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Abstract 

Cancer is the second worldwide cause of death, exceeded only by cardiovascular diseases. It is 

characterized by uncontrolled cell proliferation and an absence of cell death that, except for 

hematological cancers, generates an abnormal cell mass or tumor. This primary tumor grows 

thanks to new vasculatization and, in time, adquires metastatic potential and spreads to other 

body sites, which causes metastasis and finally death. Cancer is caused by damage or 

mutations in the genetic material of the cells due to environmental or inherited factors. While 

surgery and radiotherapy are the primary treatment used for local and non-metastatic cancers, 

anti-cancer drugs (chemotherapy, hormone and biological therapies) are the choice currently 

used in metastasic cancers. Chemotherapy is based on the inhibition of the division of rapidly 

growing cells, which is a characteristic of the cancerous cells, but unfortunately, it also affects 

normal cells with fast proliferation rates, like the hair follicles, bone marrow and 

gastrointestinal tract cells, generating the characteristic side effects of chemotherapy. The 

indiscriminate destruction of normal cells, the toxicity of conventional chemotherapeutic 
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drugs, as well as the development of multidrug resistance, support the need to find new 

effective targeted treatments based on the changes in the molecular biology of the tumor 

cells. These novel targeted therapies, of increasing interest as evidenced by FDA-approved 

targeted  cancer drugs in recent years, block biologic transduction pathways and/or specific 

cancer proteins to induce the death of cancer cells by means of apoptosis and stimulation of 

the immune system, or specifically deliver chemotherapeutic agents to cancer cells, minimizing 

the undesirable side effects. 

Although targeted therapies can be achieved directly by altering specific cell signaling by 

means of monoclonal antibodies or small molecules inhibitors, this review focuses on indirect 

targeted approaches that mainly deliver chemotherapeutic agents to molecular targets 

overexpressed on the surface of tumor cells.  In particular, we offer a detailed description of 

different cytotoxic drug carriers, like liposomes, carbon nanotubes, dendrimers, polymeric 

micelles, polymeric conjugates and polymeric nanoparticles, in passive and active targeted 

cancer therapy, by enhancing the permeability and retention or by the functionalization of the 

surface of the carriers, respectively, emphasizing those that have received FDA approval or are 

part of the most important clinical studies up to date. These drug carriers not only transport 

the chemotherapeutic agents to tumors, avoiding normal tissues and reducing toxicity in the 

rest of the body, but also protect cytotoxic drugs from degradation, increase the half-life, 

payload and solubility of cytotoxic agents and reduce renal clearance. Despite the many 

advantages of all the anticancer drug carriers analyzed, only a few of them have reached the 

FDA approval, in particular, two polymer-protein conjugates, five liposomal formulations and 

one polymeric nanoparticle are available in the market, in contrast to the sixteen FDA approval 

of monoclonal antibodies. However, there are numerous clinical trials in progress of polymer-

protein and polymer-drug conjugates, liposomal formulations, including immunoliposomes, 

polymeric micelles and polymeric nanoparticles. Regarding carbon nanotubes or dendrimers, 

there are no FDA approvals or clinical trials in process up to date due to their unresolved 



toxicity. Moreover, we analyze in detail the more promising and advanced preclinical studies 

of the particular case of polymeric nanoparticles as carriers of different cytotoxic agents to 

active and passive tumor targeting published in the last 5 years, since they have a huge 

potential in cancer therapy, being one of the most widely studied nano-platforms in this field 

in the last years. The interest that these formulations have recently achieved is stressed by the 

fact that 90% of the papers based on cancer therapeutics with polymeric nanoparticles have 

been published in the last 6 years (PubMed search). 
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1. Cancer and chemotherapy. 

