and transferable plasmids carrying ARGs (Binh et al. 2008; Heuer et al. 2009).
Livestock waste has been shown to be a hotspot of antibiotic residues that can affect
the gut microbiota of animals and perpetuate the increased prevalence of antibiotic
resistance in bacteria in manure (Langford et al. 2003; Looft et al. 2012; Witte 2000).

In China, the most frequently reported studies on animal manures are on swine,

chicken and cattle which are the major food-producing animals. Resistant bacteria
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isolated from these animals have largely been reported based on the culture-dependent
assays. For example, Yang et al. (Yang et al. 2004) analysed the antimicrobial
susceptibility of E. coli isolates from pig and chicken farms in Beijing and Heibei
Province, China in 2000 and found that most E. coli isolates were resistant to multiple
classes of antimicrobials. Isolates displayed resistance to tetracycline (98%),
sulfamethoxazole (84%), ampicillin (79%), streptomycin (77%), and trimethoprim-
sulfamethoxazole (76%). Fluoroquinolones resistance in E. coli ranged from 64% for
levofloxacin, 79% for ciprofloxacin, and 95% for difloxacin. Meanwhile, class 1
integrons were also identified in 19% (17) of isolates from swine and 47% (42) of
isolates from chickens. Similar findings have been reported for E. coli isolates from
cattle, swine and chicken farms in Shandong Province, Eastern China, where 52% of
chicken isolates, 25% of swine isolates and 30% of cattle isolates were resistant to 12,
10 and 1 antimicrobial agents, respectively. The percentage of class 1 gene cassette-
positive isolates in dairy cattle, swine and chicken farm was 5%, 20% and 42%,
respectively. Resistance rates of chicken farm isolates were highest (Lu et al. 2010b).
In addition to the intensively farmed animals, a total of 129 E. coli and 84
Enterococcus isolates from free-ranging pigs also showed resistance to a variety of
antibiotics in Tibet, indicating AMR bacteria in China is widespread (Li et al. 2014Db).

Tetracycline and sulfonamide resistance genes and the class 1 integrase gene
were widely reported in livestock manures. Ji et al. quantified eight ARGs (tetB (P),
tetM, tetO, tetW, sull, sulll, sullll and sulA) in manure samples from representative
swine, poultry and cattle feedlots in Shanghai, China (Ji et al. 2012). All ARGs tested
were detected in the collected samples except tetB(P). The relative abundance of
sulfonamide and tetracycline resistance genes ranged from approximately 107> to
1072, and 107 to 1073, respectively. Overall, sulfonamide ARGs were more abundant
than tetracycline ARGs and only a weak positive correlation was found between
ARGs and their corresponding antibiotics except for su/ll (Ji et al. 2012). Cheng et al.
investigated the abundance and diversity of ten tet genes (tetA, tetB, tetC, tetG, tetl,
tetM, tetO, tetQ, tetW, and tetX), two sul genes (sull and sulll), and class 1 integron

(intI1) in eight livestock farms in Hangzhou, eastern China. No significant difference
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was found in the abundance of the fef and su/ genes among similar farm types with
varying scales (P >0.05). tetQ had the highest relative abundance in all manure
samples (the average abundance was 7.12 x 1072 £2.99 x 1072 ARG copies/16S rRNA
copies), followed by three ribosomal protection protein (RPP) genes (tefM, tetW, and
tetO), with tetC having the least relative abundance in their study (Cheng et al. 2013).
tet and sul genes were widely reported in animal manure from many other cities of
China (Cheng et al. 2016; Wang et al. 2016a; Zhang et al. 2015d). Quinolone-,
macrolide-, aminoglycoside-, and MDR-genes were also analysed in concentrated
livestock feedlots of China (Mu et al. 2015; Wang et al. 2016b). With the
development of culture-independent methods, including high- capacity q-PCR and
metagenomics, hundreds of resistance genes and multiple samples can be detected
simultaneously. For example, Zhu et al. used high-capacity qPCR with 313 validated
primer sets, which target 244 ARGs from all major classes of ARGs, to assess types
and concentrations of ARGs at three stages from manure processing to land disposal
at three large-scale swine farms. 149 unique resistance genes were detected and 63
ARGs were enriched from 192-fold (median) up to 28,000-fold (maximum) as
compared with their respective antibiotic-free manure or soil control. The potential for
horizontal transfer of ARGs was implicated by the enrichment of transposases—the
top six alleles being enriched 189-fold (median) up to 90,000-fold in manure (Zhu et
al. 2013b). Li et al. used a metagenomic approach to investigate the wide-spectrum
profiles of ARGs and their co-occurrence pattern in a range of environmental
samples. ARG abundances were consistent with the levels of anthropogenic impacts

on these environments (Li et al. 2015).

4.4 ARGs in Soil

The soil is one of the largest and most diverse microbial habitats on earth and a
natural habitat for the Actinomycete genus Streptomyces, whose species account for
the majority of mass-produced antibiotics of natural origin. Soil microbiota represent
an ancient evolutionary origin for antibiotic resistance (D'Costa et al. 2011; Forsberg

et al. 2012). The transfer of environmentally-derived antibiotic resistance genes into
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clinical pathogens has been a long argued aetiology of clinical ARGs (Benveniste and
Davies 1973). However, the high antibiotic residues caused by human activities
significantly accelerates the selection and expansion of the bacterial resistome in the
soil (Graham et al. 2016).

In China, manure and/or manure-based compost application as fertiliser is one of
the main pathways for antibiotics release into agricultural soils. Many studies reported
a noticeable increase in ARGs diversity and abundance in soils that received long-
term applications of livestock manure (Chen et al. 2016; Cheng et al. 2016; Ji et al.
2012; Mu et al. 2015; Wang et al. 2014d; Wu et al. 2010; Zhang et al. 2015d; Zhou et
al. 2017). Sulfonamide and tetracycline resistance genes have frequently been
detected in manure or composted manure-amended soils (Cheng et al. 2016; Ji et al.
2012; Peng et al. 2015; Wang et al. 2014d; Wu et al. 2010; Zhang et al. 2015d; Zhou
et al. 2017). Extended-spectrum beta-lactamase (ESBL)-producing E. coli have also
been detected from a pig farm in the rural regions of Tai’an, China and the ESBL-
producing isolates from compost, treated soil, and manure showed high overlaps in
terms of resistance phenotypes, ESBL genes, plasmid replicon type, and genomic
backbone characterization, which implies the dissemination of ARB and ARGs of
animal origins to soil after treated with animal manure (Gao et al. 2015). The
dissipation of plasmid-mediated quinolone resistance (PMQR) genes in arable soil
were slowed down by introducing (fluoro) quinolones (FQNs)-containing manure as
reported in a soil microcosm experiment (Xiong et al. 2015). Based on the functional
metagenomic approach, Su et al. identified multiple ARGs, with the majority of
ARGs recovered from manure-amended soil. The results suggest manure amendment
increases the diversity of ARGs in soil bacteria (Su et al. 2014b). Fang et al.
investigated the diversity and abundance of ARGs, human pathogenic bacteria (HPB),
and HPB carrying ARGs in chicken manures and greenhouse soils. The highest
relative abundance was tetracycline resistance genes (manures) and multidrug
resistance genes (greenhouse soils). A positive correlation was also observed between
the levels of antibiotics, ARGs, HPB, and HPB carrying ARGs in manures and

greenhouse soils (Fang et al. 2015).
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Irrigation water quality is another important factor in stimulating ARGs in soil
besides manure application. Chen et al. collected non-irrigated and wastewater-
irrigated soils from five wastewater irrigation areas in Beijing and Tianjin, China and
analysed the abundances of antibiotic-resistant bacteria and thirteen tet and three sul
resistance genes. No significant difference in antibiotic resistance bacteria was
observed between irrigated and non-irrigated soils. However, the concentrations of
antibiotics and abundances of ARGs were significantly greater in irrigated soils,
indicating the potential role of quality of water on the occurrence of antibiotics
and resistance genes in the soils (Chen et al. 2014). Wang et al. used high-capacity
qPCR to show enrichment of ARGs in urban park soils as a result of reclaimed water
irrigation. A total of 147 ARGs encoding for resistance to a broad-spectrum
of antibiotics were detected among all park soil samples. Aminoglycoside and beta-
lactam were the two most dominant types of ARGs, and antibiotic deactivation and
efflux pump were the two most dominant detoxification mechanisms. Four
transposase genes were also detected and were positively correlated with ARGs and
transposase abundances, indicating the potential facilitation of ARGs transfer (Wang
et al. 2014b).

As antibiotics can migrate to deeper soil layers, an abundance of ARGs with
increasing soil depths was observed in some studies (Tang et al. 2015). Selection for
ARG:s in soils amended with antibiotics free manure was previously reported, a likely
result of the co-selective pressure provided by heavy metals that can also be present in
manure at high levels (Lin et al. 2016). Therefore, considering the various soil types,
climatic regions, and cultivation conditions of China, more field studies should be
conducted to identify the relative contribution of each of the factors that influence the
fate of ARGs.

Significant positive correlations between ARGs and corresponding antibiotics or
a different class of antibiotics were found in multiple environmental media in China
(Cheng et al. 2016; Huang et al. 2013a; Luo et al. 2010; Su et al. 2014a; Wang et al.
2016a; Wu et al. 2010; Zhu et al. 2013b). While weak or no correlation was also

reported in many studies (Ji et al. 2012; Pei et al. 2006; Wang et al. 2016a; Wang et
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al. 2016b). The inconsistencies in the correlations between antibiotics and ARGs can
be attributed to several factors. First, ARGs and antibiotics have different
environmental fate and transport mechanisms. The environmental degradation of
antibiotics and the physicochemical parameters of environmental media, e.g. total
organic matter, may affect the correlation analysis results (Wang et al. 2016b). ARGs
could have been primarily selected by past activities and microbial populations may
retain resistance genes long after their initial exposure, which could contribute to the
lack of direct correlation (Hall and Colegrave 2008). Additionally, co-selection and
cross-selection effects could also disrupt the correlations (Wardwell et al. 2009).
Many ARGs are often found on the same plasmid or mobile genetic elements which
results in the correlations found among resistance to different antibiotics. Heavy
metals can exert a co-selection pressure for antibiotic resistance also because both the
antibiotics and heavy metal resistance genes are commonly found to be encoded on
mobile genetic elements together (Berg et al. 2010). Therefore, further studies should

be carried out to illustrate the exact reasons of the correlations.
5. Antibiotic resistance in the clinical environment

Antibiotics are among the most commonly prescribed drugs used in human
medicine, enabling antibiotic resistance to emerge as the serious public health crisis
that it has become (Li et al. 2016b; Zeng et al. 2017). The growth rate of resistance in
China is much higher than that of other countries, averaging 22% in 6 years (1994—
2000) compared with 6% for the USA (1999-2002) (Zhang et al. 2006). Excessive
and often unnecessary use of antibiotics is considered to be the major driving force
towards increased antibiotic resistance in clinic settings. Additionally, the frequent
use of broad-spectrum antibiotics and the frequent change of antibiotics can
contribute to the antibiotic resistance, especially the multi-drug resistance strains
(Ding et al. 2008).

