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Chapter 1 

General Introduction and Objective of the Thesis 

Abstract 
In the last decades, dry powder inhalation has become a very attractive option for pulmonary 

drug delivery to treat lung diseases like cystic fibroses and lung infections. In contrast to the 

traditional pulmonary application of drugs for asthma and chronic obstructive pulmonary 

disease, these therapies require higher lung doses to be administered. The developments and 

improvements towards high dose powder pulmonary drug delivery are summarized and 

discussed in this chapter. These include the invention and improvement of novel inhaler 

devices as well as the further development of formulation principles and new powder 

engineering methods. The implementation of these strategies is subsequently described for 

some prototypes and formulations in research and development stage as well as for already 

marketed dry powder products. Finally, possible adverse effects which can occur after 

inhalation of high powder doses are shortly addressed.  
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1 GENERAL INTRODUCTION 

1.1 WHY PULMONARY DRUG DELIVERY? 

The main benefit of pulmonary drug administration is the delivery directly to the location of 

the disease while minimizing systemic exposure and toxicity [1]. Pulmonary delivery is 

characterized by rapid clinical response and allows to bypass therapeutic barriers such as poor 

gastrointestinal absorption and first-pass metabolism in the liver [2]. It can achieve a similar 

or superior therapeutic effect at a fraction of the systemic dose. For example, an oral dose of 

2–4 mg salbutamol is therapeutically equivalent to 100–200 µg by inhalation [2]. This is 

particularly important when considering aminoglycoside antibiotics for the treatment of 

Pseudomonas aeruginosa infections of the lung. Only low sputum aminoglycoside 

concentrations are achieved by administration of relatively high intravenous doses which 

carry the potential for systemic toxicity whereas high sputum concentrations can be achieved 

by inhalation without the risk of systemic toxicity [3]. For the treatment of lung diseases like 

asthma and chronic obstructive pulmonary disease (COPD) inhaled medications have been 

available for many years. Devices and formulations were designed for the administration of 

relatively low doses ranging from 6 to 500 µg [4]. In recent years, the treatment of other 

diseases like cystic fibroses and lung infections, as well as systemic diseases by pulmonary 

administration, became more attractive. However, these therapies in general require higher 

doses to be effectively administered to the lung. 

1.2 DEVICES FOR PULMONARY DRUG DELIVERY 

Systems for pulmonary delivery include pressurized metered dose inhalers (pMDI), soft mist 

inhalers, nebulizer and dry powder inhalers (DPI). With respect to delivered dose, pMDIs and 

the Respimat® soft mist inhaler were designed for the delivery of highly potent drugs for the 

treatment of asthma and COPD but face several factors limiting high dose delivery. Due to a 

poor delivery efficiency (mean lung deposition of 12%), a small metering valve of 25-100 µl 

[5], and limited increase in concentration [6] only small delivered doses of less than a 

milligram per puff can be achieved with pMDIs [7]. The Respimat® soft mist inhaler 

improved delivery efficiency to about 40% but high dose delivery is still limited by a small 

metering chamber of only 15 µl [8]. Thus, pulmonary delivery of high drug doses has been 

realized by nebulization of liquid formulations. This way of administration has some 

drawbacks such as restricted portability of jet and ultrasonic nebulizers due to the required 
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power source as well as a noisy compressor for jet nebulizers. These drawbacks were 

improved for portable battery-powered vibrating mesh nebulizers. The administration is 

nevertheless time-consuming and regular cleaning and disinfection of the systems are 

required [9]. Particularly for cystic fibrosis (CF) patients, applying several aerosol therapies, 

the time burden is immense. It may take up to three hours per day for administration of drugs 

and then to clean and sanitize the aerosol equipment [7].  

DPIs have the capacity to deliver higher payloads of drug to the lung. The first DPI 

(Aerohaler) was used in 1964 for the inhalation of 100,000 units of crystalline penicillin G 

sodium dust (approximately 60 mg) three times a day to treat patients with various infections 

of the respiratory tract [10]. In 1971 the Spinhaler® was developed [11] and approved for the 

delivery of 20 mg of the anti-asthmatic drug cromolyn sodium [12]. However, early DPI 

devices featured poor delivery efficiencies (only 4 to 17% lung delivery for cromolyn sodium) 

and the dosing performance depends on the patient’s inspiratory flow rate [13, 14]. In order to 

be effectively delivered to the alveolar region, particles must have an aerodynamic size 

between 1 and 5 µm [2]. Particles in this size range are extremely adhesive and cohesive. To 

improve powder fluidization and aid in de-aggregation, the micronized drug is either 

formulated with controlled agglomeration (soft pellets) or, most often, blended with larger 

carrier particles [15] in a drug-carrier ratio of usually 1:67.5 [16, 17]. The high percentage of 

carrier particles and the poor delivery efficiency limit the maximum lung dose which can be 

delivered in one actuation to just a few milligrams [6]. For administration of an appropriate 

lung dose of the antiviral drug zanamivir, for example, the patient needs to inhale two blisters 

containing 5 mg zanamivir formulated with 20 mg lactose-monohydrate twice a day [18]. 

Additionally, the large variations in lung deposition which depend on the inspiratory flow rate 

restrict the standard blending technology to drugs with a relatively large therapeutic index 

[19]. To overcome these limitations, DPIs experienced continuous further development. A 

specific de-agglomeration zone was introduced for enhanced fine drug particle separation by 

turbulences and multi-dose DPIs were designed [4]. The Novolizer® and the AirMaxTM device 

use tangential air flow which forms a cyclone in the device for optimized powder dispersion 

[20]. This approach improves lung delivery [21] but still shows variable performance at 

different flow rates [22, 23]. In contrast, drug delivery of the Taifun® device, which 

incorporates a vortex chamber, is relatively independent of the inhalation flow [24]. Constant 

drug deposition at different flow rates is also shown for the Turbospin® device where the 

inspiratory air is drawn through aerodynamically designed slits of the capsule chamber, 

putting it in a vortical motion. This causes shaking and twisting of the capsule for efficient 
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powder release [25, 26]. DPIs which include an active mechanism for powder dispersion are 

less dependent on the patient’s inspiratory flow, which is particularly important when 

considering systemic drug delivery. The Exubera® and the AspirairTM device are aimed for 

systemic delivery and use compressed air for powder aerosolization [27-29]. Nevertheless, all 

of the devices described above are designed for the delivery of small doses. DPI with drugs 

like anticholinergics, beta-2-agonists or glucocorticoids to treat asthma and COPD contain 

between 6 and 500 µg drug per dose [4]. An apomorphine hydrochloride formulation at 400 – 

800 µg for the treatment of male erectile dysfunction was recently developed using the 

AspirairTM device [29]. The Exubera® device was designed for the delivery of 1 or 3 mg of a 

dry powder insulin formulation to treat diabetes [27, 28]. 

In spite of still existing limitations for the delivery of larger doses, Crowther-Labiris et al. [3] 

delivered a lactose-blended micronized gentamicin dry powder formulation from the 

Clickhaler® device (nominal dose of 160 mg gentamicin) to ten chronically Pseudomonas 

aeruginosa infected patients, which had to take 32 inhalations to achieve a cumulative lung 

dose of 60 mg gentamicin. A new device, designed for the delivery of high powder doses, is 

the Twincer® for the application of antibiotics and sugar glass formulations containing, for 

example, therapeutic proteins. De Boer et al. [30] demonstrated that powder doses up to 

25 mg of pure drug can effectively be de-agglomerated, which possibly could be further 

optimized to a dose of 50 mg. For 8 mg colistin sulfomethate, fine particle fractions between 

40 and 60% were achieved, depending on the size of the classifier chamber. The Twincer® 

was designed as a low cost disposable inhaler, which makes it also interesting for medications 

that have to be given only once (e.g. vaccines) [30]. Another interesting novel dry powder 

inhaler for the delivery of high dose (25-250 mg) cohesive powders was described by Young 

et al. [31, 32]. The inhaler aerosolizes powder by using pressurized canisters filled with 

nitrogen gas at a pressure of 6-14 bar. An FPF between approximately 20 and 40% related to 

delivered dose could be achieved with a loading dose of 120 mg. A similar approach by using 

a standard propellant canister is described by Winkler et al. [33]. Up to 16 mg fine particle 

dose is reported in combination with that device. Recently the Novartis Podhaler® (T-326 

Inhaler) was approved, which evolved from the Turbospin® device, to address the needs of 

high-payload delivery of engineered tobramycin particles of around 50 mg. Similar to the 

Turbospin® device, the vortical air flow causes the capsule to spin while powder is shaken out 

of two pierced holes and aerosolized [34]. In vitro particle deposition were found to be largely 

independent of the inhalation maneuver [35]. 
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1.3 NEW POWDER FORMULATION METHODS 

New powder formulation methods are equally important as sophisticated devices for an 

efficient delivery of high dose DPI products. Owing to their small size, micronsized particles 

are extremely adhesive and cohesive. To enhance powder flowability and dispersibility, the 

main formulation method is blending with large (30-90 µm) lactose carrier particles [17]. For 

these formulations two oppositional requirements must be fulfilled. On the one hand, 

adhesion between carrier and drug must be sufficient for the blend to be stable enough to 

allow handling like filling. On the other hand, it needs to be weak enough to enable the 

release of drug after inhalation when the carrier particles retain in the inhaler device or deposit 

in the oropharynx due to their large size. Drug detachment from the carrier during 

aerosolization is therefore crucial for efficient lung delivery [36]. To prevent incomplete de-

agglomeration and improve lung delivery, different methods have been applied to weaken the 

drug adhesion including smoothing the carrier surface [37], reducing the particle size of the 

carrier [38], and using ternary mixtures with fines of e.g. lactose or hydrophobic components 

like magnesium stearate or amino acids [37, 39, 40]. Surface roughness of the carrier particles 

(in contrast to the surface roughness of small inhalable particles) may introduce asperities 

which could entrap drug particles and may resist its detachment from the carrier during 

inhalation [41, 42]. Two mechanisms by which fines improve de-aggregation are suggested 

because the aerosolization performance of the drug was shown to be both affected and 

unaffected by the blending order [43]. First, fines could prevent the drug particles from 

adhering to the strongest binding sites on the carrier [39] and, second, fine excipient and drug 

particles form agglomerates which are more easily dispersed and de-aggregated during 

aerosolization [44].  

A second strategy to overcome uncontrolled agglomeration of micronsized particles is the 

controlled agglomeration into soft aggregates by spheronization. These soft pellets exhibit 

large particle sizes, which provide the required flow properties for accurate dosing and are 

hard enough to be handled and loaded into the inhaler but still easily break apart into primary 

particles during inhalation [45]. Nevertheless, the variability of dose emissions from such DPI 

systems has been found to be relatively high, with a total relative standard deviation of more 

than 15% of the average emitted dose [46]. Additionally, the formed soft aggregates can 

harden on the surface when exposed to moisture, which influences the dosing characteristics 

and the ability to disaggregate into primary particles at inhalation. Therefore, the inhaler 

(Turbohaler®) contains a desiccant, which is stored in the operating unit of the inhaler [45]. 
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1.4 ENGINEERED PARTICLES 

Drug delivery to the lung can also be improved by particle engineering, which aims at the 

production of drug particles of optimal size, morphology and structure [42]. At best, these 

engineered formulations can overcome the need of carrier blends to enhance powder 

flowability and thus reduce the need for large amounts of excipient in the formulation. Direct 

controlled crystallization, for example, enables the production of uniform crystal drug 

particles with better physical stability due to a lower amorphous content compared to 

micronized material [42]. Through the use of an antisolvent precipitation technique with 

growth-retarding stabilizers like hydroxypropylmethylcellulose, characteristic particle 

morphologies depending on crystalline polymorphs can be achieved [47]. Elongated particles 

show improved lung delivery because the aerodynamic diameter of a fiber is mainly 

determined by its width rather than by its length [48]. Ikegami et al. [49] performed solid-

state transformation of a steroid from one polymorph to another and demonstrated an 

eightfold increase of the FPF for the needle-like particles of the β-form compared to the plate-

like α-form. Nevertheless, particle size control remains a big challenge because most 

molecules tend to form relatively large crystals [42].  

Several particle engineering technologies with the supercritical fluid carbon dioxide have 

been applied for pulmonary powder production. Particles form either as the result of rapid 

expansion of the supercritical fluid in which the components are dissolved or when the 

supercritical fluid acts as an antisolvent and causes precipitation from a solution [50]. It has 

been shown that powders produced by supercritical antisolvent precipitation typically exhibit 

a platelet particle morphology with lower bulk density and smaller cohesive-adhesive 

interactions compared to micronized powder, which enhances its dispersibility at low airflow 

rates [42]. Additionally, the controlled production of different polymorphic forms of high 

purity has been demonstrated [51]. The rapid expansion technique is only applicable if the 

compound has a significant solubility in the supercritical fluid and, if so, it is the technique of 

choice because of its simple, direct, solvent-free and continuous production of respiratory 

powder [42].  

Spray drying is a well-established method in food and pharmaceutical industries with 

increasing popularity due to its applicability to formulate biopharmaceuticals [50, 52]. It is 

one of the most sophisticated drying techniques and offers many possibilities for modification 

and particle engineering. The product characteristics can be modified by process and 

formulation parameters like nozzle type and nozzle parameters, feed concentration and rate, 



General Introduction and Objective of the Thesis 

  7 

solvent, drying gas flow rate, temperature and humidity as well as excipients used [53, 54]. 

Spray drying is also applicable for many liquid systems like solutions, suspensions, as well as 

emulsions and it offers the possibility of mixing fluids immediately prior to or simultaneously 

with the atomization process [54]. Beside conventional spherical particles, spray drying 

permits also the controlled production of particles of different morphology. Corrugated 

particles can be attained, for example, by changing the spray drying process conditions [55-

57], by employing polymeric excipients like dextran to increase the solution viscosity [58] or 

by adding low soluble components like leucine and trileucine [59-61]. These particles have a 

lower density and thus a larger geometrical size which improves powder dispersibility due to 

higher drag forces in the air stream. In addition, cohesive forces are reduced due to a smaller 

radius of curvature in the contact zone [58]. Spray drying has also been used in various 

methods for the preparation of porous particles. Vanbever et al. [62] prepared large porous 

particles by spray drying of a combination of water soluble (e.g. lactose) and water insoluble 

materials (e.g. dipalmitoylphosphatidylcholine) in an 87% ethanolic solution at a relatively 

low solid content (0.1% w/v). The particles had mean geometric diameters between 3 and 

15 µm but very small densities (tap density of 0.04-0.06 g/cm3), resulting in high emitted 

doses and respirable fractions. Another technique for the production of porous particles by 

spray drying is the PulmoSphere® technology [63]. PulmoSphere® particles are manufactured 

by an emulsion-based spray drying process. The drug is incorporated in an oil-in-water 

emulsion, which is composed of perfluorooctyl bromide and water and stabilized by the 

phospholipid distearoylphosphatidylcholine (DSPC), an endogenous pulmonary surfactant. 

During spray drying the drug diffuses to the center of the atomized droplet whereas the 

excipients form a shell at the surface. The volatile perflubron evaporates after further drying, 

leaving behind pores in the particle which form a sponge-like morphology. The particles have 

geometric sizes between 1 and 5 µm and are spherical in shape with a porous surface. This 

decreases the contact area between particles and leads to less particle agglomeration. 

Additionally, the accumulated DSPC at the surface lowers the surface energy, which further 

aids in decreasing interparticle cohesive forces. Consequently, PulmoSphere® particles have 

good flow and dispersing properties [63], allowing processing and aerosolization without the 

need to blend with carriers [64].  

Spray freeze-drying is a related method and a useful process for drying thermosensitive 

molecules like proteins. An atomized liquid is frozen in liquid nitrogen and freeze-dried for 

the production of micronsized porous powder particles. Nevertheless, the atomization step 

and the extremely rapid freezing of droplets impose substantial stresses on proteins distinct 
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from those stresses created by conventional lyophilization [65]. Compared to spray drying the 

technique allows higher production yield and superior aerosol performance because of the 

particles’ porosity. On the downside, the process is more complex, time-consuming, and cost 

intensive [66]. Additionally, the fast freezing of small droplets produce very fine 

microstructures after drying resulting in friable powders [65, 67]. 

Particles for sustained release can be formed from liquid dispersed systems via emulsion-

based methods using biodegradable polymers like poly(lactide-co-glycolide) (PLGA) for 

microencapsulation of the drug. Traditionally, these methods have been applied for the 

preparation of injectables [42]. Numerous examples of sustained release microspheres for 

pulmonary delivery are published, which contain drugs like isoproterenol for sustained 

bronchodilation [68] or isoniazid/rifampicin for treatment of pulmonary tuberculosis [69]. 

Porous particles with increased delivery efficiency have also been prepared from liquid 

dispersed systems using PLGA. Applying this method, Edwards et al. [70] demonstrated 

improved bioavailability of large porous insulin particles which were about seven times 

bigger than small nonporous insulin particles. The positive effect was explained by two 

factors: first, the increased particle size results in decreased tendency to aggregate and 

therefore more efficient aerosolization; second, large particles may escape from phagocytosis 

by alveolar macrophages [70, 71]. However, it is important to note, that polylactide has been 

shown to cause adverse immunological responses, which result in a significant damage of the 

lung after 24 h [72]. 

Another particle engineering method for pulmonary drug delivery is a drug carrier technology 

developed by MannKind Biopharmaceuticals, which captures and stabilizes peptides or 

proteins in small precipitated particles. These light microspheres (Technospheres®) with a 

rough surface are formed by the pH-induced intermolecular self-assembly of 3,6-bis(N-

fumaryl-N-(n-butyl)amino)-2,5-diketopiperazine. During the precipitation process, peptides 

and proteins which are present in the solution are microencapsulated. The precipitates are 

freeze-dried and become a light powder [73]. Efficacy, reliability and short-term tolerability 

of this drug delivery system has been demonstrated in clinical studies for parathyroid 

hormone [74] and insulin [75]. 
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1.5 HIGH DOSE DPI FORMULATIONS ON THE MARKET AND IN RESEARCH 

AND DEVELOPMENT 

As the first high dose antibiotic dry powder formulation (european medicines agency (EMA) 

approval in July 2011), tobramycin PulmoSphere® reached the market with the TOBI® 

Podhaler® (Novartis AG, Basel, Switzerland). The total amount of 112 mg of tobramycin 

formulation is administered by the inhalation of four capsules twice a day [76]. This portable 

passive delivery system demonstrates the same delivery efficiency as the jet nebulized 300 mg 

tobramycin solution for inhalation (TOBI® Pari-LC Plus), which is powered by an air 

compressor and requires an administration time of 15 to 20 min [77] as well as additional 

cleaning time. Fine particle dose (FPD) values of the market product are not published, 

however, an earlier study with 25 mg/capsule demonstrated a mean lung deposition of 34% 

[78]. 

In February 2012, the EMA approved Colobreath® (Forest Laboratories, Inc.). It is a dry 

powder formulation of colistimethate sodium administered using the Turbospin® DPI. One 

capsule contains 125 mg colistimethate to be inhaled twice a day [79]. The lung delivery 

efficiency is not published. 

Several other high dose dry powder antibiotic formulations are in development. A 

ciprofloxacin PulmoSphere® formulation (Cipro Inhale) is currently in phase II clinical trial 

[80]. For a study in healthy volunteers, capsules were filled with 50 mg powder containing an 

active dose corresponding to 32.5 mg ciprofloxacin betain and was administered via the T-326 

Nektar Inhaler (Podhaler®) [81]. The achieved FPD is not published. 

Positive results were recently demonstrated in a phase I clinical study for AeroVanc® (Savara 

Inc.), a dry powder formulation of vancomycin. It is the first inhaled antibiotic being 

developed for the treatment of respiratory methicillin-resistant Staphylococcus aureus 

(MRSA) infection in patients with CF. The dose-escalating study included doses between 16 

and 80 mg and examined the tolerability, safety, and pharmacokinetics of AeroVanc in non-

MRSA infected CF patients in comparison to a 250 mg dose of vancomycin administered 

intravenously [82]. The lung delivery efficiency is not published, however, sputum 

concentrations of vancomycin known to effectively kill MRSA could be demonstrated [83]. 

Aquino et al. developed a dry powder formulation of gentamicin by particle engineering via 

spray drying. The formulation including 15% (w/w) leucine was spray dried from a water/co-
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solvent system containing 30% (w/v) isopropyl alcohol and resulted in corrugated particles. A 

capsule charged with 120 mg powder introduced into the Turbospin® emitted almost the 

whole dose and achieved an in vitro FPD of 56 mg [59]. 

Not only antibiotics exist among high dosed dry powder formulations for inhalation. Mannitol 

(Aridol®, Pharmaxis Pharmaceuticals Limited), for example, is used in asthma diagnosis to 

identify persons with bronchial hyper-responsiveness [84]. For the bronchial provocation test 

patients are supposed to inhale the mannitol powder in increasing doses with the following 

protocol: 0 (empty capsule acting as a placebo), 5, 10, 20, 40, 80, 160, 160, and 160 mg 

mannitol whereby the 80-, and 160-mg doses are given in multiples of 40-mg capsules [85]. 

Another inhalative mannitol product is Bronchitol®, which was recently approved by the 

EMA for the treatment of CF patients aged 18 years and above for the improvement of lung 

function. A dose of 400 mg spray-dried mannitol is administered twice a day by inhalation of 

10 capsules using the Cyclohaler®. The osmotic active mannitol helps in rehydration and 

clearance of the tenacious mucus [86, 87]. Achieved FPDs are not published. 

Several other drugs for high dose pulmonary administration are considered in research. 

Among them are, for example, low molecular weight heparin [88], lung surfactant [89] and an 

NK1 receptor antagonist [90]. 

1.6 ADVERSE EFFECTS OF HIGH DOSED POWDER PULMONARY DELIVERY 

The inhalation of large powder doses is regarded critical compared to nebulized liquids 

because of potential induction of bronchoconstriction in hyper-responsive lungs (e.g. asthma 

patients). Dry powder mannitol has been shown to present an osmotic challenge to hyper-

responsive lungs at high dose and is therefore used for asthma diagnosis [84, 91]. 

Nevertheless, in non-asthmatic patients, large amounts of inhaled powder can also provoke 

upper-airway irritation, coughing, and bronchospasm which were reported as primary adverse 

events in various clinical studies. For Colobreath® these adverse effects normally diminish 

upon continued application or can be weakened by additional inhalation of β2-agonists [79]. 

Mannitol for inhalation in CF patients provoked cough during the first treatment but was 

overall well tolerated [87]. The inhalation of tobramycin dry powder formulation most 

commonly caused cough, followed by lung disorders (generally reported as a pulmonary or 

CF exacerbation) and pharyngolaryngeal pain (sore throat) but were considered as not serious. 

Both phase III studies demonstrated that tobramycin inhalation powder was well tolerated in 

CF patients [92, 93]. Crowther-Labiris et al. [3] reported in a comparative study of dry 
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powder versus intravenous and nebulized gentamicin, that nebulization of gentamicin caused 

significantly more mouth and throat irritation, induced coughing, and an unpleasant taste 

compared to the dry powder inhalation. 

1.7 CONCLUSION 

The growing interest in the pulmonary administration of larger powder doses triggered both, 

the invention of novel inhaler devices with enhanced efficiency and the development of 

improved inhalation formulations. Another goal was to minimize variations in the 

aerosolization and delivery performance and to reduce the dependency on the patient’s 

inspiratory flow. New sophisticated systems demonstrated their capability to deliver 

significantly increased lung doses compared to the simple early devices. Active as well as 

some passive devices achieved also inspiratory flow-independent delivery. In particular, 

particle engineering to improve powder properties play a significant role in leading dry 

powder formulations towards efficient delivery of large powder quantities. The engineered 

PulmoSphere® particles, for example, facilitated the development of the first marketed high 

dose antibiotic dry powder for pulmonary administration. Nevertheless, to achieve sufficiently 

high lung doses, every drug administration consists of multiple inhalations, which still leaves 

enough room for further improvement. The reported advances in particle engineering also 

opened the opportunity for the formulation and delivery of more complex and labile drugs 

like biopharmaceuticals. 
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2 OBJECTIVE OF THE THESIS 

For pulmonary delivery of small molecules, as well as high-molecular-weight drugs like 

proteins and peptides, Yamashita et al. [94] developed a new dry powder inhalation system 

based on the dispersion of lyophilisates by impacting air. As the freeze-dried preparation is 

disintegrated into fine inhalable particles at the time of inhalation, the formulation is stored as 

a coherent bulk in a non-powdered form. This avoids formulation problems like poor 

flowability and re-dispersibility. The objective of the thesis was to evaluate the new concept 

of Yamashita et al. [94] and prove the possibility of creating individual inhalable particles 

from a coherent bulk via disintegration of lyophilisates by an air jet. It was aimed to assess 

possible methods for improvement of this technology as well as to explain underlying 

mechanisms. This includes first the development and evaluation of an output test system with 

reproducible and optimized performance as well as its characterization (Chapter 2). Second, 

in order to understand the aerosolization behavior, various placebo formulations were 

examined with respect to lyophilisate characteristics and particle size distributions 

(Chapter 3). In the following the suitability of this technology for the delivery of high powder 

doses was to be investigated. The main focus was thereby on the improvement of the 

formulation in order to achieve high fine particle doses (FPD - amount of drug that can be 

delivered to the side of action, the alveolar region of the lung). In a first approach ways and 

limitations to elevate the metered dose were studied (Chapter 4). For optimization of the FPD 

of a model drug which demonstrated poor delivery efficiency the addition of excipients was 

investigated (Chapter 5). To possibly increase the FPD of various freeze-dried substances, the 

impact of different lyophilisate morphologies on lyophilisate characteristics and their 

aerosolization performance was evaluated (Chapter 5 and Chapter 6). Furthermore, storage 

stability for three months at 25°C/60% RH and 40°C/75% RH was investigated for selected 

formulations (Chapter 5 and Chapter 7). 
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Chapter 2 

The Test System 

Abstract 
Dry powder inhalers and dry powder formulations experience a growing interest and are the 

subject of continuous further development. The objective of this study was to evaluate the 

possible aerosolization of lyophilisates by an air impact. Therefore an output test system for 

disintegration of the lyophilisate and for delivery of the generated fine particles was 

developed. The output system uses compressed air at a preselectable pressure for reproducible 

generation of inhalable particles. The influence of several variable parameters on the fine 

particle output was investigated to decide for a standard setting for further development work. 

With respect to the compressed air, the final standard setting included a pressure of 3 bar and 

a volume for dispersion of 20 ml. Regarding the air inlet and outlet capillaries, the position 

was fixed at 5 mm below the stopper and the diameter to 0.75 mm. To possibly further 

improve the powder delivery, the influence of vial and stopper geometry of the implemented 

container housing the formulation and a modified mouthpiece with sheath air were 

investigated. In order to characterize and understand the disintegration and aerosolization 

process, the air flow through the test system was simulated and the lyophilisate dispersion 

was visualized by high speed camera recordings. Although the air flow impacted at about 

90 m/s on the lyophilisate, the cake was not compressed but was lifted up and broken apart 

into fragments, which swirled around the endings of the capillaries. The aerosol finally had a 

velocity of 3 m/s when leaving the mouthpiece. The investigation of the influence of particle 

size on the output revealed an enhanced emission of larger particles due to larger target 

surfaces to the expelling air flow and less wall adhesion. However, also very fine particles (D 

(v, 0.5) of 3 µm) demonstrated a slightly increased emitted dose as a result of superior flight 

properties. Beside the successful dispersion of lyophilisates in the novel active test system, 

the possibility to disintegrate very soft lyophilisates was also demonstrated for the passive 

capsule based HandiHaler®. However, only small fine particle doses could be achieved.  
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1 INTRODUCTION 

Inhalation therapy is the most common treatment for pulmonary diseases like asthma and 

chronic obstructive pulmonary disease (COPD). In the last decades, the evolution of dry 

powder inhalers (DPIs) experienced increasing attraction, which led to the development of 

several different devices and powder formulations. Islam and Gladki [1] divided the DPI 

devices available on the market into three generations of DPIs. The first generation DPIs are 

breath activated single unit dose devices like the Spinhaler®, for which the doses are factory 

metered into single capsules. Among the second generation DPIs, there are multi-dose 

reservoir inhalers and multiple unit dose inhalers, which are both breath activated devices as 

well. The Turbohaler®, for example, includes a powder reservoir and a disk with metering 

holes where the dose is metered right before inhalation [2]. The MAGhaler®, another multi-

dose reservoir inhaler with a different metering system, is loaded with a ring-tablet from 

which small amounts are grated with a ceramic milling disk [3]. A multiple unit dose inhaler 

like the Diskus® contains a coiled blister strip with every blister containing one factory 

metered dose which is opened and inhaled [4]. The third generation DPIs are active devices 

like the Exubera® device, which uses patient-generated compressed air for powder 

aerosolization [5]. A new system, described by Yamashita et al. [6], consists of a freeze-dried 

preparation which is disintegrated into fine particles by impacting air at the time of inhalation. 

Therefore, it is a DPI system in which the formulation is stored in a non-powdered form. 

Formulation problems like inadequate flowability and redispersibility of powders are thereby 

avoided. The disintegration and delivery of the lyophilisate is achieved by an air jet, produced 

by contracting a bellows. Another interesting novel dry powder inhaler for the delivery of 

high dose (25-250 mg) cohesive powders was described by Young et al. (2003, 2004). The 

inhaler aerosolizes powder by using pressurized canisters filled with nitrogen gas at a pressure 

of 6-14 bar. The objective of this study was to prove the possibility of disintegrating 

lyophilisates by an air impact. For this purpose, an output test system with reproducible air jet 

generation was designed and evaluated with respect to the volume and pressure of the 

compressed air as well as position and diameter of in and outlet. Potential causes for reduced 

output of the test system like vial and stopper geometry as well as the mouthpiece were 

examined. To understand the aerosolization behavior of the system, high speed camera 

recordings were performed as well as a simulation of the air flow through the test system for a 

better understanding of the air flow upon impact on the cake. Furthermore, output 

characteristics were inspected separately from the disintegration process to understand how 
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different particle sizes generated from the lyophilisate can escape the container. Additionally, 

the possibility of disintegrating lyophilisates in the capsule-based passive HandiHaler® was 

investigated. 

2 MATERIALS AND METHODS 

2.1 MATERIALS 

Excipients used were: L-isoleucine (Ile) (Fluka Chemie GmbH, Buchs, Switzerland), L-

phenylalanine (Phe) (Merck KGaA, Darmstadt, Germany), L-valine (Val) (Fagron GmbH&Co 

KG, Barsbüttel, Germany), lactose-monohydrate (Lac) (Fagron GmbH&Co. KG, Barsbüttel, 

Germany), trehalose (Tre) (Hayashibara Co Ltd, Okayama, Japan); dye for quantification was 

rhodamine B (Sigma-Aldrich, Chemie GmbH, Steinheim, Germany); filters used in Andersen 

cascade impactor analysis were type A/E glass fiber filters 76 mm (Pall Corporation, Ann 

Arbor, MI, USA) 

Lactose samples of different particle size were obtained from DFE pharma (Goch, Germany) 

in the following qualities: Lactohale® LH 100 (sieved), Lactohale® LH 200 (milled), 

Lactohale® LH 201 and Lactohale® LH 300. 

2.2 DESIGN OF EXPERIMENTS (DOE) 

A design of experiments was planned and evaluated with Modde 8 (Umetrics AB, Umeå, 

Sweden) 

2.3 FORMULATION PREPARATION IN GLASS VIALS 

0.5 ml solutions containing 4 mg/ml of the excipient and 0.2 mg/ml rhodamine B were filled 

into 2R glass vials (Fiolax® clear, Schott AG, Müllheim, Germany) and vials were equipped 

with rubber stoppers (C1503, Stelmi, Villepinte, France). Freeze-drying was carried out in a 

laboratory scale freeze-drier (Lyostar II, FTS Systems, Stone Ridge, NY, USA). The samples 

were frozen at -1°C/min to -45°C. Primary drying was performed at a shelf temperature of 

-20°C and a pressure of 34 mtorr for 14 h. In the secondary drying step shelf temperature was 

increased to 30°C and the pressure was decreased to 8 mtorr for 6 h. 
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For evaluation of serum stoppers (1104-PH 701/40/ow/wine-red, West Pharmaceutical 

Services, Eschweiler, Germany) as closure material, stoppers were exchanged after 

lyophilization in a glove box at approximately 10% relative humidity. 

For evaluation of tubes, Rotilabo®-sample vials (Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany) were cut to the same height as 2R vials. 0.5 ml solution containing 4 mg/ml 

trehalose and 0.2 mg/ml rhodamine B was filled into the tube and freeze-dried according to 

the above process. Afterwards, tubes were removed from the freeze-dryer to a glove box and 

sealed with 20 mm serum stoppers (1242 4110/40/grey West, Pharmaceutical Services, 

Eschweiler, Germany). 

2.4 FORMULATION PREPARATION IN POLYETHYLENE CAPSULES 

150 µl solution containing 4 mg/ml excipient and 0.2 mg/ml rhodamine B were filled into the 

base part of polyethylene capsules (size 3) arranged in a capsule tray of a handfill capsule 

machine (aponorm®, Wepa Apothekenbedarf GmbH & Co KG, Hillscheid, Germany). The 

tray was loaded onto a freeze-drier shelf and freeze-drying was carried out as described 

above. Afterwards, capsules were removed from the freeze-dryer to a glove box and closed 

with the corresponding top parts in the capsule machine. Until usage capsules were stored in a 

desiccator above silica orange gel. 