Cancer is a group of diseases that involve uncontrolled cell division, replicative immortality and 

resistance to cell death. Cancer cells grow into an abnormal cell mass called tumor, except for 

hematologic cancers, where cancer cells grow and spread throughout the blood and lymph 

systems and the bone marrow [1, 2]. Cancer processes are mainly originated by damage or 

mutation of proto-oncogenes that code for proteins implicated in the induction of cell 

proliferation and differentiation, and tumor suppressor genes that code for proteins that 

produce inhibitory signals of cell growth and/or stimulate apoptosis. Alterations in both 

oncogenes and tumor suppressor genes are necessary for tumor development and are favored 

by mutations in the tumor susceptibility genes, which encode for a family of proteins 

implicated in the control of DNA damage. The mutations that initiate a tumor are clonally 

selected to favour aberrant and uncontrolled cell division, absence of inhibition of the 

excessive cell growth, avoidance of the immune system, blockage of cell death and 

transmission and accumulation of genetic material errors [3-9]. 

Surgery and radiotherapy are the most effective and valuable treatments for local and non-

metastatic cancers, but are inefficient when the cancer has spread throughout the body. The 

use of cancer drugs (chemotherapy, hormone and biological therapies) is the current choice 

for the treatment of metastatic cancers, since they are able to reach every organ in the body 

via the bloodstream [10]. Chemotherapeutic drugs are based on toxic compounds that 

primarily inhibit the fast proliferation of the cancer cells but, unfortunately, they also inhibit 

the rapid growth needed for the maintenance of hair follicles, bone marrow and 

gastrointestinal tract cells which leads to the undesirable side effects observed in cancer 

treatment [10]. Since the first drugs approved by the Food and Drug Administration (FDA) for 

the treatment of hematological cancers and solid tumors back in the forties and fifties 

(nitrogen mustards, antifolate drugs, and methotrexate, etc.), chemotherapy drugs have 
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evolved towards increasingly effective treatments [10-12]. In spite of important progresses in 

the cancer treatment, like combinatory and adjuvant chemotherapies [13, 14], or the approval 

of important anticancer drugs, like cisplatin [15] and paclitaxel [16]; the indiscriminate 

destruction of cells, and the toxic side effects of the chemotherapeutic agents, was for many 

years the only possible approach for the treatment of metastatic disease. This unspecific and 

less than ideal strategy changed with the discovery of the cell signaling networks involved in 

the control of cell proliferation and differentiation, that allowed the design of drugs specifically 

affecting those networks, and opened the door to the use of the targeted therapy, in the late 

1990s [10].  

Targeted treatments are aimed to block specific biologic transduction pathways or cancer 

proteins that are involved in tumor growth and progression, i.e. molecular targets (receptors, 

growth factors, kinase cascades or molecules related with apoptosis and angiogenesis) that are 

present in normal tissues, but are found overexpressed or mutated in cancer. The idea of these 

revolutionary therapies is either to block the signals that help malignant cells to grow and 

divide uncontrollably, produce the death of cancer cells by means of induction of apoptosis, 

stimulate the immune system, or target the delivery of chemotherapy agents specifically to 

cancer cells, minimizing the death of normal cells and avoiding the undesirable side effects [5, 

10]. The importance of these new anticancer drugs can be deduced looking at the FDA-

approved drugs in the oncology area in the last decadefourteen years. Among the 19 

anticancer drugs approved in the 2000-2006 period, 14 were targeted therapies. This data 

increased between 2007 and 2012 when 40 drugs were approved for the treatment of 

different types of cancer, and 30 of them targeted specific cancer molecules. It should be 

noted that among 16 19 cancer drugs approved by the FDA in between 2012-2014, 14 18 were 

targeted cancer drugs based on inhibiting or blocking biologic transduction pathways and/or 

specific cancer proteins [17-19]. 
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Targeted therapies can be achieved by direct approaches that alter specific cell signaling 

events by means of monoclonal antibodies or small molecules inhibitors [20] , or by indirect 

approaches using molecular targets, overexpressed or exclusively expressed on the surface of 

tumor cells, to send cytotoxic molecules, like chemotherapeutic agents, toxins, cytokines or 

radionuclides that can be conjugated to monoclonal antibodies or peptide ligands via a 

chemical linker or included in nanocarriers to avoid the lack of specificity of the conventional 

chemotherapy, this way achieving higher concentrations of cytotoxic molecules in tumors and 

decreasing the peripheral toxicity [21-24].  