In 2004, the Chinese Ministry of Health (MOH) National Antibacterial
Resistance Investigation Net (Mohnarin) was established—a nationwide antimicrobial

resistant surveillance network. Initially, seventeen tertiary hospitals located in 15
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different cities throughout China participated in the network (Xiao et al. 2008).
Mohnarin has gradually expanded to more than one thousand member hospitals and in
2014, the network became the China Antimicrobial Resistance Surveillance System
(CARSS). To date, CARSS remains the only government-leading surveillance
network in China and it includes 1412 member hospitals from 31 provincial-level
administrative units, representing the widest coverage in China. In the CARSS 2015
report, it demonstrated the presence of severe bacterial resistance in China. A total of
2,400,786 strains of culturable bacteria in samples (sputum, blood, urine, stool, etc.)
from outpatients and inpatients were detected in the surveillance program from
October 2014 to September 2015, including 695,066 Gram-positive bacteria (28.9%)
and 1,705,720 Gram-negative bacteria (71.1%). The five most frequently detected
Gram-positive strains are: Staphylococcus aureus, Staphylococcus epidermidis,
Enterococcus. faecalis, Streptococcus pneumoniae and Enterococcus faecium, E. coli,
Klebsiella pneumoniae, Psuedomonas aeruginosa, Acinetobacter baumannii and
Enterobacter cloacae are the five most frequently detected Gram-negative bacteria
five gram-negative bacteria. The resistance rates of methicillin-resistant
Staphylococci, erythrocin-insensitive S.  pneumoniae, cephalosporin-resistant
Enterobacteriaceae, fluoroquinolone-resistant E. coli and carbapenems-resistant A.
baumannii were all more than 50% in the CARSS 2015 report. Of growing concern is
the increase in resistance to imipenem reported in A. baumannii and K. pneumoniae
between 2012 and 2015 (CARSS et al. 2016). Another nation-wide surveillance
system, CHINET, was organised in 2005 by Fudan University. It analysed the
temporal trend of bacterial resistance in samples (sputum, urine, blood, cerebrospinal
fluid, stool, etc) from outpatients and inpatients in 19 hospitals between 2005 and
2014 (two hospitals dropped out in 2012) (Hu et al. 2016a). Most of the hospitals
included are the largest in each province or city, representing 14 provinces or cities.
During the study period, the number of bacterial isolates ranged between 22,774 and
84,572 annually. The resistance of E. coli and K. prneumoniae to amikacin,
ciprofloxacin, piperacillin/tazobactam and cefoperazone/sulbactam decreased with

time, while the resistance increased for cefotaxime. Carbapenem resistance among K.
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pneumoniae and A. baumannii isolates both increased significantly between 2005 and
2014. In the latest CHINET 2015 report, it collected a total of 88,778 clinical isolates
from similar samples (sputum, urine, blood, cerebrospinal fluid, stool, etc.) in 18
general hospitals and two children's hospitals. Gram-negative organisms and Gram-
positive cocci accounted for 70 % and 30 %, respectively. The prevalence of
carbapenem-resistant K. pneumoniae and A. baumannii continues to increase on 2014
levels, similar to that which was reported in the CARSS report (Hu et al. 2016b). The
carbapenem family of antibiotics is the last resort for most Gram-negative bacterial
infections. Therefore, infections due to carbapenem-resistant strains become an
increasingly serious threat to patients in clinics.

There are also several provincial surveillance systems, such as in Beijing,
Zhejiang, and Guangzhou. And a number of studies have shown the emergence of
antibiotic-resistant bacterial strains, including multi-drug resistance of bacteria, in
Chinese hospitals during the past decades (Chen et al. 2013b; Dai et al. 2014; Liang et
al. 2015; Song et al. 2014; Tang et al. 2016; Xia et al. 2012). However, the current
survey system mainly focuses on urban hospitals and does not include the county or
rural medical institutions. For example, in the CARSS 2015 report, 76.2% of the
member hospitals are tertiary hospitals and 23.8% are secondary hospitals. Taking
into account different socioeconomic development, prescription behaviour, etc., it is
apparent that antibiotic resistance varies geographically in China. Only a few studies
reported resistance prevalence in county medical institutes (Xiao et al. 2015).

In general, the survey systems are based on culture-depended methods to detect
the antibiotic resistance in clinics, while isolated studies have characterised
antimicrobial resistance using molecular biology approaches (Cui et al. 2015; Yang et
al. 2015; Zhang et al. 2016a). The most common resistance mechanism of
carbapenem is the production of carbapenemases, including enzymes of Ambler
classes A, D and B [metallo-B-lactamases (MBLs)], with the corresponding genes
often being associated with mobile genetic elements. New Delhi MBL 1 (NDM-1), a
new type of MBL, was first reported in A. baumannii isolates in four different

provinces in China (Chen et al. 2011b). Later, PCR based detection of carbapenem
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resistance associated gene(blanpm.;) unveiled high incidence and sporadic spread of
blanpw.i-positive Enterobacteriaceae in many provinces of China (Hu et al. 2013; Liu
et al. 2013; Qin et al. 2014; Sun et al. 2014). Jia et al. detected the [B-lactam,
aminoglycoside, tetracycline, macrolide, glycopeptide resistance genes and the efflux
pump genes in 100 multiple-drug resistant enterococcal isolates from a university
hospital in China and indicated that the emergence of these antibiotic resistance genes
was the main cause of the resistance of enterococci to antimicrobial agents (Jia et al.
2014). High throughput assays such as microarray technology were also applied to
determine multiple tetracycline and B-lactam resistance genes from the sputum, urine,
blood, bile, liquor puris, and cerebrospinal fluid samples obtained from Chinese
hospitals (Lu et al. 2010a). With the emergence and spread of new mechanisms of

resistance, infectious diseases are becoming more difficult to treat in China.

6. Prospective and Mitigation strategies

Numerous studies have detected ARB and ARG in a variety of environmental
media in China and the increasing prevalence of antibiotic resistance in the
environment has attracted greater attention from academia and government.
Antibiotic overuse and misuse is likely the most important reason for the observed
increased prevalence in environmental and clinical antimicrobial resistance.
Therefore, the first and most important measure would be reducing unnecessary use
of antibiotics to tackle this problem at the source.

For clinical use of antibiotics, although China has released a series of regulations
and strategies to reduce the rate of antibiotic prescriptions during the last decades,
inappropriate prescription continues in China, especially in the primary care settings
in rural areas. Financial incentives are considered to be the main driver of this over-
prescription in China. The Chinese government has recently launched reforms to
address these drivers. For example, on April 8, 2017, Beijing started a landmark
reform drive that will separate drug sales from medical treatment at public hospitals.
This separation is intended to stop over-prescription and help medical practitioners

provide more appropriate treatment. Since public hospitals provide over 90% of the
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country’s inpatient services and more than 50% of outpatient services, it is imperative
that greater efforts are needed to pursue health system reform for public hospitals to
alter the inappropriate finance incentives.

At least as many antibiotics are used in agriculture than in humans in China, and
even some last-line drugs for humans are being used in agriculture. Colistin, for
example, has been banned as a growth stimulator in agriculture on Novl, 2016 and
the ban took effect on April 1, 2017. The experiences exemplified by the reduction in
antibiotic use in Denmark and The Netherlands in pig farming can provide instructive
case studies on the effects of reduced antibiotic use in animal food production
(Aarestrup et al. 2001; Dierikx et al. 2016). The World Health Organization has found
that the Danish ban reduced human health risk without significantly harming animal
health or farmers’ incomes (WHO 2003). Antibiotic sales to Dutch livestock farms
decreased by 56% without any reduction in production or profits from 2007 to 2012
(McKenna 2014). Therefore, alternative strategies for the control of bacterial
infections, such as optimise the living conditions of livestock, are required to reduce
antibiotic consumption in food animals in China.

Secondly, a systematic surveillance network should be established that includes
regular, continuous measurement of antibiotic utilisation and the patterns of antibiotic
resistance from the clinic and agriculture, at a local and national level. Surveillance
was recognised as the first step to understanding the current state and progression of
resistance over time. Although there are some existing surveillance programs for
ARBs in China, they are not inclusive of the primary care settings. Continuous
surveillance of antibiotic resistance can contribute to disease diagnosis, treatment and
policy making. Reliance on sales data for antibiotic surveillance can tell an
incomplete story; hence a nationwide surveillance program is needed to quantify
antibiotic prescriptions from all sources i.e., pharmacies, clinics, hospitals. Unlike
human use antibiotics, some veterinary antibiotics can be purchased directly by food
animal producers. Thus, it's difficult to quantify accurately veterinary antibiotic use.
A robust antibiotic surveillance system can facilitate the enforcement of the restriction

on the use of antibiotics in animals that are important for human use. It can also
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monitor the association between antibiotic use and resistance, as well as inform
intervention in much the same way that the surveillance system, DANMAP, has made
significant contributions to the control of antibiotic resistance in Denmark (Bager
2000). Antibiotic use in animals should be confined to prescription and dispensed by
veterinarians for treatment and not by the whim of the farmer for other purposes. For
a surveillance system in China, there needs to be consistency in sampling and testing
methods. Strict quality control should also be applied in order to compare trends in
antibiotic resistance. The surveillance program should be publicly available,
facilitating open science which can bring greater understanding by academia and
innovation by industry.

It is critically important to control the environmental spread of antibiotics and
ARBs, especially for STPs, which provide favourable conditions for proliferating of
ARBs or transferring of ARGs. As conventional sewage treatment facilities were not
designed to deal with antibiotics, the removal efficiencies of antibiotics were highly
variable among different antibiotics and different STPs. So far, AOPs are not widely
used in STPs because of the high cost, and conventional STPs were even absent in
rural areas in China. It's urgent to reinforce the operation of STPs in rural areas and
the application of more advanced techniques in urban STPs to improve the effluent
quality. Current technologies are unable to provide complete removal or destruction
of antibiotics which are subsequently transferred to sludge during sewage biological
treatment. Further treatment is also needed for these solid matrices. Maximum residue
limits for antibiotics in effluent and sludge of STP or animal manure in China should
be implemented in the environment. Although beyond the scope of this review,
similar residue limits might be appropriate for metals and biocides to address the
challenge of co-selection. Some rules should be established to reduce the use of
sewage sludge or animal manure on agricultural land, thereby reducing the risk of
spreading resistance in the environment to humans, food crops and wildlife. There is
also a need to identify the levels of antibiotics at which resistance might occur and
develop maximum thresholds for antibiotics or ARGs for environmental

compartments.
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In August 2016, China presented its National Action Plan to Contain
Antimicrobial Resistance (2016-2020). The Action Plan aims to establish
comprehensive management strategies and measures at the national level to
strengthen the supervision of the search and development, production, circulation,
application, and environmental protection for the antimicrobial agents (Xiao and Li
2016). For the first time, 14 departments, including National Health and Family
Planning Commission, National Development and Reform Commission, the
Ministry of Environmental Protection, the Ministry of Agriculture were involved and
collaborated to address AMR. The responsibilities of each department and nine major
strategies for the prevention and control of antimicrobial resistance were clearly
assigned in the Action Plan, including exploiting the advantages of joint prevention
and control; increasing investment in the research and development of antimicrobials;
strengthening the management of antibacterial agents supply security; strengthening
the construction of antibacterial agent application and antimicrobial resistance control
system; optimizing antimicrobial consumption and resistance surveillance system;
improving the capacity of professional personnel in antimicrobial resistance
prevention and control; strengthening the prevention and management
of environmental pollution of antimicrobials; strengthening publicity and education of
AMR; conducting extensive international change and cooperation. Actions have
already taken place within the country under this plan. For example, the Ministry of
Agriculture in China announced the 2017 Antimicrobial Resistance Surveillance
Program of Bacteria from Food Animals. China has participated in
extensive international collaborative programs to fight antibiotic resistance. At the
G20 summit (September, 4-5, 2016) in Hangzhou, China, world leaders reached an
important agreement on next steps in the battle with antimicrobial resistance. As the
most populous and the largest consumer of antibiotics in the world, China faces the
most significant challenge of any country when it comes to tackling antimicrobial
resistance. Recent efforts at the national and international level must be seen as only
the start of a growing commitment to the implementation of a One Health AMR

Action Plan in all of China.
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Figure S1. Concentrations of antibiotics in influent and effluent of Chinese STPs.

(The mean values for each compound are listed on the top x-axes)
Figure S2. Concentrations of antibiotics in surface water of Chinese rivers.

(The mean values for each compound are listed on the top x-axes)
Figure S3. Concentrations of antibiotics in sediments of Chinese rivers.