2.5 ANDERSEN CASCADE IMPACTOR (ACI) ANALYSIS 

The emitted dose (ED), delivered dose (DD), and fine particle fraction (FPF) of the 

formulations were evaluated using an Andersen cascade impactor (ACI) (8-Stage Non-Viable 

Sampler Series 20-800, Thermo Andersen, Smyrna, GA, USA). The ACI was operated at a 

flow rate of 39 l/min (corresponds to a pressure drop of 4 kPa with the HandiHaler®). The 

baffle plates were coated with a solution of 83% glycerin, 14% ethanol and 3% Brij 35. In 

6.15 s a total air volume of 4 l passed through the impactor. During this time period, the 

aerosol was sprayed into the induction port. The total particle mass impacting below stage 1 

equals to the FPF. By removing stages 2 to 7, the FPF is collected on the filter of the ACI. 

This configuration is called short stack ACI in this study. The amount of powder deposited on 

the filter was determined by washing with water and rhodamine B quantification at 554 nm in 

an Agilent 8453 UV-Vis spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). 

Therefore the filter solution was ultra-centrifuged (OptimaTM TLX Ultracentrifuge, Beckman 

Coulter, Brea, CA, USA) at 186000 g for 45 min before UV-Vis spectroscopic analysis. The 
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FPF (= fraction of particles in an inhalable size range with an aerodynamic diameter below 

4.94 µm), the DD (dose that could be delivered to the ACI) and the ED (dose that was emitted 

off the vial) were calculated as percentage of the metered dose (nominal dose). The 

comparability of the FPF measured with the normal eight-stage ACI and the short stack 

version was tested with a flow rate of 39 l/min using the HandiHaler® in an unpublished study 

showing no significant difference of the measured FPF. Therefore the experiments of this 

study were performed with a flow rate of 39 l/min instead of the recommended 28.3 l/min of 

the pharmacopoeia. All ACI measurements were performed in triplicate. 

2.6 SIMULATION OF THE AIR FLOW THROUGH THE DEVICE 

Simulation of the air flow through the device and the vial was simulated by Ralf Kröger of 

Ansys Germany GmbH using Ansys Workbench 13. Employed subprograms were 

Designmodeller for modeling of the geometry of the test system, Workbench Meshing for 

superimposing the calculation network comprising 3.14 million polygonal cells, and Fluent 13 

for executing the simulation at time intervals of 1∙10-6 s. Due to the high time resolution and 

the fine calculation network, the simulation was terminated after 17 ms in order to keep the 

effort manageable. 

2.7 HIGH SPEED CAMERA RECORDINGS 

The aerosolization behavior of the lyophilisates in the vial was recorded using a Fastcam 1024 

PCI (Photron, San Diego, CA, USA) with a sample rate of 1000 fps. 

2.8 PARTICLE SIZE DISTRIBUTION (PSD) ANALYSIS 

The PSD of lactose powder was measured by laser diffractometry using a Helos Sympatec 

(Sympatec GmbH, Clausthal-Zellerfeld, Germany) equipped with a Rodos dry dispersion unit 

and a Vibri feeding. The powder was dispersed at a pressure of 3 bar and extracted by suction. 

The size distribution was calculated as volume distribution using the Fraunhofer theory. The 

aerosolized powder was collected in a beaker and measured similarly to the basic powder. 

2.9 ED ANALYSIS OF LACTOSE POWDERS OF DIFFERENT PARTICLE SIZE 

For analysis of the ED independent of the cake disintegration process, 24 mg of lactose 

powder (2.1) was weighed into a 2R vial and aerosolized using the test system at default 
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settings. The generated aerosol was extracted by suction. ED was quantified by weighing the 

vial before and after aerosolization and calculated as percentage of the MD. 

2.10 MECHANICAL TESTING 

The mechanical properties of the lyophilisates were investigated using a Texture Analyzer 

(TA.XT.plus, Stable micro Systems, Godalming, UK) equipped with a 5 kg load cell and a 

cylindrical stainless steel probe with a diameter of 5 mm at a test speed of 1 mm/s and a 

maximal immersion into the lyophilisate of 2 mm. The resulting immersion-force curve 

demonstrated steady fracture at a constant force visible as a horizontal plateau. For 

comparison of different formulations, the measured data points of the plateau were averaged. 

The obtained force value represents the force necessary to fracture the lyophilisate. 

3 RESULTS AND DISCUSSION 

3.1 CONSTRUCTION OF AN OUTPUT TEST SYSTEM 

For disintegration of lyophilisates into fine particles suitable for inhalation and delivery of 

these fine particles, an output test system was developed (Figure 1). The system was designed 

on the basis of an active DPI described by Yamashita et al. [6], but with the focus on 

reproducibility. It consists of two capillaries pierced through the stopper of the vessel housing 

the lyophilisate. One capillary is the air inlet, the other capillary is the air outlet, which is 

connected to the mouthpiece. The test system uses compressed air for disintegration of the  

 

Figure 1: Schematic drawing of the output test system for disintegration of the lyophilisates. 

bar
inlet 
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lyophilisate into fine particles. For reproducible performance of the test system, the 

compressed air is stored in a pressure reservoir, holding a defined air volume at a 

preselectable pressure. Pressing a lever releases the compressed air through the inlet capillary. 

This pressure impulse starts dispersion and delivery of the powder. For comparison, the 

system of Yamashita et al. [6] has a similar configuration, but the air jet is generated manually 

by contraction of a 20 ml bellows.  

The output test system has several variable parameters: the pressure and the volume of the 

compressed air reservoir, the diameter of the air inlet and air outlet capillary as well as their 

position. To identify the parameters influencing the FPF, DoE was used (see Table 1 for 

factors and corresponding settings). A fractional factorial resolution 4 screening design was 

performed which consisted of 19 runs, including 3 center points. The fine particle fraction 

was determined by short stack ACI analysis of isoleucine.  

Table 1: The design of experiments factors and settings for evaluation of the variable 

parameter of the output test system. 

Name Settings 
Pressure 1 to 3 bar 
Reservoir volume 10 to 30 ml 
Air inlet capillary diameter 0.25 to 0.75 mm 
Air outlet capillary diameter 0.25 to 0.75 mm 
Air inlet capillary position 0 to 10 mm below stopper 
Air outlet capillary position 0 to 10 mm below stopper 
 

The coefficient plot of the DoE (Figure 2) shows that only the pressure had a significant 

influence on the FPF and higher pressure led to larger FPF. On closer inspection, the air outlet 

capillary diameter (OCD) possibly had an effect on the fine particle fraction as well. A bigger 

air outlet capillary diameter led to slightly larger fine particle fractions, which might be due to 

a different flow behavior in container and outlet capillary resulting in a more effective 

destruction of the lyophilisate. A higher pressure is responsible for a larger total amount of air 

in the reservoir which could aid in the fine particle output. The total amount of air is the same 

for a pressure of 1 bar and an air volume of 30 ml or a pressure of 3 bar and an air volume of 

10 ml. However, the FPF was substantially higher for a pressure of 3 bar in comparison to a 

pressure of 1 bar. For example, capillary diameters of 0.75 mm, a volume of 10 ml and a 

pressure of 3 bar achieved a FPF (related to MD) of 27%, whereas a volume of 30 ml and a 

pressure of 1 bar only attained a FPF of 18%. For capillary diameters of 0.25 mm this effect 
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was even higher. A volume of 10 ml and a pressure of 3 bar achieved a FPF of 19%, whereas 

a volume of 30 ml and a pressure of 1 bar only attained a FPF of 9%. Therefore, it was not the 

total amount of air which led to a larger FPF, but the high pressure. A higher pressure induced 

a stronger impaction on the lyophilisate which consequently disintegrated into finer particles. 

By taking this into account, the output test system was fixed to the following parameters: The 

pressure was set to 3 bar and the compressed air reservoir to a volume of 20 ml. For the air 

inlet and air outlet capillary a diameter of 0.75 mm was chosen. The position of the ending of 

the capillaries was fixed to 5 mm below the stopper of the vessel. All further experiments 

were carried out using this standard setting of the output test system. This should allow for 

reproducible results and substantial FPF. 

 

Figure 2: Scaled and centered coefficients for the fine particle fraction of the screening design 

DoE. The investigated factors were the compressed air pressure (P), reservoir volume (Vol), 

air inlet capillary diameter (ICD), air outlet capillary diameter (OCD), air inlet capillary 

position (ICP) and air outlet capillary position (OCP). 

3.2 INFLUENCE OF VIAL AND STOPPER GEOMETRY ON FINE PARTICLE 

OUTPUT 

When inspecting the vial after aerosolization, particles accumulated particularly in the cavity 

of the lyophilization stopper. In order to evaluate whether the geometry of the stopper hinders 

the particle output, lyo stoppers were replaced by flat serum stoppers after freeze-drying. No 

significant difference for ED, DD and FPF of trehalose lyophilisates in 2R vials equipped 

with the two different stoppers were detected (Figure 3a). Visual inspection of the vial after 
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aerosolization revealed a particle accumulation in the neck of the vial for samples with serum 

stopper. Thus the stopper replacement could not prevent particle accumulation at the top of 

the vial and therefore an increase in the ED was not possible. 

a 

 
b 

 
Figure 3: ED, DD and FPF of trehalose lyophilisates in a 2R vial equipped either with a 

lyophilization stopper or a serum stopper (a) or aerosolized from a necked 2R vial in 

comparison to a straight vial in the same dimensions (b). 

To evaluate the influence of the vial neck on the ED, straight sample vials were compared to 

the normal 2R vials. The straight vials were sealed with 20 mm serum stoppers to eliminate 

any cavity where particles could accumulate. However, the straight vial geometry hindered 

the output from the vial as can be seen from Figure 3b. ED, DD, and FPF for trehalose 

lyophilisates decreased by about 10%. Possibly, the rounded neck edges of the vial benefit the 

output from the vial and the neck demonstrates a less negative effect compared to a straight 

geometry. The pass through of the air stream is generally enhanced with rounded edges, 
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whereas the sharp edges of the straight geometry could cause increased turbulences resulting 

in increased particle deposition. In conclusion, the 2R vial and lyo stopper geometry do not 

restrain fine particle output and can be used for all further studies. 

3.3 INFLUENCE OF MOUTHPIECE WITH SHEATH AIR 

After aerosolization a fine particle film covered the mouthpiece. The particles particularly 

deposited at the bottom of the mouthpiece due to a sudden expansion of the air flow leaving 

the narrow outlet capillary and entering the mouthpiece (Figure 4a). This sudden expansion to 

a larger diameter produces a zone of backflow with turbulences [7], resulting in a backward 

deposition at the bottom of the mouthpiece. In order to prevent this particle deposition and 

possibly enhance the FPF, a mouthpiece with sheath air was constructed. The sheath air is 

produced by suction through small holes positioned at the transition between outlet capillary 

and mouthpiece. It is supposed to focus the particle aerosol stream and guide it through the 

mouthpiece (Figure 4b). An adapter between the suction induction port (SIP) of the ACI and 

the mouthpiece assured for a tight connection. This enabled the vacuum pump simulating the 

inspiration to produce the sheath air inside the mouthpiece during the aerosolization process. 

The sheath air successfully reduced the deposition in the mouthpiece for phenylalanine and 

trehalose lyophilisates but increased the deposited fraction in the SIP as can be seen from 

Figure 5. All other fractions including the FPF remained the same. Visual inspection of the  

a 

 

b 

     

Figure 4: Schematic drawing of the aerosol behavior in the basic mouthpiece (a) and in the 

mouthpiece with sheath air (b). 
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SIP revealed a deposition of a particle film right at the beginning. Thus, the particle 

deposition which previously took place in the mouthpiece was only shifted to the beginning of 

the SIP when using the mouthpiece with sheath air. At this position, the same effect as 

reported for the mouthpiece without sheath air occurred. The air stream comprising the 

particle aerosol experienced a sudden expansion from the narrower sheath air to the broader 

diameter of the SIP, resulting in turbulences and consequently the deposition of finer particles. 

In summary, the improved mouthpiece with sheath air was not able to prevent the premature 

deposition of finer particles before entering the ACI. Therefore, the normal mouthpiece 

without sheath air will be used for all further experiments. 

a b 

   

Figure 5: Material distribution after aerosolization of trehalose (a) or phenylalanine (b) 

lyophilisates using the basic mouthpiece or the one with sheath air. 

3.4 SIMULATION OF THE AIR FLOW IN THE VIAL 

To study the air flow through the device and the vial, a simulation was conducted. The 

geometry of the test system with the standard settings was modeled and a calculation network 

comprising 3.14 million polygonal cells was superimposed. The simulation was performed 

using very small time periods of 1∙10-6 s. For the first milliseconds the simulation revealed 

compressional waves which were reflected at edges and constrictions of the interior of the test 

system, resulting in pressure fluctuations until the inlet capillary was reached. The pressure 

fluctuations were eliminated in the narrow inlet capillary and therefore did not influence the 

air flow behavior in the vial. The pressure in the reservoir decreased from 3 bar overpressure 

to 2.8 bar within 17 ms, whereas the pressure in the vial increased to 0.7 bar (Figure 6).  
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Figure 6: Simulated pressure variations of the air in the test system within 17 ms of actuation. 

This huge pressure drop across the inlet capillary is a consequence of its small cross section 

and length. According to the equation of Hagen-Poiseuille when assuming laminar flow, the 

ratio of the length and the radius of the tube to the power of four determine the pressure drop 

across the tube. Hence, the radius of the tube plays a particularly important role: at a constant 

flow rate a reduction of the radius to the half, increases the pressure drop across the tube by 

16-fold, which is an approximation because the equation of Hagen-Poiseuille is only valid for 

Newtonian and non-compressible fluids. Nevertheless, the DoE of the variable parameters of 

the test system revealed that the diameter of the capillaries, which were varied between 0.25 

and 0.75 mm, did not significantly influence the FPF. On closer inspection, a capillary 

diameter of 0.75 mm achieved higher FPF than a capillary diameter of 0.25 mm, however the 

differences in FPF were considerably small compared to the pressure drop which should raise 

81-fold. Comprising similar dimensions, the outlet capillary exhibited a comparable pressure 

drop, which caused the increasing pressure inside the vial. The pressure in the vial will rise 

until both capillaries demonstrate the same massflow. After 17 ms, the massflow into the vial 

was 1.1∙10-4 kg/s, whereas the massflow through the outlet capillary was only 4.0∙10-5 kg/s. 

Consequently, the vial still filled after 17 ms, which implies a still rising pressure in the vial. 

The air flow achieved a velocity of approximately 350 m/s when leaving the inlet capillary 

and entering the vial during the first 2 ms (Figure 7). This air flow velocity was subsequently 

reduced to about 225 m/s after 17 ms. The velocity in the outlet capillary increased to 185 m/s 

within the 17 ms. The velocity of inlet and outlet flow will presumably average at 205 ms. 

Figure 8 shows the air movement inside the empty vial. The inlet air jet expands due to 

suction of surrounding air and finally impacts on the level of the cake surface at about 90 m/s. 
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Figure 7: Simulated velocity variations of the air flow through the test system within 17 ms of 

actuation. 

 

Figure 8: The pathlines of the air flow through the vial and its corresponding velocity at 

t=17 ms. 

Turbulences of minor velocity occurred particularly at the bottom half of the vial, including 

some escapes to the top. At entering the outlet capillary, the air flow accelerated to 150 to 

180 m/s. When considering aerosols, the velocity at which the aerosol leaves the device is of 

special interest because aerosol velocity influences lung deposition [8]. Inhalation devices 
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which emit aerosolized particles at a high velocity generally lead to a higher deposition in the 

oropharynx [9]. The air flow demonstrated a simulated velocity of 4.8 m/s at the bottom of the 

mouthpiece which was subsequently reduced to 0.7 m/s when leaving the mouthpiece. This 

velocity is comparable to the aerosol velocity of Respimat® Soft MistTM Inhaler (0.8 m/s). The 

low velocity results in a higher lung and lower oropharyngeal deposition compared to 

pressurized metered dose inhalers (pMDI) [10] which have greater aerosol velocities (2 to 

8 m/s) [11]. Nevertheless, the actual velocity of the powder aerosol needs to be tested (see 

3.5). 

3.5 THE AEROSOLIZATION BEHAVIOR OF THE LYOPHILISATE IN THE VIAL 

In order to gain insights into the aerosolization behavior of the lyophilisate and understand the 

way of destruction and disintegration of the formulation by the air impact, the aerosolization 

of the lyophilisate was recorded with a high speed camera. As can be seen from Figure 9, the 

disintegration started on the left side of the vial, right below the air inlet capillary. The air 

impact on the lyophilisate caused an impact and eruption which disintegrated the lyophilisate 

into very small fragments. These fragments were lifted into the air and swirled around the 

endings of the capillaries. This swirling motion continued and after about 200 ms most of the 

fragments had left the vial. Thus, the lyophilisate was not compressed by the incoming 

airstream despite its high velocity of about 90 m/s, but broken apart and, with the reflection of 

the airstream in the bottom segment of the vial, the cake and cake fragments were lifted up in 

a circular and swirling fashion. The swirling particles were mainly focused on the upper half 

of the vial where air turbulences were less pronounced and at lower velocity compared to the 

bottom half (Figure 8). Whether this swirling motion induced further particle size reduction 

could not be clarified. The variable parameters tested with DoE (see 3.1) were also analyzed 

with the high speed camera in order to confirm and understand their influence. The position of 

the capillaries had no influence on the swirling behavior of the cake fragments: the center of 

the vortex was always located in the upper two thirds of the vial. Another parameter, the 

pressure for dispersion of the lyophilisates, had a significant effect on the size of the produced 

fragments. Reducing the pressure to 1 bar (Figure 9c), for example, led to apparently larger 

fragments as compared to the regular pressure of 3 bar (Figure 9a). Lyophilized cakes 

prepared of different excipients reacted differently to the air impact at the beginning of the 

aerosolization. For the valine lyophilisate, for example, shortly after the initial impact of the 

compressed air, the whole cake was lifted up and subsequently disintegrated into small 

fragments.  For the phenylalanine lyophilisate, in contrast, the cake broke into large  pieces  
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a 

 
b 

 
c 

 

Figure 9: High speed recordings of the aerosolization behavior of lyophilized cakes prepared 

of different excipients like valine (a) and trehalose (b) as well as the disintegration of the 

valine lyophilisate using a reduced compressed air pressure of 1 bar (c). 

which were then lifted up and disintegrated into smaller fragments. The lyophilisates 

produced of sugars such as lactose and trehalose mostly showed cracks on the surface which 

acted as predetermined breaking points, separating the cake into large pieces before further 

disintegration (Figure 9b). Apart from insights into the aerosolization process, high speed 

recordings also allowed to determine the aerosol velocity. Within a time period of 9 ms the 

aerosol covered a distance of 27 mm, resulting in an approximate velocity of 3 m/s at the end 

of the mouthpiece. This is comparable to pMDI, which have an aerosol velocity of 2.0-8.4 m/s 

[11]. The actual aerosol velocity was clearly greater compared to the simulated air flow 

velocity when leaving the mouthpiece (0.7 m/s). The particles might be accelerated to a high 
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velocity in the flow during the passage of the narrow outlet capillary, almost like darts in a 

blow-pipe and experience less deceleration compared to the air flow due to their mass inertia.  

3.6 INFLUENCE OF THE PARTICLE SIZE ON THE OUTPUT 

To investigate the influence of particle size on the ED, independent of the cake disintegration 

process, lactose powder (Lactohale®) of different particle sizes between 3 and 130 µm (D (v, 

0.5)) were filled into vials (24 mg) and aerosolized using the output test system. The particle 

size distribution (PSD) of these powders was analyzed by laser diffractometry before and after 

aerosolization. Only the powder with the largest particle size (D (v, 0.5) of approx. 130 µm), 

showed a shift to smaller particle sizes after aerosolization (Table 2). Possibly the active 

aerosolization by compressed air caused a comminution of some accelerated larger particles 

like in a jet mill. A potential explanation could be also that very large particles were not able 

to pass the narrow capillary with a diameter of 0.75 mm and remained in the vial. The two 

coarse lactose qualities LH 200 and LH 201 experienced a reduced fraction of fines, possibly 

as a result of the fines remaining in the vial and mouthpiece because of adhesion to surfaces. 

Interparticulate interactions (cohesion and adhesion) are dominated by van der Waals forces 

for small particle (<<100 µm), whereas gravitational forces are expected to dominate for 

larger particles (>>100 µm) [12]. Adhesion to device surfaces is therefore reduced for larger 

particles which can influence the ED (see below). The fine lactose quality LH 300 

demonstrated no difference of the PSD of the powder before and after aerosolization. 

Table 2: PSD of the different sized lactose powders before and after aerosolization in the test 

system. 

 
D(v, 0.1) (µm) D(v, 0.5) (µm) D(v, 0.9) (µm) 

LH 100, start 66.1 129.4 209.2 
              aerosolized 50.1 108.6 167.7 
LH 200, start 8.8 73.8 143.4 
              aerosolized 10.2 69.9 139.0 
LH 201, start 2.9 22.6 56.4 
              aerosolized 3.5 23.5 54.8 
LH 300, start 0.7 2.5 6.3 
              aerosolized 0.7 2.6 6.4 
 

Figure 10 shows a decrease in the ED for smaller particle sizes. The biggest particles with a 

median size of 129 µm demonstrated an ED of 31%, which decreased to 9% for particles with 

a median size of 23 µm. Fine particles having a median particle size of 3 µm exhibited an 
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increased ED of 18%. On the one hand, large particles should display a larger target surfaces 

to the discharging air flow compared to smaller particles. On the other hand, smaller particles 

demonstrate stronger adhesion to surfaces resulting in a greater loss of free particles in the 

aerosol and became apparent as particle films on the inner surfaces of the vial and the 

mouthpiece by visual inspection after aerosolization. This latter effect is stressed by the 

difference between ED and DD, which increased with decreasing particle size, indicating a 

greater particle loss by adhesion on the mouthpiece. It has been also considered that fine 

particles (D (v, 0.5) of 3 µm), exhibit superior flight properties partly compensating for the 

above described disadvantages. They can better follow changes of air flow direction, which is 

also used for particle size classification in cascade impactor analysis. An increased ED for 

lactose powders at increased particle size was already demonstrated by Bell et al. [13] for a 

capsule based DPI. The loss of powder from the capsule increased at increasing particle size 

between 4 and 100 µm but decreased again for powders of larger particle size until 400 µm 

due to intermittent blocking of the capsule holes. For the finer particles an extensive coating 

of the internal capsule walls was reported, leading to the conclusion that interparticulate and 

adhesive forces of finer particles hinder their discharge from the capsule. An increased 

emission of polyethylene glycol 8000 particles with increased particle size as a result of the 

diminished cohesive forces of the particles was also shown by French et al. [12].  

 
Figure 10: ED and DD of lactose powders aerosolized with the test system. 

For the interpretation of this finding, one needs to consider that the delivery of particles to the 

alveolar region of the lung requires an aerodynamic size between 1 and 5 µm [14]. The 

aerodynamic diameter (dA) is defined by the relationship  
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0
VA χρ

ρdd ≅  (1) 

and is dependent on the size (dV), shape (χ) and mass density of the particle (ρ) for 

ρ0 = 1g/cm3. It has been demonstrated that large porous particles display less cohesive and 

adhesive forces compared to small and nonporous particles and show more efficient delivery 

[15]. In order to take advantage of the improved emission, large porous particles with a small 

density could be beneficial. 

3.7 EVALUATION OF LYOPHILISATE DISPERSION IN THE PASSIVE 

HANDIHALER® 

Beside the advantage of inspiratory effort-independent delivery, active devices show some 

disadvantages such as the need for an energy source and the required coordination of 

activation and simultaneous inspiration by the patient. Alternatively, a high number of passive 

DPI devices are available on the market, which are easy to use and environmentally 

sustainable. In order to compare the described active system to a passive system, lyophilisate 

dispersion in a passive capsule-based device was studied. Excipient solutions of 

phenylalanine, valine and lactose in a concentration of 4 mg/ml were freeze-dried in 

polyethylene capsules for disintegration in the passive HandiHaler® and compared to 

lyophilisates in 2R vials aerosolized by the active test system. It is important to note that the 

base part of the capsule can only hold less than 200 µl for freeze-drying. Compared to a 2R 

vial, the metered dose is therefore limited. For aerosolization of a formulation in the 

HandiHaler®, a capsule is inserted into the device and pierced. The capsule vibrates in the 

capsule chamber as a result of the inspiratory flow. Particles which are arranged near one of 

the holes are sucked out of the capsule due to a flow dependent pressure difference (Venturi 

effect) and are subsequently carried along by the inspiratory air flow [16]. The lyophilisate 

needs to disintegrate into fine particles inside the capsule in order to pass through the small 

holes. This can either occur by agitation due to capsule vibration or by an air flow through the 

capsule. Figure 11 shows the high DD of around 80% for valine and lactose lyophilisates 

aerosolized by the passive HandiHaler® but only rather small FPF related to DD of 21.7% and 

8.6%, respectively. For phenylalanine lyophilisates, in contrast, only a fraction of 10% left the 

capsule (data not shown). This demonstrates a successful disintegration of valine and lactose 

lyophilisates into particles which can leave the capsule. However, the disintegration was not 

very effective in producing fine particles with an aerodynamic diameter of less than 5 µm. 
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Phenylalanine lyophilisates, in contrast, were not adequately disintegrated into particles by 

the passive capsule-based device. Considering the FPD, the passive device demonstrated 

drastically reduced values in comparison to the active test system. The FPD of valine 

lyophilisates was reduced to about one tenth from 0.99 mg to 0.11 mg and for lactose 

lyophilisates from 0.42 mg to 0.04 mg. This was a result of a smaller metered dose in 

combination with a strongly decreased FPF. 

In order to evaluate the mechanical stability of the lyophilisates inside the vials, texture 

analyses were performed. The cylindrical probe acts on the lyophilisate and the force needed 

for the immersion is recorded. The immersion-force curve of phenylalanine lyophilisates 

demonstrated a plateau indicating a force necessary to fracture the lyophilisate of about 

0.014 N. Valine and lactose lyophilisates both exhibited softer cake structures with a force 

necessary to fracture the lyophilisate of less than 0.001 N, which was the lowest level of 

detection. Consequently, only very soft lyophilisates could be disintegrated in the passive 

HandiHaler®. 

 
Figure 11: DD versus its related FPF as well as the FPF related to MD of valine and lactose 

lyophilisates aerosolized by the active test system in comparison to the passive HandiHaler®. 

4 SUMMARY AND CONCLUSION 

The output test system, which was designed with several variable parameters, enabled the 

disintegration of lyophilisates into fine particles in the vial and the delivery of these fine 

particles. With the exception of the factor pressure, the screening design DoE identified the 
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variable parameters of the output test system as not influencing FPF within the specified 

limits. For further experiments, the output test system was fixed to a standard parameter 

setting including a pressure of 3 bar, a compressed air reservoir of 20 ml, and a diameter of 

the air inlet and air outlet capillary of 0.75 mm. An observed particle accumulation in the 

cavity of the lyophilization stopper or neck of the 2R vial could neither be reduced via 

replacing the lyo stopper by a flat serum stopper nor by substituting the necked vial with a 

straight one. It was also not possible to increase the FPF by using a mouthpiece with sheath 

air. Although the deposition of fine particles in the mouthpiece was reduced, the same 

problem occurred at entering the SIP, resulting in deposition of finer particles due to 

turbulences of the expanding air stream. The test system was therefore by default used with a 

2R vial equipped with lyophilization stoppers and with the basic mouthpiece. 

A simulation of the air flow through the device demonstrated great pressure drops across the 

narrow inlet and outlet capillaries, resulting in a pressure increase inside the vial to 0.7 bar 

within the first 17 ms. At this time point, the pressure drop of the inlet capillary amounted to 

2.1 bar. This can possibly explain the positive influence of a high compressed air pressure for 

a good disintegration and particle output. If considering a similar setting for a passive device, 

which was also described in the patent [6], such a high device resistance would not be 

acceptable. Taking only one capillary into account and assuming laminar flow (equation of 

Hagen-Poiseuille), an inspiration at 1.7 l/min over 2.3 min would be required to achieve the 

recommended pressure drop across the device of 4 kPa in combination with a suction volume 

of 4 l [17]. For a passive setup, the capillary must therefore have a much greater diameter and 

shorter length. The narrow capillaries contribute also to an acceleration of the air flow up to 

sonic velocity which was subsequently reduced at entering the vial. It finally impacted on the 

level of the cake surface at about 90 m/s. However, the cake was not compressed by the 

incoming air stream but was lifted up and broke apart into fragments, which swirled around 

the endings of the capillaries. Differences in the aerosolization behavior of different excipient 

formulations were identified. The produced particle aerosol had a velocity of 3 m/s at the exit 

of the mouthpiece, which is similar to pMDIs. Compared to capsule-based passive DPIs, the 

emission of larger particles is enhanced due to a larger cross-section and less wall adhesion. 

Only very fine particles (D (v, 0.5) of 3 µm) demonstrated a slightly increased ED as a result 

of superior flight properties.  

The evaluation of the lyophilisate dispersion in the passive capsule based HandiHaler® 

demonstrated a possible disintegration for very soft lyophilisates like valine or lactose at a 
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concentration of 4 mg/ml. Nevertheless, the comminution process in the capsule was less 

effective compared to the air impact at high velocity of the active test system, resulting in a 

small FPF. In combination with the small metered dose, only small FPD were achieved. 
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Chapter 3 

Evaluation of the Performance of the Test System 

Abstract 
During the last years, new technological ideas for dry powder inhalers were developed. A new 

concept is the creation of individual particles from a coherent bulk at the time of inhalation by 

disintegration of lyophilisates. The evaluation and characterization of the possible dispersion 

of lyophilisates by an air impact and the achievement of high fine particle fractions were the 

objectives of this study. In order to understand the aerosolization of lyophilisates, different 

formulations of amino acids and sugars were investigated. Besides the characterization of the 

different formulations by microscopy and x-ray diffractometry, the main focus was on the 

particle size distributions (PSD) of the dispersed particles. Thereby the geometric PSD was 

analyzed by laser diffraction, whereas the aerodynamic PSD was characterized by time of 

flight and Andersen cascade impactor analysis. The destruction of the porous structure of the 

lyophilisates resulted in large geometric particle sizes but aerodynamic particle sizes in the 

inhalable range with relatively large fine particle fractions (FPF) between 20 and 50% 

calculated as a percentage of the metered dose. Despite potential differences in freezing 

behavior and thus cake structure within lyophilization batches, reproducible fine particle 

fractions were attained. Overall, it could be concluded that the controlled disintegration of 

lyophilisates into inhalable particles by an air impact is possible and substantial FPF are 

achieved. Therefore, the method represents a promising new dry powder inhalation 

technology. 
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1 INTRODUCTION 

Beside the local treatment of pulmonary diseases, a systemic delivery of therapeutic proteins 

by inhalation is of high commercial interest [1]. For their formulation, the proteins’ limited 

physical and chemical stability pose additional challenges. Conventionally, the powders 

formulated for the use in dry powder inhalers (DPI) are produced by milling to micronize the 

drug or by spray drying [2, 3]. These powder production and formulation techniques have 

several disadvantages. Especially during milling the drug is exposed to high temperatures 

which can be a problem for thermolabile drugs. Micronization is also notorious for inducing 

electrostatic charges and generating amorphous domains on the particle surface [4]. Freeze-

drying is a common method for stabilizing proteins and peptides. The result after a freeze-

drying process is a cake in the size of the filling volume. For generation of an aerosol, the 

freeze-dried cake needs to be micronized for example by jet-milling to prepare fine particles. 

Additionally, spray drying or spray freeze drying are potential formulation methods to 

improve the stability and long term storage stability of these biological drugs. However, DPIs 

prepared by spray drying or freeze-drying-jet-milling method have been reported to cause 

partial deactivation of the peptides and proteins such as interferons [2]. 

A new DPI system initially introduced by Yamashita et al. [5], comprises a freeze-dried 

preparation which is aerosolized into inhalable particles by an air jet at the time of inhalation. 

The authors claim rather high fine particle fractions (FPF) of 10% or more, in some examples 

up to 81% related to delivered dose. Summarizing the advantages of this new system, it has a 

formulation process particularly suitable for thermolabile drugs like proteins and peptides and 

the manufacturing process is relatively simple, with extremely high accuracy at dose metering 

and high preparation yield as the formulation is metered as a liquid. On the other hand, the 

freeze-drying process could be a disadvantage concerning reproducibility and batch 

uniformity [6, 7]. Furthermore, freeze-drying is an energy intensive and time consuming 

manufacturing process [8]. 

The aim of this study was to verify the new concept of Yamashita et al. [5] of creating 

individual particles in an inhalable size range with high fine particle fraction from a coherent 

bulk by an air jet. To further understand the aerosolization behavior of the system, besides 

lyophilisate characteristics, the geometric and aerodynamic particle size distribution (PSD) of 

different placebo formulations were examined. In order to restrict influencing factors of the 

formulation, only placebo formulations containing a single excipient were used in this study. 
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2 MATERIALS AND METHODS 

2.1 MATERIALS 

Excipients used were: L-isoleucine (Ile) (Fluka Chemie GmbH, Buchs, Switzerland), L-

phenylalanine (Phe) (Merck KGaA, Darmstadt, Germany), L-valine (Val) (Fagron GmbH&Co 

KG, Barsbüttel, Germany), lactose-monohydrate (Lac) (Fagron GmbH&Co. KG, Barsbüttel, 

Germany), D-mannitol (Man) (Riedel-de Haën, Seelze, Germany), trehalose (Tre) 

(Hayashibara Co Ltd, Okayama, Japan); dye for quantification was rhodamine B (Sigma-

Aldrich, Chemie GmbH, Steinheim, Germany); filters used in Andersen cascade impactor 

analysis were type A/E glass fiber filters 76 mm (Pall Corporation, Ann Arbor, MI, USA) 

2.2 FORMULATION PREPARATION 

0.5 ml solutions containing 4 mg/ml of the excipient and 0.2 mg/ml rhodamine B were filled 

into 2R glass vials (Fiolax® clear, Schott AG, Müllheim, Germany) and vials were equipped 

with rubber stoppers (C1503, Stelmi, Villepinte, France). Freeze-drying was carried out in a 

laboratory scale freeze-drier (Lyostar II, FTS Systems, Stone Ridge, NY, USA). The samples 

were frozen at -1°C/min to -45°C. Primary drying was performed at a shelf temperature of 

-20°C and a pressure of 34 mtorr for 14 h. In the secondary drying step shelf temperature was 

increased to 30°C and the pressure was decreased to 8 mtorr for 6 h. 