Monoclonal antibodies [20, 25] can be designed to be attached to specific proteins in cancer 

cells, so that the immune system can recognize these cells and kill them [26] . They can also be 

selected for their ability to bind to the growth factor receptors overexpressed in certain cancer 

cells, blocking the docking sites of the growth factors and stopping the mitogenic signals [27]. 

Rituximab, the first targeted therapy cancer drug approved by the FDA (1997), was also the 

first monoclonal antibody available for cancer treatment [28]. Small molecule inhibitors are 

selected for its ability to block signaling pathways involved in abnormal proliferation, anti-

apoptotic and angiogenic events produced in cancer cells [20]. Many of the inhibitors lately 

approved for its clinical use have been designed to interfere with the kinase domain of 

tyrosine kinases [29]. Thus, BCR-ABL (the product of the Philadelphia chromosome and the 

cause of Chronic Myelogenous Leukemia), c-KIT, or the platelet derived growth factor 

receptor-ß (PDGFRß) are tyrosine kinases that are inhibited by Imatinib, the first drug of this 

type to be approved by FDA for the treatment of cancer (chronic myeloid leukemia, 

gastrointestinal stromal tumors, and other rare malignancies) [30, 31]. Another example is the 

inhibition of the epidermal growth factor receptor (EGFR, HER1) by gefitinib and erlotinib, also 

approved by the FDA, for advanced non-small cell lung cancer [32]. Tumours need new blood 

vessels to feed the tumor mass. They are induced from already existent vessels in a process 

known as angiogenesis. Both, monoclonal antibodies and small molecules inhibitors have also 
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been used as anti-angiogenic therapies to target the angiogenic proteins that produce the 

vascularization of tumors, for example, the anti-VEGF monoclonal antibody, bevacizumab (the 

first anti-angiogenic drug approved by FDA), or the small molecule SU-11246 that inhibits VEGF 

[33]. 

Antibody drug conjugates combine the targeting properties of monoclonal antibodies with the 

cytotoxicity of chemotherapeutic drugs, leading to a selective accumulation of anticancer 

agents in the tumor cells [34, 35]. Gemtuzumab ozogamicin, a humanized IgG4 monoclonal 

antibody coupled with calicheamycin, was the first antibody drug conjugate approved by FDA 

in 2000 and has been used for the treatment of acute myelogenous leukemia [36] , however, 

because of their significant side effects, this drug was withdrawn in 2010 [37-39]. Brentuximab 

vedotin, a chimeric monoclonal antibody anti CD-30 coupled with monomethyl auristatin E, 

approved by FDA in 2011 and currently in clinical use for Hodgkin´s lymphoma and anaplastic 

large cell lymphoma, and ado-trastuzumab emtansine, a HER2-targeting monoclonal antibody 

(trastuzumab) conjugated to the cytotoxic compound DM1 (mertansine, a maytansine 

derivative), approved by FDA in 2013 for the treatment of HER2-positive metastatic breast 

cancer, are the only two antibody drug conjugates approved by FDA up to date, [40-43]. 

Nowadays, there are numerous drugs of this type under clinical trials, and some of them 

probably will be approved in the next few years [44-48]. With the new advances in peptide 

research, cytotoxic peptide conjugates are being considered as good alternatives to antibody-

drug conjugates, combining small peptides (up to 100 times smaller than antibodies) of low 

cytotoxicity with the ability to selectively bind to overexpressed receptors of some cancer cells, 

with the cytotoxicity of anticancer drugs. Several interesting cytotoxic peptide conjugates are 

under clinical trials, but none have been approved by FDA for the clinical use, because some 

issues, like their short half-lives, still have to be solved [49-54]. In both antibodies and 

peptides, the linker of the conjugates should be stable during blood transportation, 

maintaining the drug inactive (prodrug) to preserve normal tissues, but it has to be cleaved 
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intra or extracellularly in the target cells by specific enzymatic or chemical degradation, 

releasing the active cytotoxic agents into the cancer cells [55, 56]. 

2. Nanocarriers: promising anticancer drug carriers in indirect cancer targeted therapy. 

Clinical status. 