(The mean values for each compound are listed on the top x-axes)
Figure S4. Concentrations of antibiotics in Chinese animal manures (chicken, duck, cattle and swine
manure). (The mean values for each compound are listed on the top x-axes)
Figure S5. Concentrations of antibiotics in Chinese soils.

(The mean values for each compound are listed on the top x-axes)

Table S1 Concentrations of antibiotics in different environment media in China
Table S2 Abundance of antibiotic resistant genes (ARGs) in different environment media in China
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Figure S1. Concentrations of antibiotics in influent and effluent of Chinese STPs.

(The mean values for each compound are listed on the top x-axes)




—
-
~
2 lets
= 7.5 45 5722 43 115 42 358 73 2.8
5 56 81 74 17 138 7.6 77 14 173 14
IS le+4 -
=
Q ‘ ° 0
[ J

£ 1e+3 | ° 8 s o
S [
7 -
[ _ -
= le+2 . 4
[7)] _ —_
% - _ °
2 ®
2 _
o le+l A % _
=
= -
@ [ J
“—
O 1le+0 o ° !
2 4 °
o ° s °
T lel q o oo 0
= ° ° ¢
S
c 1e'2 T T T T T T T T T T T T T T T T T T T
o)

«b&z&@"\ ‘<\°+ ‘\ \\6 EN ,‘_G\\ 0\\ &Cﬁ &‘\ {\\°+‘\ +‘\\°+ ‘\\02 %‘@0@\(\\0@ '@

RNy 6‘- ISP & O MR

2 %\)«b@o{\@ < ‘0 O OVAK \‘g\‘\\ < Q Q}\ & 0+ X

9\)\ %0

Figure S2. Concentrations of antibiotics in surface water of Chinese rivers.
(The mean values for each compound are listed on the top x-axes)
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Figure S3. Concentrations of antibiotics in sediments of Chinese rivers.
(The mean values for each compound are listed on the top x-axes)
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Figure S4. Concentrations of antibiotics in Chinese animal manures (chicken, duck, cattle and swine
manure).
(The mean values for each compound are listed on the top x-axes)
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Figure S5. Concentrations of antibiotics in Chinese soils.
(The mean values for each compound are listed on the top x-axes)




Table S1 Concentrations of antibiotics in different environment media in China

Location Media Antibiotics Concentration Unit  Reference
range/Mean
Beijing STP Influent Sulfamethoxazole 1200 ng/L (Chang et al
Sulfapyridine 290 2008)
Sulfamerazine 48
Sulfadiazine 350
Sulfamethizol 330
STP Effluent Sulfamethoxazole 1400
Sulfapyridine 220
Sulfamerazine 21
Sulfadiazine 220
Sulfamethizol 10
Beijing STP Influent  Sulfamethoxazole 290-1000 ng/L  (Gao et al
Sulfapyridine 110-530 2012)
Sulfamethazine 3.2-10
Sulfadiazine 380-2000
Norfloxacin 51-310
Ciprofloxacin 15-140
Fleroxacin 16-43
Ofloxacin 44-3100
Lomefloxacin 5.6-180
Spiramycin nd-160
Josamycin nd-2.7
Tylosin nd-4
Erythromycin 130-520
Roxithromycin 67-260
STP Effluent Sulfamethoxazole 130-460
Sulfapyridine 110-330
Sulfamethazine 1.6-11
Sulfadiazine 120-560
Norfloxacin 9-200
Ciprofloxacin nd-55
Fleroxacin nd-38
Ofloxacin 150-1200
Lomefloxacin nd-140
Spiramycin nd-32
Josamycin nd-2
Tylosin nd-3
Erythromycin 51-300
Roxithromycin 54-360
Beijing STP Influent Pipemidic acid 86 ng/L (Jia et al
Qinghe 2012)
Fleroxacin 14



Beijing

STP Effluent

STP Influent

STP Effluent

Ofloxacin
Norfloxacin
Ciprofloxacin
Enrofloxacin
Lomefloxacin
Sarafloxacin
Gatifloxacin
Sparfloxacin
Moxifloxacin
Pipemidic acid
Fleroxacin
Ofloxacin
Norfloxacin
Ciprofloxacin
Enrofloxacin
Lomefloxacin
Sarafloxacin
Gatifloxacin
Sparfloxacin
Moxifloxacin
Sulfathiazole

Sulfamethoxazole
Sulfisoxazole
Sulfapyridine
Sulfadimethoxine
Sulfamethazine
Sulfadiazine
Sulfamerazine
Sulfamonomethoxine
Norfloxacin
Ciprofloxacin
Difloxacin
Enrofloxacin
Fleroxacin
Ofloxacin
Lomefloxacin
Sarafloxacin
Spiramycin
Josamycin
Tylosin
Erythromycin
Roxithromycin
Sulfathiazole
Sulfamethoxazole
Sulfisoxazole

1287
775
99
8.3
162
nd
66
4.4
72
33
52
528
256
37
2.1
71
nd
40
1.1
40
nd ng/L

332-646 (496)
nd

281-608 (451)
nd

4.63-7.95 (6.32)
760-4820 (2009)
nd

nd

1368-2746 (1813)
35.0-119 (82.1)
nd-9.55 (2.39)
nd-7.92 (3.55)
nd-375 (147)
1445-3675 (2794)
40.4-97.4 (63.7)
nd-23.3 (9.37)
3.08-11.0 (7.46)
nd-2.11 (0.86)
2.62-17.2 (6.42)
48.6-520 (221)
25.0-224 (129)
nd

4.82-20.2 (12.3)
nd

(Li
2013a)

et

al.



Beijing

STP Influent

STP Effluent

Sulfapyridine
Sulfadimethoxine
Sulfamethazine
Sulfadiazine
Sulfamerazine
Sulfamonomethoxine
Norfloxacin
Ciprofloxacin
Difloxacin
Enrofloxacin
Fleroxacin
Ofloxacin
Lomefloxacin
Sarafloxacin
Spiramycin
Josamycin
Tylosin
Erythromycin
Roxithromycin
Sulfanilamide

Sulfameter
Sulfachloropyridazine
Sulfaquinoxaline
Ofloxacin
Pefloxacin
Norfloxacin
Ciprofloxacin
Enrofloxacin
Lomefloxacin
Tetracycline
Oxytetracycline
Tylosin
Kitasamycin
Erythromycin
Diazepam
Chloramphenicol
Clenbuterol
Metoprolol
Sulfanilamide
Sulfameter
Sulfachloropyridazine
Sulfaquinoxaline
Ofloxacin
Pefloxacin

Norfloxacin

0.94-3.98 (2.72)
nd

nd-0.39 (0.1)
5.14-19.0 (10.7)
nd

nd

nd-124 (40.1)
nd-4.98 (1.77)
nd-0.79 (0.2)
nd-1.26 (0.55)
nd-8.38 (3.75)
19.4-185 (72.6)
nd-11.5 (3.3)
nd-1.76 (0.44)
nd

nd

nd

nd-42.1 (14.7)
0.43-32.7 (9.99)
nd-1200

nd-215
nd-57
nd-103
38-716
4-160
2-120
16-408
2-407
nd-18
23-980
95-2942
nd-269
32-395
12-354
nd-16
nd-40
nd-11
nd-32
nd-117
nd-67
nd-22
nd-35
18-235
1-73
1-72

ng/L

(Shao
2009)

et

al.



Beijing

Chongqing

STP Influent

STP Effluent

STP Influent

Ciprofloxacin
Enrofloxacin
Lomefloxacin
Tetracycline
Oxytetracycline
Tylosin
Kitasamycin
Erythromycin
Diazepam
Chloramphenicol
Clenbuterol

Metoprolol
Sulfacetamide

Sulfamerazine
Sulfadimidine
Sulfamethoxazole
Trimethoprim
Ofloxacin
Enrofloxacin
Tetracycline
Oxytetracycline
Chlortetracycline
Sulfacetamide
Sulfamerazine
Sulfadimidine
Sulfamethoxazole
Trimethoprim
Ofloxacin
Enrofloxacin
Tetracycline
Oxytetracycline
Chlortetracycline
Erythromycin

Erythromycin-H20

Roxithromycin
Tylosin
Lincomycin
Trimethoprim
Ciproflaxacin
Lomefloxacin
Norfloxacin
Ofloxacin

10

nd-4

4.8
30.4
263.3
1955.2
3645.2
19.1
177.6
1425.4
12.9
6.9

1.2
21.7
192.6
1777.5
2068.4
20.1
32
163.1
nd

206

703

nd
44
1467
18
458
143
859
780

ng/L

ng/L

(Xu et al
2015)

(Chang et al.
2010)



Chongqing

STP Effluent

STP Influent

STP Effluent

Sulfadiazine
Sulfadimethoxine
Sulfamethazine
Sulfamethoxazole
Iso-Chlortetracycline
Epi-iso-Chlortetracycline
Oxytetracycline
Tetracycline
Erythromycin
Erythromycin-H20
Roxithromycin
Tylosin

Lincomycin
Trimethoprim
Ciproflaxacin
Lomefloxacin
Norfloxacin
Ofloxacin
Sulfadiazine
Sulfadimethoxine
Sulfamethazine
Sulfamethoxazole
Iso-Chlortetracycline
Epi-iso-Chlortetracycline
Oxytetracycline
Tetracycline
Sulfadiazine

Sulfamethazine
Sulfamethoxazole
Trimethoprim
Ofloxacin
Norfloxacin
Moxifloxacin
Erythromycin-H20
Roxithromycin
Azithromycin
Sulfadiazine
Sulfamethazine
Sulfamethoxazole

Trimethoprim
Ofloxacin
Norfloxacin
Moxifloxacin
Erythromycin-H20

11

1382
nd
18
2020
105
39
41
118
125
537

nd

410
177
101
43
166
nd
875
nd
14
1050
56
32
nd
nd
202.8-257.8 (229.9)  ng/L (Yan et
2014)
129-174.4 (150.2)
2460.4-3180 (2935.4)
51.9-98.8 (77.37)
276.7-401.5 (345.9)
186.3-225.1 (203.0)
nd-27.6 (19.9)

238.6-275.4 (254.24)

359.7-434.6 (404.0)
330.27-376.5 (362.5)
117.8-74.8 (155.0)
31.7-47.2 (39.9)
1060.3-1212.2
(1147.9)

37.9-75.5 (52.6)
43.0-82.9 (57.9)
25.5-34.2 (30.4)
5.7-7.7 (6.6)
135.9-174.0 (153)

al.



Dalian

Northern
China

Shanghai

Xiamen

Fujian
province

STP Influent

STP Effluent

STP Influent

STP Effluent

STP Influent

STP Effluent
STP Influent

STP Effluent

STP Influent

Roxithromycin
Azithromycin
Cephalexin

Cefradine
Norfloxacin
Ofloxacin
Roxithromycin
Azithromycin
Cephalexin
Cefradine
Norfloxacin
Ofloxacin
Roxithromycin
Azithromycin
Oxytetracycline

Chlortetracycline
Tetracycline
Oxytetracycline
Tetracycline
Trimethoprim

Trimethoprim
Sulfamethoxazole

Ofloxacin
Sarafloxacin
Oxytetracycline
Tetracycline
Sulfamethoxazole
Ofloxacin
Sarafloxacin
Oxytetracycline
Tetracycline
Sulfadiazine

Sulfamethazine
Sulfamethoxazole

n-Acetyl sulfamethazine
n-Acetyl sulfadiazine

n-Acetyl
sulfamethoxazole
Ciprofloxacin
Norfloxacin
Ofloxacin

300.6-386.4 (347.5)
58-111.0 (81.5)
nd-166

nd-125
220-542
276-382
70-313
98-711
nd-29
nd-34
80-205
108-382
99-444
148-728
2400-334300

800-1800
11900-61000
32000

2600

257

186
nd-95.2 (25)

23.6-786 (200)
nd-1.20 (0.1)
8.60-230 (91)
nd-189 (48)
nd-22.4 (9.1)
13.3-702 (150)
nd-1.3 (0.2)
nd-51.4 (20)
nd-37.6 (14)
2.3-32.1

nd-259
5.41-152
4.0-51.5
nd-51.4
72.7-2312

nd-55.8
nd-130
6.0-91.5

ng/L

ng/L

ng/L

ng/L

ng/L

(Zhang et al.