2.3 MICROSCOPY 

The morphology of the lyo cakes was analyzed with a digital reflected light microscope 

(Keyence VHX-500F, Keyence Corporation, Osaka, Japan). The particle morphology of the 

dispersed particles was analyzed with a Jeol Scanning Electron Microscope (JSM-6500F, Jeol, 

Ebersberg, Germany). The samples were fixed with self-adhesive tape on aluminium stubs 

and were sputtered with carbon. 

2.4 X-RAY DIFFRACTOMETRY (XRD) 

The lyophilisates were investigated with a Seifert X-ray diffractometer XRD 3000 TT 

(Seifert, Ahrensburg, Germany). The samples were measured from 5 – 40° at a step rate of 

2Ө=0.05° with 2 sec measuring time per step. 
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2.5 RESIDUAL MOISTURE CONTENT ANALYSIS 

The residual moisture content of lyophilisates was determined by Karl-Fischer titration 

(Metrohm 756 KF Coulometer, Herisau, Switzerland) using Hydranal Coulomat AG (Riedel-

de Haën, Seelze, Germany) as titration reagent. The lyophilisates were dissolved in 1.0 ml of 

anhydrous methanol (Hydranal-Methanol dry, Riedel-deHaën, Seelze, Germany), additionally 

dried with molecular sieve 3A (VWR International GmbH, Darmstadt, Germany), right in the 

production vials. As blanks, empty freeze-dried vials, similarly filled with 1.0 ml of dry 

methanol, were used. The injection volume was 500 µl each. The measurements were 

performed in triplicate. 

2.6 DIFFERENTIAL SCANNING CALORIMETRY (DSC) 

The DSC experiments were performed with 4 – 8 mg of freeze-dried sample sealed in 

aluminium pans (ME-26763) on a Mettler Toledo DSC821e (Mettler Toledo, Giessen, 

Germany). Phenylalanine samples were heated from 25°C to 295°C at 10°C/min. 

2.7 PARTICLE SIZE DISTRIBUTION (PSD) ANALYSIS 

2.7.1 Laser diffraction (LD) measurements 

The geometric PSD was investigated with a Malvern Mastersizer X (Malvern Instruments 

Ltd, Worcestershire, England). A 300 mm lens with a measurement range of 0.5 to 600 µm 

was used. The size distribution was calculated using the Fraunhofer theory. The aerosol was 

sprayed into the laser beam using the output test system at a distance of approximately 5 cm 

and extracted by suction. 

2.7.2 Time of flight (TOF) measurements 

The aerodynamic PSD was determined with the API Aerosizer® LD (TSI Inc., Amherst, MA, 

USA) in combination with the Aero-Breather® for sample presentation. A 700 µm nozzle was 

used with a display range of 0.1 to 200 µm. The Aero-Breather® was operated at a breath rate 

of 39 l/min, a breath volume of 1 l with an acceleration of 19 l/s2. For measurement, the 

aerosol was sprayed into the Aero-Breather® using the output test system. 
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2.7.3 Andersen cascade impactor (ACI) analysis 

The aerodynamic PSD of the formulations was also evaluated using an Andersen cascade 

impactor (ACI) (8-Stage Non-Viable Sampler Series 20-800, Thermo Andersen, Smyrna, GA, 

USA). The ACI was operated at a flow rate of 39 l/min (corresponds to a pressure drop of 

4 kPa with the HandiHaler®) with cut off diameters outlined in Table 1. The baffle plates were 

coated with a solution of 83% glycerin, 14% ethanol and 3% Brij 35. In 6.15 s a total air 

volume of 4 l passed through the impactor. During this time period, the aerosol was sprayed 

into the induction port. The amount of powder deposited on each stage of the impactor was 

determined by washing with water and rhodamine B quantification at 554 nm in an Agilent 

8453 UV-Vis spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). The FPF (= 

fraction of particles with an aerodynamic diameter below 4.94 µm) and the DD (dose that 

could be delivered to the ACI) were both calculated as percentage of the metered dose 

(nominal dose). A plot of the cumulative amount of powder deposited on each stage against 

the cut-off-diameter allowed calculation of the mass median aerodynamic diameter (MMAD) 

[9]. The total particle mass impacting below stage 1 equals to the FPF. By removing stages 2 

to 7, the FPF is collected on the filter of the ACI. This configuration is called short stack ACI 

in this study. The filter solution was ultra centrifuged (OptimaTM TLX Ultracentrifuge, 

Beckman Coulter, Brea, CA, USA) at 186000 g for 45 min before UV-Vis spectroscopic 

analysis. The comparability of the FPF measured with the normal eight-stage ACI and the 

short stack version was tested with a flow rate of 39 l/min using the HandiHaler® in an 

unpublished study showing no significant difference of the measured FPF.  

All PSD measurements were performed in triplicate. 

Table 1: Used cut off diameters for the ACI at flow rate of 39 l/min 

Stage Cut off diameter at 39 l/min 
0 7.65 
1 4.94 
2 4.00 
3 2.81 
4 1.79 
5 0.94 
6 0.60 
7 0.34 
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2.8 TAP DENSITY MEASUREMENT 

The tap density measurements were performed using a 10 ml-graduated cylinder fixed in a 

jolting volumeter (STAV 2003, JEL Engelsmann AG, Ludwigshafen, Germany) and tapped 

1250 times. Particles were generated by evacuation of the lyophilisate in the vial and 

stoppering of the vials (inside the freeze-dryer) at a pressure of <0.1 mtorr. Piercing a needle 

through the stopper of the vials caused quick ventilation and thereby destruction of the 

lyophilisate into small particles. The similarity of these particles and the particles generated 

by aerosolization with the output test system was verified by scanning electron microscopy 

(SEM). The measurements were performed in triplicate. 

3 RESULTS AND DISCUSSION 

3.1 PHYSICOCHEMICAL CHARACTERIZATION OF EXCIPIENT 

FORMULATIONS 

In order to understand the impact of the lyophilisate characteristics on the aerosolization 

performance, the morphology of different placebo formulations was inspected with the 

reflected light microscope. The placebo formulations were single excipient formulations 

containing an amino acid (isoleucine, phenylalanine, valine) or a sugar (lactose, mannitol - 

knowing that mannitol is a sugar alcohol it is termed sugar in this study for the sake of 

simplicity - , trehalose) and were freeze-dried using a standard freeze-drying process with a 

cooling rate of -1°C/min. The lyophilisates had a porous comb like structure, with a skinny 

coating, covering the top of the cake. This is exemplarily shown for phenylalanine in 

Figure 1. An explanation for the feasible disintegration of the lyophilisate into inhalable 

particles is this highly porous structure with its filmy walls. The preparations have a very low 

mass density and feature big air filled cavities which enable easy penetration of the air into 

the whole cake and impact on the thin fragile wall structures. 

Surface energy and adhesion/cohesion was considered less relevant for this system because 

the formulation is stored in a non-powdered form and the inhalable particles are generated at 

the time of inhalation. 

For a better understanding of differences in the aerosolization behavior and fine particle 

output of different excipient formulations, the physical state of the formulations has to be 
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analyzed. The investigation of the lyophilisates by x-ray diffractometry demonstrated a 

crystalline structure for the isoleucine, valine and mannitol samples. The x-ray diffraction 

pattern of the freeze-dried mannitol sample showed the peak pattern of the δ-polymorph [10]. 

In contrast, the freeze-dried sugars lactose and trehalose were amorphous. For the freeze-dried 

phenylalanine sample the peaks reflected the monohydrate comparing the peak pattern with 

literature diffraction patterns [11]. The residual moisture analysis by Karl-Fischer titration 

indicated a content of phenylalanine monohydrate of approx. 50%. The existence of the 

hydrate could be confirmed by differential scanning calorimetry (DSC). Besides the melting 

endotherm of phenylalanine at 270°C, the DSC trace showed an endothermal event at 136°C, 

followed by an exothermal event at 146°C that was related to the crystallization of the 

anhydrous form of phenylalanine (data not shown). In a secondary reheating the thermal 

events at 136°C and 146°C did not occur. Phenylalanine exhibits pseudopolymorphism: it can 

exist as a monohydrate and in the anhydrous form. The transition point in water is at 37°C. 

The needle-shaped monohydrate is stable below, and the flake-shaped anhydrate above the 

transition point [11]. Thus it is not surprising that the phenylalanine solution crystallizes as 

the monohydrate during freeze-drying. Because the XRD pattern does not show any other 

peaks except those related to the monohydrate, and the moisture analysis indicated a 

phenylalanine monohydrate content of only 50%, the remaining 50% appeared to be present 

in the amorphous state. 

a 

 

b 

 

Figure 1: Morphology of the freeze-dried phenylalanine formulation: top of the cake (a) and 

bottom of the cake (b). 

The different physical state of the formulations, being crystalline or amorphous, might have 

an effect on the stability and rigidity of the wall structures of the porous lyophilisates. This 

can furthermore influence the disintegration of the lyophilisates and the fine particle output 

which was analyzed in the following experiments. The physical state of the freeze-dried 
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excipients can also be important for stability issues. On the one hand, amorphous 

formulations are less stable against humidity as water has a plasticizing effect and amorphous 

regions can also change the physical state and crystallize during storage [12]. Considering 

incorporation of an active pharmaceutical ingredient, on the other hand, amorphous excipients 

might be favored e.g. for stabilizing proteins [13]. The following analysis of the PSD and the 

FPF of the different excipient formulations should give further information about the 

applicability of crystalline and amorphous formulations. 

3.2 PSD OF DIFFERENT EXCIPIENT FORMULATIONS 

The output test system was used to analyze the particle sizes which can be achieved by 

disintegration of the lyophilisates using the developed output system. In order to determine 

size and shape of the dispersed particles released from the output system, the particles were 

investigated with scanning electron microscopy (SEM). Specimens were prepared by 

collecting the aerosol leaving the output test system directly on a specimen stub. Particles 

observed were clearly separated from each other (Figure 2) having diameters between 5 µm 

and approximately 100 µm. Their shape appeared to reflect agglomerates of small fragments. 

During the disintegration process, the ordered pore structure of the lyophilisate was 

completely destroyed. Small fragments of the former pore walls formed these agglomerative 

particles, leading to a different morphology compared to the lyophilisates. The particles, 

however, still feature a highly porous structure and a low mass density.  

Besides the agglomerative shape of all samples, particles of the various excipient 

formulations differed in shape. Phenylalanine particles had a netting structure formed by 

needles, whereas valine particles exhibited a platelet-like structure. A needle-shaped 

morphology has already been reported for phenylalanine monohydrate [11]. 

Using laser diffraction (LD) the geometric PSD was examined. The results of the PSD are 

outlined in Table 2. The distributions of the different excipient formulations were relatively 

broad. The particle sizes ranged from smaller than 1 µm to 100 µm and even larger as can be 

seen from Figure 3a. These particles are relatively large and rather unusual for pulmonary 

delivery. For non-spherical particles, such as plates and needles orientated randomly, the 

geometric volume diameter is typically overestimated because of the large projection diameter 

for these shapes [14]. This is certainly also the case for the non-spherical particles from this 

study. Furthermore, the PSD shown in Figure 3a is a volume distribution for which the 

calculation is based on the assumption that the particles measured are spherical. Nevertheless, 
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the microscopic pictures (Figure 2) of the dispersed particles confirmed that range of 

relatively large particles. 

a 

 

b 

 

c 

 

d 

 

Figure 2: Scanning electron microscope pictures of dispersed particles of phenylalanine (a, c) 

and valine (b, d). 

For evaluation of aerosols, the aerodynamic PSD is determining. Therefore the aerodynamic 

PSD was analyzed by time of flight (TOF) measurement with the Aerosizer®. The Aero-

Breather®, which imitates the breath by moving a plunger, was used for sample presentation. 

The results of the PSD are outlined in Table 2 as well. The aerodynamic PSD was much 

narrower than the geometric PSD and shifted to smaller particle sizes (Figure 3b). It is also 

noticeable that the aerodynamic PSD of the amino acid formulations had a stronger relative 

variation compared to those of the geometric PSD. The FPF of the Aerosizer®, which 

corresponds to the analyzed amount of particles having an aerodynamic particle size <5 µm, 

differed between 51 and 100%. These results indicate the potential for very effective 

pulmonary delivery.  
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Table 2: The geometric and aerodynamic volume PSD (± S.D. n=3) of the different excipient 

formulations aerosolized with the standard output test system. The geometric PSD was 

measured by laser diffraction analysis, the aerodynamic PSD by time of flight analysis. 

 D(v, 0.1) (µm) D(v, 0.5) (µm) D(v, 0.9) (µm) ≤ 5 µm (%) 
Geometric PSD (by LD) 
Isoleucine 5.22 ± 0.11 20.49 ± 1.28 72.53 ± 8.15 10.06 ± 0.27 
Phenylalanine 2.86 ± 0.13 15.81 ± 0.89 61.09 ± 5.61 20.57 ± 0.67 
Valine 3.78 ± 0.28 14.44 ± 1.99 53.84 ± 8.91 16.35 ± 1.68 
Lactose 3.23 ± 0.22 11.12 ± 0.64 41.16 ± 4.02 21.90 ± 0.76 
Mannitol 3.10 ± 0.04 12.40 ± 0.42 57.51 ± 8.55 20.98 ± 0.23 
Trehalose 3.04 ± 0.32 12.29 ± 1.43 61.68 ± 12.50 23.82 ± 2.85 
          
  D(v, 0.1) (µm) D(v, 0.5) (µm) D(v, 0.9) (µm) FPF rel. to DD (%) 
Aerodynamic PSD (by TOF) 
Isoleucine 2.56 ± 0.07 3.64 ± 0.18 5.61 ± 0.68 83.64 ± 7.10 
Phenylalanine 0.89 ± 0.03 1.58 ± 0.08 2.39 ± 0.19 99.92 ± 0.13 
Valine 1.31 ± 0.05 2.73 ± 0.53 4.51 ± 0.22 96.96 ± 2.38 
Lactose 20.8 ± 0.09 4.49 ± 0.05 7.82 ± 0.50 57.22 ± 0.67 
Mannitol 2.09 ± 0.10 4.36 ± 0.27 7.49 ± 0.64 60.02 ± 4.20 
Trehalose 2.40 ± 0.16 4.96 ± 0.37 7.63 ± 0.79 51.17 ± 6.60 

 

Equation 1 is the simplified expression for Stokes aerodynamic diameter, widely used in 

aerosol literature: 

0
VA χρ

ρdd ≅  (1) 

Where dA is the aerodynamic diameter, dV is the volume-equivalent diameter, ρ0 is the unit 

density of calibration spheres, ρ is the particle density and χ is the dynamic shape factor. A 

smaller aerodynamic particle size compared to the geometric particle size can thus be 

explained by a particle density smaller than 1 g/cm3 or a large dynamic shape factor. Non-

spherical particles have rather large shape factors. For a density of 1 g/cm3, a sphere has a 

dynamic shape factor of 1, a fiber with a diameter of 3.56 µm and a length of 100 µm for 

example has a dynamic shape factor of 13.5 [15]. As the geometric and aerodynamic size of 

our dispersed particles differed to a great extent, the shape factor of our particles must be 

large and/or the particles must have a very low density. As the SEM pictures show, the 

particles consisted of fragments which are loosely agglomerated into particles, thus particle 

density should be very low. The tap density of the particles was measured as an estimate for 
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the particle density. For the valine particles e.g., a tap density of 0.009 g/cm3 was measured. 

Using the obtained values for geometric and aerodynamic size (D(v,0.5)) as well as tap 

density in equation 1 renders a very small dynamic shape factor of 0.25. This indicates a high 

air resistance and deceleration resulting in good lung deposition. Vanbever et al [16] already 

reported on large porous particles for inhalation with tap densities between 0.04 and 

0.6 g/cm3.  

a 

 
b 

 

Figure 3: Cumulative geometric volume PSD of different excipient formulations investigated 

with LD (a) and TOF (b) measurements. 

The aerodynamic PSD was also investigated using the ACI. Cascade impactor analysis is 

considered the most important and precise in vitro testing of aerosols. It is recommended by 

both the United States and the European pharmacopoeia. The detected FPF and DD of the 

different formulations are shown in Figure 4. Depending on the excipient, FPF between 20 

and 50% calculated as a percentage of the metered dose (MD) could be determined. These 
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Figure 4: FPF related to DD as well as related to metered dose (MD) and DD of different 

excipient formulations investigated by short stack ACI analysis. 

FPF are rather large compared to FPF of DPIs on the market which range from 9 to 36% [17, 

18]. FPF related to DD ranged from 52 to 79%. These results are comparable to examples 

given by Yamashita et al. [19]. A novel DPI device described by Young et al. [20, 21], which 

also uses a pressurized gas (8 – 14 bar) for aerosolization of high powder loads of 120 mg, 

achieved lower mean FPF of 36% related to DD. The DD of the excipient formulations varied 

between 40 and 65%. Especially for the sugar formulation, this entails a major loss in the 

vessel and the mouthpiece (Figure 5). This has to be optimized in further studies. A MMAD 

of 3.2 µm was measured for the isoleucine and lactose formulation, and a MMAD of 3.1 µm 

for the mannitol formulation. These values are well below 5 µm, which is required for 

pulmonary delivery [22]. With a combination of SEM and ACI analysis it was possible to 

 
Figure 5: Fractions related to metered dose deposited on the different components of the short 

stack ACI. 
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measure the aerodynamic and geometric particle size of the same particle. Self-adhesive tapes 

for SEM were placed on each baffle plate of an eight stage ACI. Figure 6 shows the relation 

of the aerodynamic and the geometric size of dispersed isoleucine particles. It can be seen that 

large particles with mean diameters up to 100 µm are still in the respirable range with an 

aerodynamic size smaller than 5 µm. Therefore, the particle density must be very low. 

 

Figure 6: Relation between geometric and aerodynamic size of dispersed isoleucine particles 

analyzed with a combination of SEM and ACI. 

By comparison of the two methods, TOF and ACI, it is noticeable that there is no significant 

difference in the FPF values for the sugar formulations. The FPF values of the amino acid 

formulations measured by TOF are overall greater compared to those measured by the ACI as 

can be seen from Figure 7. This poor agreement between TOF and ACI measured FPF was 

already reported by Vanbever et al. [16]. An explanation of this phenomenon may be found in 

the different analytical methods. The aerodynamic PSD measured by ACI is based on inertial 

impaction of the particles on coated plates comparable to the deposition mechanism in the 

upper human airways. Thereby bounce and blow-off at the stages and also wall or inter-stage 

losses may occur and bias the result [23]. Vanbever et al. [16], for example, assume that 

porous particles experience less lubrication-layer repulsion than small nonporous particles 

used for impactor calibration and are therefore overestimated. De Boer et al. [24] state in their 

critical evaluation of cascade impactor analysis that the aerodynamic diameter of irregular 

particles measured with an impactor is not necessarily the same as its equivalent diameter 

obtained from a sedimentation experiment, which yields the aerodynamic diameter by its 

definition. This is because there are different forces acting on a particle traveling between the 
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Figure 7: Comparison of the FPF of different excipient formulations measured by TOF and 

ACI analysis. 

nozzle and the collection plate. The centrifugal force and the drag force are both not constant 

and additionally change their direction in contrast to the force of gravity. This results in a 

dynamic force system acting on the particle which reacts in a different way than during 

stationary settling. Irregular particles may start to rotate which affects in a different 

aerodynamic shape factor (χ) [24]. However, the magnitude of bias of the mentioned possible 

problems ought to be very small. Olsson et al. [25] i.e. reported total inter stage losses in an 

ACI of 1.6 – 3.5%. The Aerosizer®, in contrast, determines the aerodynamic particle size by 

measuring the time of particle flight. For transformation of the TOF data to an aerodynamic 

volume-weighted size distribution, the software uses the sample density and instrument 

calibration curves, assuming the particles to be spherical [26]. As the true particle density is 

not known, the material density was utilized for the TOF analysis in order to take differences 

between excipients into account. Furthermore, it has been reported that the Aerosizer® 

significantly undersizes non-spherical particles whereby the degree of size reduction is size-

dependent. In the range between 7 and 19 µm, TOF results are 21 to 51% lower than the true 

aerodynamic diameter measured by sedimentation [27]. Potentially particle and material 

density were in better accordance for the sugar formulations as compared to the amino acid 

based formulations or the particles created from amino acid formulations are less spherical 

than the sugar based particles. Because the crystalline mannitol sample behaved similar to the 

other sugar formulations, which were amorphous, the physical state can not help explaining 

this phenomenon. Therefore most likely the differences could be explained by the unknown 

true density of the particles which is needed for the Aerosizer analysis. The Aerosizer® 

nevertheless can be used as a quick screening method for aerodynamic PSD. 
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As the freeze-drying process is known to have the problem of intra and inter-vial 

heterogeneity because of the stochastic nature of ice nucleation [6] as well as temperature 

gradients on the shelves and radiation from the wall [7], the reproducibility of the FPF is an 

important issue to analyze. Therefore all FPF analyses were performed in triplicate. The 

standard deviations of the FPF measured with the ACI and the Aerosizer® were both relatively 

small. For the FPF measured with the ACI and related to metered dose, the SD ranged from 1 

to 4%. The SD of the FPF measured with the Aerosizer® ranged from 1 to 7% related to DD. 

Thus we can state that the FPF is robust against freeze-drying batch heterogeneity. 

4 SUMMARY AND CONCLUSION 

For dry powder formulations for inhalation it is of utmost importance that the particles 

generated can penetrate into the lung. Therefore the PSD produced by the novel inhalation 

system was analyzed by different methods considering geometric and aerodynamic PSD. The 

porous lyophilisates disintegrated into particles of large geometric size up to 100 µm and 

above. The aerodynamic size of these particles, however, was much smaller and a substantial 

fraction was in the respirable range of 1 – 5 µm due to low particle density. Overall, FPF of 

20 – 50% calculated as a percentage of the metered dose could be determined by ACI 

measurements. Despite major losses in the vessel and the mouthpiece, these values were 

rather large compared to DPIs on the market. Fine Particle doses up to about 1 mg could be 

reached at relatively low DD of 40 – 65% which needs to be optimized in further studies. 

Differences in the aerosolization behavior of the different excipient formulations could be 

identified. Among the tested samples, the amino acid formulations of phenylalanine and 

valine performed best. The effect did not correlate with the physical state of being crystalline 

or amorphous and must therefore be caused by other material properties. Inhomogeneities in 

the structure of the lyophilisates were not identified to affect the reproducibility of the FPF of 

the different formulations. The standard deviations of the different samples measured in 

triplicate by ACI were relatively small between 1 and 4%. Therefore the aerosolization of the 

lyophilisates and its fine particle output was robust against freeze-drying batch heterogeneity 

in the investigated lab scale. Nevertheless, freeze-drying process parameters like freezing 

conditions can have an effect on the aerosolization of the lyophilisates and need to be 

analyzed in further studies. Overall, the disintegration and aerosolization of lyophilisates by 

an air impact is possible and a promising new concept for dry powder inhalation. 
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Chapter 4 

Optimization of the FPD by Increase of the 
Solution Concentration and the Fill Volume 

Abstract 
There is a growing interest in the pulmonary administration of larger powder quantities, 

which would enable the treatment with high dosed drugs e.g. antibiotics. The aim of this study 

was to investigate the suitability of the lyophilisate based dry powder inhalation system for 

the delivery of high powder doses. This was to be achieved by elevation of the metered dose 

by varying the solution concentration and the fill volume of valine and cromolyn sodium 

lyophilisates. An increase in dose could be achieved by a controlled increase in the solution 

concentration at a low fill volume, whereas an increased fill volume as well as a substantially 

increased concentration resulted in a drastic decrease of the fine particle output. This latter 

negative impact was a consequence of impaired disintegration on the one hand due to 

increased cake hardness at elevated solution concentration. On the other hand, a higher fill 

volume resulted in reduced milling efficiency of softer cakes, whereas for harder cakes the 

product movement was reduced as less free space was available. The maximum fine particle 

dose (FPD) achieved was 1.2 mg for valine lyophilisates and 2.6 mg for cromolyn sodium 

lyophilisates. An increased pressure of the air used for dispersion resulted only in an increased 

emitted dose for the highest fill volume of 2 ml but did not further enhance the FPD of 

cromolyn sodium lyophilisates in 2R vials. However, utilization of a larger container in 

combination with an adapted amount of compressed air rendered a FPD of 3.7 mg cromolyn 

sodium in a single shot and is considered as a promising approach to deliver high drug doses 

to the lung. 
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1 INTRODUCTION 

Currently marketed dry powder inhalers (DPI) mostly contain relatively low doses of drugs 

like anticholinergics, beta-2-agonists or glucocorticoids, ranging from 6 to 500 µg [1]. 

However, in the case of less potent drugs DPIs with e.g. 20 mg cromolyn sodium [2], 28 mg 

tobramycin [3] or 40 mg mannitol for asthma diagnosis [4] are used and there is a growing 

interest in the pulmonary administration of higher doses [5]. Some traditional dry powder 

formulations consist of micronized drug blended with larger lactose carrier particles to 

enhance flow and re-dispersibility [6]. The high percentage of carrier to drug particle ratios of 

typically 67.5:1 (w/w) [7] and the moderate lung delivery efficiencies limit the maximally 

delivered lung dose with these mixtures to just a few milligrams per inhalation [8]. This was 

for example illustrated for gentamicin in a study, where 32 inhalations were necessary for the 

delivery of a therapeutic dose because of only 1.9 mg fine particle dose (FPD) per inhalation 

[9]. To overcome the poor delivery efficiency of DPIs, de Boer et al. [5] developed the DPI 

Twincer® which was designed for effective de-agglomeration of high powder doses up to 

25 mg of pure drug. Young et al. [10] introduced an active device utilizing pressurized gas for 

aerosolization and delivery 20-250 mg of highly cohesive pumactant powder and in vitro 

studies showed fine particle fractions (FPF) of >30% (~30 mg FPD) when loaded doses of 

120 mg were delivered using 8–14 bar aerosolization pressures. A new dry powder inhalation 

system based on dispersion of lyophilisates which was initially introduced by Yamashita et al. 

[11] and developed further within this thesis (see Chapter 2 for details) also comprises an 

active test system utilizing compressed air for aerosolization and delivery of fine particles. 

The aim of this study was to investigate the suitability of this technology for the delivery of 

high powder doses. Possible approaches to increase the FPD of such a lyophilisate based DPI 

system were the elevation of the metered dose (MD) by varying the solution concentration 

and the fill volume of valine and cromolyn sodium lyophilisates. In a second attempt the 

influence of increased pressure of the compressed air used for dispersion was tested to further 

increase the FPD. Additionally, a bigger container holding the freeze-dried formulation was 

evaluated. Finally, the FPD achieved for the model drug cromolyn sodium were compared to 

commercial products. 
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2 MATERIALS AND METHODS 

2.1 MATERIALS 

L-valine and cromolyn sodium were purchased from Fagron GmbH&Co KG (Barsbüttel, 

Germany). Solutions were prepared with highly purified water (Purelab Plus, Elga LabWater, 

Celle, Germany). The commercial product Lomudal® cromolyn sodium Inhalatiepoeder 

20 mg (Lot No. 0060K, Sanofi-Aventis Netherlands B.V., Gouda) was used for comparison. 

2.2 FORMULATION PREPARATION 

0.5 to 2 ml aqueous solutions of 6 – 36 mg/ml valine or 12 – 28 mg/ml cromolyn sodium were 

filled into 2R glass vials (Fiolax® clear, Schott AG, Müllheim, Germany) equipped with 

rubber stoppers (1079-PH 701/40/ow/wine-red, West Pharmaceutical Services, Eschweiler, 

Germany). Freeze-drying was carried out in a laboratory scale freeze-drier (Lyostar II, FTS 

Systems, Stone Ridge, NY, USA). The samples were frozen at -1°C/min to -45°C for 2 h 

including two 30 min holding steps at +5°C and -5°C for temperature equilibration across the 

high fill depth. Primary drying was performed at a shelf temperature of -15°C (shelfs were 

ramped at +0.2°C/min) and a pressure of 100 mtorr for 30 h. For secondary drying the shelf 

temperature was increased to +30°C at a ramp rate of +0.1°C/min for 10 h. Additionally, 0.5 

to 3 ml aqueous solutions of 12 mg/ml cromolyn sodium were filled into 6R glass vials 

(Fiolax® clear, Schott AG, Müllheim, Germany) equipped with rubber stoppers (1319 PH 

4023/50, gray, 20 mm, West Pharmaceutical Services, Eschweiler, Germany) and freeze-dried 

as mentioned above. 

2.3 FPF ANALYSIS 

The formulations were aerosolized using a custom design inhaler (see chapter 2 for details) 

with the standard setting of 20 ml compressed air at a pressure of 3 bar, 0.75 mm of inlet and 

outlet capillary diameter and a capillary position of 5 mm below the stopper for 0.5 to 1.5 ml 

lyophilisates or right below the stopper for 2 ml lyophilisates. The FPF was measured using a 

short stack version of the Andersen Cascade Impactor (8-Stage Non-Viable Sampler Series 

20-800, Thermo Andersen, Smyrna, GA, USA) at a flow rate of 39 l/min (corresponds to a 

pressure drop of 4 kPa with the HandiHaler®). Baffle plates were coated with a solution of 

83% glycerin (AppliChem GmbH, Darmstadt, Germany), 14% ethanol (central supply LMU, 

Munich, Germany) and 3% Brij 35 (Serva Electrophoresis GmbH, Heidelberg, Germany). 
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Filters used were type A/E glass fiber filters 76 mm (Pall Corporation, Ann Arbor, MI, USA). 

By removing stages 2 to 7, the whole FPF (particle fraction <4.94 µm) is collected on the 

filter directly below stage 1 and can easily be quantified by weighing the filter before and 

after powder deposition. The resulting amount of powder is the FPD. The emitted dose (ED) 

was measured by weighing the vial before and after aerosolization and calculated as the 

percentage of the MD. The FPF was calculated either as the percentage of the MD or of the 

ED. The measurements were performed in triplicate. 

2.4 MECHANICAL TESTING 

The mechanical properties of the lyophilisates were investigated using a Texture Analyzer 

(TA.XT.plus, Stable micro Systems, Godalming, UK) equipped with a 5 kg load cell and a 

cylindrical stainless steel probe with a diameter of 5 mm at a test speed of 1 mm/s and a 

maximal immersion into the lyophilisate of 2 mm for 0.5 ml fill volume or 5 mm for 1-2 ml 

fill volume. The resulting immersion-force curve demonstrated steady fracture at a constant 

force visible as a horizontal plateau. For comparison of different formulations, the measured 

data points of the plateau were averaged. The obtained force value represents the force 

necessary to fracture the lyophilisate. At the end of the immersion, the probe touches the 

bottom of the vial which results in a steep increase of the immersion force curve and can 

therefore be disregarded. 

2.5 HIGH SPEED CAMERA RECORDING 

The aerosolization behavior of the lyophilisates in the vial was recorded using a Fastcam 1024 

PCI (Photron, San Diego, CA, USA) with a sample rate of 1000 fps. 

3 RESULTS AND DISCUSSION 

3.1 OPTIMIZATION OF THE FPD OF VALINE LYOPHILISATES 

In order to enhance the FPD of the inhalation systems based on dispersion of lyophilisates, the 

MD was elevated. Therefore, lyophilisates with increasing solution concentrations from 

6 mg/ml to 36 mg/ml valine and increasing fill volume from 0.5 ml to 2 ml were prepared and 

the aerosolization performance was tested. Figure 1a shows the FPF related to MD of the 

different formulations. The FPF decreased drastically with increasing solution concentration  
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a 

 

b 

 

c 

 

d 

 

Figure 1: Effect of elevated MD by increased fill volume and concentration on the FPF 

related to MD (a), on FPF related to ED (b) as well as on ED (c) and the consequently 

resulting FPD (d) for valine lyophilisates. 

as well as with increasing fill volume. Similar to an increased drug concentration for metered 

dose inhalers reported in [8], the increased loading resulted in a significantly decreased 

delivery efficiency. This led to the question whether the decrease in FPF is a result of a less 

effective disintegration into larger particles or a decreased output from the vial. In Figure 1b 

the FPF related to ED of the different formulations is plotted against the fill volume and the 

concentration. The graph similarly demonstrates a dramatic decrease of the FPF at increasing 

solution concentration and at increasing fill volume. The ED, as can be seen from Figure 1c, 

markedly decreased only for combinations of fill volume and concentration, starting at 

18 mg/ml, 24 mg/ml and 36 mg/ml for fill volumes of 2, 1.5 and 1 ml, respectively. For these 

samples, a residual piece of cake was observed in the vial after the active disintegration 

process. The decrease in FPF could therefore be mainly referred to an impaired disintegration. 
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With respect to FPD, the increased initial loading at higher concentration or fill volume 

partially compensated for the reduced FPF as can be seen from Figure 1d. The maximum FPD 

of 1.2 mg was obtained at 30 mg/ml/0.5 ml. Thus, a dose increase could be achieved by 

increasing the solution concentration at a low fill volume. However, due to the rather low FPF 

of 7.7%, the loss in dose is substantial and, particularly when considering expensive drugs, 

possibly not economical.  

 
Figure 2: Mechanical testing of valine lyophilisates at varying concentration and fill volume. 

The shown force is the average value of the immersion-force-curve plateau and represents the 

force necessary to fracture the lyophilisate. 