Nanocarriers are colloidal nano-scale systems capable of transporting anticancer agents, like 

small molecular weight drugs or macromolecules as genes or proteins, so that, as an indirect 

approach of targeted therapy, allow these anticancer agents to avoid normal tissues and be 

accumulated in tumors, achieving a cytotoxic concentration several-fold higher in this tumors 

with a reduced toxicity for the rest of the body compared with free drugs, in the same way 

that antibodies and peptide-drug conjugates do [24, 57, 58]. But in addition, nanocarriers 

protect the drug from degradation and, reduce the renal clearance and increase its half-life in 

the bloodstream, augment the payload of cytotoxic drugs, allow the control of the release 

kinetics of the anticancer drugs, and improve the solubility of those insoluble [24, 59, 60].  

Angiogenesis in cancer generate new blood vessels to the tumor, but these new vessels have 

got increased permeability (enhanced permeability and retention or EPR effect), that together 

with the poor lymphatic drainage of tumors allow the passive accumulation of the 

nanocarriers in tumoral tissues, releasing the chemotherapeutic agents in the vicinity of the 

tumor (Figure 1) [60-62]. To exploit the singularities of the tumor vasculature, nanocarriers 

must have enough circulation half-life to passively target the tumor environment, avoiding the 

action of the mononuclear phagocyte system (MPS) and the reticulo-endothelial system (RES) 

during their transportation throughout the bloodstream, and releasing the anticancer drugs in 

tumor [63-65]. For this purpose, nanocarrier size must not exceed 400 nm to escape from the 

MPS and achieve the extravasation into tumors by the EPR effect, which is much more 

effective with diameters below 200 nm [66-68]. In addition, the surface of these nano-scale 

carriers must be hydrophilic and neutral or slightly anionic to avoid the plasma proteins 
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(opsonins) and to delay the macrophage attack [69]. This is achieved through the decoration of 

the surface of the carriers with hydrophilic polymers like poly(ethylene glycol) (PEG) [70], or 

amphiphilic polymers like synthetic copolymers of polyethylene oxide (hydrophilic block) and 

propylene oxide (hydrophobic block) [71]. Also, it should be noted that the surface of blood 

vessels and cells contain negatively charged constituents that might repel nanocarriers with 

negatively charged surfaces, being a good choice the use of slightly negative or positive 

surfaces [72]. 

 

Figure 1. Nanocarriers as promising transporters of anticancer drugs to tumors by passive tissue targeting and 

active cellular targeting. Passive tissue targeting uses the increased permeability of tumor vasculature and the poor 

lymphatic drainage of tumors (EPR effect), allowing the release of chemotherapeutic agents in the vicinity of the 

tumor. Active cellular targeting is achieved by functionalization of the surface of nanocarriers, containing 

chemotherapy drugs, with targeting moieties that provide selective recognition of different receptors or antigens 

overexpressed in cancerous cells, increase their therapeutic efficacy, and overcomes the multiple-drug resistance. 

Nanocarriers, once in the vicinity of the tumor, can: (i) release their cytotoxic content next to the cancer cells; (ii) 

bind to the membrane of the cancer cells and release their content in a sustained way; (iii) be internalized into the 

cells. 

Reprinted by permission from Macmillan Publishers Ltd: [Nature Nanotechnology] (Nanocarriers as an emerging 

platform for cancer therapy), copyright (2007). 
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It is possible to achieve an active targeting by the conjugation of different moieties, like 

monoclonal antibodies, antibody fragments, peptides, growth factors, etc., to the surface of 

nanocarriers containing chemotherapy drugs (Figure 1). Indeed, nanocarriers allow the 

incorporation of multiple targeting ligands due to their high surface-area-to-volume ratio 

resulting in multiple binding possibilities [24, 73]. Active targeting does not enhance the overall 

tumor accumulation of cytotoxic drugs in the target site, not delivering a higher amount of 

cytotoxic drugs to the tumor than passively targeted systems since the initial accumulation of 

the nanocarriers in the tumor relies on EPR effect, before active targeting takes place [24, 74]. 