2013)

(Hou
2016)

(Wang et al.

2014a)

(Sun
2016)

(Zhang et al.

2015a)

et

et

al.

al.



Guangzhou

Pearl
Delta

STP Effluent

STP Influent

STP Effluent

River STP Influent

Enrofloxacin
Roxithromycin
Erythromycin
Cephalexin
Cephradine
Tetracycline
Oxytetracycline
Chlortetracycline
Doxycycline
4-epitetracycline
4-epioxytetracycline
Isochlortetracycline
Sulfadiazine
Sulfamethazine
Sulfamethoxazole
n-Acetyl sulfamethazine
n-Acetyl sulfadiazine
n-Acetyl
Sulfamethoxazole
Ciprofloxacin
Norfloxacin
Ofloxacin
Enrofloxacin
Roxithromycin
Erythromycin
Cephalexin
Cephradine
Tetracycline
Oxytetracycline
Chlortetracycline
Doxycycline
4-Epitetracycline
4-Epioxytetracycline
Isochlortetracycline
Sulfadiazine

Sulfamethoxazole
Ofloxacin
Chloramphenicol
Sulfadiazine
Sulfamethoxazole
Ofloxacin
Chloramphenicol
Ofloxacin

Norfloxacin

13

nd-16.8
6.5-63.7
1.12-1.67
33.4-822
92.5-11850
nd-175
nd-167
nd-261
nd-51
nd-87.7
nd-287
nd-233
1.46-28.4
nd-233
2.96-145
2.50-52.9
nd-51.4
38.7-208

nd-49.8
nd-172
5.70-53.4
nd-18.5
12.7-104
1.20-4.40
25.0-187
21.4-369
nd-101
nd-178
nd-154
nd-87.3
nd-82.1
nd-296
nd-651
5100-5150 ng/lL  (Peng et
2006)
5450-7910
3520-5560
1730-2430
nd

nd

nd-740

nd

80-368 ngl. (Xu et
2007)

54-263

al.

al.



Guangdong
province

Hong Kong

Shenzhen
Nan Shan

Hong Kong

STP Effluent

STP Influent

STP Effluent

STP Influent

STP Effluent

STP Influent

STP Influent

Roxithromycin
Erythromycin-H20
Sulfadiazine
Sulfadimidine
Sulfamethoxazole
Chloramphenicol
Ofloxacin
Norfloxacin
Roxithromycin
Erythromycin-H20
Sulfadiazine
Sulfadimidine
Sulfamethoxazole
Chloramphenicol
Trimethoprim

Lincomycin
Chloramphenicol
Trimethoprim
Lincomycin
Chloramphenicol
Erythromycin-H20

Trimethoprim
Tetracycline
Norfloxacin
Cefalexin
Cefotaxim
Erythromycin-H20
Trimethoprim
Tetracycline
Norfloxacin
Cefalexin
Cefotaxim
Erythromycin-H20

Trimethoprim
Tetracycline
Norfloxacin
Penicillin G
Cefotaxim
Cefalexin

Ofloxacin
Erythromycin-H20

14

75-164
253-1978

nd-72
nd-696
10-118
nd-31
41-165
27-85
35-64
216-2054

nd-36
nd-346
9-78
nd-17
72.3-162 ng/L
44.2-129
22.1
31.1-64
nd-53.9
5.8
470-810 ng/L
120-320

96-1300

110-460

670-2900

nd-1100

510-850

120-230
180-620
85-320
240-1800
nd-34
590

200

150

370

29

1100
1020-5640 ng/L
142-7900

243-4740

(Zhou et al.
2013b)

(Gulkowska et
al. 2008)

(Leung et al
2012)



Hong Kong

STP Effluent

STP Influent

STP Effluent

Norfloxacin
Roxithromycin
Sulfamethoxazole
Tetracycline
Oxytetracycline
Trimethoprim
Chloramphenicol
Cefalexin
Ofloxacin
Erythromycin-H20
Norfloxacin
Roxithromycin
Sulfamethoxazole
Tetracycline
Oxytetracycline
Trimethoprim
Chloramphenicol
Ampicillin

Cefotaxime
Cefalexin
Sulfamethoxazole
Sulfadiazine
Sulfamethazine
Norfloxacin
Ciprofloxacin
Ofloxacin
Tetracycline
Oxytetracycline
Chlortetracycline
Roxithromycin
Erythromycin-H20

Trimethoprim
Vancomycin
Ampicillin
Cefotaxime
Cefalexin
Sulfamethoxazole
Sulfadiazine
Sulfamethazine
Norfloxacin
Ciprofloxacin
Ofloxacin
Tetracycline
Oxytetracycline
Chlortetracycline

15

28-5430
nd-500
38-444
16-1510
nd-230
72-700
26-452
170-5070
96-7870
246-4330

nd-3700
nd-547
5-278
nd-1420
nd-842
59-465
nd-1050
nd-383 ng/L
nd-93.0

65.7-1718

52.0-291

4.4-530

nd-54.7

7.0-264

98.6-1033

188-1042

59.8-353

nd-107

nd-178

4.2-141

169-409

100-172
nd-60.6
nd-17.4
nd-56.7
nd-1176
3.6-67.4
nd-2.8
nd
5.6-165
30.2-851
32.6-610
18.5-236
nd-49.0
nd-30.9

(L1 and Zhang
2011)



Hong Kong

Other countries

Korea

Us

UK

STP Influent

STP Effluent

STP Influent

STP Effluent

STP Influent

STP Effluent

STP Influent

Roxithromycin
Erythromycin-H20
Trimethoprim
Vancomycin
Ampicillin
Cefalexin
Sulfamethoxazole
Sulfadiazine
Norfloxacin
Ciprofloxacin
Ofloxacin
Tetracycline
Roxithromycin
Erythromycin-H20
Trimethoprim
Ampicillin
Cefalexin
Sulfamethoxazole
Sulfadiazine
Norfloxacin
Ciprofloxacin
Ofloxacin
Tetracycline
Roxithromycin
Erythromycin-H20

Trimethoprim
Sulfamethazine

Sulfamethoxazole
Trimethoprim
Lincomycin
Sulfamethazine
Sulfamethoxazole
Trimethoprim
Lincomycin
Sulfamethoxazole

Trimethoprim
Ofloxacin
Ciprofloxacin
Sulfamethoxazole
Trimethoprim
Ofloxacin
Trimethoprim
Sulfamethoxazole

16

1.6-76.7
104-410

38-120
nd-28.9
nd-389.5
175.4-539.4
146.5-355.5
nd-73.0
nd-59.5
99.2-720.0
104.4-335.9
134.5-270.8
3.5-25.3
51.3-216.7

128.7-161.2
nd-126.4
nd-375.6
15.3-46.6
nd-16.2
nd-13.9
7.6-73.3
2.1-556.4
nd-89.4
2.9-14.2
37.9-96.3

10.8-66.2
nd-343 (132)

79-216 (120)
101-277 (205)
3095-19401 (8176)
nd-408 (114)
20-162 (57)
13-154 (63)
1437-21278 (9089)
390-1000

590-1400
400-1000
200-1000

310

180

110

1514-4673 (2925)
20-274 (115)

ng/L

ng/L

ng/L

(Li et al. 2009)

(Behera et al.

2011)

(Brown et al.

2006)

(Kasprzyk-Hor

dern

et

al.



Germany

Italy

Finland

Tianjin
(Panjiakou
Reservoir)

STP Influent

STP Influent

STP Effluent

STP Influent

STP Effluent

STP Influent

STP Effluent

Surface
water

Chloramphenicol
Erythromycin-H,O
Trimethoprim
Sulfamethoxazole
Chloramphenicol
Erythromycin-H,O
Azithromycin

Ciprofloxacin
Doxycycline
Roxithromycin
Sulfamethoxazole
Trimethoprim
Azithromycin
Ciprofloxacin
Doxycycline
Roxithromycin
Sulfamethoxazole
Trimethoprim
Azithromycin

Ciprofloxacin
Erythromycin
Norfloxacin
Ofloxacin
Roxithromycin
Trimethoprim
Azithromycin
Ciprofloxacin
Erythromycin
Norfloxacin
Ofloxacin
Roxithromycin
Trimethoprim
Ciprofloxacin

Norfloxacin
Ofloxacin
Ciprofloxacin
Norfloxacin
Ofloxacin
Oxytetracycline

Chlortetracyclin
Tetracycline

17

150-452 (248)
144-10025 (2530)
385-1218 (876)
4-44 (19)

<6-69 (21)
23-2772 (696)
50-946 (285) ng/L
78-1570 (422)

nd-2393 (259)

nd-771 (92)

12-2204 (515)

22-372 (186)

nd-956 (277)

19-920 (146)

nd-1110

nd-281 (84)

18-8263 (191)

25-554 (208)

120 ng/L

2200
46

210

980

65

59

130

630

15

150

400

290

40

nd-4230 (600) ng/L
nd-960 (120)

nd-350 (100)

nd-130 (60)

nd-110 (nd)

nd-30 (14)

0.2-19.93 ng/L

nd-22.33
0.14-14.05

2009)

(Rossmann et
al. 2014)

(Verlicchi et
al. 2014)

(Vieno et al.
2007)

(Li et al
2014a)



Haihe River  Surface

water

Laizhou Bay Surface
water

Doxycycline
Nalidixic Acid
Oxolinic Acid
Flumequine
Chloramphenicol
Thiamphenicol
Florfenicol
Penicillin G
Erythromycin
Roxithromycin
Josamycin
Kitasamycin
Spiramycin
Sulfaguanidine
Sulfacetamide
Sulfamethazine
Sulfapyridine
Sulfadiazine
Sulfadimethoxine
Sulfachlorpyridazine
Sulfamethizole
Sulfamonomethoxine
Sulfamethoxypyridazine
Sulfameter
Sulfamethoxazole
Sulfamerazine
Trimethoprim

Sulfadiazine
Sulfamethoxazole
Sulfachloropyridazine
Ciprofloxacin
Ofloxacin
Tetracycline
Oxytetracycline
Erythromycin
Roxithromycin
Enoxacin

Norfloxacin
Ciprofloxacin
Enrofloxacin
Ofloxacin
Trimethoprim
Sulfamethoxazole
Sulfamethazine

18

0.19-13.69

nd-11.20

0.31-2.70

0.79-3.70

0.29-7.15

nd-45

nd-73.66

nd-5.59

nd-3.15

nd-3.90

nd-3.70

0.25-6.27

nd-58.81

nd-8.67

1.32-43.10

0.21-3.70

nd-3.40

0.35-1086

0.95-3.56

nd-4.78

0.39-3.47

nd-3.20

0.16-3.10

0.28-3.30

nd-7.23

0.19-3.80

nd-230 ng/lL  (Luo et al
2011)

nd-550

nd-3900

nd-39000

nd-1700

nd-460

nd-1900

nd-4200

nd-4200

nd-3700

nd-209 (62) ng/lL  (Zhang et al.