Obviously, the impact of the compressed air was not able to adequately break up lyophilisates 

of elevated fill volume and concentration. In order to gain insights into the mechanical 

properties of the different formulations, texture analyzer measurements were performed. The 

mechanical testing revealed that a higher force was necessary for fracturing the lyophilisates 

with increasing concentration as can be seen from Figure 2. As a consequence, the impact 

force of the compressed air on the lyophilisate becomes insufficient for adequate 

comminution of the harder cakes into fine particles at higher initial solution concentration. In 

contrast, the force necessary for fracturing the lyophilisate was independent of the fill volume 

and the cake hardness can therefore not explain the disintegration problems for lyophilisates 

of higher fill volume. To further elucidate the disintegration and aerosolization behavior of the 

lyophilisates at the lower concentration of 8 mg/ml, high speed camera recordings were 

performed. For the lowest fill volume of 0.5 ml (Figure 3a), the cake was lifted up in a 

rotational movement and was subsequently disintegrated in the impacting air stream. The 

fragments swirled in the upper part of the vial around the endings of the capillaries until they  
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a 

 
b 

 

Figure 3: Aerosolization behavior of 8 mg/ml valine lyophilisates at 0.5 ml (a) and 2 ml (b) 

fill volume visualized with high speed camera recordings at 1000 fps. 

left the vial through the outlet capillary. Lyophilisates at higher fill volume were also lifted up 

and disintegrated into particulate fragments. Because of an instantaneous and complete 

disintegration of the lyophilisates, larger lyophilisates result in a higher number of free 

swirling particles inside the vial. For a fill volume of 2 ml, a part of these particles initially 

accumulated right below the stopper in a waiting position as can be seen from Figure 3b 

(20 ms). Later, after enough particles had left the vial, these accumulated particles re-entered 

the swirling air flow. Probably, the amount of particles in the swirling air flow also affects the 

comminution into fine inhalable particles. The disintegration process of the lyophilisate by the 

swirling air flow is comparable to the jet-milling process. The particles to be pulverized are 

accelerated by pressurized gas whereby the grinding effect is produced either by interparticle 

collision or by impact against solid surfaces [12]. Thereby an important variable is the amount 

of particles inside the mill chamber because the frequency and intensity of collisions 

determines the grinding efficiency [13]. An increase of the feed rate and therefore an 

increased particle amount leads to a coarser product [14]. Not every particle in the mill will 

break upon colliding with another particle or with the wall, the kinetic energy of the collision 

has to be taken into account [13]. A high number of particles cause more frequent collision 

whereupon the kinetic energy of these particles is reduced resulting in less impact velocity at 

following collisions. This probably can explain the less effective size reduction of the 

fragmented lyophilisate to inhalable fine particles at higher fill volume. 
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3.2 OPTIMIZATION OF THE FPD OF CROMOLYN SODIUM LYOPHILISATES 

AND COMPARISON TO A HIGH DOSE MARKET PRODUCT 

Options for enhancing the FPD of the lyophilisate based DPI system were also evaluated for 

the model drug cromolyn sodium. The MD was raised by increasing the initial solution 

concentrations from 12 to 28 mg/ml cromolyn sodium, and the fill volume from 0.5 to 2 ml.  

a 

 

b 

 

c 

 

d 

 

Figure 4: Effect of elevated MD by increased fill volume and concentration on the FPF 

related to MD (a), on FPF related to ED (b) as well as on ED (c) and the consequently 

resulting FPD (d) for cromolyn sodium lyophilisates. 

Similar to valine lyophilisates, the FPF related to MD (Figure 4a) dropped with increasing fill 

volume and in particular with increasing solution concentration from 24 mg/ml on. The 

decrease in FPF must be also a result of a hindered cake disintegration because FPF related to 

ED (Figure 4b) demonstrated similar to valine lyophilisates a strong decrease with increasing 

concentration as well as with increasing fill volume. The ED in contrast increased with 
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increasing concentration at a fill volume of 0.5 ml until a concentration of 24 mg/ml but 

strongly decreased at elevated fill volume as can be seen from Figure 4c. Probably a higher 

loading dose is necessary to compensate for the loss due to particle accumulation at the top of 

the vial and in the cavity of the lyophilization stopper. The maximum FPD of approx. 2.6 mg 

was obtained with a concentration of 20 mg/ml and a fill volume of 0.5 ml. As already 

observed for valine, a dose increase could be best achieved by increasing the solution 

concentration at a low fill volume (Figure 4d). There appears to be a critical limit of 

dispersibility between 24 and 28 mg/ml of cromolyn sodium because 28 mg/ml showed a 

drastic decrease of ED and FPF already for the 0.5 ml lyophilisate.  

 
Figure 5: Mechanical testing of cromolyn sodium lyophilisates at varying concentration and 

fill volume. The shown force is the average value of the immersion-force-curve plateau and 

represents the force necessary to fracture the lyophilisate. 

Mechanical testing revealed that higher forces are necessary for fracturing the lyophilisate of 

elevated concentration and fill volume as can be seen from Figure 5. It is noticeable, that the 

plateau indicating the force necessary for fracturing was attained later during the immersion 

process for lyophilisates of 1 ml fill volume compared to 0.5 ml. For fill volumes of 1.5 and 

2 ml, the plateau was not reached within the tested 5 mm of immersion, but the immersion-

force-curve steadily raised (Figure 6). The steady slope of the curve indicates a more elastic 

behavior of the lyophilisates at elevated fill volume where initially mainly compression takes 

place instead of steady fracture. This less brittle behavior of lyophilisates at elevated fill 

volume and their harder structure can possibly explain the inferior disintegration into fine 

particles. Approximately at 0.27 N, a critical hardness limit was reached for which 

disintegration by the impacting air stream was not possible anymore. Comparing the hardness 
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of valine and cromolyn sodium lyophilisates, it is important to note that valine lyophilisates 

were more than ten times softer and exhibited a less elastic lyophilisate structure. This could 

be the reason for a mostly complete disintegration of valine lyophilisates in contrast to only 

partly disintegration of cromolyn sodium lyophilisates until a critical hardness limit for 

disintegration. Beside already identified differences in the aerosolization behavior and fine 

particle output of different excipient formulations (see chapter 2 and 3 for details), the 

hardness of a lyophilisate is also dependent on the freeze-dried material properties which 

again affects the dispersibility. 

 
Figure 6: Immersion-force-curves of 12 mg/ml cromolyn sodium lyophilisates at varying fill 

volume. 

Visualization of the disintegration process for 12 mg/ml cromolyn sodium lyophilisates by 

high speed camera recording revealed that it is of utmost importance that the lyophilisate can 

rotate in the vial for a good disintegration or that it is at least fractured into smaller pieces 

which can rotate in the vial. Large lyophilisates of 2 ml (Figure 7b) for example were not able 

to perform rotational movements and were not fractured into smaller pieces. In contrast, the 

whole cake was lifted up remaining more or less stationary at the top of the vial for a few 

milliseconds. At the end of the disintegration process, a substantial piece of the cake remained 

in the vial resulting in a low ED. In contrast, valine lyophilisates at low and high fill volume 

were also lifted up but subsequently disintegrated into fragments even if no rotational 

movement was possible. Furthermore, the complete disintegration process occurred within the 

first milliseconds whereas the cromolyn sodium lyophilisates were fractured into pieces 

rotating at the bottom of the vial while fine particles were scaled off (Figure 7a). Therefore, a 

possibly hindered comminution process due to a high number of fragments in the swirling air 
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flow was probably less important for cromolyn sodium lyophilisates. Nevertheless, the 

hindered disintegration indicated by the decrease in FPF related to ED was most likely 

attributed to the increased hardness. 

a 

 
b 

 

Figure 7: Aerosolization behavior of 12 mg/ml cromolyn sodium lyophilisates at 1 ml (a) and 

2 ml (b) fill volume visualized with high speed camera recordings at 1000 fps. 

This led to the question whether an increased pressure of 4 bar for dispersion compared to 

standard 3 bar can result in improved disintegration and elevated ED and FPF. Figure 8 shows 

the FPF related to MD of 12 mg/ml lyophilisates. A significant difference was only detectable 

for a fill volume of 2 ml where the FPF related to MD doubled from 6.2% to 12.4% for 3 and 

4 bar pressure. The plot also clearly demonstrates that the FPF related to ED remained the 

same for all fill volumes. The increased FPF related to MD of the 2 ml-formulation was 

therefore only due to the enormous increase of the ED from 24.8% to 54.0%. An increased 

pressure for dispersion consequently resulted in an elevated output from the vial but not in an 

enhanced comminution process into finer particles. Therefore, an increased pressure for 

dispersion showed no benefit. Since the poorer disintegration of formulations with a high fill 

volume appeared to be the consequence of insufficient vial volume, freeze-dried formulations 

of various fill volumes were prepared in 6R vials, thus doubling the container volume, in 

order to further enhance the FPD. A fill volume of 2 ml in a 6R vial has about the same fill 

depth than a fill volume of 1 ml in a 2R vial. As can be seen from Figure 9, small fill volumes 

demonstrated less fine particle output compared to the normal 2R vials when disintegrated at  
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Figure 8: ED and FPF related to ED as well as FPF related to MD of 12 mg/ml cromolyn 

sodium lyophilisates aerosolized using 3 and 4 bar compressed air pressure for dispersion. 

the standard test system settings. An elevated FPD compared to the same fill volume in a 2R 

vial was only achieved for the highest fill volume of 2 ml. This increase was a result of an 

improved comminution into fine particles because the FPF related to ED increased from 25% 

to 35% whereas the ED remained about the same. Figure 10a demonstrates the disintegration 

process in the larger 6R vial. The cake was lifted up and broke apart during a first rotation. 

The resulting pieces rotated at the bottom of the vial while particles were scaled off. This 

confirms the above statement  that enough space  for rotational movements of the cake  is 

 
Figure 9: FPD of 12 mg/ml cromolyn sodium lyophilisates aerosolized from 2R or 6R vials 

applying the standard setting of 20 ml compressed air at 3 bar or an increased amount of 

compressed air with 30 ml at 4 bar. 
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Figure 10: Aerosolization behavior of 12 mg/ml cromolyn sodium lyophilisates at 2 ml 

dispersed with 20 ml compressed air at 3bar (a) or with 30 ml at 4bar (b). 

important for a good disintegration process. Nevertheless, the achieved FPD was not higher 

than the FPD of the 1 ml and 1.5 ml formulations in a 2R vial. The impact velocity/force of 

the incoming air stream must be about the same for both the 2R and 6R vial. The vial height 

differs only by 5 mm and the position of the capillaries of the test system was previously 

identified as not influencing the FPF (see chapter 2 for details). However, the same amount of 

air passed through the small 2R vial as well as the bigger 6R vial possibly resulting in a 

change in air flow behavior. Consequently a test was performed with a doubled volume of 

compressed air to 120 ml (30 ml at 4 bar) compared to the standard 60 ml (20 ml at 3 bar). 

Applying these adapted disintegration conditions, the FPD of the 2 ml formulation in 6R vials 

could be elevated to 3.7 mg. This increase was a result of an elevated ED from 28% to 48% 

whereas the FPF related to ED remained about the same similarly to the previous reported 

pressure increase for the 2R vials. The reference aerosolization of the 2R vial formulation at 

4 bar and 30 ml revealed also an enhanced FPD as a result of the previously reported 

increased ED for a pressure of 4 bar but lacked the improved comminution due to the small 

vial volume. This showed that employing a bigger 6R vial with an adapted amount of 

compressed air could be used to further enhance the FPD of this lyophilisate based DPI 

system. Furthermore this clearly demonstrated that the disintegration of harder lyophilisates 
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like of cromolyn sodium required a certain amount of space which enables rotational 

movements for an effective comminution into fine particles. 

For comparison, the micronized cromolyn sodium from one capsule of the commercial 

product Lomudal® (~26 mg) was filled into a 2R vial and aerosolized using the same 

conditions. The micronized drug achieved a FPD of 2.1 mg which corresponds to a FPF of 

7.8%. The lyophilisate in 2R vial with the best performance (20 mg/ml and 0.5 ml) achieved a 

higher FPD of 2.6 mg in combination with a substantially lower metered dose of only 10 mg 

because of a markedly higher FPF of 26%. However, the FPF of Lomudal® could be higher 

when aerosolized using the original Eclipse® inhaler. For another commercial cromolyn 

sodium product formulated without excipient (Intal®), Steckel et al. [2] obtained a FPF of 

14.1% and a FPD of 3.5 mg aerosolized using the intended inhalation device (Spinhaler®) and 

a Multistage Liquid Impinger (MLI) at a flow rate of 100 l/min. In a former study Steckel et 

al. [15] demonstrated a lower FPF for Intal® Spinhaler® of only 10% when measuring with the 

Twin Stage Impinger or 4% FPF using the MLI both operated at a flow rate of 60 l/min. 

Employing a 6R vial with an adapted amount of compressed air, a similar FPD of 3.7 mg was 

achieved while the FPF was again slightly higher at 15.5%. In both comparator products the 

FPF was significantly lower, and therefore a substantially higher MD was needed compared to 

the lyophilisate to deliver an appropriate FPD. A particularly high FPD is achieved with the 

PulmoSphereTM tobramycin dry powder formulation. In a study in healthy volunteers using 

gamma scintigraphy a mean FPF of 34% which corresponds to a FPD of 4.6 mg tobramycin 

following inhalation of a single capsule containing 25 mg of radiolabeled PulmoSphereTM 

tobramycin formulation was determined [16]. The marketed product TOBI® Podhaler® with 

an MD of 112 mg tobramycin (4 capsules) shows systemic tobramycin exposure comparable 

to a 300 mg nebulized tobramycin solution (TOBI® PARI-LC® Plus) [3] the latter resulting in 

5% or 9% total lung deposition [16, 17]. Thus, the FPD of the TOBI® Podhaler® formulation 

must be around 3.75-6.75 mg per capsule.  

With the novel dry powder inhalation system a FPD comparable to high dose market products 

could be achieved. Considering valine lyophilisates, the maximum FPD of 1.2 mg was 

significantly lower compared to cromolyn sodium. It is therefore dependent on the material 

properties whether the novel DPI system is suitable for the delivery of higher doses. It is also 

important to note that the novel DPI system is an active device which requires compressed air 

in contrast to the mentioned passive DPIs. 
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4 SUMMARY AND CONCLUSION 

The aim of this study was to investigate the suitability of the lyophilisate based inhalation 

system for the delivery of high powder doses. The idea was to enhance the FPD of the system 

by elevation of the MD. Therefore, valine and cromolyn sodium lyophilisates at increasing 

solution concentration and at increasing fill volume were evaluated with respect to their 

aerosolization behavior and mechanical properties. An increase in dose could only be 

achieved by increasing the solution concentration at a low fill volume. However, the increase 

of the solution concentration was also limited. Although valine lyophilisates were ten times 

softer, the mechanical testing revealed for both substances an increasing hardness at 

increasing solution concentration ultimately responsible for an inferior disintegration and 

decrease in FPF. At a solution concentration of 28 mg/ml, cromolyn sodium lyophilisates 

reached a critical hardness limit for which disintegration was not possible anymore. The 

decrease in FPF at higher fill volume was also caused by an impaired disintegration of the 

lyophilisate. This was primarily a result of a reduced milling efficiency in the case of softer 

lyophilisates (e.g. valine lyophilisates) which were instantaneously and completely 

disintegrated into particles by the air impact. For harder lyophilisates (e.g. cromolyn sodium 

lyophilisates), the hindered disintegration was attributed to the increased hardness which 

prevented an immediate and complete fragmentation into particles. These harder lyophilisates 

required enough space to perform rotational movements in order to fracture in smaller pieces 

for a following scaling off of particles. With respect to FPD, the higher initial MD due to 

higher solution concentration partially compensated for the decrease in FPF so that a 

maximum FPD of 1.2 mg was achieved for valine and 2.6 mg for cromolyn sodium 

lyophilisates. Nevertheless, due to the small FPF, the loss in dose was immense. An increased 

pressure for dispersion of 4 bar resulted only in an increased ED for the highest fill volume of 

2 ml and was not able to further enhance the FPD in the standard 2R vial for cromolyn 

sodium. Taking the required space for rotational movements into account, employing bigger 

6R vials enabled improved cake disintegration. By applying an adapted amount of 

compressed air to the doubled vial volume (30 ml at 4 bar), the increased pressure for 

dispersion enhanced the ED and therefore the FPD to 3.7 mg. Overall, the novel DPI system 

based on dispersion of lyophilisates can keep up with marketed DPI products of higher 

metered dose. 
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Chapter 5 

Optimization of the FPF of a Lyophilized 
Lysozyme Formulation for Dry Powder Inhalation 

Abstract 
Purpose: A new dry powder inhalation technology creates inhalable particles from a coherent 

lyophilized bulk at the time of inhalation. The aim of this study was to evaluate several 

approaches to improve the fine particle output and to understand underlying aerolization 

mechanisms. 

Methods: Lysozyme was chosen as model drug. Phenylalanine and valine were added, and the 

freezing process employed in lyophilization was varied (shelf ramped, with annealing, on 

precooled shelf, in liquid nitrogen, and vacuum induced). For characterization of the 

lyophilisates, x-ray diffractometry, residual moisture analysis, mechanical testing, and 

microscopy was performed. The fine particle fraction (FPF) was measured and the 

aerosolization behavior was recorded with a high speed camera. Furthermore, the particles 

were investigated by scanning electron microscopy. 

Results: The addition of 14 to 40% of the crystalline amino acids phenylalanine and valine to 

the lysozyme solution prior to freeze-drying rendered a dose independent increase of the FPF 

from 5% to 17% and 14%, respectively. This is possibly due to enhanced fracture properties 

of the lyophilisates upon impact of the air stream as well as reduced particle agglomeration 

and cohesion caused by a rougher surface. This positive effect on aerosolization performance 

was well preserved over three months of storage at 40°C/75% RH. The structure of the freeze-

dried product was influenced by the freezing process which in turn affected the aerosolization 

behavior. Freezing by immersion in liquid nitrogen and vacuum-induced freezing performed 

best, doubling the FPF. Despite poor fracture properties, the special cake morphology with 

elongated channels enabled easy disintegration. The resulting large particles comprise a very 

low density and a high porosity, which are advantageous for a high emitted dose and FPF. 
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Conclusion: The variation of the lyophilization process and formulation utilizing excipients 

enabled an optimization of the FPF of the novel lyophilisate based DPI system. 

1 INTRODUCTION 

Since first marketed in 1970, dry powder inhalers (DPIs) have been subject to continuous 

improvement. Device technology developed continuously to overcome the relatively low 

efficiency in fine particle fraction (FPF) and inconsistencies in the emitted dose (ED) of the 

first generation DPIs [1]. Most DPIs are breath-activated passive systems where powder 

aerosolization is achieved by the patient's own inspiration. These devices mostly have the 

disadvantage of inspiratory flow-dependent de-agglomeration of the powder [2]. Some newer 

devices like the Clickhaler® and the Taifun® show an in vivo deposition which is relatively 

independent from the inspiratory effort [3, 4]. Furthermore, active devices were developed 

which enable respiratory force independent dosing precision and reproducible aerosolization 

[5]. These devices are primarily designed for systemic pulmonary delivery and for conditions 

where the inspiratory power of the patient cannot be relied upon [6]. Examples for active 

devices are the Nektar Pulmonary Inhaler for Exubera® or the AspirairTM device, which both 

use compressed air for the powder de-agglomeration and aerosolization process [6, 7]. 

New powder formulation methods are equally important to sophisticated devices. The two 

main formulation methods to enhance powder flowability and dispersibility are carrier 

systems mainly utilizing lactose and controlled agglomeration of pure drug particles, called 

pelletization [8]. The growing interest in pulmonary delivery of therapeutic proteins, nucleic 

acid nanocarriers, and vaccines as dry powder aerosols demands for alternative formulation 

methods to replace the commonly used but problematic micronization of the active 

pharmaceutical ingredient (API). Micronization may generate local hot spots in the processed 

materials and reduces their stability which is particularly a problem for thermolabile 

biopharmaceuticals [9]. A variety of new methods like controlled crystallization, supercritical 

fluid precipitation, spray drying, and spray freeze-drying were recently summarized by Chow 

et al. [9] with regards to the production of more uniform particles in terms of morphological 

state (e.g. crystallinity), particle size distribution, and shape. All these particle engineering 

methods directly produce a powder, which can reduce some challenges of micron-sized 

powder particles such as poor flow behavior and a high tendency to aggregate, but handling 

and precise metering remain difficult. 
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Freeze-drying is a common method for the stabilization of labile bioproducts. The lyophilized 

products are porous cakes in the dimensions of the former fill volume. For the production of 

inhalable particles the lyophilisate can be milled, which adds another manufacturing step and 

additional stress for the API. Alternatively, impacting air can be used for the disintegration of 

a freeze-dried preparation into inhalable particles [10]. Thus, DPI formulation is stored in a 

non-powdered form and the formation of fine particles occurs at the time of inhalation, 

thereby avoiding formulation problems like inadequate flowability and dispersibility of the 

powder. In addition, the manufacturing process is suitable for chemical entities as well as 

labile biopharmaceuticals. Because the formulation is metered as a liquid, extremely high 

accuracy at dose metering and a high preparation yield are further advantages of this 

technology. Nevertheless, freeze-drying is a time consuming and energy intensive 

manufacturing process [11]. A previous study revealed that placebo lyophilisates, 

disintegrated by compressed air in a custom designed test device, show material dependent 

differences in the fine particle output (Chapter 3). This led to the question whether the FPF of 

lyophilisates which exhibit poor dispersing behavior can be enhanced by the addition of 

excipients which demonstrate good aerosolization performance. The freeze-drying process or, 

more specifically, the freezing step is considered as another possible approach to increase fine 

particle output. The freezing process is a key step in lyophilization because it determines the 

ice crystal structure (shape and dimensions) and therefore governs the resulting lyophilisate 

morphology [12, 13]. The morphology of the lyophilisate should impact the dispersibility and 

aerosolization of the freeze-dried cake. Overall, the ice nucleation temperature, the freezing 

rate, as well as the freezing mechanism influence the ice crystal formation [14]. Shelf-ramped 

freezing renders a low ice nucleation temperature and fast ice crystal growth, resulting in a 

high number of small ice crystals. The addition of an annealing step enables a rearrangement 

and secondary ice crystal growth [15]. Freezing on a precooled shelf causes higher nucleation 

temperatures and slower freezing rates from vial bottom to top compared to shelf-ramped 

freezing and leads to a large heterogeneity between vials [16]. Vacuum-induced freezing 

allows controlled ice nucleation at a defined temperature. The ice nucleation starts at the top 

surface, followed by a top-down freezing which results in vertical ice crystals [17]. A very 

fast cooling method is immersion in liquid nitrogen, where freezing occurs by directional 

solidification resulting in small lamellar-oriented pores [18]. 

The aim of this study was to optimize the fine particle output of the model API lysozyme 

which demonstrated a poor emitted dose and fine particle fraction when lyophilized solitarily. 

High molecular weight species such as proteins form soft and elastic sponges after freeze-
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drying, which is utilized, for example, in flexible gelatin-containing wound dresses [19]. For 

the disintegration into small particles by an air impact, these properties could be 

impedimental. Lysozyme was used as a model substance and the intention was to develop a 

pulmonary delivery system for lyophilisted formulations in general. Therefore protein 

stability and activity was not tested specifically. Instead, in a first approach, it was intended to 

achieve an optimized FPF by the addition of excipients. The two amino acids phenylalanine 

and valine performed best as single excipient lyophilisates in a previous study, showing FPF 

related to metered dose (MD) of nearly 50% (Chapter 3). They were therefore chosen as 

potential excipients to enhance the fine particle output of lysozyme. To gain a better 

understanding of the underlying mechanisms of the improvement, lyophilisate characteristics 

as well as aerosolization properties were investigated in addition to fine particle 

measurements. Furthermore, storage stability for three months at 25°C/60% RH and 

40°C/75% RH was evaluated for a selected formulation. In a second approach to increase the 

fine particle output, various freezing methods as part of the lyophilization process of two 

selected formulations were applied. The obtained lyophilisates were investigated with respect 

to their morphology, mechanical properties, and aerosolization performance. 

2 MATERIALS AND METHODS 

2.1 MATERIALS 

The model protein lysozyme from chicken egg white (Lys) was purchased from Serva 

Electrophoresis GmbH (Heidelberg, Germany) as a crystalline powder in hydrochloride form. 

Excipients used were L-phenylalanine (Phe) (Merck KGaA, Darmstadt, Germany) and L-

valine (Val) (Fagron GmbH&Co KG, Barsbüttel, Germany). Solutions were made with highly 

purified water (Purelab Plus, Elga LabWater, Celle, Germany).  

2.2 FORMULATION PREPARATION 

0.5 ml aqueous solutions of 12 mg/ml lysozyme with 2 to 8 mg/ml phenylalanine or valine 

were filled into 2R glass vials (Fiolax® clear, Schott AG, Müllheim, Germany) and vials were 

equipped with rubber stoppers (1079-PH 701/40/ow/wine-red, West Pharmaceutical Services, 

Eschweiler, Germany). Freeze-drying was carried out in a laboratory scale freeze-drier 

(Lyostar II, FTS Systems, Stone Ridge, NY, USA). The samples were frozen at -1°C/min to 
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-45°C for 1 h. Primary drying was performed at a shelf temperature of -15°C (shelfs were 

ramped at +0.2°C/min) and a pressure of 100 mtorr for 20 h. For secondary drying the shelf 

temperature was increased to +30°C at a ramp rate of +0.1°C/min for 6 h. For comparison 

purposes also 4 mg/ml phenylalanine and 12 mg/ml valine solutions were freeze-dried 

similarly. 

Additional four different freezing methods were tested besides the normal shelf ramped 

freezing at -1°C/min: 

- Annealing at -10°C for 10 h: The samples were frozen at -1°C/min to -45°C with a 

hold at -45°C for 1 h, followed by a shelf temperature increase to -10°C at +1°C/min 

and annealing for 10 h at -10°C before the samples were frozen again at -1°C/min to 

-45°C with another hold at -45°C for 1 h. 

- Precooled shelf at -70°C: The samples were placed on a precooled shelf at -70°C for 

1.5 h.  

- In liquid nitrogen: Samples were immersed in liquid nitrogen for 1 min and were 

subsequently placed on a precooled shelf. 

- Vacuum-induced at -3°C: The samples were equilibrated on the shelfs at -3°C for 1 h. 

According to [17] the chamber was evacuated as fast as possible to 600 mtorr to 

induce freezing. Afterwards the shelf temperature was quickly decreased to -45°C for 

1 h. 

2.3 X-RAY DIFFRACTOMETRY (XRD) 

The content of three vials was pooled for investigation with a Seifert X-ray diffractometer 

XRD 3000 TT (Seifert, Ahrensburg, Germany) equipped with a copper anode (40 kV, 30 mA, 

wavelength 154.17 pm). The samples were measured from 5 – 40° 2-Ө at a step rate of 

0.05° 2-Ө with 2 s measuring time per step. 

2.4 DEVICE 

The lyophilized formulations were dispersed into aerosols using a custom-designed device 

(Chapter 2). Briefly, it consists of two capillaries with a diameter of 0.75 mm pierced through 

the stopper of the vial housing the lyophilisate. One capillary is the air inlet, the other 

capillary the air outlet, which is connected to the mouthpiece. Compressed air is stored in a 
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20 ml pressure reservoir at a pressure of 3 bar. Pressing a lever releases the compressed air 

through the inlet capillary, thereby starting dispersion of the powder. 

2.5 FINE PARTICLE FRACTION (FPF) ANALYSIS 

The FPF was measured using a short stack version of the Andersen cascade impactor (ACI) 

(8-Stage Non-Viable Sampler Series 20-800, Thermo Andersen, Smyrna, GA, USA) at a flow 

rate of 39 l/min (corresponds to a pressure drop of 4 kPa with the HandiHaler®, which is 

recommended by USP <601> [20]). Baffle plates were coated with a solution of 83% glycerin 

(AppliChem GmbH, Darmstadt, Germany), 14% ethanol (central supply LMU, Munich, 

Germany) and 3% Brij 35 (Serva Electrophoresis GmbH, Heidelberg, Germany). Filters used 

were type A/E glass fiber filters 76 mm (Pall Corporation, Ann Arbor, MI, USA). By 

removing stages 2 to 7, the whole FPF (particle fraction <4.94 µm) is collected on the filter 

directly below stage 1 and can easily be quantified by weighing the filter before and after 

powder deposition. The herein contained total lysozyme content was calculated by taking the 

varying amount of excipients into account. The FPF was calculated as the percentage of the 

total lysozyme content in the vial. The emitted dose (ED) was measured by weighing the vial 

before and after aerosolization and also calculated as the percentage of the total lysozyme 

content in the vial. The FPF analyses were performed in triplicate and the mean value 

including the standard deviation is presented in the figures. 

2.6 MECHANICAL TESTING 

The mechanical properties of the lyophilisates were investigated using a Texture Analyzer 

(TA.XT.plus, Stable micro Systems, Godalming, United Kingdom) equipped with a 5 kg load 

cell and a cylindrical stainless steel probe with a diameter of 5 mm at a test speed of 1 mm/s 

and a maximal immersion into the lyophilisate of 2 mm. The cylindrical probe acts on the 

lyophilisate by proceeding at constant speed and the force needed for the immersion is 

recorded. The resulting force represents the force necessary for breakage of the lyophilisate. 

At the end of the immersion, the probe touches the bottom of the vial which results in a steep 

increase of the immersion force curve and can therefore be disregarded. Measurements were 

performed in triplicate and averaged. 
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2.7 HIGH SPEED CAMERA RECORDING 

The aerosolization behavior of the lyophilisates in the vial was recorded using a Fastcam 1024 

PCI (Photron, San Diego, CA, USA) with a sample rate of 1000 fps. Dispersion of the 

lyophilisates was performed using the device (2.4) at standard settings (20 ml compressed air 

at 3 bar). 

2.8 MICROSCOPY AND SCANNING ELECTRON MICROSCOPY (SEM) 

The morphology of the lyophilisates was analyzed by digital light microscopy (VHX-500F, 

Keyence Corporation, Osaka, Japan) equipped with a VH-Z20R objective with variable 

lighting.  

The particle morphology of the dispersed fine particles was analyzed with a Jeol Scanning 

Electron Microscope (JSM-6500F, Jeol, Ebersberg, Germany) at 5 kV. Sample preparation 

was performed using a second short stack version of the ACI where stages 3 to 7 have been 

removed. Conductive self-adhesive tape (Ø 12 mm Leit-Tabs, Plano GmbH, Wetzlar, 

Germany) was placed on the coated baffle plate after stage 2. The particles collected on the 

tape therefore have an aerodynamic cut off diameter between 4-4.94 µm at a flow rate of 

39 l/min (Chapter 3). The samples were sputtered with carbon under vacuum. 

2.9 STABILITY TESTING 

For stability testing the sealed lyophilized samples were stored at 25°C and 60% relative 

humidity (RH) above a saturated ammonium nitrate (VWR International, Leuven, Belgium) 

solution or at 40°C and 75% RH above a saturated sodium chloride (Merck KGaA, 

Darmstadt, Germany) solution for three months. Stoppers used were dried before 

lyophilization at 105°C for 4 h.  

The lyophilisates were analyzed for morphological state (2.3), moisture content (2.10), 

mechanical properties (2.6), microscopic morphology (2.8), as well as ED and FPF (2.5). 

2.10 RESIDUAL MOISTURE CONTENT ANALYSIS 

The residual moisture content of lyophilisates was determined by Karl-Fischer titration 

(Metrohm 756 KF Coulometer, Herisau, Switzerland) using Hydranal Coulomat AG (Riedel-

deHaën, Seelze, Germany) as titration reagent. The lyophilisates were dissolved in the vials in 
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1.0 ml of anhydrous methanol (Hydranal-Methanol dry, Riedel-deHaën, Seelze, Germany), 

additionally dried with molecular sieve 3A (VWR International GmbH, Darmstadt, 

Germany). As blanks, empty freeze-dried vials, treated similarly, were used. The injection 

volume was 500 µl each. The measurements were performed in triplicate in order to calculate 

mean values. 

3 RESULTS 

3.1 OPTIMIZATION OF THE FPF BY ADDITION OF EXCIPIENTS 

A custom-designed test device was used for disintegration of the lyophilisates and delivery of 

the fine powder. The resulting FPF of the lysozyme formulations were measured with a short-

stack version of the ACI. Lyophilized lysozyme from 12 mg/ml lysozyme solution showed an 

ED of 37.4% and a small FPF of only 4.8% related to the MD of 6 mg. In order to improve 

the FPF, 2 to 8 mg/ml phenylalanine and valine, which demonstrated good performance in a 

previous study (Chapter 3), were added.  

XRD demonstrated that freeze-dried lysozyme without excipients was completely amorphous. 

Mixtures with the amino acids demonstrated an increase in crystallinity of the formulations 

for concentrations > 4 mg/ml of phenylalanine or > 2 mg/ml of valine (Figure 1). The XRD 

patterns of these lyophilisates showed crystalline reflections of phenylalanine-monohydrate 

and valine, respectively.  

The different lysozyme formulations demonstrate that the addition of phenylalanine or valine 

resulted in a dose-independent increase of the FPF of lysozyme. The ED is plotted against the 

FPF related to ED (left y-axis) in Figure 2. From the contour lines and the right y-axis, it is 

also possible to determine the FPF related to MD from the same plot. The ED was almost 

doubled to around 70% by addition of the excipients. The FPF related to MD was increased 

up to 17.0% by adding 4 mg/ml phenylalanine or elevated up to 14.1% by adding 6 mg/ml 

valine, mainly a consequence of the doubled ED.  
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a 

 
b 

 

Figure 1: XRD patterns of 12 mg/ml lysozyme lyophilisates and the mixtures with 

phenylalanine (a) or valine (b) in the concentration of 2 to 8 mg/ml. 

a b 

  
Figure 2: ED versus its related FPF as well as the FPF related to metered dose of 

lyophilisates of pure lysozyme and lysozyme formulated with 2-8 mg/ml phenylalanine (a) or 

valine (b). 
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To understand underlying mechanisms for the successful FPF optimization, the lyophilisate 

characteristics as well as the aerosolization properties were further investigated. The force 

necessary for breakage of the lyophilisate was tested by immersion of a cylindrical probe. 