However, active cellular targeting improve therapeutic efficacy by decreasing unspecificity and 

increasing uptake [74, 75]. Moreover, decoration of nanocarriers with targeting moieties 

overcomes the multiple-drug resistance (MDR), using peptides, [76-80] and avoids the 

limitations of passive targeting, since the EPR effect is not produced in certain hypovascular 

tumors [81, 82] and the permeability of blood vessels can vary in a single tumor [83]. Active 

targeting nanocarriers are able to increase by many folds the antitumor efficacy compared to 

untargeted carriers [84].  

However, no nanocarriers with active targeting have achieved the FDA approval to date, and 

there are only few clinical trials in progress [85]. This clinical failure can be attributed to the 

fact that, after they penetrate into the tumor vasculature, there are different barriers that 

have to be crossed to reach and enter the cancer cells [85, 86].  Furthermore, in rapidly 

growing tumors, cancer cells are located adjacent to the endothelial barrier, and nanocarriers 

with targeting moieties will bind to the first receptors they find, not penetrating into the rest 

of the tumor. In the literature, different strategies have been described to solve these 

shortcomings, for example, an active targeting to angiogenic endothelial cells, so that 

nanocarriers do not have to permeate through the different layers that can be found between 

the endothelium and the tumor cells. This increases the antitumor potential and efficacy of 

nanocarriers, since they decrease the nutrients and oxygen delivery to the tumors, and release 
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the low molecular anticancer drugs in the vicinity of the tumor vasculature [49, 85]. This 

promising strategy is under preclinical development, with a few clinical examples in phase I 

[87-89]. An additional drawback, that contributes to the current clinical failure of active 

targeting nanocarriers, comprises the increased immunogenicity and plasma protein 

adsorption when targeting moieties are included in the nanocarriers, decreasing their 

bloodstream circulation time and their ability to passively target the tumors [85]. Up to date, 

all these problems make these active targeted nanoparticles to behave in vivo with the same 

or less antitumor efficiency than untargeted particles [85, 90], being necessary more research 

to attain clinical success. 

 

Nanocarriers comprise mainly polymer therapeutics (polymer-protein and polymer-drug 

conjugates), where the drug is covalently bound or conjugated to a polymeric structure, and 

particulate drug nanocarriers, where the drug is physically entrapped within molecular 

assemblies with different structures made from different materials, such as polymers 

(polymeric micelles, dendrimers and polymeric nanoparticles), lipids (liposomes), or 

organometallic compounds (carbon nanotubes). The first generation of anticancer 

nanocarriers to be approved by FDA included both liposomal drugs and polymeric conjugates 

[91, 92]. 

 

2.1.   Polymer therapeutics 

Polymer therapeutics that include polymer-protein conjugates and polymer-drug conjugates, 

among other structures, can be defined as nanoscale linear water-soluble polymeric 

macromolecular structures conjugated to anti-tumor proteins or small-molecule anticancer 

drugs, via cleavable linkers that are stable during the transportation of the cytotoxic 
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component, and release the anticancer drug in the tumor [93]. The covalent conjugation of 

anticancer proteins to polymers reduces its immunogenicity and increases its stability and 

circulation time in blood [94] , while, in the case of polymer-drug conjugates, polymers give 

cytotoxic drugs an increased circulation time in blood, an improved aqueous solubility, a 

passively targeted delivery to tumors, and a reduced toxicity, improving the therapeutic value 

of the anticancer drug [93, 95, 96]. In both cases, these structures can be considered as “new 

chemical entities” rather than drug carriers, having a reduced drug loading and a restricted 

capacity of active targeting because of the limited number of conjugation sites available in the 

polymer [94]. In addition, as the drug release is produced by breakage of the linker that 

bounds the drug to the polymer by enzymatic or chemical degradation, there is no control over 

the drug release. 

There are two polymer-protein conjugates approved by the FDA up to date: the anti-tumor 

protein neocarzinostatin conjugated to styrene maleic anhydride (SMANCS or Zinostatin 

Stimalamer) that it is administered locally [97, 98], and the PEG-protein conjugate, PEG-L-

asparaginase  (Pegaspargase or Oncaspar) that it is administered parenterally [99-101]. 