2012)

7.5-103 (40)

nd-66 (31)

nd-7.6 (1.8)

nd-6.5 (0.24)

1.3-330 (53)

1.5-82 (19)

nd-1.5 (0.13)



Huangpu
River
(Shanghai)

Yangtze
Estuary

Surface
water

Surface
water

Sulfamethazine
Erythromycin
Roxitromycin
Azithromycin
Clarithromycin
Sulfadiazine

Sulfapyridine
Sulfamethoxazole
Sulfathiazole
Sulfamerazine
Sulfamethazine
Sulfaquinoxaline
Erythromycin
Roxithromycin
Norfloxacin
Ciprofloxacin
Enrofloxacin
Ofloxacin
Chloramphenicol
Thiamphenicol
Florfenicol
Tetracycline
Oxytetracycline
Doxycycline
Chlortetracycline
Chloramphenicol

Thiamphenicol
Florfenicol
Sulfadiazine
Sulfapyridine
Sulfamethoxazole
Sulfathiazole
Sulfamerazine
Sulfamethazine
Sulfaquinoxaline
Norfloxacin
Ciprofloxacin
Enrofloxacin
Ofloxacin
Tetracycline
Oxytetracycline
Doxycyclinehyclate
Chlortetracycline
Erythromycin

19

nd-0.43 (0.02)
0.9-8.5 (2.6)
nd-1.5 (0.38)
nd-1.2 (0.14)
nd-0.82 (0.19)
4.9-112.5 (53.6) ng/L
nd-103.1 (24.1)
2.2-764.9 (259.6)
nd-121.1 (34.1)
nd

19.9-389.4 (188.9)
nd-64.2 (21.5)
0.4-6.9 (3.9)
0.2-2.2 (0.9)
nd-2.6 (0.2)
nd-34.2 (2.7)
nd-14.6 (2.8)
nd-28.5 (6.5)
nd-3.9 (0.4)
nd-0.6 (0.5)
nd-241.1 (116.3)
nd-54.3 (4.2)
nd-219.8 (78.3)
nd-112.3 (11.3)
nd-46.7 (3.6)
nd-8.63 ng/L
nd-86.6

0.45-89.5

0.55-71.8

nd-219

1.48-56.8

nd-5.23

nd

0.53-89.1

nd-23.5

nd-14.2

nd-2.27

nd-4.77

nd-12.4

nd-2.37

nd-22.5

nd-5.63

nd-3.50

nd-45.4

(Chen

Zhou 2014)

(Yan
2013)

et

and

al.



Qingshan Surface
Lake water
Jianghan Surface
Plain water
Pearl River Surface
Delta water
Pearl River Surface
Delta and water
Pearl River

Estuary

Roxithromycin
Trimethoprim

Penicillin G
Penicillin V
Sulfamethoxazole
Sulfadiazine

Sulfathiazole
Trimethoprim
Sulfamethazine
Sulfamethoxazole
Sulfamerazine
Ofloxacin
Norfloxacin
Ciprofloxacin
Enrofloxacin
Lomefloxacin
Tetracycline
Oxytetracycline
Chlortetracycline
Doxycycline
Erythromycin-H,O
Clarithromycin
Azithromycin
Roxithromycin
Sulfadiazine

Sulfamethazine
Sulfamethoxazole
Norfloxacin
Ofloxacin
Enrofloxacin
Tetracycline
Erythromycin-H,O
Roxithromycin
Sulfadiazine

Sulfadimidine
Sulfamethoxazole
Norfloxacin
Ofloxacin
Ciprofloxacin
Enrofloxacin

20

0.05-8.20
nd-11.57 ng/L
nd-1.68
nd
4.79-19.2
nd-37.4 ng/L
nd-3.7
nd-19.0
nd-33.8
nd-13.4
nd-11.0
nd-135.1
nd-134.2
nd-18.0
nd-53.1
nd-13.1
nd-137.4
nd-61.8
nd-122.3
nd-66.5
nd-381.5
nd-15.8
nd-5.6
nd-3.7
nd-18 ng/L
nd-218

nd-37.6

nd-136

nd-15.8

nd

nd-13.1

nd-121

nd

nd-22.3 ng/L

nd-23.5
nd-40.6
nd-34.2
2.5-127
nd-33.6
nd-21.5

(Zhu et al
2013)
(Tong et al
2014)

(Liang et al.
2013)

Xu et al
2013)



Pearl River Surface
water

Jiulong River Surface
water

Other countries

Korea Surface
water
US Surface
water
US Surface
water
UK Surface
water

Erythromycin
Roxithromycin
Sulfadiazine

Sulfamethoxazole
Sulfamethazine
Sulfapyridine
Trimethoprim
Norfloxacin
Erythromycin-H,O
Roxithromycin
Florfenicol

Sulfadiazine
Sulfamethanzine
Sulfamonomethoxine
Sulfamethoxazole
Ofloxacin
Enrofloxacin
Sulfapyridine
Sulfameter

Erythromycin

Sulfamethoxazole
Trimethoprim
Sulfamethoxazole

Chlortetracycline
Oxytetracycline
Tetracycline
Doxycycline
Tetracycline

Chlortetracycline
Oxytetracycline
Doxycycline
Sulfamerazine
Sulfamethazine
Sulfamethoxazole
Erythromycin-H,O
Tylosin
Trimethoprim

Sulfamethoxazole

21

nd-52.3
nd-12.0
nd-726 ng/L
nd-616
nd-1080
nd-74.6
nd-605
nd-124
nd-1540
nd-2260
nd-20.8 ng/L
nd-60.5

nd-124.4

nd-46

nd-84.4

nd-49

nd-60.8

nd-1.8

nd-5.2

1

1.8-4.8 (3.4)

1.7-36 (20)
3.2-5.3 (4.0)
5-7 (6)

1-180 (20)
5-84 (53)
1-3(2)
13-146 (66)
10-30 (20)

10-210 (80)
10-1210 (180)
10-50 (20)
10-60 (20)
20-20 (20)
40-320 (110)
20-450 (120)
50-50 (50)
nd-90 (19)

nd-1

(Yang et al.
2011)

(Zheng et al.
2011)

(Kim et al.
2007)

(Arikan et al.
2008)

(Kim and
Carlson 2007)

(Kasprzyk-Hor
dern et al
2009)



Germany Surface
water

France Surface
water

Italy

Finland

Dagu River  Sediment

Haihe River  Sediment

Chloramphenicol
Erythromycin-H,O
Trimethoprim
Sulfamethoxazole
Chloramphenicol
Erythromycin-H,O
Erythromycin

Roxythromycin
Trimethoprim
Sulfadimidine
Sulfamethoxazole
Ciprofloxacin
Ofloxain

Tylosin

Erythromycin
Tetracycline
Trimethoprim
Sulfamethoxazole
Ciprofloxacin
Norfloxacin
Ofloxacin
Azithromycin
Ciprofloxacin
Trimethoprim
Ciprofloxacin
Ofloxacin
Roxithromycin

Ofloxacin
Ciprofloxacin
Enrofloxacin
Acetylspiramycin
Sulfachloropyridazine
Trimethoprim
Sulfadiazine
Gentamicin
Rifampicin
Minocycline
Oxytetracycline
Trimethoprim

Sulfadiazine
Sulfamethoxazole
Sulfachloropyridazine

22

nd

nd-2
10-183 (62)
nd-4 (1)
nd-40 (5)
nd-72 (15)
4-190

nd-14
nd-12
nd-7

nd-52
nd-9

nd-20
nd-2.8

nd-131
nd-7.4
nd-254
nd-1435
nd-135
nd-75
2.1-231
7

25

2

nd-36
nd-5
21-5622 ng/g

nd-634
9-7812
nd-7708
16-7653
nd-6310
nd-3502
nd-12300
nd-11230
nd-12370
nd-5622
nd-8211
0.75-28 ng/g

3.4-34
0.85-59
2.1-39

(Christian et al.
2003)

(Dinh et al
2011)

(Verlicchi et
al. 2014)

(Vieno et al.
2006)

(Hu et al
2012)
(Luo et al
2011)



Yellow River

Hai River

Liao River

Huangpu
River

Sediment

Sediment

Sediment

Sediment

Ciprofloxacin
Ofloxacin
Tetracycline
Oxytetracycline
Erythromycin
Roxithromycin
Sulfadiazine

Trimethoprim
Oxytetracycline
Tetracycline
Norfloxacin
Ofloxacin
Ciprofloxacin
Erythromycin-H20

Roxithromycin
Sulfadiazine
Sulfapyridine
Sulfamethazine
Trimethoprim
Oxytetracycline
Tetracycline
Chlortetracycline
Doxycycline
Norfloxacin
Ofloxacin
Ciprofloxacin
Lomefloxacin
Enrofloxacin
Erythromycin-H20
Roxithromycin
Sulfadiazine
Sulfamethoxazole
Trimethoprim
Oxytetracycline
Tetracycline
Chlortetracycline
Doxycycline
Norfloxacin
Ofloxacin
Ciprofloxacin
Lomefloxacin
Erythromycin-H20
Roxithromycin
Sulfadiazine

23

nd-55

nd-69

nd-7.8

nd-57

nd-7.3

nd-7.2

nd-22.0 ng/g (Zhou et al

2011)

nd-2.86

nd-7.42

nd-18.0

nd-56.9

nd-63.04

nd-32.8

nd-49.8

nd-6.80
nd-1.71
nd
nd-5.69
nd-5.63
nd-422
1.19-135
nd-10.9
nd-7.00
5.95-5770
nd-59.5
2.05-1290
nd-298
nd-2.34
nd-67.2

nd-11.7
nd-11.0
nd
nd-9.84
nd-653
nd-4.82
nd-32.5
nd-2.80
nd-177
nd-50.5
nd-28.7
nd-5.82
nd-40.3
nd-29.6

0.07-0.71 (0.4) ng/g (Chen and
Zhou 2014)



(Shanghai)

Yongjiang Sediment
River

Nanning City

Qingshan Sediment
Lake

Pearl River Sediment
Delta

Gongdong Sediment

province

Sulfapyridine
Sulfamethoxazole
Sulfathiazole
Sulfamerazine
Sulfamethazine
Sulfaquinoxaline
Erythromycin
Roxithromycin
Enrofloxacin
Ofloxacin
Chloramphenicol
Thiamphenicol
Florfenicol
Tetracycline
Oxytetracycline
Doxycycline
Chlortetracycline
Sulfacetamide

Sulfadiazine
Sulfathiazole
Sulfadimidine
Sulfamethoxazole
Trimethoprim
Roxithromycin
Erythromycin
Clarithromycin
Azithromycin
Trimethoprim

Penicillin G
Penicillin V
Sulfamethoxazole
Sulfadiazine

Sulfamethazine
Sulfamethoxazole
Norfloxacin
Ofloxacin
Enrofloxacin
Tetracycline
Erythromycin-H20

Roxithromycin
Sulfadiazine

nd-6.6 (1.7)
0.05-0.6 (0.2)
nd-0.6 (0.2)
0.03-0.8 (0.2)
0.2-2.7 (1.2)
0.08-0.9 (0.4)
1.5-24.6 (10.2)
0.3-4.1 (1.9)
nd-8.9 (3.2)
nd-12.4 (4.1)
nd-0.7 (0.3)
nd-1.3 (0.4)
nd-1.3 (0.5)
nd-21.7 (3.5)
0.6-18.6 (6.9)
nd-21.3 (7.0)
nd-6.3 (2.4)
nd-0.43 (0.039)

nd-0.07 (0.017)
nd

nd-0.81 (0.13)
nd-0.20 (0.032)
nd-1.07 (0.32)
0.19-2.16 (0.93)
0.30-2.58 (1.36)
0.09-0.89 (0.40)
0.11-0.79 (0.35)
42.0-130.3

nd
nd
2.1-7.9
nd

0.44-3.24
nd

2.61-20.5
0.74-13.7
1.03-1.43
0.61-7.13
0.70-14.0

6.07-13.5
nd-83.9

ng/g

ng/g

ng/g

ng/g

(Xue et
2013)

(Zhu et
2013)

al.

al.

(Liang et al.

2013)

(Yang et
2010)

al.