Steady fracture at a constant force, resulting in a plateau, was found for pure phenylalanine 

and valine lyophilisates in the concentration of 4 mg/ml and 12 mg/ml (Figure 3) with force 

values of 0.014 N and 0.006 N, respectively. For lysozyme, a continuous increase of the 

immersion-force-curve at a slope of 0.07 N/mm was observed which represents a more elastic 

structure where mainly compression takes place. The immersion-force-curves of the mixtures, 

in contrast, revealed a plateau, indicating steady fracture at 0.08 N in the case of the 

phenylalanine mixture or 0.09 N for the valine mixture, exemplarily shown for the two 

formulations with the best performance. 

 
Figure 3: The texture characterization of lysozyme 12 mg/ml lyophilisates in comparison to 

lysozyme 12 mg/ml + phenylalanine 4 mg/ml, lysozyme 12 mg/ml + valine 6 mg/ml, 

phenylalanine 4 mg/ml and valine 12 mg/ml. 

High speed camera recordings were performed in order to gain insights into the aerosolization 

behavior of the different lyophilisates. For all formulations the disintegration of the 

lyophilisate started by fragmentation into larger subunits (Figure 4). These pieces 

disintegrated further into fine particles which swirled around the endings of the capillaries 

until they left the vial. After aerosolization of pure lysozyme, a substantial amount of particles 

adhered to the capillaries (Figure 4a). If lysozyme was formulated with one of the crystalline 

amino acids, in contrast, adhesion of the dispersed particles to the capillaries and other 

surfaces in the vial was lower, as can be seen from Figure 4b/c. For the lysozyme lyophilisate 

almost all particles, which did not stick to the surfaces, left the vial after about 100 ms. Fine 
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particles of those formulations that included an amino acid in contrast swirled in the vial for a 

longer period of time until about 500 ms. This could be a result of the larger total content in 

the vial. 

a 

 
b 

 
c 

 

Figure 4: High speed camera recordings of lysozyme lyophilisate (a), lysozyme in the 

combination with 4 mg/ml phenylalanine (b) or with 6 mg/ml valine (c). 

The microscopic morphology of the different freeze-dried formulations was inspected with 

the reflected light microscope. The lyophilisates of both pure lysozyme and the mixtures 

showed a porous comb-like structure. Figure 5 demonstrates the pore size for the upper 

surface of the lyophilisates of around 100 µm for pure freeze-dried lysozyme and slightly 

bigger pores of around 150 µm for the formulation with phenylalanine. The pore walls of pure 

lyophilized lysozyme were very thin and translucent. Whereas the pore walls of the mixtures 

appeared whitish and clearly visible. This is exemplarily shown for the phenylalanine mixture 

in Figure 5b.  
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a 

 

b 

 

Figure 5: Microscopic morphology of lysozyme lyophilisates: upper surface of pure lysozyme 

(a) in comparison to lysozyme with 4 mg/ml phenylalanine (b). 

In order to determine the geometric size and shape of the dispersed particles released from the 

test device, the particles were investigated with SEM. For comparison of particles with 

identical aerodynamic size, the specimens were collected on the baffle plate after stage 2 of 

the ACI, having an aerodynamic cut off diameter of 4-4.94 µm. At the border of the impacted 

particle spots (Figure 6a/c/e), it was possible to observe particles which were clearly separated 

from each other. These geometric particle sizes of approximately 10-30 µm were comparable 

for the different lysozyme formulations. The fragments of the pure lysozyme lyophilisates 

showed a very smooth surface (Figure 6b), whereas the fragments of the lysozyme 

phenylalanine formulation revealed a rough surface with needle-shaped crystal structures 

embedded (Figure 6d). The fragments of the lysozyme valine formulation demonstrated also a 

rougher surface (Figure 6f). 

a 

 

b 
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c 

 

d 

 
e 

 

f 

 

Figure 6: SEM of the particles with an aerodynamic cut off diameter between 4 and 4.94 µm 

of lysozyme 12 mg/ml (a, b) and lysozyme 12 mg/ml + phenylalanine 4 mg/ml (c, d) as well as 

lysozyme 12 mg/ml + valine 6 mg/ml (e, f). 

3.2 STORAGE STABILITY OF 12 MG/ML LYSOZYME-4 MG/ML 

PHENYLALANINE-FORMULATION 

Freeze-drying is known to improve the stability of labile drugs [21]. If a freeze-dried 

formulation contains amorphous or partially crystalline modifications which are 

thermodynamically unstable, one always has to consider the possibility of recrystallization 

during storage [13]. Furthermore, the moisture content of a freeze-dried formulation during 

storage may increase due to moisture coming from the vial stopper [22] or insufficient 

integrity of the container adversely influencing physicochemical stability and aerosol 

performance [9]. Consequently, freeze-dried 12 mg/ml lysozyme with 4 mg/ml phenylalanine 

formulation was stored at 25°C/60% RH and 40°C/75% RH up to three months. 
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Figure 7: XRD pattern of 12 mg/ml lysozyme/4 mg/ml phenylalanine lyophilisates before and 

after one and three months of storage. 

 
Figure 8: Mechanical testing of 12 mg/ml lysozyme/4 mg/ml phenylalanine lyophilisates 

before and after one and three month of storage. 

The XRD pattern of the lyophilized lysozyme phenylalanine formulation showed no 

difference between freshly freeze-dried or stored lyophilisates (Figure 7). The crystalline 

reflections of phenylalanine-monohydrate remained at the same peak position and height. 

During storage the moisture increased from 0.3% to 0.8% and 1.9% after one month and to 

1.5% and 2.7% after three month at 25°C/60% RH and 40°C/75% RH, respectively. Samples 

stored at the higher temperature and relative humidity absorbed significantly larger amounts 

of water. The mechanical behavior of the lyophilisates remained stable during storage. The 

position and shape of the immersion-force-curve of the mechanical testing did not change 

(Figure 8). Furthermore, no change in the microscopic morphology was detectable. ACI 

measurements revealed slight but not significant differences in ED as well as FPF of the 

lyophilisates. At t0 samples demonstrated an ED of 57% which slightly increased to 64% 
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during storage. The FPF related to ED amounted to 34% at t0 and varied between 30% and 

34% after one and three months of storage. Thus, stability of the formulation with respect to 

physicochemical properties and aerosol performance over three months at 40°C/75% RH 

could be demonstrated. 

3.3 VARIATION OF THE FPF BY VARIATION OF THE FREEZING METHOD 

The morphology of the solid matrix of a lyophilisate is determined by the freezing process, 

comprising ice nucleation and ice crystal growth [17]. Different freezing methods were 

applied to alter the lyophilisate properties in order to improve ED and FPF. 12 mg/ml 

lysozyme solutions containing 4 mg/ml phenylalanine or 6 mg/ml valine were freeze-dried. 

Besides the normal shelf-ramped freezing at -1°C/min, an additional annealing step at -10°C 

for 10 h, freezing on a precooled shelf at -70°C, freezing by immersion into liquid nitrogen 

and vacuum-induced freezing at -3°C were performed. The crystallinity of the lyophilisates 

was analyzed by XRD. Lysozyme was always present in the amorphous state. All 

lyophilisates in the combination lysozyme and valine showed the characteristic peak pattern 

of crystalline valine with the main peaks at 7.4° and 19.5° 2θ (Figure 9a). Phenylalanine 

exhibited very small peaks, indicating a partial crystallinity in the form of the monohydrate 

for all different frozen lyophilisates (Figure 9b). The partial crystallinity of phenylalanine was 

analyzed in Chapter 3. 

Mechanical testing revealed marked differences of the mechanical properties of lyophilisates 

prepared with different freezing processes, as can be seen in Figure 10. For samples frozen in 

liquid nitrogen, a constant positive slope of the immersion-force-curve was observed. 

Vacuum-induced freezing resulted in a force peak with a maximum at 0.09 N at the beginning 

of the immersion for the lysozyme/phenylalanine lyophilisates, whereas the lysozyme/valine 

lyophilisates required a higher overall force of 0.16 N for fracture. The lysozyme/valine 

lyophilisates frozen on a precooled shelf required also a higher force for breakage of 0.11 N 

compared to the lyophilisates frozen in the conventional shelf-ramped process or additionally 

with annealing, which both demonstrated a force of 0.09 N for breakage. 

Lysozyme/phenylalanine lyophilisates frozen on a precooled shelf as well showed a plateau of 

constant fracture at 0.09 N which was higher than the lyophilisate frozen by shelf-ramping 

(0.08 N) or including annealing (0.07 N). 
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a 

 
b 

 

Figure 9: XRD pattern of 12 mg/ml lysozyme/6 mg/ml valine (a) and 12 mg/ml 

lysozyme/4 mg/ml phenylalanine (b) lyophilisates prepared with different freezing procedures. 

a b 

a  b  

Figure 10: The mechanical testing of 12 mg/ml lysozyme/4 mg/ml phenylalanine (a) or 

12 mg/ml lysozyme/6 mg/ml valine (b) prepared with different freezing procedures. 
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a 

 

b 

 

Figure 11: The bottom surface morphology of lyophilisates frozen in liquid nitrogen (a) and 

the upper surface morphology of the vacuum induced frozen lyophilisates (b) of 12 mg/ml 

lysozyme/4 mg/ml phenylalanine. 

Microscopy of lyophilisates frozen via shelf-ramping, with an annealing step, or on a 

precooled shelf showed a similar pore structure.  Differences in the pore sizes, particularly at 

the bottom side, were apparent. For the lysozyme/phenylalanine lyophilisates, for example, 

the pore size at the bottom was around 100 µm for samples frozen via shelf-ramping. 

Annealing caused an increase to about 160 µm, whereas precooled shelf freezing resulted in 

smaller pores of approximately 30 µm. Both samples frozen in liquid nitrogen demonstrated a 

special morphology with lamellar pores oriented in the direction from outside to the center, 

which was clearly visible for the inner and bottom structure of the lyophilisate (Figure 11a). 

The samples obtained by vacuum-induced freezing had a very dense upper surface structure 

with tiny little pores of approximately 30 µm for the formulation with phenylalanine 

(Figure 11b) and 20 µm for the formulation with valine. The bottom of these lyophilisates 

showed small pores of 50-60 µm as well. 

Analysis of the dispersed particles by SEM demonstrated that the fragments of the 

conventionally frozen (at -1°C/min) lysozyme/phenylalanine lyophilisates had a platelet-like 

structure, whereas the samples frozen in liquid nitrogen or by vacuum-induced freezing were 

fluffy and porous. The fine particles with an aerodynamic size between 4 and 4.94 µm 

consisted of agglomerates of smaller fragments and demonstrated different geometric sizes, 

depending on the freezing process: particles from normal freezing were 10-30 µm, the 

particles from vacuum-induced freezing of approx. 80 µm, and the ones frozen in liquid 

nitrogen of approx. 110 µm in size (Figure 12). The aerodynamic diameter (dA) is defined by 

the relationship  
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0
VA χρ

ρdd ≅  (1) 

and is dependent on the size (dV), shape (χ) and mass density of the particle (ρ) for 

ρ0 = 1g/cm3. By disregarding the shape assuming round particles, a particle density can be 

estimated based on the aerodynamic and geometric size. The particle density decreased from 

around 0.05 g/cm3 for the small particles generated from lyophilisates prepared by normal 

freezing to a density of around 0.002 g/cm3 for the large particles generated from lyophilisates 

prepared by liquid nitrogen freezing. 

a 

 

b 

 
c 

 

d 

 

Figure 12: SEM of the particles with an aerodynamic cut off diameter between 4 and 4.94 µm. 

Aerosolized 12 mg/ml lysozyme/4 mg/ml phenylalanine lyophilisates frozen in liquid nitrogen 

(a, b) and frozen vacuum induced (c, d). 

Additional high speed camera recordings revealed a different behavior of the various frozen 

lyophilisates during the disintegration process in the vial. For the lysozyme/phenylalanine 

formulation, for example, the disintegration into particles of the lyophilisates frozen at 

-1°C/min (Figure 4b) and with the annealing step (Figure 13a) was already finished after 

about 25 ms. The disintegration into small particles of samples prepared by precooled shelf 
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Figure 13: High speed camera recordings of 12 mg/ml lysozyme/4 mg/ml phenylalanine 

lyophilisates frozen with annealing (a), on precooled shelf (b), in liquid nitrogen (c) and 

vacuum induced (d). 

freezing lasted about 50 ms (Figure 13b). Lyophilisates from vacuum-induced freezing 

(Figure 13d), in contrast, disintegrated into smaller subunits from which particles were scaled 

off over a longer period of time (more than 100 ms). The lyophilisates frozen in liquid 
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nitrogen disintegrated quickly into voluminous particles, resulting in a complete fill of the vial 

(Figure 13c). The valine formulations showed similar aerosolization behavior. 

a b 

  

Figure 14: The impact of the different freezing processes of lyophilized 12 mg/ml 

lysozyme/4 mg/ml phenylalanine (a) or 12 mg/ml lysozyme/6 mg/ml valine (b) on the ED and 

the FPF related to ED as well as the FPF related to metered dose. 

The described variations of lyophilisate morphology and properties partly resulted in 

differences in the fine particle output, as can be seen from Figure 14. For both, 

lysozyme/phenylalanine and lysozyme/valine formulations annealing did not result in a 

significant difference in ED and FPF compared to regular shelf freezing. The precooled shelf 

method in comparison to shelf-ramped freezing led to a significant increase of the ED from 

63% to 79% and therefore also to an increase of the FPF related to MD from 17% to 30% for 

the phenylalanine formulation. The valine formulation, in contrast, showed no significant 

differences. By freezing in liquid nitrogen, it was possible to significantly enhance the ED and 

the FPF for both formulations. The ED increased to 88% in the case of the phenylalanine 

formulation with an increase in the FPF related to ED from 27% to 44% while the valine 

formulation showed an enhanced ED from 69% to 86% and FPF related to ED from 20% to 

30%. The samples from vacuum-induced freezing also exhibited a significant escalation of the 

FPF for both formulations to 49% and 32% as well as a significant increase of the ED to 80% 

for the phenylalanine formulation. Freezing in liquid nitrogen and vacuum-induced freezing 

resulted for the phenylalanine formulation in a more than twofold elevation of the FPF related 

to MD from 17% to 39%. 
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4 DISCUSSION 

4.1 OPTIMIZATION OF THE FPF BY ADDITION OF EXCIPIENTS 

It was possible to significantly increase the FPF of the lyophilized model API lysozyme by 

addition of the amino acids phenylalanine or valine. These two excipients are not commonly 

used in freeze-drying or dry powder formulation for inhalation but were chosen because of 

their good performance in a previous study exhibiting high FPF related to MD of nearly 50% 

(Chapter 3). In principle, most amino acids crystallize during freeze-drying and are therefore 

suitable as bulking agents [23]. Glycine, for example, is a commonly used bulking agent in 

freeze-dried formulations [24]. Valine crystallizes as well during freeze-drying whereas 

phenylalanine forms a monohydrate and is only present in a partially crystalline state 

(Chapter 3). 

The magnitude of the FPF elevation of 12 mg/ml lyophilized lysozyme was independent of 

the amount of excipient added. A small amount of 2 mg/ml phenylalanine or valine was 

sufficient to double the FPF related to MD from 4.8% to 11.7% and 9.4%, respectively. 

Consequently, the amino acids had a great effect on the lyophilisate properties and 

aerosolization behavior of freeze-dried lysozyme. These lyophilisate properties and 

characteristics are discussed in the following to understand underlying mechanisms. 

As expected, lysozyme was present in the amorphous state in all formulations. Proteins, in 

general, do not crystallize during freezing but form an amorphous solid at the glass transition 

temperature of the freeze concentrate (Tg’) [13]. This purely amorphous glass appeared 

translucent in light microscopy, resulting in a glassy sheen on the lyophilisate surface [25], 

whereas the pore walls appeared whitish in the formulations with an amino acid. As intended, 

valine crystallized during freeze-drying. In contrast, phenylalanine was partly present in the 

amorphous state. Because crystallization is dependent on the presence of other solutes [26], 

the amorphous protein prevented phenylalanine from crystallization at the highest protein to 

amino acid ratio of 6:1. At higher phenylalanine concentrations, the amino acid was only 

partially crystalline as indicated by small crystalline reflections appearing in combination 

with an amorphous halo. This was not only caused by the presence of the amorphous protein 

since pure freeze-dried phenylalanine also exists in a partly amorphous state (Chapter 3). 

During freeze-drying phenylalanine crystallizes in the form of the needle-shaped 

monohydrate which is the stable pseudo-polymorph when crystallization occurs at 
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temperatures below 37°C [27]. The crystalline nature of formulations containing an amino 

acid corresponded to a rough surface of the pore wall fragments in SEM. The distinct striped 

appearance of the needle-shaped phenylalanine-monohydrate crystals coated with a thin layer 

of amorphous material was also reported previously [28]. This surface roughness could 

explain the lower adhesiveness of the particles to the capillaries and the vial surface, as well 

as to each other, because of a smaller effective contact area compared to the planar surface of 

lyophilized lysozyme fragments. The enhanced dispersibility of particles with irregular 

surfaces was also observed for spray-dried particles [8, 29, 30]. Less adhesion to the 

capillaries and vial surface enhanced the ED and consequently the FPF related to MD. A 

longer time period during which particles swirled in the vial until their escape through the 

outlet capillary was noticeable, which could be an effect of a larger total content in the vial or 

of less adhesion resulting in a larger amount of free swirling particles in the vial. 

The rough surface is not the only parameter responsible for the successful increase of the FPF 

by addition of phenylalanine or valine. Mechanical properties of the lyophilisates can be 

examined by texture analysis. The cylindrical probe acts on the lyophilisate by proceeding at a 

constant speed. The resulting force needed for the immersion is constantly measured and 

represents the force necessary for breakage of the lyophilisate. The texture analysis revealed 

that lyophilisates containing phenylalanine or valine, which show steady fracture at a constant 

force, have good aerosolization properties with a high ED and FPF. It is important to note, 

that the force necessary to fracture the lyophilisate was much higher in the lysozyme/amino 

acid combinations (0.08-0.09 N) compared to the pure amino acid (0.006-0.014 N) but did not 

hinder the disintegration of the lyophilisates. Lysozyme, on the other hand, showed a 

continuous positive slope of the immersion-force curve, which points to an elastic structure 

for which mainly compression takes place instead of breakage. Since the lyophilisate needs to 

fracture into fine particles during the dispersion process, one can easily conclude that 

brittleness and fragility of lyophilisates shown by a plateau in the immersion-force curve of 

the mechanical testing and therefore steady fracture at a constant force are beneficial for a 

good dispersibility and a high fine particle output. By the addition of crystalline excipients it 

was possible to improve the fracture properties of lyophilized lysozyme and consequently the 

FPF. 
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4.2 STORAGE STABILITY OF 12 MG/ML LYSOZYME-4 MG/ML 

PHENYLALANINE-FORMULATION 

During storage the aerosolization performance of the lyophilisates may become reduced and 

amorphous material may recrystallize due to moisture uptake. The formulation was stored at 

25°C and 60% RH or 40°C and 75% RH, as recommended by the International Conference on 

Harmonization [31]. The morphological state of the lyophilisate did not change during storage 

of 3 months. Even during storage at 40°C, which is above the transition point of 

phenylalanine in water where the anhydrous form is more stable [27], phenylalanine remained 

a monohydrate. Furthermore, the partly amorphous phenylalanine state was preserved over 

the storage period. The residual moisture of lyophilisates immediately after freeze-drying was 

less than 1%, which is considered optimal for storage stability [21]. The moisture content of 

the freeze-dried formulation increased during storage. The higher the storage temperature, the 

greater was the increase in moisture content, which agrees with other storage stability studies 

[23, 32]. Residual moisture in the stopper is often responsible for the moisture uptake of the 

formulation up to an equilibrium value which is characteristic for the product, amount of 

product, and stopper treatment method, whereby the time to the equilibrium is dependent on 

the temperature [22]. Lyophilisates stored at 25°C did not reach the equilibrium of greater or 

equal to 2.7% within three months. Since water has a plasticizing effect on amorphous 

materials [33], variations in the mechanical characteristics were expected. Nevertheless, the 

mechanical property of the formulation did not change for all storage conditions and time 

periods. Potentially the crystalline component had a stabilizing effect on the mechanical 

behavior of the lyophilisate. The cascade impactor measurements demonstrated that an 

increased moisture content was not detrimental for the aerosolization performance of the 

formulation. 

4.3 VARIATION OF THE FPF BY VARIATION OF THE FREEZING METHOD 

As the manner of ice crystal formation and growth during the freezing process fixes the 

texture and porosity of the final dried product, the degree of supercooling, the freezing rate, 

and the time required for complete solidification directly impact ice crystal morphology [14]. 

In general, freezing methods for which supercooling exceeds 5°C result in a freezing of 

samples by global supercooling, which causes a spherulitic morphology. This was the case for 

lyophilisates prepared with standard shelf-ramped freezing, annealing, and precooled shelf 

freezing. Directional solidification, in contrast, is often seen at very high cooling rates, or 
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when ice nucleation is induced close to the equilibrium freezing point [14]. Lyophilisates 

frozen by directional solidification show lamellar plate morphology [34], which was in this 

study only observed for freezing by immersion in liquid nitrogen. It causes extreme 

temperature gradients along the vial bottom and sides, resulting in directional solidification 

from those surfaces inward [16]. The microscopic morphology of both liquid nitrogen frozen 

formulations showed the characteristic thin pores of lamellar-orientation in the direction from 

outside toward the middle. A supercooling of less than 5°C occurred also for the controlled 

nucleation at -3°C by vacuum-induced freezing. Nevertheless, these formulations were frozen 

by global supercooling, which resulted in spherulitic pore morphology visible on the bottom 

of the lyophilisates (Figure 9a). In addition, observation of the formulations during the 

freezing process showed a sudden change in the appearance of the vial content from a clear 

liquid to an opaque/translucent slush, which is indicative of global supercooling [35]. 

As Table 1 summarizes, the different freezing processes applied resulted not only in a varied 

morphology but also in a variation of cake characteristics and aerosolization performance. For 

both lysozyme formulations (with 4 mg/ml phenylalanine or 6 mg/ml valine), freezing in 

liquid nitrogen and vacuum induced freezing demonstrated the best results for ED and FPF by 

about doubling again the FPF related to metered dose. In the following, differences and 

commonalities of the samples prepared by the different freezing procedures are discussed in 

order to understand underlying mechanisms of the aerosolization performance improvement. 

The physical state of the compounds in a lyophilisate can be influenced by the freezing 

procedure. In addition to enabling rearrangement and growth of ice crystals, annealing or 

thermal treatment of frozen systems is a process which facilitates crystallization of a bulking 

agent such as glycine or mannitol [13]. On the other hand, fast freezing, for example by 

immersion into liquid nitrogen, can prevent solutes from crystallizing. XRD, however, 

showed no differences in the peak height of the different frozen lyophilisates. Thus, no further 

crystallization of phenylalanine occurred during annealing and fast freezing by immersion 

into liquid nitrogen did not prevent valine or phenylalanine from crystallization. 

For the differently frozen lyophilisates, texture analysis revealed a different mechanical 

behavior. Because the physical state remained the same, the differences must be a result of the 

structural properties. Conventional shelf-ramped freezing and annealing resulted, for all 

samples, in an immersion-force curve with a plateau that indicates brittle cake fracture. Both 

samples prepared by precooled shelf freezing demonstrated a steeper slope of the immersion- 
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Table 1: Results overview of the cake characteristics and aerosolization performance of 

lysozyme/phenylalanine or lysozyme/valine lyophilisates prepared with different freezing 

procedures. 

Lyozyme 12 mg/ml + phenylalanine 4 mg/ml 

 

standard 
shelf-ramped annealing 

precooled 
shelf 

liquid 
nitrogen 

vacuum 
induced 

pore structure spherulitic spherulitic spherulitic lamellar spherulitic 
mechanical 
testing 

force plateau 
at 0.08 N 

force plateau 
at 0.07 N 

force plateau 
at 0.09 N 

constant slope 
of 0.06 N/mm 

force peak 
max at 0.09 N 

disintegration 
characteristics 

fast,  
within 25 ms 

fast, 
within 25 ms 

within 50 ms fast into 
voluminous 
particles 

into subunits 
and scaling 
off  

ED 63% 72% 79% 88% 80% 
FPF (ED) 27% 29% 38% 44% 49% 
FPF (MD) 17% 21% 30% 39% 39% 
particle 
morphology 

platelet-like - - fluffy, porous fluffy, porous 

particle size 10-30 µm - - 80 µm 110 µm 

      Lysozyme 12 mg/ml + valine 6 mg/ml 

 

standard 
shelf-ramped annealing 

precooled 
shelf 

liquid 
nitrogen 

vacuum 
induced 

pore structure spherulitic spherulitic spherulitic lamellar spherulitic 
mechanical 
testing 

force plateau 
at 0.09 N 

force plateau 
at 0.09 N 

force plateau 
at 0.11 N 

constant slope 
of 0.03 N/mm 

force plateau 
at 0.16 N 

ED 69% 73% 75% 86% 73% 
FPF (ED) 20% 17% 22% 30% 32% 
FPF (MD) 14% 13% 16% 25% 23% 
 

force-curve until the plateau was reached, suggesting that a higher force was needed to break 

at least the upper half of the cake. Freezing on a precooled shelf can cause an enormous 

temperature gradient throughout the fill volume, which leads to smaller pores at the bottom 

and large pores near the top [14] as observed in this study. Phenylalanine samples from 

vacuum-induced freezing demonstrated a peak at the beginning of the immersion-force-curve, 

indicating that a higher force was needed to break the top part. Compared to the other freezing 

methods, the microscopic picture revealed a very dense upper surface of this sample, which 

therefore can explain the harder and more destruction resistant structure. The reduction of the 

pressure to 600 mtorr for vacuum-induced freezing results in an evaporation of water, which 

lowers the temperature on the surface of the solution and induces ice nucleation [17]. During 

this vaporization process, the solutes concentrate at the surface [12] and thus form a dense 

upper surface layer. Both formulations frozen in liquid nitrogen showed a constant slope of 

the immersion-force-curve without a plateau and thus demonstrated an elastic behavior. These 
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sample characteristics conflict with the above conclusion that brittleness of the lyophilisate 

instead of an elastic behavior is beneficial for a good disintegration and a high fine particle 

output. This demonstrates, however, that there must be several factors influencing the 

aerosolization behavior which more or less can compensate for other characteristics. While a 

brittle structure can improve the disintegration behavior for lyophilisates with a spherulitic 

morphology, it is not essential for good disintegration of samples with a special morphology 

such as the narrow lamellar oriented pores resulting from directional solidification. Possibly, 

the narrow pore structure does not fracture in the same way as the spherulitic pores but 

particles form due to separation and rupture of the lamellae. 

High speed camera recordings demonstrated quick and complete disintegration of 

lyophilisates frozen in liquid nitrogen into voluminous particles. Consequently, the directional 

lamellar pore structure of the cake can easily disaggregate into particles without the need of 

superfine breakup. SEM showed highly porous particle agglomerates with a huge geometric 

size of about 110 µm but an aerodynamic size in the respirable size range. Therefore, these 

porous particles must have a very small density. The harder samples of vacuum-induced or 

precooled shelf freezing disintegrated first into smaller pieces, from which fine particles were 

scaled off continuously. SEM revealed that cakes from vacuum-induced freezing disintegrated 

also into porous particles which had a bigger geometric size of about 80 µm compared to the 

conventionally frozen samples with a geometric particle size of approx. 20 µm. Porous 

particles with a big geometric size and a low density are therefore advantageous for a high ED 

and FPF, which can be most effectively achieved by freezing by immersion in liquid nitrogen 

prior to lyophilization. It has been already demonstrated in literature that porous particles can 

be efficiently aerosolized from standard DPIs, exhibiting elevated respirable fractions. These 

porous particles were produced by spray drying [36]. 

Despite good performance of the sample frozen in liquid nitrogen, one should consider that 

freezing sensitive proteins by immersing the vial in liquid nitrogen can result in increased 

protein aggregation or decreased enzyme activity compared to a slow cooling rate [37]. The 

reason for this is the formation of higher surface areas by quench freezing [35], resulting in 

increased surface denaturation at the ice-water interface. A protection can be achieved by the 

addition of surfactants as cryoprotectants [37]. Furthermore, freezing in liquid nitrogen is not 

appropriate for full-scale GMP production of sterile pharmaceuticals [34]. Vacuum-induced 

freezing, in contrast, can be considered more suitable for production scale. 
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5 SUMMARY AND CONCLUSION 

This study demonstrates two methods for a successful improvement of the FPF of a 

lyophilization-based novel formulation for inhalation. This includes the addition of excipients, 

as well as the variation of the lyophilisate structure by varying the freezing method. It was 

also possible to demonstrate some underlying mechanisms responsible for the improved 

disintegration and aerosolization behavior of the lyophilized formulations. Furthermore, 

storage stability and unchanged aerosolization property of a selected formulation was 

demonstrated.  

In summary, the FPF of lyophilized lysozyme formulations could be enhanced by addition of 

the crystalline excipients phenylalanine or valine. The amount of excipient added was less 

important. The crystalline excipients improved the fracture properties of the lyophilisate and 

enhanced its dispersibility and fine particle output. Additionally, crystals possibly coated with 

a thin layer of amorphous material resulted in a rough surface of the fragments which reduced 

particle aggregation and adhesion to vial and capillary surfaces and therefore enhanced the 

ED.  

Storage at 25°C/60% RH and 40°C/75% RH for three months demonstrated physical stability 

and unchanged aerosolization performance, despite a slight increase in the moisture content. 

Possibly, the crystalline excipients served as mechanical stabilizers. 

Different freezing methods resulted not only in different pore structures of the lyophilisates 

but also in a variation of the mechanical properties as well as in the aerosolization behavior. A 

further improvement of the FPF of lyophilized lysozyme formulated with phenylalanine or 

valine could be achieved by freezing in liquid nitrogen or by vacuum-induced freezing at 

-3°C. Considering the mechanical behavior of these different frozen lyophilisates, it was 

obvious that not only improved fracture properties of the lyophilisates can have an enhancing 

effect on the fine particle output. In addition, a special structure, such as the fine directional 

lamellar pore structure resulting from freezing in liquid nitrogen, could positively affect the 

ED and FPF. This special structure disaggregated quickly and completely into particles having 

good aerodynamic properties without the need of superfine breakup. The resulting fine 

particles had a geometric size of about 110 µm but an aerodynamic size in the respirable size 

range because of a low density and high porosity.  
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In conclusion, the novel formulation for inhalation based on dispersion of lyophilisates 

enabled an improvement of the FPF by different strategies. This included the utilization of 

excipients showing good disintegration properties as well as the variation of the lyophilization 

process. The freezing method, in particular, resulted in a variation of the lyophilisate structure 

and thereby affected its aerosolization properties. 
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Chapter 6 

Effect of Variation of the Lyophilisate Morphology 
on the Fine Particle Fraction 

Abstract 
New inhaler devices as well as innovative dry powder formulations are important areas of 

research in advanced pulmonary drug delivery. A novel dry powder inhalation system based 

on dispersion of lyophilisates is an interesting technology which was proposed recently. 

Produced via freeze-drying, the system offers the possibility to adapt the inhaled powder 

quality by varying the characteristics of the coherent bulk from which the aerosol is produced. 

Lyophilisates of several model compounds including phenylalanine, valine, lactose, trehalose, 

and cromolyn sodium were investigated. Variations of the solid matrix structure of the 

lyophilisate were achieved by changing the freezing procedure as part of the lyophilization 

process and by addition of tertiary butyl alcohol as co-solvent. The applied freezing methods 

enabled to generate different pore structures of the lyophilisates, which again allowed 

variation of the mechanical properties of the lyophilisates. Only strong changes in the solid 

matrix characteristics, such as a lamellar-oriented morphology or a loss of the ordered 

structure by consolidation compared to the conventional spherulitic morphology, caused 

significant changes in the aerosolization performance. Samples comprising a fine lamellar 

pore morphology (by freezing in liquid nitrogen) were beneficial with respect to emitted dose 

(ED) and predominantly also with respect to fine particle fraction. The ED of liquid nitrogen 

frozen valine cakes, for example, increased to 85% and the FPF doubled. Lactose, trehalose, 

and phenylalanine cakes rendered also an increased ED to 78%, 56%, and 72%, respectively. 

This special structure disaggregated quickly and completely into large, highly porous particles 

with good aerodynamic properties, despite of an elastic behavior of the lyophilisate. The 

addition of tertiary butyl alcohol in the range of 5% to 20% as a co-solvent led to large 

needle-shaped ice crystals resulting in an elastic, lamellar structure and in most cases also 

increased ED of larger particles. Cromolyn sodium samples prepared from 5% to 20% TBA 
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solutions exhibited an increased ED of approx. 70% compared to 48% for the water based 

lyophilisate. Overall, this study also revealed a great influence of the material property, when 

comparing the different compounds tested, on the lyophilisate characteristics and the 

aerosolization performance.  