Pegaspargase was the first polymer-protein conjugate to be approved by the FDA in 1994 for 

the treatment of acute lymphoblastic leukemia [102, 103]. From these approvals, twenty years 

ago, numerous clinical trials of polymer-proteins conjugates have been or are being 

performed. Those include enzymes (arginase [104, 105], arginine deiminase [104, 106, 107], 

glutaminase [108, 109]) and biological response modifiers (interleukin 2 [110-112], interferon-

alpha [113-119], antibody fragment angiogenesis inhibitor [120, 121]) bound to PEG [93, 122-

125], but to the best of our knowledge there are no new FDA approvals for cancer treatment 

[126-128].  

After 30 years of development, there are no polymer-drug conjugates in the market [126, 129] 

However, clinical trials have grown exponentially in the last years [130]. Unlike the polymer-
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protein conjugates, where the last FDA approval covered different diseases [126-128] such as 

hepatitis C [131], gout [132], acromegaly [133-135], neutropenia [136-138], Crohn’s disease 

[139], renal anemia [140], and age-related macular degeneration [141-143], the research on 

polymer-drug conjugates has been focused on cancer treatment, with at least 20 conjugates 

currently in clinical trials (some of them in discontinued status) [127, 130, 144]. They are based 

on the traditional cytotoxic drugs (e.g. platinates [145, 146], doxorubicin [147, 148], 

camptothecin and analogues [149-159], paclitaxel/docetaxel [160-164], methotrexate [165], 

and irinotecan [166, 167]). Xyotax (CT-2103 or OPAXIO), a PGA-paclitaxel conjugate, and NKTR-

102, a polymer conjugate of irinotecan, are both currently in phase III clinical trials, being the 

conjugates closest to approval and market availability [164, 166-168].  

N-(2-hydroxypropyl)methacrylamide (HPMA)-doxorubicin conjugate was the first synthetic 

polymer-drug conjugate to enter clinical trials in 1994 [169-173]. Since then, other polymer-

drug conjugates, based on synthetic polymers like HPMA, polyglutamic acid (PGA) or PEG, have 

been submitted to clinical trials [93, 125, 129, 172-175]. Also, many natural polymers can be 

found in literature as polymer-drug conjugates [96], but only few polysaccharides, hyaluronic 

acid [161], human serum albumin (HSA) [165], dextran [148, 151] and cyclodextrin [155, 176] 

have reached clinical trials [96]. The most remarkable advance towards the clinical use of 

polymer-drug conjugates is DHA (docosahexaenoic acid)-paclitaxel conjugate (Taxopresin), 

which recently entered a phase III clinical trial [18, 177-180].  

Although, almost all the polymer-drug conjugates exploit the passive targeting, active 

approaches with targeting ligands like antibodies, peptides and folates have been developed in 

the last years [170, 181-185]. In addition, new promising lines of research are being followed 

to achieve active targeting by polymer-drug conjugates that inhibit specific kinases [186-189], 

activate apoptosis [190-192] or decrease angiogenesis [183-185, 193-196], being all these lines 
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of research in preclinical status, except for a polyacetal-fumagillin (antiangiogenic) conjugate 

(XMT-1107) which is under a phase I trial [18, 197]. 

 

2.2.   Particulate drug nanocarriers 

Particulate drug nanocarriers that include liposomes, carbon nanotubes and polymeric 

nanocarriers, among other structures, are nanosized molecular structures that provide an 

additional protection of the anticancer agent over the polymeric conjugates since the 

anticancer drugs are isolated from the environment and macrophagues. In addition, they 

provide the possibility of a controlled drug release, which, as mentioned before, is not possible 

in the case of the polymer therapeutics [198]. 

 