(Pearl River
Delta)

Other countries
UsS

UsS

France

Spain

South Africa

Tianjin,
Liaoning

Tianjin

Sediment

Sediment

Sediment

Sediment

Swine,
chicken, and
cattle
manures

Swine

Sulfapyridine
Sulfamethazin
Sulfamethoxazole
Oxytetracycline
Tetracycline
Norfloxacin
Ofloxacin
Ciprofloxacin
Erythromycin-H20

Roxithromycin
Chlortetracycline

Sulfamethoxazole
Tetracycline

Chlortetracycline
Oxytetracycline
Doxycycline
Sulfamerazine
Sulfamethazine
Sulfamethoxazole
Erythromycin-H20
Roxithromycin
Tylosin
Azithromycin

Clarithromycin
Carbamazepine

Ciprofloxacin
Norfloxacin
Ofloxacin
Sulfamethoxazole
Tetracycline
Trimethoprim
Trimethoprim

Ciprofloxacin

Chlortetracycline
Oxytetracycline
Sulfamethoxazole
Ciprofloxacin

25

nd
nd-248
nd
nd-196
nd-72.6
nd-1120
nd-1560
nd-87.5
nd-62.7

nd-133
2.1-10 (4.6)

0.10-0.15 (0.10)
1.1-102.7 (17.9)

1.1-30.8 (10.8)
2.4-56.1 (14.8)
2.2-38.9 (15.7)
2.3-6.8 (4.8)
1.0-13.7 (4.7)
1.2-1.9 (1.6)
1.3-25.6 (10)

1.1-5.9 (2.1)
1.1-9.3 (3.0)
265.1 maximum

3.82 maximum
0.9

1.1
0.4
0.1
0.1
0.7
0.2
87.55

0.808

8.06
2.875
0.0189
0.3-3

(Arikan et al.
2008)

(Kim and
Carlson 2007)

(Feitosa-Felizz
ola and Chiron
2009)
(Vazquez-Roig
etal. 2012)

(Matongo et al.

2015)
(Hou et al.
2015)
(Hu et al



Tianjin

Liaoning

Heilongjiang
, Jilin and
Liaoning
provinces

manure,
chicken
manure

Manure

Swine,
chicken and
cattle manure

Cattle
manure

Chicken
manure

Swine
manure

Chlortetracycline
Oxytetracycline
Tetracycline
Doxycycline
Sulfamethoxazole
Sulfadiazine
Ciprofloxacin

Ofloxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Sulfamethoxazole
Tylosin
Enrofloxacin
Ciprofloxacin
Norflxacin
Tylosin

Enrofloxacin
Ciprofloxacin
Norflxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Sulfamethoxazole
Tylosin

Enrofloxacin
Ciprofloxacin
Norflxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Sulfamethoxazole

Tylosin

Enrofloxacin
Ciprofloxacin
Norflxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Sulfamethoxazole

26

0.6-24.3
9.7-173.2
10.2-41.5
8.6-59.8
2.3;5.2
4.5-18.7
0.1-4.3

0.23-15.7
0.14-26.8
0.08-183.2
0.11-43.5
0.23-5.7
0.23-0.35

1.77

0.78

2.28

0.22-0.28 (0.25)

0.46-4.17 (1.18)
0.28-0.84 (0.53)
0.43-1.76 (0.85)
0.61-1.94 (1.04)
0.21-10.37 (5.1)
0.43-2.69 (1.08)
0.22-1.02 (0.46)
0.23-0.34 (0.28)

0.33-15.43 (3.33)
0.33-2.94 (1.03)
0.5-9.52 (2.72)
0.57-3.11 (1.29)
0.96-13.39 (6.45)
0.54-4.57 (1.83)
0.25-7.11 (2.23)

0.23-1.88 (0.69)

0.36-2.22 (0.87)
0.31-0.96 (0.49)
0.41-3.18 (1.1)
0.68-22.34 (3.19)
0.73-56.81 (11.81)
0.32-30.55 (5.29)
0.21-2.16 (1.07)

mg/kg

mg/kg

mg/kg

2008)

(Hu
2010)

et

al.

(Lietal. 2012)

(Li
2013b)

et

al.



Beijing,
Jiaxing
(Zhejiang
province)
and
(Fujian
province)
Shandong

Shandong

Putian

Jia

ngsu,Shangh
ai,Zhejiang,

Anhui,Sic
an
Yunnan

hu
and

Swine
manure

Swine
manure
Winter
Summer

and

Chicken
manure

Duck manure

Chlortetracycline

Oxytetracycline
Tetracycline

Chlortetracycline
Oxytetracycline
Tetracycline
Sulfamethoxazole
Enrofloxacin
Ofloxacin
Norflxacin
Chlortetracycline
Oxytetracycline

Tetracycline

Doxycycline
Sulfamethoxazole

Sulfamethazine

Sulfadiazine

Enrofloxacin

Ofloxacin
Norflxacin

Chlortetracycline
Oxytetracycline
Tetracycline
Doxycycline

Sulfamethoxazole

Sulfamethazine

27

0.0079;0.0674;0.127

0.0749;2.544;0.0392

0.0022;0.122;1.21

2.6 Median
0.4 Median

0.4 Median

0.3 Median
0.0106-8.575
(0.1028)
0.0179-4.99 (0.232)
0.0102-4.54 (0.114)
0.0139-0.1295
(0.0227)
0.019-416.75
(0.7153)
0.0214-8.675
(0.1102)

0.0198-8.3 (0.1049)
0.0041-0.0288
(0.0067)
0.0059-0.0227
(0.0097)
0.0055-1.845
(0.0282)

0.0201-0.0287
(0.024)

0.0735-0.595 (0.209)

0.0162-0.384
(0.0789)
0.0191-0.0443
(0.0291)

0.0205-7.15 (0.3829)

0.132-0.52 (0.262)
0.1225-0.505
(0.2487)
0.0049-0.0081
(0.0063)

0.0074-0.011 (0.009)

mg/kg

mg/kg

mg/kg

(Qiao et al.
2012)
(Pan et al
2011)

(Zhang et al.
2015b)



Swine
manure
Cattle
manure

Shandong, Swine

Jiangsu, manure

Shanghai,

Zhejiang,

Jiangxi,

Hubei,

Hunan and

Guangxi

Sulfadiazine
Enrofloxacin

Ofloxacin
Norflxacin

Chlortetracycline

Oxytetracycline
Tetracycline

Doxycycline
Sulfamethoxazole
Sulfamethazine
Sulfadiazine
Enrofloxacin
Ofloxacin
Norflxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Doxycycline
Sulfamethoxazole
Sulfamethazine
Sulfadiazine
Enrofloxacin
Ciprofloxacin
Norflxacin
Chlortetracycline
Oxytetracycline

Doxycycline
Sulfamethoxazole

28

0.0053-0.0055
(0.0054)
0.0125-0.089
(0.0388)
0.012-0.124 (0.038)
0.0138-0.107
(0.0409)
0.0206-215.346
(1.0407)
0.0215-43.429 (1.1)
0.0159-30.941
(0.6027)
0.0151-30.718
(0.6379)
0.0041-0.0143
(0.0065)
0.0057-0.0337
(0.0117)
0.0051-6.792
(0.1195)

0.0101-0.74 (0.0561)

0.0212-0.1895
(0.0642)
0.0184-0.227
(0.0624)
0.0151-0.0655
(0.0302)
0.13-1.94 (0.532)

0.0173-2.495 (0.074)

0.0153-2.495
(0.0745)
0.0042-0.00785
(0.0052)
0.0047-0.034
(0.0106)
0.0052-0.065
(0.0125)
0.48-33.26 (2.09)

0.64-33.98 (2.01)
0.56-5.5 (2.09)
0.16-21.06 (1.15)
0.15-59.06 (2.69)
0.23-13.5 (0.79)
0.23-0.84 (0.51)

mg/kg (Zhao
2010)

et

al.



province

Nanjing

Shanghai

Guangxi

Chicken
manure

Cattle
manure

Chicken
manure

Swine,
poultry and
cattle manure

Swine
manure

Sulfadiazine
Enrofloxacin

Ciprofloxacin
Norflxacin
Chlortetracycline
Oxytetracycline
Doxycycline
Sulfamethoxazole
Sulfadiazine
Enrofloxacin

Ciprofloxacin
Norflxacin
Chlortetracycline
Oxytetracycline
Doxycycline

Enrofloxacin

Ciprofloxacin
Ofloxacin

Norflxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Doxycycline
Sulfamethoxazole
Sulfamethazine
Sulfadiazine

Oxytetracycline

Tetracycline
Sulfamethoxazole
Sulfamethazine
Sulfadiazine
Ofloxacin

29

0.09-0.8 (0.21)
0.33-1420.76 (4.65)

0.68-45.59 (3.78)
0.85-225.45 (4.68)
0.16-17.68 (1.09)
0.27-10.56 (1.55)
0.92-10.91 (3.39)
0.12-2.8 (0.78)
0.03-3.12 (0.15)
1.72-46.7 (6.79)

0.49-29.59 (3.44)
1.23-2.76 (1.84)
0.24-27.59 (2.22)
0.32-59.59 (1.24)
0.44-1.05 (0.68)
0.0036-7 (1.2425)

0.0205-0.52 (0.1501)
0.072-1.0525
(0.2895)
0.0765-1.285
(0.4028)
0.0144-0.02551
(0.0182)
0.1925-3.0775
(0.7566)
0.0223-0.117
(0.0696)
0.0256-0.1172
(0.0664)
0.0048-0.0288
(0.012)
0.0096-0.0227
(0.015)

0.0058-1.04 (0.2126)
18.7;21.36;21.96

12.27;12.01;10.31
7.56;9.36;8.62
6.17;6.39;8.01
4.87;4.57;8.03
0.00815

mg/kg (Huang et al.
2013b)

mg/kg (Jietal. 2012)

mg/kg (Zhou et al
2012)



Bobai Swine

county(swine manure
) and
Nanning city

in  Guangxi
province

Bobai
County
Guangxi
province

Swine
of manure

Other countries
Korea Swine,
poultry and

cattle manure

UsS Slurry

manure

Cattle
manure

Canada

Germany Swine

manure

Chlortetracycline
Oxytetracycline
Tetracycline
Enrofloxacin

Ciprofloxacin
Ofloxacin
Norflxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Doxycycline
Sulfamethazine
Sulfadiazine
Ofloxacin

Norflxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Doxycycline
Sulfamethazine

Macrolides

Sulfanomides
Tetracyclines
Sulfamethazine

Sulfamethoxazole
Sulfathiazole
Sulfamethazine

Chlortetracycline
Tetracycline

Chlortetracycline
Oxytetracycline
Doxycycline

30

35.5
0.661
0.821

nd-0.0165 mg/kg

nd-0.00908
0.0053-2.97
0.0102-0.0479
2.36-97.6
0.235-1.7
0.0671-9.26
0.0177-2.24
0.00675-0.25
0.00463-0.254

nd-0.00444 mg/kg

nd-0.00645
0.464-141
0.0108-0.636
0.00738-17.7
0.199-0.814
nd-0.00177

0.07-0.14,1.05-2.1,0.
62-1.24

mg/kg

0.49,8.44,1.39
1.65,16.56,15.62
0.00225-0.00506 mg/L
0.000108-1.47 mg/L
0.000785-0.0017 mg/L
9.9 mg/kg

0.4
0.1-46 mg/kg
0.1-50.8

0.1-0.9

0.1-0.7

(Zhou et
2013a)

(Zhou et
2013c¢)

(Kim et
2011)

(Shelver et
2010)

(Aust et
2008)
(Holzel et
2010)

al.

al.