1 INTRODUCTION 

For the successful development of dry powder inhalation products (DPIs), the focus has to be 

on both the inhaler device and on the powder formulation [1, 2]. With regard to novel, 

improved powder formulations, a variety of new particle engineering methods emerged such 

as direct controlled crystallization, spray drying and spray freeze-drying, particle formation 

from liquid dispersed systems as well as supercritical fluid technologies [1]. For DPIs, the 

disadvantage of inspiratory flow-dependent de-agglomeration of the powder [3] of the mainly 

breath-activated passive devices was compensated by the introduction of active inhaler 

devices. These devices use, for example, compressed air (Nektar Pulmonary Inhaler [4] or 

Aspirair [5]), a pressurized gas (Pressurized Aerosol Dry-Powder Device [6]), or a high 

frequency piezoelectric vibrator (MicroDose DPI [7]) for powder deagglomeration and 

aerosolization. The combination of an active device with appropriate formulation technologies 

offers a promising approach to minimize patient to patient variation and improve efficacy 

across the full range of patient groups [5]. Yamashita et al. [8] introduced a new active system 

for disintegration of a freeze-dried product into inhalable particles by impacting air at the time 

of inhalation. The formulation is thereby stored as a coherent bulk, avoiding formulation 

problems like poor flowability and redispersibility of powders. Freeze-drying as a 

manufacturing process entails on the one hand accurate dose metering, high preparation yield, 

and suitability for thermolabile (bio)pharmaceuticals but on the other hand it is energy 

intensive and time consuming [9]. Additionally, it could possess the disadvantage of batch 

nonuniformity according to the stochastic nature of ice crystallization [10]. Freezing fixes the 

ice crystal structure and determines cake appearance by the retention of the solid matrix. 

Therefore, freezing is a very critical step in the freeze-drying process [11]. During the 

disintegration process, the lyophilisate structure is completely destroyed and fragments of the 

former pore walls form agglomerative particles with a new morphology (Chapter 3). If 

changes in the matrix morphology affect the aerosolization process, this characteristic could 

potentially be used for an intentional variation and possibly for an optimization of the fine 

particle output. The impact of several freezing process variations on the matrix morphology is 
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already described in the literature and in Chapter 5. The most prevalent freezing method used 

in the pharmaceutical industry is shelf-ramped freezing [12]. It shows a low ice nucleation 

temperature and fast ice crystal growth resulting in a high number of small spherulitic ice 

crystals. Equilibration of the vials at a lowered shelf temperature or two-step freezing with a 

“supercooling” holding is a modification of the shelf-ramped freezing process to obtain a 

more homogeneous temperature distribution across the total fill volume and thus freezing [11, 

13]. Annealing is a secondary holding step after an initial freezing at a temperature above the 

final freezing temperature and is generally performed to allow for complete crystallization of 

crystalline components [13]. The annealing step enables also a rearrangement and further ice 

crystal growth [14]. For freezing on a precooled shelf, higher nucleation temperatures as well 

as slower freezing rates from vial bottom to top compared to shelf-ramped freezing are 

observed and result in a large heterogeneity between vials [10]. The temperature gradient 

inside the sample leads to smaller pores at the bottom and larger pores near the top [15]. 

Immersion of vials in liquid nitrogen is a very fast cooling method where freezing occurs by 

directional solidification, resulting in small lamellar-oriented pores [16]. Vacuum-induced 

freezing allows controlled ice nucleation at a defined temperature. The ice nucleation starts at 

the top surface, followed by a top-down freezing resulting in vertical ice crystals [11]. Besides 

different freezing processes, the presence of high melting point solvents such as tertiary butyl 

alcohol (TBA) results in solvent crystallization between the ice matrix altering the crystal 

habit of the formed ice [17]. Depending on the TBA concentration, the freezing of the co-

solvent system results in crystals of different size and shape [18]. The aim of this study was to 

evaluate the impact of different lyophilisate morphologies on their aerosolization performance 

and applicability for dry powder inhalation. Therefore, six different freezing methods as part 

of the lyophilization process were applied using solutions of several model substances (valine, 

phenylalanine, lactose, trehalose and cromolyn sodium). The morphology and the mechanical 

properties of the lyophilisates were analyzed. The aerosolization performance was assessed by 

the use of high speed camera recordings, emitted dose (ED), and fine particle fraction (FPF) 

analysis as well as investigation of particle morphology. In a second approach, several 

TBA/water co-solvent systems were evaluated according to their ability to change lyophilisate 

properties and aerosolization performance. In order to possibly explain material related 

differences in lyophilisate characteristics and aerosolization performance of different 

substances, mechanical properties of the pulverized freeze-dried substances were additionally 

evaluated by compaction analysis. 
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2 MATERIALS AND METHODS 

2.1 MATERIALS 

Substances used in this study were L-valine (Val), lactose-monohydrate (Lac), cromolyn 

sodium (CS) (all Fagron GmbH&Co. KG, Barsbüttel, Germany), L-phenylalanine (Phe) 

(Merck KGaA, Darmstadt, Germany) and trehalose (Tre) (Hayashibara Co Ltd, Okayama, 

Japan). Solutions were prepared with highly purified water (Purelab Plus, Elga LabWater, 

Celle, Germany).  

2.2 FORMULATION PREPARATION (AQUEOUS SOLUTIONS) 

1 ml aqueous solutions of 12 mg/ml of valine, lactose, trehalose and cromolyn sodium or 

8 mg/ml of phenylalanine was filled into 2R glass vials (Fiolax® clear, Schott AG, Müllheim, 

Germany) and vials were equipped with rubber stoppers (1079-PH 701/40/ow/wine-red, West 

Pharmaceutical Services, Eschweiler, Germany). Freeze-drying was carried out in a 

laboratory scale freeze-drier (Lyostar II, FTS Systems, Stone Ridge, NY, USA). The samples 

were frozen at -1°C/min to -45°C for 1 h. Primary drying was performed at a shelf 

temperature of -15°C (shelfs were ramped at +0.2°C/min) and a pressure of 100 mtorr for 

30 h. For secondary drying the shelf temperature was increased to +30°C at a ramp rate of 

+0.1°C/min for 10 h. Five additional freezing methods were tested and compared to the 

standard procedure: 

- Shelf-ramped freezing including two holding steps: The samples were frozen at 

-1°C/min to -45°C including 30 min holding steps at 5°C and -5°C. 

- Annealing at -10°C for 10 h: The samples were frozen at -1°C/min to -45°C with a 

hold at -45°C for 1 h, followed by a shelf temperature increase to -10°C at +1°C/min 

and annealing for 10 h at -10°C before the samples were frozen again at -1°C/min to 

-45°C with another hold at -45°C for 1 h. 

- Precooled shelf at -70°C: The samples were placed on a precooled shelf at -70°C for 

1.5 h.  

- Freezing in liquid nitrogen: Samples were immersed in liquid nitrogen for 1 min and 

were subsequently placed on a precooled shelf at -45°C. 

- Vacuum-induced freezing at -3°C: The samples were equilibrated on the shelfs at -3°C 

for 1 h. According to [11] the chamber was evacuated as fast as possible to 600 mtorr 



Effect of Variation of the Lyophilisate Morphology on the Fine Particle Fraction 

  113 

to induce freezing. Subsequently, the shelf temperature was decreased to -45°C for 1 h 

at -3.5°C/min. 

2.3 FORMULATION PREPARATION (TBA/WATER CO-SOLVENT SYSTEMS) 

Four different TBA/water co-solvent systems were produced by mixing TBA (Sigma-Aldrich 

Chemie GmbH, Steinheim, Germany) with highly purified water at 5%, 10%, 20% or 

70% w/w TBA. Formulations were prepared by solving cromolyn sodium or valine at 

12 mg/ml or 8 mg/ml trehalose in the different co-solvent systems. In each case 1 ml of the 

formulation was filled into 2R glass vials, equipped with rubber stoppers and freeze-dried 

using shelf-ramped freezing including two holding steps as described above.  

2.4 X-RAY DIFFRACTOMETRY (XRD) 

The lyophilisates were investigated with a Seifert X-ray diffractometer XRD 3000 TT 

(Seifert, Ahrensburg, Germany) equipped with a copper anode (40 kV, 30 mA, wavelength 

154.17 pm). The samples were measured from 5 – 40° 2-Ө at a step rate of 0.05° 2-Ө with 2 s 

measuring time per step. 

2.5 MECHANICAL TESTING OF LYOPHILISATES 

The mechanical properties of the lyophilisates were investigated using a Texture Analyzer 

(TA.XT.plus, Stable micro Systems, Godalming, United Kingdom) equipped with a 5 kg load 

cell and a cylindrical stainless steel probe with a diameter of 5 mm at a test speed of 1 mm/s 

and a maximal immersion into the lyophilisate of 5 mm. 

2.6 DEVICE 

The lyophilized formulations were dispersed into aerosols using a custom-designed inhaler 

(Chapter 2). Briefly, it consists of two capillaries with a diameter of 0.75 mm pierced through 

the stopper of the vial housing the lyophilisate. One capillary is the air inlet, the other 

capillary the air outlet, which is connected to the mouthpiece. Compressed air is stored in a 

20 ml pressure reservoir at a pressure of 3 bar. Pressing a lever releases the compressed air 

through the inlet capillary, thereby starting dispersion of the powder. 
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2.7 FINE PARTICLE FRACTION (FPF) ANALYSIS 

The FPF was measured using a short stack version of the Andersen cascade impactor (ACI) 

(8-Stage Non-Viable Sampler Series 20-800, Thermo Andersen, Smyrna, GA, USA) at a flow 

rate of 39 l/min (corresponds to a pressure drop of 4 kPa with the HandiHaler®). Baffle plates 

were coated with a solution of 83% glycerin (AppliChem GmbH, Darmstadt, Germany), 14% 

ethanol (central supply LMU, Munich, Germany) and 3% Brij 35 (Serva Electrophoresis 

GmbH, Heidelberg, Germany). Filters used were type A/E glass fiber filters 76 mm (Pall 

Corporation, Ann Arbor, MI, USA). By removing stages 2 to 7, the whole FPF (particle 

fraction <4.94 µm) is collected on the filter directly below stage 1 and can easily be quantified 

by weighing the filter before and after powder deposition. The emitted dose (ED) was 

measured by weighing the vial before and after aerosolization and calculated as the 

percentage of the metered dose (MD). The FPF was calculated as the percentage of the ED 

and of the MD. The measurements were performed in triplicate. 

2.8 MICROSCOPY 

The morphology of the lyophilisates was analyzed by digital light microscopy (VHX-500F, 

Keyence Corporation, Osaka, Japan) equipped with a VH-Z20R objective with variable 

lighting.  

The particle morphology of the dispersed fine particles was analyzed with a Jeol Scanning 

Electron Microscope (JSM-6500F, Jeol, Ebersberg, Germany) at 5 kV. Sample preparation 

was performed using a second short stack version of the ACI where stages 3 to 7 have been 

removed. Conductive self-adhesive tape (Ø 12 mm Leit-Tabs, Plano GmbH, Wetzlar, 

Germany) was placed on the coated baffle plate after stage 2. The particles collected on the 

tape therefore have an aerodynamic cut off diameter between 4-4.94 µm at a flow rate of 

39 l/min (Chapter 3). The samples were sputtered with carbon under vacuum. 

2.9 HIGH SPEED CAMERA RECORDING 

The aerosolization behavior of the lyophilisates in the vial was recorded using a Fastcam 1024 

PCI (Photron, San Diego, CA, USA) with a sample rate of 1000 fps. 
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2.10 MECHANICAL PROPERTY TESTING OF FREEZE-DRIED SUBSTANCES VIA 

COMPACTION 

5 ml of higher concentrated aqueous solutions of valine (50 mg/ml), phenylalanine 

(20 mg/ml), lactose (100 mg/ml), trehalose (100 mg/ml), and cromolyn sodium (100 mg/ml) 

were filled into 10R glass vials (Fiolax® clear, Schott AG, Müllheim, Germany) equipped 

with rubber stoppers (1319 PH 4023/50, gray, 20 mm, West Pharmaceutical Services, 

Eschweiler, Germany) and freeze-dried. The samples were frozen at -1°C/min to -45°C for 

2.5 h. Primary drying was performed at a shelf temperature of -18°C (shelfs were ramped at 

+0.1°C/min) and a pressure of 100 mtorr for 50 h. For secondary drying the shelf temperature 

was increased to +30°C at a ramp rate of +0.1°C/min for 10 h. 

The mechanical properties of the freeze-dried solid substances were analyzed with a 

compaction simulator (Flexitab®, Röltgen GmbH & Co. KG, Solingen, Germany) at a 

compression pressure of approx. 18 kN. The lyophilisates were scraped out of the vials and 

150-300 mg powder was filled into a 10 mm cylindrical biplane die while the lower indenter 

was positioned at -8.5 mm. To facilitate compaction of freeze-dried lactose and trehalose, the 

die was lubricated with oleic acid. During compression, compact heights and compression 

loads were measured. These recorded data of the compaction process and the measured true 

density (see below) were used to generate an “in die” Heckel plot for which the relative 

porosity (Drel) was plotted against the applied pressure (P). The Heckel parameters were 

determined by regression analysis of the terminal linear part of the compression phase of the 

Heckel plot. The slope of the linear regression is the Heckel constant (k) and A the intercept 

according to: 

ln �
1

1 − 𝐷𝑟𝑟𝑟
� = 𝑘 ∗ 𝑃 + 𝐴 

The mean yield pressure is inversely proportional to the slope and renders the material’s 

resistance to deformation. The elastic recovery is calculated as the compact height during 

decompression related to the minimum compact height in percent. Relaxation is the increase 

of compact height in percent after the maximum pressure was reached. Six compaction 

analyses were performed for each substance. 

The true density of the powder was assumed to be equal to the density after compaction at 

approx. 50 kN, calculation using the dimensions at maximum pressure and the weight of the 

compact. Measurements were performed in triplicate. 
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3 RESULTS 

3.1 VARIATION OF THE FREEZING PROCESS 

The freezing step is a key element in lyophilization [19] because the cake structure is 

controlled by the retention of the solid matrix structure formed by freezing [11]. A variation of 

the freezing process and thereby a variation of the ice crystal shape and dimensions 

determines size and morphology of the resulting pores. In this study different freezing 

methods were applied to solutions of the amino acids phenylalanine and valine, the sugars 

lactose and trehalose, as well as the model drug cromolyn sodium to evaluate influences of 

the freezing process on characteristics and ultimately the aerosolization behavior of these 

lyophilisates. Besides the conventional shelf-ramped freezing at -1°C/min, the following five 

additional freezing methods were selected: The addition of two holding steps at 5°C and -5°C 

(to ensure a better equilibration of the solution temperature), the addition of an annealing step 

at -10°C for 10 h, freezing on a precooled shelf at -70°C, freezing by immersion into liquid 

nitrogen, and vacuum-induced freezing at -3°C. An overview of the results is provided in 

Table 1. 

At first, the physical state of the lyophilisates was characterized by XRD. Independent of the 

freezing process, the amino acid lyophilisates showed the crystalline peak pattern of valine 

and phenylalanine monohydrate, respectively. Valine demonstrated the characteristic main 

peaks at 7.45°, 14.75°, 22.2°, and 29.7° 2θ. The characteristic peaks of phenylalanine-

monohydrate were located at 6.55, 14.85, 21.5, and 26.35° 2-θ. Freeze-dried lactose, 

trehalose, and cromolyn sodium were in all cases present in the amorphous state. 

3.1.1 Microscopic appearance 

For the normal shelf-ramped freezing at -1°C/min, microscopy revealed a sponge-like matrix 

with spherulitic pores at the top of the cake and the pore size between 70 and 170 µm 

depending on the substance. Valine and cromolyn sodium exhibited the smallest and 

phenylalanine the biggest pore diameters. The valine lyophilisate demonstrated a whitish 

crystalline skin on the top where crystals were partly arranged in rosettes. In comparison to 

the top, pores at the bottom of the cake were smaller with pore diameters of 30 to 40 µm 

except for the phenylalanine lyophilisate, which demonstrated both small pores and areas with 

pores of approximately 90 µm. Freezing with annealing caused a complete loss of the ordered 

spherulitic pore structure for lactose (Figure 1a) and trehalose lyophilisates with a translucent  
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Table 1: Tabular overview of the freezing process variation results 

 -1°C/min -1°C/min 
with hold 

annealing precooled 
shelf 

liquid 
nitrogen 

vacuum 
induced 

Valine 
Physical state crystalline crystalline crystalline crystalline crystalline crystalline 
Lyophilisate 
morphology 

spherulitic spherulitic - spherulitic lamellar spherulitic 

Pore size 
[µm] 

top: 65 
bottom: 40 

- - top: 70 
bottom: 55 

-  
bottom: 60 

Particle 
morphology 

porous 
agglomerates 

- porous 
agglomerates 

- porous 
agglomerates 

- 

Particle size 61 µm - 42 µm - 80 µm - 
Mechanical 
testing 

plateau at 
0.004 N 

plateau at 
0.003 N 

- plateau at 
0.003 N 

slope of 
0.001 N/mm 

plateau at 
0.006 N 

Disintegration 
characteristics 

fast and 
complete 

fast and 
complete 

- fast and 
complete 

fast and 
complete 

fast and 
complete 

ED 73% 77% 50% 71% 85% 67% 
FPF (ED) 8% 9% 9% 9% 19% 10% 
FPF (MD) 6% 7% 5% 6% 16% 7% 
Lactose 
Physical state amorphous amorphous amorphous amorphous amorphous amorphous 
Lyophilisate 
morphology 

spherulitic spherulitic consolidated spherulitic lamellar spherulitic 

Pore size 
[µm] 

top: 80 
bottom: 40 

- top: 100 top: 104 
bottom: 35 

- - 

Particle 
morphology 

porous 
agglomerates 

- Different 
shaped 
fragments 

- porous 
agglomerates 

- 

Particle size 35 µm - 8 µm - 82 µm - 
Mechanical 
testing 

peak of max. 
0.089 N 

peak of max. 
0.088 N 

plateau at 
0.006 N 

peak of max. 
0.105 N 

slope of 
0.035 N/mm 

plateau at 
0.025 N 

Disintegration 
characteristics 

separation 
into subunits 
and scaling 
off1 

separation 
into subunits 
and scaling 
off1 

fast and 
complete 
(finished 
after 100 ms) 

separation 
into subunits 
and scaling 
off 

fast and 
complete 

fast and 
complete 

ED 46% 46% 18% 40% 78% 46% 
FPF (ED) 32% 34% 14% 31% 34% 26% 
FPF (MD) 15% 16% 2% 12% 27% 12% 
Trehalose 
Physical state amorphous amorphous amorphous amorphous amorphous amorphous 
Lyophilisate 
morphology 

spherulitic spherulitic consolidated spherulitic lamellar spherulitic 

Pore size 
[µm] 

top: 110 
bottom: 30 

- top: 140 top: 90 
bottom: 25 

- - 

Particle 
morphology 

- - - - - - 

Particle size - - - - - - 
Mechanical 
testing 

peak of max. 
0.113 N 

peak of max. 
0.088 N 

plateau at 
0.006 N 

peak of max. 
0.118 N 

slope of 
0.041 N/mm 

plateau at 
0.025 N 

Disintegration 
characteristics 

separation 
into subunits 
and scaling 
off1 

separation 
into subunits 
and scaling 
off1 

fast and 
complete 
(finished 
after 100 ms) 

separation 
into subunits 
and scaling 
off 

fast and 
complete 

fast and 
complete 

ED 41% 44% 13% 26% 56% 44% 
FPF (ED) 38% 33% 19% 44% 41% 34% 
FPF (MD) 16% 14% 2% 10% 23% 15% 
  



Chapter 6 

118 

 -1°C/min -1°C/min 
with hold 

annealing precooled 
shelf 

liquid 
nitrogen 

vacuum 
induced 

Phenylalanine 
Physical state crystalline crystalline crystalline crystalline crystalline crystalline 
Lyophilisate 
morphology 

spherulitic spherulitic spherulitic spherulitic lamellar spherulitic 

Pore size 
[µm] 

top: 170 
bottom: 30-
40 / 90 

- top: 170 
bottom: 110 

top: 130 
bottom: 35 

- top: 4 
bottom: 100 

Particle 
morphology 

porous 
agglomerates 

- porous 
agglomerates 

porous 
agglomerates 

porous 
agglomerates 

porous 
agglomerates 

Particle size 70 µm - 74 µm 68 µm 109 µm 91 µm 
Mechanical 
testing 

plateau at 
0.067 N 

plateau at 
0.060 N 

plateau at 
0.079 N 

plateau at 
0.062 N 

slope of 
0.005 N/mm 

peak of max. 
0.108 N 

Disintegration 
characteristics 

separation 
into subunits 
and scaling 
off1 

separation 
into subunits 
and scaling 
off1 

separation 
into subunits 
and scaling 
off1 

separation 
into subunits 
and scaling 
off 

fast and 
complete 

separation 
into subunits 
and scaling 
off1 

ED 49% 43% 38% 63% 72% 68% 
FPF (ED) 57% 59% 61% 45% 42% 55% 
FPF (MD) 27% 25% 23% 29% 30% 36% 
Cromolyn sodium 
Physical state amorphous amorphous amorphous amorphous amorphous amorphous 
Lyophilisate 
morphology 

spherulitic spherulitic spherulitic lamellar 
(bottom to 
top) 

lamellar 
(outside to 
middle) 

spherulitic 

Pore size 
[µm] 

top: 80 
bottom: 30 

- top: 50 
bottom: 30 

top:  lamellar 
bottom: 14 

- top: 15 
bottom: 90 

Particle 
morphology 

porous 
agglomerates 

- porous 
agglomerates 

porous 
agglomerates 

porous 
agglomerates 

porous 
agglomerates 

Particle size 44 µm - 40 µm 75 µm 123 µm 58 µm 
Mechanical 
testing 

plateau at 
0.135 N 

plateau at 
0.153 N 

plateau at 
0.121 N 

slope of 
0.062 N and 
0.017 N 

slope of 
0.070 N 

peak of max. 
0.124 N 

Disintegration 
characteristics 

separation 
into subunits 
and scaling 
off1 

separation 
into subunits 
and scaling 
off1 

separation 
into subunits 
and scaling 
off1 

fast and 
complete 

fast and 
complete 

separation 
into subunits 
and scaling 
off1 

ED 67% 48% 37% 64% 68% 50% 
FPF (ED) 28% 44% 45% 38% 18% 42% 
FPF (MD) 19% 21% 16% 24% 12% 21% 
1incomplete disintegration 

skin on top of the cake. The structure of the valine lyophilisates could not be evaluated due to 

destruction during the ventilation process in the freeze-drier. For phenylalanine lyophilisates, 

the annealing process had no effect on the morphology except that the upper surface skin 

appeared thicker. Cromolyn sodium lyophilisates revealed a more homogenous pore size 

distribution after the annealing step (Figure 1b), with a mean pore diameter of 30 µm. After 

freezing on a -70°C precooled shelf most lyophilisates showed small spherulitic pores of 25-

35 µm at the bottom and bigger pores of 73-100 µm near the top of the cake. The top layer of 

valine lyophilisates was again composed of crystal rosettes, whereas phenylalanine 

lyophilisates showed needle shaped furrows and the sugars lactose and trehalose showed  
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a 

 

b 

 
c 

 

d 

 
e 

 

f 

 

Figure 1: Microscopic appearance of lyophilisates: bottom of 12 mg/ml lactose frozen with 

annealing (a), bottom of 12 mg/ml cromolyn sodium frozen with annealing (b), cross section 

of 12 mg/ml cromolyn sodium frozen on a precooled shelf (c), cross section of 8 mg/ml 

phenylalanine frozen in liquid nitrogen (d), cromolyn sodium 12 mg/ml frozen vacuum 

induced (e) and lactose 12 mg/ml frozen vacuum induced (f).  

rectangular pores on top of the cake. A cross sectional cut of cromolyn sodium lyophilisates 

demonstrated lamellar pores in the direction from bottom to top (Figure 1c) and also the upper 

surface showed a lamellar pore morphology, whereas the bottom of the cakes exhibited very 

small pores of around 14 µm. For all samples freezing by immersion into liquid nitrogen 
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resulted in a fine lamellar morphology in the direction from outside to inside. The cross 

sectional cut (exemplarily shown for phenylalanine in Figure 1d) showed directed narrow 

pores reaching from the walls of the vials towards the middle and finally upwards. Besides 

fine disruptions in lactose and trehalose lyophilisates, liquid nitrogen frozen cromolyn sodium 

cakes exhibited distinctive cracks directing from outside to the middle. Vacuum-induced 

freezing at -3°C resulted in a dense upper layer with small pores for cromolyn sodium 

(15 µm), phenylalanine (4 µm), and valine lyophilisates (not distinguishable). Lactose and 

trehalose lyophilisates demonstrated upward pointing villi on top of the cake and irregularly 

shaped oblong pores at the bottom. The inner pore structure of all lyophilisates is composed 

of spherulitic pores.  

3.1.2 Mechanical characterization of the lyophilisates by indentation 

In order to characterize the mechanical properties of the lyophilisates, texture analyzer 

measurements were performed. The cylindrical probe acts on the lyophilisate by proceeding at 

a constant speed. The resulting force needed for the immersion into the cake and therefore the 

force necessary for its breakage is recorded. For the normal shelf-ramped freezing process 

(Figure 2a), steady fracture of the lyophilisate at a constant force resulting in a plateau was 

found for valine, phenylalanine, and cromolyn sodium lyophilisates at 0.004 N, 0.067 N, and 

0.135 N, respectively. For lactose and trehalose cakes, the immersion-force-curve rose until 

1.7 mm immersion to 0.09 N and 0.11 N, followed by a decreasing force for the next 1 mm of 

immersion, thus demonstrating nonuniform fracture properties. Shelf-ramped freezing with 

two holding steps did not change the mechanical properties of all lyophilisates compared to 

the common shelf-ramped process apart from slightly different force values (Figure 2b). The 

annealing step (Figure 2c) caused a dramatic decrease of the force necessary to fracture 

lactose and trehalose cakes and a modification to steady fracture at 0.006 N. Valine 

lyophilisates were not measurable because of the destruction of the cake mentioned above. 

The mechanical properties of phenylalanine and cromolyn sodium lyophilisates were not 

substantially changed compared to the conventional shelf-ramped freezing. Precooled shelf 

freezing (Figure 2d) resulted in a variation of the mechanical properties only for cromolyn 

sodium lyophilisates. Instead of a plateau the force required for immersion into the 

lyophilisate showed a continuous incline, indicating an elastic behavior where mainly 

compression takes place. Similarly, all liquid nitrogen frozen lyophilisates (Figure 2e) 

demonstrated an immersion-force-curve with an almost constant increase as a result of an 

elastic structure.  Thereby, the slope of the curve differed for different freeze-dried substances  
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a b 

c  d

e  f 

a a  

Figure 2: Mechanical testing of lyophilisates prepared with different freezing methods: shelf-

ramped freezing (a), shelf-ramped freezing including two holding steps (b), shelf-ramped 

freezing including an annealing step (c), freezing on a precooled shelf (d), freezing in liquid 

nitrogen (e) and vacuum induced freezing (f). 
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as follows: 12 mg/ml valine lyophilisates 0.001 N/mm, 8 mg/ml phenylalanine lyophilisates 

0.005 N/mm, 12 mg/ml lactose lyophilisates 0.035 N/mm, 12 mg/ml trehalose lyophilisates 

0.041 N/mm, and 12 mg/ml cromolyn sodium lyophilisates 0.070 N/mm. After immersion of 

the probe an elastic relaxation of the compressed cakes occurred, which confirmed the elastic 

behavior. Vacuum-induced freezing showed again steady fracture at a constant force at 

0.025 N, 0.025 N, and 0.006 N for lactose, trehalose and valine lyophilisates, respectively. For 

phenylalanine and cromolyn sodium lyophilisates, the required force for fracture increased at 

the beginning to 0.108 N and 0.124 N, followed by a decreasing force, demonstrating a harder 

top layer of the lyophilisate. 

3.1.3 Aerosolization characteristics 

The aerosolization of the lyophilisates into inhalable particles was achieved by a custom 

designed inhaler which uses compressed air for dispersion (see Chapter 2 for details). To 

analyze the impact of the freezing process on the aerosolization properties several 

characterization methods were applied. For visualization of the disintegration behavior of the 

lyophilisate in the vial, high speed camera recordings were performed. Figure 3 exemplarily 

shows the impact of the freezing process on the disintegration behavior of 12 mg/ml lactose 

lyophilisates. The cakes prepared by conventional shelf-ramped freezing were separated by 

the impacting and swirling air jet into two to three subunits, followed by a scaling off of fine 

particles (Figure 3a). This was the case for all lyophilisates prepared by conventional shelf-

ramped freezing except for valine cakes, which showed fast and complete disintegration. 

After disintegration, particles swirled in the vial until their escape through the outlet capillary. 

At the end, a larger lyophilisate piece was not disintegrated completely and remained in the 

vial, except for valine cakes. The disintegration process for lyophilisates frozen via shelf-

ramping including holding steps were comparable to the normal shelf ramped freezing for all 

substances (Figure 3b). Annealing revealed a disintegration behavior similar to normal 

freezing for phenylalanine and cromolyn sodium. Lactose and trehalose experienced a very 

fast and complete disintegration whereby almost all particles had left the vial already after 

100 ms (Figure 3c). Valine lyophilisates were not taken into account due to the fact that the 

cake was already fragmented after the ventilation process in the freeze-drier. Precooled shelf 

freezing caused a fast and complete disintegration for cromolyn sodium lyophilisates. For all 

other substances the disintegration behavior was similar to the normal shelf-ramped freezing 

but with an always complete disintegration (Figure 3d). For all substances freezing in liquid 

nitrogen delivered cakes which showed very fast and complete disintegration into fibrous and 



Effect of Variation of the Lyophilisate Morphology on the Fine Particle Fraction 

  123 

voluminous particles (Figure 3e). These particles partly collected in the top region of the vial 

before reentering the swirling air stream and finally escaping through the outlet capillary. 

Vacuum-induced freezing resulted in a fast and complete disintegration for valine, lactose, 

and trehalose lyophilisates (Figure 3f). A disintegration behavior similar to the conventional 

freezing process was demonstrated for phenylalanine and cromolyn sodium lyophilisates, 

whereby the cromolyn sodium lyophilisate disintegrated into more voluminous particles 

compared to cakes which had been conventionally frozen. 

a 

 
b 

 
c 

 
d 
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e 

 
f 

 

Figure 3: High speed camera recordings of lactose lyophilisates prepared with shelf-ramped 

freezing (a), shelf-ramped freezing including two holding steps (b), shelf-ramped freezing 

including an annealing step (c), freezing on a precooled shelf (d), freezing in liquid nitrogen 

(e) and vacuum induced freezing (f). 

3.1.4 Aerosolization performance 

Short stack ACI measurements were performed to evaluate the differently frozen lyophilisates 

with respect to ED and FPF. Figure 4 shows the ED-FPF-plots of the five substances prepared 

with different freezing processes. The ED is thereby plotted against the FPF related to ED 

(right y-axis). From the contour lines and the left y-axis, it is also possible to determine the 

FPF related to MD from the same plot. For valine, lactose, and trehalose lyophilisates 

freezing with holding steps, precooled shelf freezing, and vacuum-induced freezing had no 

significant influence on ED and FPF when compared to the conventional shelf-ramped 

freezing. The annealing step caused a reduction of the ED from 73% to 50% for valine 

lyophilisates and a decreased ED and FPF for lactose and trehalose cakes, resulting in a 

reduction of the FPF related to MD from about 15% to only 2%. Freezing in liquid nitrogen 

resulted in an increased ED for valine, lactose, and trehalose lyophilisates to 85%, 78%, and 

56%, respectively. Additionally, the valine cakes exhibited a twofold elevation of the FPF 

related to ED. With respect to FPF related to ED, the various phenylalanine and cromolyn 

sodium  lyophilisates  showed  a  different  outcome  than  valine,  lactose,  and  trehalose  
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a b 

c  d

e  a

a     

Figure 4: ED versus its related FPF as well as the FPF related to MD of 12 mg/ml valine (a), 

12 mg/ml lactose (b), 12 mg/ml trehalose (c), 8 mg/ml phenylalanine (d) and 12 mg/ml 

cromolyn sodium lyophilisates (e) prepared with different freezing procedures. 
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lyophilisates. Phenylalanine lyophilisates showed a significant increase in the ED for the 

liquid nitrogen frozen lyophilisates from 49% to 72% but a decrease in FPF related to ED 

from 57% to 42%. Compared to the conventional shelf-ramped freezing method all other 

freezing processes had no significant influence on the ED. However, freezing with an 

annealing step rendered a change towards a smaller ED (38%). The cromolyn sodium 

lyophilisate frozen via shelf-ramping revealed a relatively high ED of 67% which could not 

be increased by changing the freezing process. Nevertheless, freezing in liquid nitrogen and 

precooled shelf freezing resulted in about the same ED but showed a reduction in FPF related 

to ED from 28% to 18% for liquid nitrogen freezing, whereas precooled shelf freezing 

exhibited a higher FPF related to ED of 38%. The cakes prepared with an annealing step 

demonstrated again a significant decrease in the ED to 37% but an increased FPF related to 

ED of 45%. 