Turkey

Austria

Beijing and
Tianjin

Ninghe,
Dongli, and
Jinnan in
Tianjin and
from
Shenyang,
Fushun, and
Tieling in
Liaoning
province
Tianjin

Beijing,
Jiaxing
(Zhejiang
province)
and Putian
(Fujian
province)

Swine,
poultry and
cattle manure

Swine,
chicken and
turkey
manure

Soil

Soil

Soil

Soil

Sulfonamides
Oxytetracycline

Chlortetracycline
Sulfamethazine
Enrofloxacin
Sulfadiazine
Tetracycline

Oxytetracycline
Enrofloxacin
Chlortetracycline
Sulfadiazine
Sulfadimidine
Trimethoprim
Chlortetracycline

Oxytetracycline
Sulfamethoxazole
Sulfadiazine
Tylosin

Enrofloxacin
Ciprofloxacin
Ofloxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Doxycycline
Sulfamethoxazole
Ciprofloxacin

Ofloxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Sulfamethoxazole
Chloramphenicol
Chlortetracycline

31

0.05-38.4
0.06-0.48

0.24-0.38
0.1-3.76
0.06

1.2
0.36-23

0.21-29
0.13-0.75,2.8-8.3
0.1-46;1.7

51,91

20

17

0.8-5.2 ng/g
2.6-111.8
0.8-90
0.8-97.2
1.8-44.6 ng/g
9.2-96.4
6.2-83.2
4.9-115.1
4.9-10967
0.3-571.4
2.3-152.9
14.8-494.7
2.2-58.1
0.8-30.1 ng/g
0.6-1.6

33.1-1079

124-2683

2.5-105

0.03-0.9

0.1-1.1

1.6-239.4 ng/g

mg/kg

mg/kg (Karci and

Balcioglu
2009)

(Martinez-Car

ballo et al.
2007)
(Chen et al
2014)
(Hou et al
2015)
(Hu et al
2010)
(Qiao et al
2012)



Beijing,
Shijiazhuang
, Wuhan,
Kunming,
Baotou and
Urumgqi

Beijing,
Tianjin, and
Jiaxing

Shandong
province

Nanjing

Shanghai

Fuyang city
in  Zhejiang
provience

Fujian

Soil

Soil

Soil

Soil

Soil

Soil

Soil

Oxytetracycline
Tetracycline
Doxycycline
Ciprofloxacin

Ofloxacin
Norflxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Doxycycline
Chlortetracycline

Oxytetracycline
Tetracycline
Doxycycline
Enrofloxacin

Ciprofloxacin
Ofloxacin
Enrofloxacin

Ciprofloxacin
Ofloxacin
Norflxacin
Oxytetracycline
Sulfachinoxalin
Sulfaclozine
Oxytetracycline
Tetracycline
Sulfamethoxazole
Sulfamethazine
Sulfadiazine
Chlortetracycline

Oxytetracycline
Tetracycline
Doxycycline
Enrofloxacin

Ciprofloxacin
Ofloxacin
Chlortetracycline
Oxytetracycline
Tetracycline

32

1.6-12.3
nd-90
nd-8.6
8.12-13.74

7.54-25.23
9.32-14.54
0.36-62.61
0.29-33.21
1.32-95.28
0.16-107.10
0.36-33.2

0.29-33.21
1.32-95.28
0.16-5.01
0.1-166.9 (18.6)

2.4-651.6 (104.4)
0.4-288.3 (55.7)
nd-20.6 (7.7)

nd-17.1 (8.1)
nd-25.85 (8.1)
nd-13.7 (4.0)
nd-19.3 (7.3)
20.3-33.1 (26.6)
nd-10.2 (3.6)
3410-4240
1870-2450
1320-2210
1290-1630
1930-2450
0.22-18.2

0.48-6.72
0.28-2.75
0.21-16.4
nd-637.3 (15.3)

nd-237.3 (29.3)
nd-205.7 (4.7)
nd-2668.9 (55.6)
7.2-613.2 (28.5)
nd-189.8

ng/g

ng/g

ng/g

ng/g

ng/g

ng/g

ng/g

(Wang et al.
2014b)

(Wu et al
2010)

(Li et al
2014b)

(Huang et al.
2013b)

(Jietal. 2012)

(Wu et al
2013)

(Huang et al
2013a)



Guangxi Soil

Bobai Soil
county(swine
) and

Nanning city
in  Guangxi
province

Bobai Soil
County  of
Guangxi

province

Other countries
Korea Soil

Malaysia Soil

Turkey Soil

US Soil

Enrofloxacin

Ofloxacin
Norflxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Enrofloxacin

Ciprofloxacin
Ofloxacin
Norflxacin
Chlortetracycline
Oxytetracycline
Tetracycline
Doxycycline
Sulfamethazine
Sulfadiazine
Sulfamononmethoxine
Ofloxacin

Chlortetracycline
Oxytetracycline
Tetracycline
Doxycycline
Sulfamethazine
Sulfamononmethoxine

Chlortetracycline

Oxytetracycline
Tetracycline
Sulfamethoxazole
Sulfamethazine
Doxycycline

Tylosin
Norfloxacin
Enrofloxacin
Oxytetracycline
Chlortetracycline
Sulfamethazine
Enrofloxacin
Sulfamethazine

33

6.22 ng/g

1.85
9.35
333
8.59
3.09
nd-95.8 ng/g

nd-14.0
nd-108
nd-58.8
nd-12900
nd-1410
nd-1010
nd-499
nd-3.69
nd-4.95
nd-5.37
1.04 ng/g

116

13.1
4.06
13.5
11.9
5.74

0.31-0.89 ng/g

1.68-3.77

0.82-2.94

0.77-5.43

20.30-28.38

63-728 ng/g

8-679

18-96

36-378

20-510 ng/g
80-120

40-110

20-50

0.0345-0.663 ng/g

(Zhou et al.
2012)

(Zhou et al.
2013a)
(Zhou et al.
2013c¢)

(Ok et al
2011)

(Ho et al
2014)

(Karci and
Balcioglu
2009)

(Shelver et al.



Canada

UK

Spain

Denmark

Germany

Soil

Soil

Soil

Soil

Soil

Sulfadimethoxine

Sulfamethoxazole
Tetracycline
Sulfamethazine

Oxytetracycline

sulfachloropyridazine
Sulfisomidin

Sulfadiazine
Sulfamethoxazole
Sulfamethoxypyridazine
Sulfadimethoxine
Tylosin A

Chlortetracycline
Tetracycline

Sulfamethazine
Chlortetracycline

15

11
30
10.4-72

322-1691

212-365
0.11

2.59
1.01
5.13
0.18
1-50

20-30
295

39

ng/g

ng/g

ng/g

ng/g

ng/g

ng/g

2010)
(Watanabe et

al. 2010)
(Aust et al.
2008)

(Kay et al
2004)

(Garcia-Galan
et al. 2013)

(Halling-Seren
sen et al. 2005)

(Hamscher et
al. 2005)
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Table S2 Abundance of antibiotic resistant genes (ARGs) in different environment media in China

Location Media ARGs Abundance Unit Reference
Rang/mean
Hebei STP Effluent tetA, tetC, tetG, 1.2x10*-1.3 copies/16STRNA  (Liu et al.
& Sludge tetL, tetM, tetO, 2012)
tetQ, tetW, tetX
Northern STP Effluent sul 6.7 x 10° copies/mL (Mao et al.
China 2015)
erm 7.0 x 10°
tet 8.4 x 10*
qnr 7.3 x 10°
STP Sludge  sul 2.2 x 10" copies/g
erm 1.2 x 10"
tet 1.3 x 10"
qnr 1.5 x 10°
Northern ~ STP Influent sul, sul2, tetM,  1.46 x 10*—1.78 x 10* copies/mL (Wang et al.
China tetW, tetQ, tetO, 2015)
tetT, blaOXA-1,
blaOXA-10
STP Effluent sul, sul2, tetM,  2.08 x 10* —3.68 x 10° copies/mL
tetW, tetQ, tetO,
tetT, blaOXA-1,
blaOXA-10
STP Sludge  sul, sul2, tetM, ~ 9.38 x 10" —4.3 x 10" copies/g
tetW, tetQ, tetO,
tetT, blaOXA-1,
blaOXA-10
Harbin STP Influent  tetw 2.63 x 10° copies/mL (Wen et al.
2016)
tetA 2.82 x 10
tetO 4.57 x 10*
STP Effluent tetW 1.0 x 107
tetA 2.19 x 10°
tetO 2.82x10°
Hangzhou  STP Influent tet 6.91 x 10’ copies/mL (Chen and
Zhang 2013a)
sul 3.06 x 107
intl1 8.44 x 107
STP Effluent tet 1.21 x 10°
sul 3.31 % 10°
intl1 2.82 x 10°
Hangzhou  STP Influent tetM 3.78 x 107 copies/16SrRNA  (Chen and
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Zhejiang

Jiangsu,
Shanghai

Nanjing

Xinjiang

Hongkong

South
China

Harbin,

STP Influent

STP Sludge

STP Influent

STP Effluent

STP Influent

STP Effluent

STP Influent

STP Influent

STP Effluent

STP Effluent

STP Sludge

tetO

tetQ

tetw

sul

tetA, tetB, tetC,

tetG, tetL, tetM,
tetO, tetQ, tetW,
tetX, sull, sul2,

and intl

tetA, tetB, tetC,

tetG, tetL, tetM,
tetO, tetQ, tetW,
tetX, sull, sul2,

and intl

tetG

tetw
tetX
sull
intll
tetG
tetw
tetX
sull
intll
tetA

tetC
intll
tetA
tetC
intll
sull
sul2
sul3
intll
tetA

tetC

tetA

tetC

tetA, tetB, tetC,
tetE, tetM, tetO,
tetS,tetX,

tetA

5.81 x 10
1.23 x 107
9.27 x 107
476 x 102
1.38 x 10" —1.49 x 10"

3.24 x 10'°-9.68 x 10"

234 x 10> -4.37 x 10°

1.74 x 10 = 5.62 x 10°
9.77 x 10> - 1.95 x 10°
1.29 x 10° = 1.1 x 10’
1.58 x 10° —2.04 x 10’
2.45x10°-3.8 x 10*
5.89 x 10' —3.55 x 10°
5.01 x 10°=2.09 x 10°
9.33 x 10*=1.05 x 10°
8.71 x 10*—9.12 x 10°
4,96 x 107

8.06 x 107
2.04 x 107
1.41 x 10°
1.37 x 10°
1.20 x 10°
1.79 x 10" = 6.67 x 107!
7.33 x 102 -3.38 x 107!
9.22 x 102-5.9x 10!
8.07 x 10° —3.02 x 10
1.59 x 10%

1.90 x 108
6.5 x 10*
3.68 x 10°
7.11 x 10° = 1.53 x 10™

1.06 x 107

36

copies/mL

copies/g

copies/mL

copies/mL

copies/16STRNA

copies/mL

copies/16STRNA

copies/16SrRNA

(Lietal.
2016b)

(Du et al. 2014)

(Zhang et al.
2009b)

(Li et al. 2016a)

(Zhang et al.
2009a)

(Huang et al.
2015)

(Zhang and



Beijing,
Qingdao,
Wuhan,
Nanjing,
Shanghai,
Guangzhou

b

Hongkong

Beijing
River,
South
China

Haihe
River

Northern
Yellow Sea
Urban
River,
Beijing

Huangpu
River

Surface
water

Surface
water

Surface
water
Surface
water

Surface
water

tetB
tetC
tetD
tetk
tetG
tetk
tetL
tetM
tetO
tetA/P
tetS
tetX
sull

sul2

tetC
tetA
tetX
tetG
tetQ
tetM
tetO
sull

sul2
sull, sul2

sull, sul2, tetA,
tetB, tetE, tetM,
tetz
intll
sull

sul2
tetA
tetB
tetC
tetG
tetM
tetO
tetw
tetX

7.66 x 10
1.31 x 102
2.20 x 10
2.20 x 10°¢
1.38 x 102
2.68 x 107
6.29 x 10°
5.15x 107
2.53 x 107
1.30 x 10*
8.52 x 107
1.62 x 107
2.62 x10° - 4.16 x 10
(1.41 x 10%)

2.60 x 10*—-7.09 x 107
(1.58 x 10%)

8.30 x 102 —13.20
1.38x102-1.37x 10"
2.69x10*-6.73 x 1072
9.65x107-3.76 x 1072
8.53x10°-1.53x107°
430x10°-8.77x10™*
551x10°%-8.23 x10™*
9.3 x10*-1.8x10°

3.9%x10°-3.6 x 107
33 x 10*-3.55 x 10*

7.0 x 10' —=5.9 x 10°

1.2 x 10°
0.32x10°—1.84 x 10°

0.43 x 10° - 4.19 x 10°
0.28 x 10°—3.16 x 10°
2.92 x 10" —4.30 x 10!
1.03 x 10° —4.08 x 10°
0.06 x 10*-3.18 x 10*
2.30 x 10" —=31.0 x 10!
1.95 x 10" —22.7 x 10!
1.61 x 10" —38.4 x 10!
1.76 x 10> —7.83 x 10?