3.1.5 Particle characteristics 

In order to analyze and compare the geometric particle sizes as well as the structural 

properties of the aerosolized particles they were investigated with SEM. For comparison of 

particles with identical aerodynamic size, the specimens were collected on the baffle plate 

after stage 2 of the ACI, which has an aerodynamic cut off diameter of 4 to 4.94 µm at a flow 

rate of 39 l/min. At the border of the impacted particle spots it was possible to observe 

particles which were clearly separated from each other. These isolated particles were used for 

comparison of geometric particle sizes and morphological properties. The particles were 

composed of agglomerates of smaller fragments. Particles generated from valine, lactose, and 

trehalose lyophilisates showed altered particle morphologies for those samples that 

demonstrated a different ED in comparison to shelf-ramped freezing. Exemplarily for lactose 

samples, Figure 5 shows an increasing geometric particle size with increasing ED in the 

following order: lyophilisates frozen with annealing (8 µm), frozen via shelf-ramping 

(35 µm), and frozen in liquid nitrogen (82 µm). Of particular note is thereby an increasing 

porosity combined with decreasing wall thickness of the fragments. The annealing step caused 

a wall thickness of approximately 1 µm, whereas freezing at -1°C/min resulted in 

approximately 0.6 µm and was again reduced to approx. 0.4 µm for freezing in liquid 

nitrogen. Variations in the particle morphologies were less pronounced for phenylalanine and 

cromolyn sodium lyophilisates. For phenylalanine lyophilisates, freezing in liquid nitrogen 

caused particle agglomerates of bigger geometric size and of higher porosity with more 

filigree structures, whereas the annealing step had no influence on the particle morphology. 
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For cromolyn sodium samples, precooled shelf freezing resulted in bigger geometric particle 

sizes compared to normal shelf-ramped freezing but similar structural properties, whereas 

freezing in liquid nitrogen led to even bigger particle sizes with a more porous particle 

morphology. 

a 

 

b 

 
c 

 

d 

 
e 

 

f 

 

Figure 5: SEM structure of particles with an aerodynamic cut off diameter between 4 and 

4.94 µm. Aerosolized 12 mg/ml lactose lyophilisates frozen with annealing (a/b), via shelf-

ramping (c/d) or in liquid nitrogen (e/f). 
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3.2 CHANGING THE ICE CRYSTAL HABITUS USING TBA AS CO-SOLVENT 

The great majority of lyophilized products are freeze-dried from aqueous solutions. The 

presence of an organic co-solvent has been shown to affect the freezing characteristics of the 

solution and to subsequently influence the drying rate and physical appearance of the freeze-

dried product [20]. For the purpose of freeze-drying, the most favored co-solvent is TBA 

because it possesses miscibility with water, a high vapor pressure, freezes completely in most 

commercial freeze-dryers, can increase sublimation rates, and has low toxicity [17]. The size 

and shape of the ice crystals has been found to vary dependent on the concentration of the co-

solvent [18]. In order to alter the lyophilisate morphology and evaluate the effect on 

characteristics and aerosolization behavior, 12 mg/ml solutions of cromolyn sodium and 

valine as well as 8 mg/ml solutions of trehalose with 5%, 10%, 20%, and 70% (w/w) TBA as 

co-solvent were prepared and freeze-dried. None of the substances was soluble in the 70% 

TBA/water co-solvent system, only cromolyn sodium formed a milky crystal suspension after 

ultrasonic treatment and was freeze-dried.  

The morphology of the freeze-dried products was microscopically examined and is 

exemplarily presented for cromolyn sodium samples in Figure 6. In contrast to the aqueous 

lyophilisate with its spherulitic pore morphology (Figure 6a), the sample with 5% TBA 

showed large dendritic pore structures (Figure 6b). Samples with 10% and 20% TBA revealed 

long needle-shaped pores arranged in parallel, as can be seen from Figure 6c/d. A totally 

different appearance was found for the freeze-dried 70% TBA cromolyn sodium crystal 

suspension (Figure 6e/f). The top of the cake showed a coralline morphology composed of 

small spherulitic pores of approximately 25 µm in diameter which homogeneously distributed 

over the whole cake. 

The mechanical properties of the lyophilisates obtained from TBA mixtures were 

characterized using the force necessary for a probe to penetrate into the cake. As already 

reported above, the aqueous cromolyn sodium, valine, and trehalose lyophilisates 

demonstrated steady fracture at a constant force resulting in a plateau at 0.153 N, 0.003 N, 

and 0.013 N, respectively. Samples obtained from 5%, 10%, or 20% TBA containing 

solutions, in contrast, showed an immersion-force-curve with a constant gradient, indicating 

an elastic structure as can be seen for cromolyn sodium lyophilisates in Figure 7. The slope of 

the curves increased with increasing TBA content from 0.020 to 0.071 N/mm. The 70% TBA 

sample in turn exhibited again steady fracture at a smaller force of 0.005 N. The 12 mg/ml 

valine and 8 mg/ml trehalose lyophilisates freeze-dried from a TBA/water co-solvent system  
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Figure 6: Microscopic appearance of freeze-dried TBA/water co-solvent systems. 12 mg/ml 

cromolyn sodium lyophilisates freeze-dried from aqueous solution (a), from the co-solvent 

system containing 5% TBA (b), 10% TBA (c), 20% (d) TBA or 70% TBA: top of the cake (e) 

and bottom of the cake (f). 

demonstrated very soft properties which were below the texture analyzer’s detection limit of 

0.001 N. When doubling the solution concentration of valine to 24 mg/ml, the lyophilisates of 

the TBA/water co-solvent systems demonstrated also an immersion-force-curve with a 

constant gradient between 0.005 and 0.008 N/mm. 
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Figure 7: Mechanical testing of the different TBA/water co-solvent systems of 12 mg/ml 

cromolyn sodium lyophilisates 

The effect of the varied lyophilisate morphology on the aerosolization behavior was evaluated 

based on changes in the ED and FPF of these samples. As can be seen from Figure 8a, 

cromolyn sodium samples prepared with 5%, 10%, and 20% TBA resulted in an increase of 

the ED from 48% to approximately 70% but simultaneously in a strong decrease of the FPF 

related to ED from 44% to approximately 15%. The 70% TBA sample, in contrast, showed a 

decreased ED of 28% and a similar FPF related to ED compared to the aqueous sample. 

Overall, the resulting FPF related to MD of only 10% was the same for all cromolyn sodium 

TBA samples. For valine freeze-dried from different TBA/water co-solvent systems, 

Figure 8b demonstrates a slight increase in ED from 76% to nearly 90%, whereas the FPF 

related to ED remains consistent between 8% and 13%. In contrast, trehalose lyophilisates 

from 5%, 10% and 20% TBA/water systems on the one hand showed a decreased ED from 

49% to 37%, 32%, and 15%, respectively. On the other hand the FPF related to ED increased 

from 25% to around 36% (Figure 8c). 

Aerosolized particles with an aerodynamic cut off diameter between 4 and 4.94 µm were 

investigated with SEM to analyze and compare the geometric particle size and structural 

properties. Cromolyn sodium lyophilisates from the 20% TBA/water co-solvent system 

(Figure 9c) demonstrated a bigger geometric particle size of approximately 100 µm compared 

to the aqueous lyophilisates (52 µm) (Figure 9a). The morphology changed from a smooth 

platelet like structure (Figure 9b) to a wrinkled structure (Figure 9d). For valine lyophilisates 

the particle size of the 20% TBA sample compared to the aqueous sample remained about the 

same of around 94 µm while the particle morphology changed from a very filigree structure  
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a b 

c    

a     

Figure 8: ED versus its related FPF as well as the FPF related to MD of 12 mg/ml cromolyn 

sodium lyophilisates (a), 12 mg/ml valine lyophilisates (b) and 8 mg/ml trehalose (c) 

lyophilisates freeze-dried from different TBA/water co-solvent systems. 

into a more leafy structure. The particle morphology of trehalose samples could not be 

evaluated since the particles smoothened and coalesced upon contact with environmental 

humidity. 
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Figure 9: SEM structure of particles with an aerodynamic cut off diameter between 4 and 

4.94 µm. Aerosolized 12 mg/ml cromolyn sodium lyophilisates frozen from an aqueous 

solution (a/b) and from a 20% TBA/water co-solvent system (c/d). 

3.3 ANALYSIS OF THE MATERIAL PROPERTIES BY COMPRESSION STUDIES 

Compaction of substances with an instrumented press gives the opportunity to analyze 

material properties like the degree of elastic recovery and relaxation of the compact. This 

should allow to draw conclusions whether a substance behaves more elastic, plastic, or brittle. 

All substances used in this study were conventionally freeze-dried at higher solution 

concentrations (lactose, trehalose, and cromolyn sodium at 100 mg/ml; valine at 50 mg/ml, 

and phenylalanine at 20 mg/ml due to their limited solubility in water) for analysis by 

instrumented compaction. From the recorded data, the porosity-pressure function according to 

Heckel [21] was calculated for both the compression and decompression phases (Figure 10). 

The obtained Heckel and compression parameters are outlined in Table 2. For all parameters, 

valine showed markedly different values in comparison to all other substances. The Heckel 

plot of valine powder rendered the smallest slope of 4.7*10-3 and the largest intercept of 1.75. 

The valine compact experienced the smallest relaxation of 0.16% during compression and the  
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Figure 10: Heckel plot of freeze-dried lactose, trehalose, cromolyn sodium, phenylalanine and 

valine powder (one analysis curve shown exemplarily for each substance). 

highest elastic recovery of 8% after load removal. Lactose, trehalose, and cromolyn sodium 

demonstrated rather similar values with respect to the compaction behavior. The compacts 

showed a relaxation between 0.52% and 0.56% and the Heckel plots revealed high slopes of 

around 9*10-3 and small intercepts of around 0.7. The Heckel parameters obtained for 

phenylalanine arranged between the ones from valine and the other three substances with a 

slop of 6.5*10-3 and an intercept of 0.87. The phenylalanine compact, in contrast, experienced 

the highest relaxation of 0.69%. 

Table 2: Characteristic Heckel and compression parameters obtained by compression 

analysis of valine, phenylalanine, trehalose, cromolyn sodium and lactose (± S.D. n=6). 

 val phe tre cs lac 
heckel-slope 
*10-3 

4.7 ± 1.2 6.5 ± 0.5 8.5 ± 0.1 8.9 ± 1.1 8.9 ± 0.4 

heckel-intercept 1.75 ± 0.05 0.87 ± 0.04 0.72 ± 0.05 0.71 ± 0.08 0.73 ± 0.01 
residual 4.80*10-6 2.33*10-6 2.67*10-6 3.33*10-6 1.67*10-6 
max. pressure 
[MPa] 

231 ± 3 227 ± 2 230 ± 2 229 ± 3 227 ± 2 

elastic recovery 
[%] 

8.4 ± 1.7 2.7 ± 1.0 1.9 ± 0.1 4.3 ± 0.6 1.6 ± 0.1 

relaxation 
[%] 

0.16 ± 0.03 0.69 ± 0.04 0.56 ± 0.05 0.54 ± 0.08 0.52 ± 0.3 

yield pressure 
[MPa] 

224 ± 53 154 ± 11 118 ± 2 114 ± 15 112 ± 5 
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4 DISCUSSION 

4.1 VARIATION OF THE FREEZING PROCESS 

The size and shape of ice crystals formed during freezing essentially determines the 

morphology of the resulting pores and thereby controls the solid matrix structure [22]. The 

effect of ice formation is thereby strongly dependent on the degree of supercooling and the 

freezing rate [23]. A high degree of supercooling creates a homogeneous, sponge-like 

structure whereas the cake texture changes to an oriented lamellar structure for samples with a 

low degree of supercooling [15]. A lamellar structure was found in this study for all samples 

frozen in liquid nitrogen and also for cromolyn sodium lyophilisates frozen on a precooled 

shelf. Large thermal gradients promote directional solidification, resulting in a directional 

lamellar morphology with connected pores [12] because secondary nucleation will only 

comprise those areas of the liquid volume with sufficient supercooling [10]. Freezing on the 

-70°C precooled shelf caused a large thermal gradient across the fill height, which was 

particularly pronounced for the cromolyn sodium solution. The freezing of this solution 

occurred with a very low supercooling of 1°C whereas, for example, the precooled frozen 

valine solution exhibited a supercooling of approximately 6°C, showing the normal sponge-

like matrix structure after drying. This agrees with the finding that if supercooling exceeds 

5°C, the solution in general freezes by global supercooling, resulting in a dispersed spherulitic 

morphology [15]. However, vacuum-induced freezing led to a normal sponge-like matrix for 

all substances despite the controlled nucleation at -3°C and therefore little supercooling. 

Liquid nitrogen freezing causes extreme temperature gradients along the vial bottom and 

sides, resulting in directional solidification from those surfaces inward as already reported 

[10, 24]. By studying a model food system, Quast and Karel [25] detected that samples frozen 

in liquid nitrogen cracked intensively during drying, which was also noticed for some 

lyophilisates evaluated in the current study. Among those, cromolyn sodium lyophilisates 

exhibited particularly distinctive cracks. These cracks enhance the water vapor flow during 

drying [25] but also allow to start the disintegration process in the vial with a cake that is 

almost separated into several subunits. For all substances the lamellar cake morphology 

caused an elastic structure, which is indicated by the constant gradient of the immersion-

force-curve lacking a horizontal plateau. Instead of fracture mainly compression of the sample 

takes place, which was also confirmed by the observed elastic relaxation of the compressed 

cake after the immersion of the texture analyzer probe. Nevertheless, considering the 

aerosolization process, an elastic structure as a result of lamellar morphology did not hinder a 
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good disintegration. All samples with a lamellar morphology showed a fast and complete 

disintegration in the high speed camera recordings. This special matrix structure fragments 

into aerosol particles without the need for brittleness. In high speed camera recordings, the 

disintegrated particles appeared more voluminous than particles generated by disintegration of 

a sponge-like cake matrix. SEM confirmed a bigger geometric particle size for the same 

aerodynamic size in the case of particles produced from cakes with lamellar morphology. This 

is possible if the particles exhibit a decreased density, which was demonstrated by the more 

filigree and more porous appearance of these particles in SEM. All freeze-dried substances 

featuring a lamellar matrix showed an increased ED or at least a similar value (in the case of 

an already high ED of samples frozen via shelf-ramping). The increased output from the vial 

can be explained by the enlarged particle size because large particles offer greater contact 

surface to the discharging air flow and show reduced adhesion to surfaces. They demonstrate 

in general increased emission (Chapter 2). For a successful delivery of large particles to the 

lung, these particles need to possess a low density in order to meet the required aerodynamic 

size of less than 5 µm. The group of Edwards and Langer [26, 27] already successfully 

demonstrated the enhanced aerosolization efficiency of large porous particles for inhalation.  

Annealing on the one hand is a process to facilitate crystallization of a bulking agent and on 

the other hand allows the unfrozen water to diffuse through the frozen matrix. This leads to 

ice crystal growth due to a ripening effect which may also create channels as a result of ice 

crystal interconnections [22]. After freezing and complete solidification, the frozen 

formulation is treated at a higher temperature between the glass transition temperature of the 

maximally freeze concentrated solution (Tg’) and the ice melting point for a certain period of 

time before refreezing below Tg’ [22]. All samples demonstrated similar XRD patterns 

compared to the conventionally frozen references. Therefore, no further crystallization or 

recrystallization occurred. The annealing temperature at -10°C is clearly above the Tg’ of 

lactose and trehalose (-28°C and -29°C) [28]. This caused a local collapse phenomenon with 

consolidation of fine amorphous structures, which is similarly reported by Searles et al. [29] 

and by Webb et al. [16] for sucrose and hydroxyethyl starch formulations. This can be 

explained by the fact that the initial morphology has an extremely high surface-to-volume 

ratio, and super-Tg’ annealing allows the system to relax to a morphology with a lower 

interfacial area [29]. The consolidation of the fine structures caused a complete loss of the 

ordered spherulitic morphology, resulting in a disordered network comprising large void 

volume. Solely the translucent skin on top of the cake still showed the spherulitic 

morphology. This loss of the ordered structure was mirrored in the changed outcome of the 
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mechanical testing. Compared to conventionally frozen samples, the annealed lyophilisates 

demonstrated steady fracture at a substantially smaller force because an ordered spherulitic 

structure increases resistance against the pressure of the probe, a principle which is for 

example utilized in lightweight construction [30]. The aerosolization behavior in the vial 

visualized by the high speed camera recordings showed also distinctive changes. These are 

possibly a consequence of the consolidation which results in thicker wall and network 

structures forming less porous particles. Visualizing these particles with SEM, a wall 

thickness of approximately 1 µm compared to 0.6 µm for the conventionally frozen lactose 

sample was observed. It was also noticeable that the particles did not demonstrate the same 

agglomerative highly porous structure as all other lactose samples and therefore exhibited a 

significantly smaller geometric size of 8 µm (Figure 5). As a consequence of these 

characteristics, the ED as well as the FPF decreased. A similar effect was also observed for 

the annealed valine sample despite its crystalline nature. Although the evaluation of the 

lyophilisate structure was not possible, the matrix must be very soft in order to fracture during 

the ventilation process in the freeze-dryer. The aerosolized particles generated from cakes 

which were prepared with an annealing step exhibited a smaller geometric size of 41 µm 

compared to approximately 90 µm of the conventionally frozen lyophilisate, which can be an 

explanation for the reduced ED. Annealing of phenylalanine and cromolyn sodium samples, 

in contrast, showed no significant effects. Microscopy revealed no changes in the lyophilisate 

morphology except of a change to more homogeneous pore size distribution. Mechanical 

testing revealed similar results as for the conventional shelf-ramped freezing. Particle 

morphology and size was neither influenced by the annealing step. This resulted altogether in 

comparable aerosolization behavior and only small variations in ED or FPF.  

Further freezing methods resulting in spherulitic pore morphology are conventional shelf-

ramped freezing, shelf-ramped freezing with holding steps, mostly precooled shelf freezing, 

and vacuum-induced freezing. These solutions froze by global supercooling. Hereby the entire 

liquid volume achieves a similar level of supercooling, and the secondary nucleation zone 

comprises the entire liquid volume [10]. As aforementioned, vacuum-induced freezing 

demonstrated freezing by global supercooling despite of the controlled nucleation at -3°C. 

When nucleation was induced by reduced pressure, the solution in the vial changed suddenly 

from a clear liquid into an opaque/translucent slush, which is indicative of global 

supercooling [12]. The mechanical testing of lyophilisates with a spherulitic matrix mostly 

showed steady fracture at a constant force, which is characteristic of a brittle structure. Only 

small variations were observed such as an increased force needed for fracturing the dense 
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upper layer of phenylalanine and cromolyn sodium samples from vacuum-induced freezing. A 

slightly reduced brittleness of lactose and trehalose samples frozen via shelf-ramping was 

indicated by the observed peak, instead of a horizontal plateau, in the immersion-force-curve. 

For disintegration of a spherulitic matrix, the cake is typically first separated into smaller 

subunits by the impacting air, followed by scaling off of fine particles. Some samples showed 

again small variations. Valine frozen via shelf-ramping, for example, disintegrated fast and 

completely as a result of its very soft structure. Lactose, trehalose, and valine prepared with 

vacuum-induced freezing showed also a fast and complete disintegration process and 

demonstrated a soft matrix structure as well. SEM of the aerosolized particles always showed 

agglomerates composed of smaller fragments, giving the particle a highly porous structure. 

The exact appearance varied among the different substances from more smooth and platelet 

like structures to wrinkled or filigree structures. The fragments of phenylalanine, for example, 

showed always the distinctive netting structure of phenylalanine-monohydrate crystals which 

develop when phenylalanine is freeze-dried (Chapter 3, Chapter 5). For lactose, trehalose and 

valine samples, ACI measurements demonstrated about the same FPF and ED values for all 

lyophilisates with a spherulitic matrix, whereas a changed matrix morphology exhibited a 

significantly different aerosolization performance. Phenylalanine and cromolyn sodium 

lyophilisates did not demonstrate such clear differences for the aerosolization performance of 

various matrix structures. Lyophilisates with a spherulitic matrix showed about the same ED 

and FPF as lyophilisates with a lamellar morphology. 

4.2 CHANGING THE ICE CRYSTAL HABITUS USING TBA AS CO-SOLVENT 

As mentioned before and reported by Kasraian and DeLuca [18], TBA alters the ice crystal 

habitus dependent on the amount of co-solvent added. A concentration of at least 3% TBA 

changes the ice structure to large dendritic ice crystals. The addition of 10% TBA results in 

even finer needle-shaped ice crystals whereas at the eutectic at 20% TBA, the frozen solution 

is composed of small eutectic crystals. The 70% TBA solution corresponds to the melting of 

pure TBA-hydrate and results in the formation of very large hydrate crystals [18]. The 

lyophilisate morphologies of the TBA/water co-solvent systems in the concentration of 5% 

and 10% were in accordance with the appearance reported by Kasraian and DeLuca [18], 

showing large-needle shaped pore structures. Liu et al. [11] reported also the formation of 

needle-like ice crystals for a formulation containing 5% TBA. The 20% TBA system, in 

contrast, did not demonstrate the mentioned small eutectic crystals but also needle-shaped 

structures for all lyophilisates. This can be a consequence of solutes influencing crystal 
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formation. Similarly, the 70% TBA/cromolyn sodium system did not show large pore 

formation due to very large TBA-hydrate crystals but a network of small spherulitic pores. 

Possibly the suspended cromolyn sodium crystals prevented the formation of large TBA-

hydrate crystals. The samples with 5%, 10%, and 20% TBA demonstrated large needle-

shaped aligned pores after freeze-drying. The mechanical testing revealed an elastic structure 

which was comparable to the liquid nitrogen frozen samples mentioned above. The spherulitic 

matrix of the 70% TBA/cromolyn sodium sample, in contrast, exhibited steady fracture at a 

constant force comparable to other samples with a sponge-like matrix described above. The 

aerosolization performance demonstrated a decrease in the ED for the 70% TBA sample 

compared to the aqueous sample for cromolyn sodium despite of the similar spherulitic 

matrix. The lamellar samples with 5%, 10%, and 20% TBA showed an increased ED 

compared to the spherulitic aqueous sample for cromolyn sodium and valine lyophilisates. An 

increase in the ED for samples with a lamellar morphology compared to those with a 

spherulitic matrix structure was also described above for various frozen lyophilisates of 

different substances. Trehalose samples, in contrast, demonstrated a decreased ED despite 

similar cake morphology. The samples showed a very soft cake structure, incomplete 

disintegration is therefore unlikely to occur. Visual inspection of the vial after disintegration 

revealed complete cake disintegration but a large particle fraction was collected at the top of 

the vial. Either the expelling air stream was not able to adequately catch the particles and 

export them out of the vial or most of the particles had a geometric size which was too large 

to escape through the outlet capillary (0.75 mm in diameter). Morphological aspects of the 

particles formed could not be evaluated due to destruction upon contact with environmental 

humidity. Most lyophilisates freeze-dried from a TBA/water co-solvent system demonstrated 

a softer structure in the texture analysis compared to the lyophilisates freeze-dried from 

aqueous solutions and the cake decomposed easily when extracted from the protective vial. In 

the literature, lyophilisates produced from TBA/water co-solvent systems were already 

described as readily breaking apart [31]. Possibly residual solvent levels of TBA act as a 

plasticizer and cause the softening of the lyophilisate structure. Wittaya-Areekul et al. [31] 

demonstrated increased residual TBA levels for higher initial TBA concentrations. The soft 

structure of the 70% TBA cromolyn sodium sample could therefore be a result of high 

residual TBA levels. Wittaya-Areekul and Nail [32] showed in another study that residual 

TBA levels were smaller for the crystallizing excipient glycine in contrast to higher levels for 

the amorphous excipient sucrose. Flink and Karel [33] postulated that residual solvents are 

entrapped within microregions of the freeze-dried solids of carbohydrates rather than being 
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adsorbed to the surface and thus are hard to remove. However, crystalline valine and 

amorphous trehalose exhibited both a softening of the structure for the TBA/water co-solvent 

systems. Possibly, the special lyophilisate structure contributed also to the mechanical 

properties of the cake. Considering intravial homogeneity, Liu et al. [11] obtained the best 

results by implementing two-step freezing or by adding TBA to a concentrated formulation 

with high fill depth. In this study, the TBA samples and the aqueous reference were frozen via 

a two-step freezing, including two holding steps at 5°C and -5°C. The very small standard 

deviations (Figure 8) indicate a good vial to vial homogeneity within the batch. 

4.3 ANALYSIS OF THE MATERIAL PROPERTIES BY COMPRESSION STUDIES 

In order to possibly explain material-dependent differences in lyophilisate characteristics and 

aerosolization performance, the material properties of the different substances were analyzed 

under compression. Under an applied load, materials can undergo brittle fracture or elastic or 

plastic deformation. Compaction profiles were recorded and several parameters like elastic 

recovery, relaxation, Heckel-slope, yield pressure, and Heckel-intercept were calculated to 

evaluate differences in plastic deformation or brittle fracture of the substances used. In order 

to compare compacted samples of different height, the tablet porosity was plotted against the 

pressure to obtain a Heckel plot. The Heckel-intercept is a measure for the degree of 

densification by fragmentation and particle reorganization until plastic deformation begins. 

Lactose, trehalose, and cromolyn sodium showed a similarly small value for the intercept of 

about 0.7 compared to the significantly higher values for phenylalanine and valine. Therefore, 

plastic deformation starts earlier for lactose, trehalose, and cromolyn sodium. Another 

indicator for plastic deformation is a high slope of the linear regression of the Heckel plot or a 

small yield pressure, which is inversely related to the slope and the minimum pressure 

required to cause deformation of the material [34]. Additionally, plastic deformation causes a 

high stress relaxation of the compact because of plastic flow [35]. Lactose, trehalose, and 

cromolyn sodium showed similarly high values for the Heckel-slope of around 0.009 and for 

the relaxation of around 0.5%, demonstrating good plastic deformation. The Heckel plot of 

valine, in contrast, showed the largest intercept of 1.75 and a small slope of 0.0047, indicating 

a high degree of fragmentation during compaction [36]. This was additionally confirmed by a 

small relaxation of 0.16%, which points to a brittle material with a low degree of plastic flow. 

Less consolidation of the powder during compaction results in more elastic recovery [34], 

which is the case for valine demonstrating the highest elastic recovery of 8.4%. This 

exceptionally high elastic recovery could also be a result of entrapped air, which is 
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compressed during compaction and will expand again after load removal [37]. The freeze-

dried valine powder had a very low bulk density despite precompaction and therefore 

included large void volume, which potentially could not escape during the compaction 

process. A high degree of elastic deformation during compaction and entrapped air results in 

weaker tablet strength, leading to higher capping tendencies of the compacts [37]. For valine 

compacts a strong capping was noticed. Phenylalanine compacts showed on the one hand the 

highest relaxation of 0.69%, which points to plastic deformation. On the other hand, 

phenylalanine demonstrated a Heckel-slope of 0.0065 which was significantly smaller than 

the slope of lactose, trehalose, and cromolyn sodium and significantly larger than the slope of 

valine. The elastic recovery of 2.7% is considered small in comparison to all other substances, 

which indicates plastic deformation. In summary, phenylalanine demonstrated a more plastic 

deformation than brittle fracture.  

By comparison of the material properties from compaction studies with the mechanical 

properties of the lyophilisates, the brittle behavior of valine is consistent with the very good 

fracture properties of the lyophilisate from texture analysis. This is indicated by the horizontal 

plateau over the complete way of immersion at small force values (Figure 2a). Phenylalanine 

lyophilisates demonstrated good fracture properties as well because of a relatively leveled 

plateau of the immersion-force-curve over a long way of immersion but at higher force 

values. Trehalose and lactose, in contrast, demonstrated plastic deformation during 

compaction and nonuniform fracture properties at texture analysis because of a force peak 

during immersion instead of a horizontal plateau. Cromolyn sodium, in turn, showed also 

good plastic deformation during compaction but a plateau in texture analysis. However, the 

plateau was first reached after 1.25 mm of immersion and extended only over an immersion 

of 1.5 mm. This demonstrates poorer fracture properties compared to valine or phenylalanine. 

In conclusion, the mechanical properties of the freeze-dried substances estimated by 

compaction roughly agree with the mechanical properties of the lyophilisates measured by 

texture analysis. For the characterization of lyophilisate properties texture analysis is therefore 

considered as a useful and easy to perform analysis. Both methods, however, were not able to 

explain commonalities and differences of the aerosolization performance of different 

substances. The sugars and valine demonstrated a similar correlation between the freezing 

process and the aerosolization performance but markedly different material properties. The 

sugars and cromolyn sodium, in contrast, exhibited similar material properties but different 

effects of varied freezing procedures on the aerosolization performance. This demonstrates 

that parameters affecting the aerosolization performance are way too complex for prediction. 
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The aerosolization performance and its possible variation need therefore to be assessed for 

every new substance. 

5 SUMMARY AND CONCLUSION 

This study evaluates several methods for altering the lyophilisate morphology to influence the 

aerosolization performance of the freeze-dried product. Variations of the solid matrix structure 

of a lyophilisate were achieved by changing the freezing process resulting in a different shape 

and size of ice crystals. Furthermore, the addition of TBA as co-solvent changed the ice 

crystal habitus and therefore also the matrix morphology. Significant changes in the 

aerosolization performance were mostly caused only by a strong variation of the solid matrix 

structure for example by a lamellar-oriented morphology or a loss of the ordered structure by 

consolidation. This shows in turn, that small changes in lyophilisate morphology which arise 

as vial to vial inhomogeneities and batch to batch variations according to stochastic ice 

nucleation [10] or differences in drying kinetics due to radiation phenomena, shelf fluid 

temperature gradients and vapor fluid dynamics in the freeze-drying chamber [38] will not 

dramatically impact the aerosolization outcome.  

In conclusion samples with a lamellar morphology showed good results for the ED and 

dependent on the freeze-dried substance also for the FPF. Analyzed mechanical properties of 

the substances could not explain differences in FPF despite similar cake morphology. A 

lamellar matrix structure was achievable by freezing in liquid nitrogen or for a single case in 

this study by freezing on a precooled shelf. In literature directional solidification was also 

realized by immersion of the vial into dry ice/isopropanol [39] or dry ice/ethanol [14] and for 

samples containing Pseudomonas syringae as nucleating agent [10]. Although all quench 

freezing methods of immersing vials into an extremely cold liquid demonstrate a lamellar 

morphology which showed good aerosolization results, they are not applicable in large scale-

manufacturing [40]. Similarly the addition of P. syringae as ice nucleating agent is also not of 

practical use for FDA-regulated and approved pharmaceuticals products [15]. A TBA/water 

co-solvent system in a TBA range of 5% to 20% demonstrated large needle-shaped ice 

crystals resulting in kind of a lamellar morphology with the characteristic elastic structure and 

mostly high ED. For pharmaceutical product manufacturing, the use of such an organic co-

solvent must be properly estimated taking the following issues into account: proper safe 

handling of the flammable solvent, determination and control of residual solvent levels, 
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qualification of an appropriate GMP purity and the toxicity of the remaining solvent [17]. The 

residual solvent in the final product for TBA is influenced by the initial TBA concentration, 

the freezing rate, and the physical state of the solutes [31]. The fact, that the marketed 

pharmaceutical product Caverject® uses an organic co-solvent system for freeze-drying (20% 

v/v TBA/water system) [17] shows that safety, toxicity and regulatory issues are manageable. 

An important aspect of this study is also the great influence of the material property. The 

diverse substances formed different solid matrix structures varying in pore shape and size 

distribution, wall appearance as well as in the mechanical behavior for the same freezing 

process. The variation of the freezing process again had a variable effect on the lyophilisate 

morphology and mechanical property depending on the selected substance. Altogether this 

can result in a different aerosolization behavior demonstrating a different fine particle output. 

Detected variations were thereby independent of morphological aspects like a crystalline or 

amorphous nature. Similar substances like the two amorphous sugars lactose and trehalose 

showed for all freezing variations the same behavior. The crystalline amino acid valine 

revealed similar results. The crystalline amino acid phenylalanine and the amorphous 

cromolyn sodium in contrast demonstrated different outcomes for the same variations in the 

freezing process compared to lactose, trehalose and valine. Mechanical properties of the 

freeze-dried substance analyzed by compression revealed a decrease of brittle fracture and an 

increase of plastic deformation for the substances in the following order: valine, 

phenylalanine, lactose/trehalose/cromolyn sodium. The different mechanical behavior of 

valine compared to the sugars but a similar aerosolization performance of the various frozen 

samples as well as the similar mechanical behavior of the sugars and cromolyn sodium but a 

different outcome for the aerosolization performance demonstrate, that the evaluation of these 

characteristics are not enough to explain substance related variation. Therefore not only the 

formation of a different crystal structure with different properties or distinct mechanical 

properties are responsible for a variation in lyophilisate characteristics but also other material 

properties of the freeze-dried substance.  
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Chapter 7 

Storage Stability of Lyophilized Formulations for 
Dry Powder Inhalation 

Abstract 
Stability is an essential requirement for a drug product. The novel dry powder inhalation 

system comprises a freeze-dried formulation which is disintegrated into inhalable particles at 

the time of inhalation. In this case, the physic-chemical stability of the lyophilisate has to be 

in the focus and the stable disintegration and lung delivery of these products after storage 

need to be verified and was the subject of this study. Sealed lyophilisates of three different 

model substances (phenylalanine, lactose, and cromolyn sodium) were stored for a three 

month period at 25°C/60% RH and 40°C/75% RH, respectively and changes in lyophilisate 

characteristics as well as aerosolization performance were evaluated. A slight moisture 

absorption up to a maximum of 3% due to residual moisture in the stopper could be observed 

for all substances. This resulted in a softening of the lactose lyophilisate structure. 

Aerosolization performance for all samples, however, was not affected. A marginal but not 

relevant increase of the fine particle fraction or the emitted dose after three months storage 

was observed. In a second part of the study, the effect of higher moisture adsorption during 

unintended open storage at higher humidity was tested. For this purpose, lyophilisates were 

stored at 30% RH and 50% RH at RT for three days without stoppers. Despite substantial 

moisture uptake of the amorphous products, which was reflected in a reduction of the force 

necessary to break the cake structures of most samples, hardly any effect on the aerosolization 

performance was detectable. 
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1 INTRODUCTION 

Dry powder formulations for pulmonary drug delivery, in general, comprise the active 

pharmaceutical ingredient in a size between 1 and 5 µm. These small drug particles have poor 

flow properties and are difficult to disperse due to their highly cohesive nature. To improve 

flow, reduce aggregation and aid in dispersion, the micronized drug particles are typically 

blended with larger carrier particles or are loosely agglomerated [1]. During inhalation, the 

drug particles need to disperse for penetration into the lung. The adhesive (drug-carrier 

interaction) and cohesive (drug-drug interaction) forces should therefore be adjusted to a level 

which not only provides a stable formulation but also allows for easy separation during 

inhalation [2]. It is important to note that the dispersibility of a powder formulation is affected 

by storage relative humidity (RH) whereby, in general, storage at high RH adversely affects 

dispersibility [3]. The mechanisms behind this effect are increased capillary forces, solid 

bridging [4] and increased interactions of nearby particles, which are caused by higher polar 

surface energy due to adsorbed moisture [3]. Since deposition characteristics of dry powder 

formulations are sensitive to moisture, the demonstration of stability in long-term storage is 

required [5]. The International Conference on Harmonization provides guidelines for stability 

testing of new drug substances or drug products which recommend the following storage 

conditions: a long-term storage (minimum 12 months) should be performed at either 

25°C/60% RH or 30°C/65% RH and complemented with an accelerated study (minimum 

6 months) under more extreme conditions of 40°C/75% RH [6]. The novel dry powder 

inhalation system is based on dispersion of lyophilisates. In this system the formulation is 

stored as a coherent bulk and disintegrated into fine particles at the time of inhalation. 

Problems like poor flowability and re-dispersibility are thereby avoided. Freeze-drying is 

widely used to improve long-term storage stability of labile drugs, especially 

biopharmaceuticals [7]. Nevertheless, instabilities during storage can occur which in parts are 

a consequence of moisture uptake. In amorphous products water can act as a plasticizer, 

which reduces the glass transition temperature and could induce recrystallization [8]. These 

changes can affect the mechanical properties of the lyophilisates. To be inhalable, the stable 

disintegration and lung delivery of the lyophilized products need to be verified. The aim of 

this study hence was to evaluate phenylalanine, lactose, and cromolyn sodium lyophilisates 

for inhalation with regard to storage stability of the aerosolization performance, in particular, 

over three month at 25°C/60% RH and 40°C/75% RH. In a second part of the study, a 

moisture stress test comprising an un-stoppered storage at 30% RH and 50% RH of several 
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freeze-dried substances for three days was performed to simulate an unintentional open 

storage at high humidity or an alternative moisture-permeable container. Before and after 

storage, lyophilisates were characterized with respect to morphological state by x-ray powder 

diffraction, moisture content, mechanical behavior of the cake up on penetration of a probe, as 

well as aerosolization performance. 

2 MATERIALS AND METHODS 

2.1 MATERIALS 

Aqueous solutions were prepared of L-phenylalanine (Phe) (Merck KGaA, Darmstadt, 

Germany), lactose-monohydrate (Lac) (Fagron GmbH&Co. KG, Barsbüttel, Germany), 

cromolyn sodium (CS) (Fagron GmbH&Co. KG, Barsbüttel, Germany), L-isoleucine (Ile) 

(Fluka Chemie GmbH, Buchs, Switzerland), L-valine (Val) (Fagron GmbH&Co KG, 

Barsbüttel, Germany), D-mannitol (Man) (Riedel-de Haën, Seelze, Germany), trehalose (Tre) 

(Hayashibara Co Ltd, Okayama, Japan) lysozyme (Lys) from chicken egg white (Serva 

Electrophoresis GmbH, Heidelberg, Germany). Dye for quantification was rhodamine B 

(Sigma-Aldrich, Chemie GmbH, Steinheim, Germany). 

2.2 FORMULATION PREPARATION 

For the three-month stability 0.5 ml aqueous solutions of lactose or cromolyn sodium at 

12 mg/ml or phenylalanine at 8 mg/ml were filled into 2R glass vials (Fiolax® clear, Schott 

AG, Müllheim, Germany) and vials were equipped with rubber stoppers (1079-PH 

701/40/ow/wine-red, West Pharmaceutical Services, Eschweiler, Germany). Stoppers used 

were dried before lyophilization at 105°C for 4 h. Freeze-drying was carried out in a 

laboratory scale freeze-drier (Lyostar II, FTS Systems, Stone Ridge, NY, USA). The samples 

were frozen at -1°C/min to -45°C for 1 h. Primary drying was performed at a shelf 

temperature of -15°C (shelfs were ramped at +0.2°C/min) and a pressure of 100 mtorr for 

20 h. For secondary drying the shelf temperature was increased to +30°C at a ramp rate of 

+0.1°C/min for 6 h. All samples were crimped with aluminium caps. 

For the stress test 0.5 ml aqueous solutions of 12 mg/ml excipient (isoleucine, valine, lactose 

or trehalose) or model drug (cromolyn sodium or lysozyme) were filled into 2R glass vials 

and vials were equipped with rubber stoppers (C1503, Stelmi, Villepinte, France). Freeze-
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drying was carried out in the laboratory scale freeze-drier. The samples were frozen at 

-1°C/min to -45°C for 1 h. Primary drying was performed at a shelf temperature of -20°C 

(shelfs were ramped at +0.2°C/min) and a pressure of 34 mtorr for 20 h. For secondary drying 

the shelf temperature was increased to +30°C at a ramp rate of +0.5°C/min for 10 h at a 

decreased pressure of 8 mtorr. 

2.3 STORAGE 

For three-month stability testing the sealed lyophilized samples were stored at 25°C and 60% 

relative humidity (RH) or at 40°C and 75% RH. The desired humidity was achieved by 

storage in a humidor containing saturated ammonium nitrate (VWR International, Leuven, 

Belgium) solution for 60% RH or a saturated sodium chloride (Merck KGaA, Darmstadt, 

Germany) solution for 75% RH in each case monitored by a hygrometer.  

For the stress test, un-stoppered lyophilisates were stored at 30% RH or 50% RH at room 

temperature (RT) for 3 days. The desired humidity was achieved by storage in a humidor 

containing a saturated calcium chloride (Merck KGaA, Darmstadt, Germany) solution for 

30% RH or a saturated calcium nitrate (central supply LMU, Munich, Germany) solution for 

52% RH in each case monitored by a hygrometer. Regarding the saturated solution for control 

of RH see [9] for more details. 

2.4 MOISTURE CONTENT ANALYSIS 

The moisture content of lyophilisates was determined by Karl-Fischer titration (Metrohm 756 

KF Coulometer, Herisau, Switzerland) using Hydranal Coulomat AG (Riedel-deHaën, Seelze, 

Germany) as titration reagent. The lyophilisates were dissolved in 1.0 ml of anhydrous 

methanol (Hydranal-Methanol dry, Riedel-deHaën, Seelze, Germany), additionally dried with 

molecular sieve 3A (VWR International GmbH, Darmstadt, Germany). The dissolution took 

place right in the production vials after injection of methanol through the stopper of the vial 

using a 1 ml-Hamilton syringe. As blanks, empty freeze-dried vials were treated the same 

way. The injection volume was 500 µl each. The measurements were performed in triplicate. 

2.5 MOISTURE SORPTION ANALYSIS 

The moisture sorption behavior of the freeze dried samples was measured using an IGASorp 

moisture sorption analyser (Hiden Isochema, Warrington, United Kingdom). Isothermes were 
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recorded at 25°C with RH from 5% up to 90% in steps of 10%. The samples were previously 

dried for at least 2 h in a dry nitrogen flow at 250 ml/min. During measurement the humidity-

controlled flow had a rate of 200 ml/min. The sample mass was about 6 to 8 mg.  

2.6 MECHANICAL TESTING 

The mechanical properties of the lyophilisates were investigated using a Texture Analyzer 

(TA.XT.plus, Stable micro Systems, Godalming, United Kingdom) equipped with a 5 kg load 

cell and a cylindrical stainless steel probe with a diameter of 5 mm at a test speed of 1 mm/s 

and a maximal immersion into the lyophilisate of 2 mm. The resulting immersion-force curve 

approached steady fracture at a constant force reflected in a horizontal plateau. For 

comparison of the formulations before and after storage, the data points of the plateau were 

averaged and the obtained value represents the force necessary to fracture the lyophilisate.  

2.7 X-RAY DIFFRACTOMETRY (XRD) 

The lyophilisates were investigated with a Seifert X-ray diffractometer XRD 3000 TT 

(Seifert, Ahrensburg, Germany) equipped with a copper anode (40 kV, 30 mA, wavelength 

154.17 pm). The samples were measured from 5 – 40° 2-Ө at a step rate of 0.05° 2-Ө with 2 s 

measuring time per step. 

2.8 FINE PARTICLE FRACTION (FPF) ANALYSIS 

For aerosolization of the lyophilisates, a custom-designed test system (Chapet 2) was used. 

The FPF was measured using a short stack version of the Andersen Cascade Impactor (8-

Stage Non-Viable Sampler Series 20-800, Thermo Andersen, Smyrna, GA, USA) at a flow 

rate of 39 l/min (corresponds to a pressure drop of 4 kPa with the HandiHaler®). Baffle plates 

were coated with a solution of 83% glycerin (AppliChem GmbH, Darmstadt, Germany), 14% 

ethanol (central supply LMU, Munich, Germany) and 3% Brij 35 (Serva Electrophoresis 

GmbH, Heidelberg, Germany). Filters used were type A/E glass fiber filters 76 mm (Pall 

Corporation, Ann Arbor, MI, USA). By removing stages 2 to 7, the whole FPF (particle 

fraction <4.94 µm) is collected on the filter directly below stage 1.  

For three-month stability testing the FPF was quantified by weighing the filter before and 

after powder deposition and was either calculated as the percentage of the metered dose (MD) 
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or the emitted dose (ED). ED was measured by weighing the vial before and after 

aerosolization and calculated as the percentage of MD. 

For stress test FPF was determined by washing the filter with water and rhodamine B 

quantification at 554 nm in an Agilent 8453 UV-Vis spectrophotometer (Agilent 

Technologies, Santa Clara, CA, USA). Therefore the filter solution was ultra-centrifuged 

(OptimaTM TLX Ultracentrifuge, Beckman Coulter, Brea, CA, USA) at 186000 g for 45 min 

before UV-Vis spectroscopic analysis. FPF was again calculated as either the percentage of 

MD or ED. ED was measured by washing the vial with water and quantification by UV-Vis 

spectroscopy; it was calculated as the percentage of MD. 

3 RESULTS AND DISCUSSION 

3.1 THREE-MONTH STABILITY AT 25°C/60% RH AND 40°C/75% RH 

To assess storage stability of freeze-dried formulations for inhalation, lyophilisates were 

stored in the sealed vials at 25°C/60% RH and at 40°C/75% RH for three months. 

Immediately after freeze-drying as well as after one and three months of storage, the 

formulations were characterized. Since the physicochemical stability of a freeze-dried product 

is often sensitive to the level of moisture, residual moisture needs to be reduced during the 

secondary drying process and subsequently controlled during storage [10]. Immediately after 

freeze-drying, all lyophilisates exhibited residual moisture of less than 1%, which is 

considered optimal for storage [7]. A critical aspect for the storage of freeze-dried 

formulations is the slightly rising moisture content caused by residual moisture in the stopper 

[10] and permeation of water through the stopper [11]. Non-dried stoppers can be considered 

as a water reserve, dried stoppers play the role of a buffer limiting the rate of water transfer to 

the product [11]. Stoppers used in this study were therefore dried at 105°C for 4 h prior to 

freeze-drying. Nevertheless, the moisture content of the lyophilisates increased during storage 

for all formulations up to 3%, as can be seen from Figure 1. A higher storage temperature 

caused a faster increase in moisture. This can be explained by the fact that water transfer out 

of the stopper to the lyophilisate is more pronounced at elevated temperature [12]. Pikal and 

Shah [10] demonstrated that the product moisture content increases over time until an 

equilibrium value is reached, which is characteristic for the product, amount of product, and 

stopper treatment method. The time period to reach this equilibrium is thus only dependent on  
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Figure 1: The moisture content of lyophilisates immediately after freeze-drying compared to 

samples after 1 and 3 month of storage at 25°C/60%RH and 40°C/75% RH. 

temperature, whereas the equilibrium water content is temperature independent. Whether the 

equilibrium moisture content was already reached for the tested formulations within three 

months of storage at 40°C cannot be stated. 

Since water has a plasticizing effect on amorphous materials [13], the increased moisture 

content of the freeze-dried product could affect its mechanical characteristics. Mechanical 

testing of the different formulations before and after storage revealed no significant changes 

for cromolyn sodium and phenylalanine lyophilisates. The immersion-force-curves of lactose 

lyophilisates, in contrast, demonstrated a shift to smaller forces after storage, as can be seen 

from Figure 2. Immediately after freeze-drying, the plateau force necessary to fracture the  

 
Figure 2: Immersion-force-curves for lactose lyophilisates immediately after freeze-drying 

and after storage. 
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lyophilisate amounted to 0.057 N. During storage, this force leveled at about 0.03 N for 

sample exhibiting a residual moisture content of 1.5% and did not drop further for samples 

with higher moisture levels up to 3%. 

X-ray powder diffractometry (XRD) is perhaps the gold standard to characterize the physical 

state of freeze-dried solids. For freeze-dried formulations containing amorphous or partially 

crystalline modifications which are thermodynamically unstable, the possibility of 

recrystallization during storage needs to be considered [14]. For phenylalanine XRD 

demonstrated small crystalline reflections at 6.5, 14.85, 21.55 and 33.1° 2-θ, which are 

characteristic for phenylalanine-monohydrate [15]. Peak intensity and location did not change 

during storage. The residual water content immediately after freeze-drying and later during 

storage is remarkably low. Theoretically, the water content of pure phenylalanine-

monohydrate is 9.8%. Therefore, phenylalanine must have been present in a partially 

crystalline state, including a large amorphous fraction. Lactose and cromolyn sodium, in 

contrast, showed a completely amorphous nature, which did not change during storage. 

As mentioned before, the disintegration and deposition performance of traditional dry powder 

formulations are especially sensitive towards moisture exposure during storage. In order to 

identify potential effects of storage on the dispersibility and deposition of lyophilisates for 

inhalation, ED and FPF of the different samples was measured immediately after freeze-

drying and compared to values after one and three months of storage (Figure 3). No 

significant decrease in aerosolization performance could be detected for all three 

formulations. On the contrary, a slightly increased FPF was determined for phenylalanine and 

lactose lyophilisates stored three months and a slightly increased ED was detectable for 

cromolyn sodium lyophilisates stored three months at 40°C. On the one hand, the higher FPF 

of lactose lyophilisates could be a result of a softer cake structure. If less force is needed for 

the fracturing of the cake, potentially the disintegration into inhalable particles becomes 

easier. On the other hand, the mechanical behavior remained stable for lyophilisates 

containing 1.5% moisture or more. This specific moisture content was already reached after 

one month of storage at 40°C/75% RH and those samples did not show significant changes in 

FPF. Furthermore, phenylalanine and cromolyn sodium revealed slightly increased FPF or ED 

for samples stored three months, but otherwise did not demonstrate any changes in the 

mechanical behavior or in the physical state. The slightly higher values after three months of 

storage are considered as not relevant in the context of the small number of samples and the 
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normal variations in the analytics. On this basis, the tested lyophilisates for inhalation were 

considered stable during three months of storage at 25°C/60% RH and 40°C/75% RH. 

a b 

c  

c  

Figure 3: ED versus its related FPF as well as the FPF related to MD of the different 

lyophilisates before and after storage: phenylalanine (a), lactose (b) and cromolyn sodium 

(c). 

3.2 STRESS TEST: OPEN STORAGE AT RT/30% RH AND RT/50% RH 

In order to simulate potential higher moisture sorption due to an unintended open storage at 

high humidity or an alternative moisture-permeable container and to evaluate potential effects 

on the aerosolization performance, lyophilisates of various substances were equilibrated un-

stoppered at 30% RH and 50% RH for three days. Substances included in this study were 
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amino acids (isoleucine and valine), sugars (lactose and trehalose), as well as the model API 

cromolyn sodium and the model protein lysozyme, each at 12 mg/ml. The lyophilisates of the 

two sugars did not survive the moisture stress at 50% RH but collapsed completely rendering 

aerosolization impossible.  

XRD revealed a completely amorphous state for freeze-dried lactose, trehalose, cromolyn 

sodium, and lysozyme before and after moisture stress. Except for lactose and trehalose, 

which collapsed at 50% RH, the moisture stress did not cause crystallization. The amino acids 

demonstrated the characteristic peak pattern of crystalline isoleucine and valine, respectively. 

It has been demonstrated previously that most amino acids crystallize during freeze-drying 

and are therefore suitable as bulking agents [16]. For freeze-drying of protein formulations, it 

is known that proteins and sugars, in general, do not crystallize during freezing, but are 

transformed into an amorphous solid at the glass transition temperature of the maximally 

freeze concentrated solution (Tg’) [14, 17].  

Figure 4 shows the moisture content of the unstressed and stressed samples. The moisture 

content of the crystalline amino acids did not change after equilibration at 30% or 50% RH. 

The amorphous lyophilisates, in contrast, absorbed a substantial amount of water vapor. For 

cromolyn sodium, in particular, the moisture content increased to about 10 and 16 wt. % at 

30% and 50% RH, respectively. Crystalline materials typically adsorb vapors only in small 

quantities at their surfaces or take up larger stoichiometric quantities to form solvates. 

Amorphous  materials,  in  contrast,  absorb  water  vapor  in  relatively  large  amounts [18].  

 

Figure 4: The moisture content of different lyophilisates stressed at 30% RH and 50% RH in 

open vials. 
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Consequently, the moisture sorption isotherm analysis of isoleucine demonstrated significant 

vapor sorption only at more than 80% RH, with a maximum adsorption at 90% RH of less 

than 1% (Figure 5). Lactose and trehalose, in contrast, showed maximum vapor absorption of 

approximately 14 wt. % at 55% RH and collapsed at greater RH. The collapse occurs due to a 

decreased glass transition temperature (Tg) and increased molecular mobility of the 

amorphous solid [19]. In the case of lactose, a decrease in moisture content to about 3% 

followed. The loss of the sorbed moisture is due to the transformation of the amorphous 

lactose to the crystalline state [8]. A mixture of α-lactose monohydrate (theoretical water 

content of 5%) and anhydrous lactose must have been formed as reported previously by 

Elamin et al. [8]. Subsequent to the maximum vapor sorption, crystallization occurred also for 

trehalose forming the dihydrate. This is indicated by the plateau at a water content of 10% 

[20]. Lysozyme in contrast demonstrated steady moisture sorption up to 26 wt. % without 

collapse or recrystallization. For cromolyn sodium lyophilisates, Figure 5 demonstrates a 

maximum vapor absorption of 52 wt. %. The drug is known to be very hygroscopic. Even in 

its crystalline form, it possesses the unique ability to absorb up to nine molecules of water per 

molecule of cromolyn sodium into the crystal lattice without collapse [21]. An adsorption up 

to 24 wt. % water of cromolyn sodium crystals was shown [21]. Such a high water uptake is 

especially critical when considering powders for pulmonary administration. It is reported that 

the hygroscopic particle growth can have a negative impact on the respirable dose [22]. 

 

Figure 5: Moisture sorption isotherm at 25°C for lyophilized isoleucine, lactose, trehalose 

cromolyn sodium and lysozyme. 
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Small amounts of absorbed water can plasticize amorphous solids, hence exposure to 

humidity is considered to be an important factor influencing the solid-state properties of 

amorphous systems [18]. The mechanical properties of the different samples were 

investigated using the texture analyzer. Figure 6 compares the force necessary to fracture the 

lyophilisate of the unstressed and moisture stressed samples. As expected, the mechanical 

behavior of the crystalline lyophilisates of isoleucine and valine did not change after moisture 

exposure. An interesting aspect is the similar mechanical behavior of the unstressed and 

moisture stressed lysozyme lyophilisates, in spite of substantial moisture absorption. Lactose 

and trehalose, in contrast, showed a significant decrease in the force necessary to fracture the 

lyophilisate for a moisture content of 6%. This decrease is comparable to the force reduction 

for stored lactose lyophilisates containing at least 1.5% water detected earlier and confirms a 

maximal softening level that is independent of further moisture absorption. Cromolyn sodium, 

demonstrating the strongest moisture absorption, showed an immersion-force-curve shift to 

significantly smaller values only for samples stressed at 50% RH, which corresponds to a 

moisture content of 16.6%. Thus, the cromolyn sodium lyophilisates which were stored for 

three months and contained a maximum of 3.2% water showed no significant change in their 

mechanical behavior. This demonstrates that the plasticizing effect of water for amorphous 

products does not necessarily result in a softer mechanical property. Additionally, the degree 

of reduction of the force necessary to fracture the lyophilisate varies between different 

substances, requiring a different amount of absorbed water for the same effect. The sugars, for  

 

Figure 6: Plateau force values of the immersion-force curves of various lyophilisates 

immediately after freeze-drying and after moisture stress at 30% and 50% RH in open vials. 
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example, showed a reduction to about half the force for 1.5% moisture content, whereas 

cromolyn sodium demonstrated a similar decrease at a moisture content of 16.6%. 

In order to explore potential disintegration and lung delivery problems of moisture stressed 

lyophilisates, ACI measurements were performed. As can be seen from Figure 7, no 

significant changes in the ED and FPF of various moisture stressed samples compared to the 

unstressed ones were detectable. The only exception was cromolyn sodium, which 

demonstrated the strongest moisture absorption. A marginal but not relevant decrease in the 

FPF related to ED was noticeable, whereas the output from the vial remained the same. 

Possible explanations for this potential trend include a poorer comminution into fine particles 

or, more likely, inferior flight qualities of the fractioned particles due to moisture sorption, 

which results in heavier particles with increased aerodynamic size. The density of cromolyn 

sodium crystals, for example, varies with increasing humidity as a consequence of the relative 

rates of moisture uptake and expansion of the lattice. A reduced density is reported to occur 

between 0 and 10% RH, whereas the density rises rapidly between 60 and 90% RH [21]. 

Keller et al. [22], for example, reported an increase in mass median aerodynamic diameter for 

cromolyn sodium DPI from 3.9 to 5.8  µm when aerosolized in a climate box at 95% RH. 

Overall, however, the stable aerosolization performance of lactose and trehalose lyophilisates 

revealed no influence of structure softening due to moisture absorption. Thus, the absence of 

significant changes in ED and FPF for the moisture stressed samples indicates a rather good 

stability for the formulations even if exposed to higher humidity for short time. 

a b 
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e  fa

a  f  

Figure 7: The ED versus its related FPF as well as the FPF related to MD of the different 

lyophilisates before and after moisture stress: isoleucine (a), valine (b), lactose (c), trehalose 

(d), cromolyn sodium (e) and lysozyme (f). 

4 SUMMARY AND CONCLUSION 

Freeze-dried formulations for inhalation were evaluated according to their storage stability. 

Potential disintegration and lung delivery problems were of special interest. Therefore, three 

different formulations were studied in a three-month stability study at 25°C/60% RH and 

40°C/75% RH. A slight moisture absorption of less than 3% in maximum resulted in a 

softening of the lyophilisate structure only for lactose, which nevertheless did not hinder 
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aerosolization performance. The tested lyophilisates for inhalation did not show a decrease in 

FPF or ED during three months of storage at 25°C/60% RH and 40°C/75% RH. In order to 

simulate potential higher moisture sorption during short term open storage, various 

lyophilized substances were evaluated after un-stoppered equilibration at 30% and 50% RH. 

In contrast to the crystalline lyophilisates, the amorphous samples exhibited substantial 

moisture uptake up to 16.6% for the hygroscopic drug cromolyn sodium at 50% RH. Due to 

the plasticizing effect of water, the mechanical strength of the tested lyophilisates decreased to 

a softer structure for lactose, trehalose and, at higher moisture content, also for cromolyn 

sodium lyophilisates. Nevertheless, the aerosolization performance remained stable except for 

the two collapsed sugar lyophilisates. Therefore, it is concluded that freeze-dried formulations 

for inhalation which are dispersed into aerosols at the time of inhalation show good storage 

stability. 
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Chapter 8 

Summary of the Thesis 

Pulmonary drug delivery has developed to an appealing option for the treatment of several 

lung diseases, which entail, for example, the delivery of high lung doses or the formulation of 

biopharmaceuticals. New inhaler inventions and formulation strategies for dry powder 

inhalation emerged. Among them was an interesting concept proposed by Yamashita et al. 

(US Patent 7735485, 2010) to prepare the formulation by freeze-drying and disintegrate the 

lyophilisate into inhalable particles by an air impact at the time of inhalation. The evaluation 

and possible further development of this new concept was the subject of this thesis. The main 

focus was thereby on the improvement of the formulation towards the delivery of high lung 

doses. 

At first, an output test system with reproducible and optimized performance was developed 

and characterized. The influence of several variable parameters of the test system on the fine 

particle output was investigated with a screening design of experiments in order to fix the 

system to a standard parameter setting with the best possible performance. Additionally, the 

influence of vial and stopper geometry as well as a mouthpiece with sheath air was 

investigated. For all following experiments, the test system was used in a default setup 

consisting of a compressed air volume of 20 ml with a pressure of 3 bar, a diameter of the air 

inlet and air outlet capillary of 0.75 mm, the basic mouthpiece, and 2R vials equipped with 

lyophilization stoppers. The characterization of the test system by simulation of the air flow 

demonstrated great pressure drops across the narrow inlet and outlet capillaries and high air 

flow velocities of about 90 m/s at impaction on the lyophilisate. Nevertheless, high speed 

camera recordings revealed that the cake was not compressed by the incoming air jet but was 

lifted up and broken apart into fragments, which swirled around the endings of the capillaries. 

The particle aerosol finally left the mouthpiece at a velocity of approx. 3 m/s, which is 

comparable to pressurized metered dose inhalers. With regard to the size distribution of 

emitted particles, the test system demonstrated an enhanced particle emission in particular for 
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larger particles (around 100 µm) due to larger target surfaces offered to the discharging air 

flow and less wall adhesion. Very fine particles (around 3 µm) also showed an increased 

emission as a result of superior flight properties.  

In order to understand the aerosolization behavior of the lyophilisates by impacting air, 

various placebo formulations (isoleucine, phenylalanine, valine, lactose, trehalose, and 

mannitol) at a solution concentration of 4 mg/ml were investigated according to lyophilisate 

characteristics and particle size distributions. The porous lyophilisates disintegrated into 

particles of large geometric size up to above 100 µm. The particles consisted of agglomerates 

of smaller fragments, resulting in a highly porous structure with a low particle density. Due to 

these characteristics, a substantial fraction (20-50%) of these particles had an aerodynamic 

size between 1 and 5 µm (fine particle fraction, FPF), and can thus be deposited in the smaller 

airways of the lung. The amino acid lyophilisates of phenylalanine and valine performed best 

among the tested samples, which must be caused by material properties other than the 

physical state of being crystalline or amorphous. Small standard deviations between 1 and 4% 

of triplicate measurements by cascade impaction demonstrated reproducible lyophilisate 

aerosolization and fine particle output of the test system and robustness against freeze-drying 

batch heterogeneity. 

To test the suitability of this technology for the delivery of high powder doses, the first 

approach was to investigate ways and limitations for an elevation of the metered dose (MD). 

Valine and cromolyn sodium lyophilisates at increasing solution concentration and fill volume 

were examined. An increase in dose could only be achieved by increasing the solution 

concentration at a low fill volume because of a distinct reduction in the FPF at increased fill 

volume. Due to an increased hardness with higher solution concentration, the elevation of MD 

was however limited. The decrease in FPF at higher fill volume was caused by an impaired 

disintegration of the lyophilisate. For soft, instantaneous disintegrating cakes (e.g., valine), 

this was primarily caused by reduced milling efficiency. For harder lyophilisates (e.g., 

cromolyn sodium), the hindered disintegration was attributed to incomplete fragmentation of 

the harder cakes into particles due to a lack of space to perform rotational movements. An 

increased pressure for dispersion of 4 bar resulted in an increased emitted dose (ED) only for 

the highest fill volume of 2 ml and was not able to further enhance the fine particle dose 

(FPD) of cromolyn sodium. In 2R vials at default setting, a maximum FPD of 1.2 mg was 

achieved for valine and of 2.6 mg for cromolyn sodium lyophilisates. By the employment of 

bigger 6R vials, the now available space for rotational movements improved cromolyn 
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sodium cake disintegration of larger fill volume (2 ml). In combination with an adapted 

amount of compressed air to the doubled vial volume (30 ml at 4 bar), which enhanced the 

ED, the FPD could be further elevated to 3.7 mg.  

In a second approach, the possibility to improve the FPF of lysozyme, a substance which 

showed poor aerosolization properties, was evaluated. The crystalline amino acids 

phenylalanine and valine, which performed best as single excipient formulations, were added 

in varying concentration (14-40%) to the high molecular weight model drug lysozyme. The 

dose independent increase of the FPF from 5% to 17% with phenylalanine and to 14% with 

valine was possibly a result of enhanced fracture properties of the lyophilisates. Another 

contributing factor is the reduced particle agglomeration and cohesion due to a rougher 

surface, which was caused by embedded amino acid crystals in the amorphous lysozyme 

matrix. 

In a third approach for a possible improvement of the FPF, the impact of different cake 

morphologies on lyophilisate characteristics and their aerosolization performance were 

investigated. Variations of the solid matrix structure were achieved by changing the freezing 

process and by addition of tertiary butyl alcohol (TBA) as co-solvent. The applied freezing 

methods (shelf-ramped freezing, shelf-ramped freezing including two holding steps, shelf-

ramped freezing with annealing, freezing on precooled shelf, freezing in liquid nitrogen, and 

vacuum-induced freezing) partly resulted in different pore structures of the lyophilisates, 

which again caused a variation of the mechanical properties. Significant changes in the 

aerosolization performance only became apparent for strong variations of the solid matrix 

structure. A lamellar-oriented morphology resulted in an increase in ED, whereas a loss of the 

ordered structure by consolidation caused a decreased ED and FPF compared to the 

conventional spherulitic morphology. This robust outcome demonstrated that the 

aerosolization performance is less sensitive to minor changes in the lyophilisate morphology, 

which can occur due to freeze-drying batch heterogeneity. Samples featuring a fine directional 

lamellar pore morphology, achieved by freezing in liquid nitrogen, could positively affect the 

ED and mostly also the FPF. Despite the demonstration of elastic lyophilisate properties, this 

special structure disaggregated quickly and completely into large but highly porous particles 

with good aerodynamic properties. The addition of TBA in the range of 5% to 20% as co-

solvent rendered needle-shaped ice crystals, resulting in a lamellar-like morphology with the 

characteristic elastic structure and mostly also high ED of larger particles. The investigation 

of various freeze-dried substances (phenylalanine, valine, lactose, trehalose, cromolyn 
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sodium, and lysozyme + phenylalanine/valine) prepared with different freezing procedures 

emphasized the great influence of the material property on lyophilisate characteristics and the 

aerosolization performance. Mechanical material properties measured by compaction analysis 

were not able to fully explain commonalities and differences of the aerosolization 

performance of different substances. This demonstrated that properties affecting the 

aerosolization of lyophilisates are very complex and make it difficult to draw general 

conclusions or predict performance. 

Finally, storage stability for three months at 25°C/60% RH and 40°C/75% RH was 

investigated for selected formulations (8 mg/ml phenylalanine, 12 mg/ml lactose, 20 mg/ml 

cromolyn sodium, and 12 mg/ml lysozyme + 4 mg/ml phenylalanine). Despite a slight 

increase in the moisture content which resulted in a softening of lactose lyophilisates, all 

formulations demonstrated unchanged aerosolization performance. In order to simulate 

potential higher moisture sorption due to an unintended open storage at high humidity or an 

alternative moisture-permeable container, an un-stoppered storage at 30% and 50% RH for 

three days was performed as stress test for several model substances (isoleucine, valine, 

lactose, trehalose, cromolyn sodium, and lysozyme). In contrast to the amino acid 

lyophilisates, which demonstrated crystallinity, the amorphous samples exhibited substantial 

moisture uptake of up to 16.6% for the hygroscopic drug cromolyn sodium at 50% RH. 

Except of the lyophilized sugars lactose and trehalose, which collapsed at 50% RH, storage at 

30% and 50% RH showed hardly any effect on the aerosolization performance of all. It can 

therefore be concluded that the lyophilisates show good storage stability with regard to their 

aerosolization performance. 

In conclusion, the disintegration of lyophilisates by an air impact represents a promising new 

concept for dry powder pulmonary delivery. It combines a formulation process which is 

friendly for thermolabile drugs like biopharmaceuticals with the idea of creating fine particles 

at the time of inhalation which avoids formulation problems of most respiratory powders like 

poor flowability and redispersibility. Depending on the lyophilized substance, it demonstrated 

rather large FPF compared to dry powder inhalation products on the market and it can keep up 

with products of higher metered dose regarding the FPD. The aerosolization performance was 

shown to be less sensitive to minor changes in the lyophilisate morphology, which refers to 

robustness against freeze-drying batch heterogeneities like variation within and between 

batches. Nevertheless, it is important to note that the aerosolization performance is strongly 

affected by material properties. 
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LIST OF ABBREVIATIONS 

A Heckel-intercept 

ACI Andersen cascade impactor 

API active pharmaceutical ingredient 

CF cystic fibrosis 

COPD chronic obstructive pulmonary disease 

CS cromolyn sodium 

dA aerodynamic diameter 

DD delivered dose 

DoE design of experiment 

DPI dry powder inhaler 

Drel relative porosity 

DSC differential scanning calorimetry 

DSPC distearoylphosphatidylcholine 

dV volume-equivalent diameter 

ED emitted dose 

EMA european medicines agency 

FPD fine particle dose 

FPF fine particle fraction 

ICD inlet capillary diameter 

ICP inlet capillary position 

Ile L-isoleucine 

k Heckel constant/Heckel-slope 

Lac lactose-monohydrate 

LD laser diffraction 

Lys lysozyme 

Man D-mannitol 

MD metered dose 

MLI multistage liquid impinger 

MMAD mass median aerodynamic diameter 

MRSA methicillin-resistant Staphylococcus aureus 

OCD outlet capillary diameter 
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OCP outlet capillary position 

P pressure 

P0 baffle plate after stage 0 of ACI 

P1 baffle plate after stage 1 of ACI 

Phe L-phenylalanine 

PLGA poly(lactide-co-glycolide) 

pMDI pressurized metered dose inhaler 

PSD particle size distribution 

RH relative humidity 

SEM scanning electron microscopy 

SIP suction induction port 

TBA tertiary butyl alcohol 

Tg' glass transition temperature of the max. freeze concentrated solution 

Tg glass transition temperature 

TOF time of flight 

Tre trehalose 

Val L-valine 

Vol volume 

XRD x-ray diffractometry 

ρ density 

χ shape factor 
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