37

copies/ 16SrDNA

copies/mL

copies/mL

copies/mL

copies/mL
copies/mL

Zhang 2011)

(Ling et al.
2013)

(Luo et al.
2010)

(Na et al. 2014)

(Xu et al. 2016)

(Jiang et al.
2013)



Tathu Lake

Jiulongjian
g River

Haihe
River
Northern
Yellow Sea
Urban
River,Beiji
ng

Dongjiang
River

Yangtze
River
Estuary
Taihu Lake

Liaoning

Surface
water

Surface
water

Sediment

Sediment

Sediment

Sediment

Sediment

Sediment

Manure

TEM
tetA

tetC
intl1
ami

sul
van
sull,sul2

sull,sul2

sull, sul2, tetA,
tetB, tetE, tetM,
tetz
intll
intll

intl2
sull
sul2
sul3
tetA
tetB
tetM
tetO
tetQ
tetS
tetW
tetX
ermB
ermC
ermF
intll

tetA
tetC
intll
tetM

tetO

1.36 x 10 - 20.0 x 10°

10* - 10°

10°
10°

2.78 x 10'° - 3.66 x10"°
2.55 x10° - 2.66 x10°
6.00 x10% — 1.69 x10°
2.6 x10°-5.1x10?

8.3x10°-5.9 x 10’

42 x10°-2.0 x 10®

4.4 %107
1.84x108

6.04x10°
3.63x10°
6.97x10°
3.67x10°
1.59x10®
6.31x10°
5.42x107
2.01x107
2.68x107
1.87x107
1.99x107
1.04x10*
1.29x10*
8.27x10°
4.37x10®
3.7 x 10°

108 —10°

108 10"
10°— 108

(1.9940.16)x10° —
(1.85+0.13)x10°
(3.53£0.26)x10° —

38

copies/mL

copies/L

copies/g

copies/g

copies/g

copies/g
copies/g

copies/g

copies/mL

copies/g

(Zhang et al.
2009b)

(Ouyang et al.
2015)

(Luo et al.
2010)
(Na et al. 2014)

(Xu et al. 2016)

(Suetal. 2014)

(Lin et al.
2015)

(Zhang et al.

2009b)

(Mu et al.
2015)



Tianjin

Beijing

Manure

Manure

tetQ

tetW

sull
sul2
gnrS

oqgxB
ermB

ermC

tetM

tetO

tetQ

tetW

sull
sul2

gnrS

oqgxB
ermB

ermC

tetM

tetO
tetQ
tetW
tetA
tetC
tetG
tetL
tetA/P
tetX
sull
sul2
intll
intl2

(1.69+0.14)x10°

(3.10+0.33)x10° —

(1.66+0.09)x10°

(1.05+0.09)x107 —

(6.84+0.65)x108

(9.35+0.87)x107 — (2.05+£0.19)x10"°
(7.40£0.56)x107 — (1.48+0.17)x10"°
(2.68+0.15)x10° —

(8.4240.78)x10’

(4.42+0.33)x10% — (2.02+0.12)x10"°
(1.70£0.14)x107 —

(1.31£0.10)x10°

(6.52+0.44)x10° —

(4.45+0.26)x10’

(2.60+0.18)x107 — copies/g (Mu et al.
(1.41£0.11)x10° 2015)

(5.41£0.46)x10" —
(8.26+0.81)x108
(2.2540.14)x10% —
(2.96+0.25)x10°
(1.8940.15)x10% —
(1.43+0.12)x10°
(1.46+0.08)x10° — (2.89+0.26)x10"°
(4.41£0.31)x10% —
(7.48+0.52)x10°
(3.01£0.22)x10% —
(2.7240.14)x10°
(5.16£0.42)x10% — (7.05+£0.54)x10"°
(9.31+0.86)x107 —
(2.06+0.16)x10°
(9.33+0.85)x10° —
(7.65+0.52)x107
147 x 1072 -1.95x 1072 copies/6STIRNA  (Wang et al.
2016a)

9.23x102-1.19 x 10°
1.77 x 102 -1.54 x 10"
1.70 x 102 =1.11 x 107"
1.56 x10*—1.87 x 107
448 x10*—-2.48x 107
7.44x10°%-1.59%x 107
9.33x10%-2.81 x 10"
2.50x107°-2.70 x 1072
7.04x10%-1.48 x 107"
1.80 x 102 -2.53 x 1072
7.05x10%-3.34%x 107
1.85x10°-3.45%x107
1.03x10*-1.08 x 1073
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Hangzhou

Hangzhou

Shanghai

Jiangsu

Manure

Manure

Manure &
soil

Manure

tetA

tetB
tetC
tetG
tetL
tetM
tetO
tetQ
tetW
tetX
sull
sulll
intl1
tetA

tetB
tetC
tetG
tetL
tetM
tetO
tetQ
tetW
tetX
sull
sulll
intl1
sull, sul2, sul3,
SulA

tetM, tetW, tetO,
tetBP

tetA

tetC
tetE
tetG
tetM
tetO
tetQ
tetT
tetW
sull
sul2
sul3

3.28 x 10°—2.48 x 10®

7.29 x 10°—3.03 x 10®
1.47 x 10°—2.34 x 107
1.68 x 10%—2.66 x 10°
3.74 x 10— 7.38 x 10®
6.63 x 103—1.33 x 10°
223 x108-3.11 x 10°
1.45 x 10°-3.18 x 10°
2.25x 108 - 1.64 x 10°
2.71 x 107 = 1.65 x 10°
3.59 x 10%—3.66 x 10°
7.14 x 103 -4.27 x 10°
8.27 x 108 —3.15 x 10"°
4.7 % 10°

1.44 x 108
3.94 x 107
2.30 x 10"
1.18 x 10°
5.15 x 10°
1.01 x 10"
6.60 x 10"
2.98 x 10"
1.13 x 10"
1.14 x 10"
4.90 x 10"
4,53 x 10"
237x107°-4.23x 1072

223 x10%-3.96x107°

10*-10°

10° - 108
10° - 108
10° - 10°
10° — 10"
10— 10"
10— 10"
10° - 10°
10*—10"
10— 10"
10°— 10"
10*-10°

40

copies/g (Cheng et al.
2013)
copies/g (Cheng et al.
2016)
copies/I6STRNA  (Jietal. 2012)
copies/g (Wang et al.
2016b)



Jiangsu

Beijing,
Tianjin

Liaoning

Manure

Soil

Soil

gnrD
gnrS
0gxB
ermB
ermC
acrA
acrB
aadD
aph
aac
sull

sul2
sul3
SulA
gnrA
gnrS
tetA
tetk
tetB
tetO
tetA

tetB
tetC
tetD
tetE
tetG
tetk
tetL
tetM
tetO
tetS
tetQ
tetX
sull
sul2
sul3
tetM

tetO

tetQ

tetW

10* - 108
10— 108
10*-10°
10°—10"
10° - 10"
10° - 10°
10*-10°
10° - 10"
10° - 10°
10° - 10"
2.2 %102

8.99 x 107

6.09 x 107

0.2 x 107

32 %107

0.12 x 107

2.03 x 107

2.45x 107

1.02 x 107

2 %1072

1.6 x10°-1.2x 107>

nd—2.1x 107
24x10°-12x10"
nd—2.6 x 107
nd—1.5 x 107
14x10°-43x10"
nd—1.7x10™*
nd-3.1x10™*
nd—1.1x10™*
22x10°-82x107?
14x10°-42x10"
nd—42x10°
nd—12x107
49x10°-1.7
58x107-1.7x10"
14x10°-55%x107
(2.67£0.19)x10° —
(3.31£0.27)x107
(1.92+0.08)x10° —
(3.68+0.34)x107
(1.91£0.14)x10° —
(1.24+0.07)x107
(1.04+0.08)x10° —
(7.17£0.66)x10°

41

copies/16STRNA

copies/16STRNA

copies/g

(Zhang et al.
2015¢)

(Chen et al.
2014)

(Mu et al.
2015)



Tianjin

Beijing

Soil

Soil

sull

sul2

gnrS

oqgxB

ermB

ermC

tetM

tetO

tetQ

tetW

sull

sul2

gnrS

oqgxB

ermB

ermC

tetM

tetO

tetQ
tetW

tetA
tetC
tetG
tetL
tetA/P
tetX
sull
sul2
intll
intl2

(4.89+£0.37)x10° —
(5.98+0.58)x108
(9.86+0.84)x10° —
(1.72+0.13)x10°
(3.76+0.24)x10* —
(2.92+0.21)x10°
(3.45+0.21)x107 —
(1.53+£0.09)x108
(1.79£0.15)x10° —
(1.79+0.11)x107
(1.64+0.13)x10* —
(4.00£0.37)x10°
(7.40+0.72)x10° —
(2.31£0.22)x107
(2.08+0.12)x107 —
(1.82+0.14)x108
(1.13£0.09)x107 —
(5.06+0.41)x107
(2.69+0.21)x10° —
(2.38+0.17)x107
(4.84+0.33)x10° —
(1.83+0.15)x108
(3.09+0.24)x10° —
(1.74+0.14)x108
(6.99+0.62)x10° —
(1.30+£0.11)x107
(3.52+0.28)x107 —
(5.30+0.45)x108
(6.81+0.54)x10° —
(1.05+0.07)x107
(1.99+0.18)x10° —
(4.20+£0.33)x10°
1.18 x10*-6.44x 107"

739 x10°-534% 107"
2.86x10°-1.82x107°
598 x10°-3.68x 107"
246 x 104 -4.96 x 1074
1.48 x 10°-4.37x 1073
1.80 x 1074—-1.75x 1073
438 x104-2.80x 107"
8.88 x 10°-8.63 x 10™*
3.62x10°-1.08 x 1072
2.04x 1073 -1.82 x 1072
444 x 104 —-1.52 x 1072
515x104-3.80x 1073
439x10°-7.08 x107*
42

copies/g

copies/16STRNA

(Mu et al.
2015)

(Wang et al.
2016a)



Beijing, Soil tetM 2.96 x 10° - 1.43 x 10° copies/g (Wu et al.
Tianjin, 2010)
Jiaxing tetO 3.68 x 10° —4.09 x 10®
tetQ 6.63 x 10°—4.30 x 10®
tetW 1.38 x 10°—3.48 x 10®
tetT 7.86 x 10* — 1.41 x 107
Hangzhou  Soil tetA 4.7 x 10° copies/g (Cheng et al.
2016)
tetB 1.38x 10°
tetC 4.16 x 10°
tetG 5.36 x 107
tetL 2.51 x 10°
tetM 4.89 x 107
tetO 1.50 x 108
tetQ 2.83 x 108
tetw 3.15 x 108
tetX 6.15 x 10°
sull 9.66 x 107
sulll 2.22 x 107
intl1 42.03 x 108
Jiangsu Soil tet 10° - 10 copies/g (Wang et al.
2016b)
sul 10°-10°
qnr 10* - 10°
erm 10— 107
acr 10— 107
ami 10— 107
Jiangsu Soil sull 39.19 x 107 copies/I6STRNA  (Zhang et al.
2015c¢)
sul2 0.42 x 107
sul3 0.48 x 107
sulA 0.71 x 107
anrsS 0.08 x 107
tetA 0.02 x 107
tetE 1.35x 107
tetB 0.44 x 107
tetO 10.55 x 107
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