Liposomes 

Liposomes are self-assembled colloidal vesicles with a characteristic lipid bilayered membrane 

composed of amphiphilic phospholipids that not only allow the encapsulation of numerous 

hydrophilic anticancer drugs and siRNAs in its aqueous core, but also can host hydrophobic 

cytotoxic agents in its hydrophobic membrane. However, the drug loading capacity of poorly 

soluble drugs is limited due to the small space available in the membrane and the 

destabilization effect of the drug on the outer space, being then considered mainly as carriers 

of water-soluble drugs, although also with low loading limits [199, 200]. In addition to the 

amphiphilic drug loading characteristics, these structures exhibit additional advantageous 

properties like biocompability and almost biologically inert profiles in most patients, not 

causing antigenic or toxic reactions in a high percentage of cases. However, note that 

intravenous injection of liposomal drugs can cause the so-called “complement activation-

related pseudoallergy” (CARPA), a drug-induced acute immune toxicity manifested in 
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hypersensitivity reactions [201-203]. Liposomes exhibit  long time circulation in blood, that can 

be enhanced by conjugation of PEG to the liposome surface (stealth liposomes); and an easy 

tunable surface. Moreover, the physiochemical properties of liposomes can be modified by 

mixing different commercial lipid molecules, being able to control their size, surface charge, 

and utility in a simple way, without the additional chemical synthesis steps and complicated 

modifications that are used for the preparation of other carriers, i.e. polymer conjugates [204-

207]. However, in addition to their low drug loading mentioned above, they have some other 

limitations, like problems with stability and industrial reproducibility, difficulties in sterilization, 

the oxidation of phospholipids, and the limited control of drug release by the conventional 

formulations, which have profiles of release in rapid bursts, being possible to improve this 

behavior by strategies including thermo-, pH-sensitive and ultrasound triggered drug release 

[208-210]. Liposomes can also be used as active targeting carriers by bounding monoclonal 

antibodies or antibody fragments to the surface of liposomes (immunoliposomes) [211-214], 

increasing the antitumor activity of the anticancer agent, free or encapsulated in simple 

liposomes, and reducing the systemic toxicity of the free drug [214, 215]. These immuno-

nanocarriers, like a simple liposome, permit much higher amounts of cytotoxic drugs than 

antibody drug conjugates that only can be coupled with few molar equivalents of drugs to 

avoid interference with antigen binding [22, 211]. Additionally, immunoliposomes are able to 

incorporate multiple antibodies and other targeting moieties, which increase the targeting 

avidity of antibodies [22]. However, the size of these carriers and their limited circulation in 

blood (that can be enhanced by coating with PEG [216]) may restrict their penetration in solid 

tumors [217]. 

Despite the above-mentioned advantages of liposomal nanocarriers, only 5 liposomes based 

anticancer drugs have been approved by FDA to date in contrast to the 16 FDA approval of 

monoclonal antibodies (including antibody drug conjugates) [17, 18, 25, 126, 144, 218]. 

Doxorubicin HCl stealth liposome injection (Doxil) was, in 1995, the first liposomal carrier 

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado



approved by FDA [219], and vincristine sulfate liposome injection (Marqibo, ONCO TCS) have 

been the last liposomal cytotoxic drug to be approved by FDA in August 2012 [220]. However, 

many promising clinical studies are under development to reduce the toxicity, and increase the 

antitumoral activity of the cytotoxic drugs, by their association to liposomal formulations with 

increased circulation time in blood. The most remarkable examples of these liposomal 

formulations are included in the Table 1. 

 

Tabla 1: Main examples of liposomal formulations in clinical trials. 

Product name Composition Status Therapeutic indication References 

Lipoplatin 
Pegylated liposomes with 

cisplatin 
Phase III 

Non-small lung cancer and 

pancreatic, gastric, breast, head 

and neck cancers 

[221-226] 

Mepact (mifamurtide, 

L-MTP-PE) 

Liposomal muramyl tripeptide 

phosphatidyl ethanolamine 

Phase III (approved 

in Europe) 

Nonmetastatic resectable 

osteosarcoma 
[227-229] 

9NC-LP 9-nitrocamptothecin liposomes Phase II/III Hepatocellular carcinoma [230, 231] 

L-BLP25 (Stimuvax) 

BLP25 liposome vaccine that 

induce an immune response to 

cancer cells that express MUC1 

Phase II/III 

Colorectal cancer, prostate cancer, 

non-small cell lung cancer, 

multiple myeloma, and endocrine-

sensitive advanced breast cancer 

(in combination with hormonal 

treatment) 

[18, 218] 

SPI-077 Pegylated liposomal cisplatin Phase I/II/III 
Non-small cell lung cancer, ovarian 

cancer, head and neck cancer 

[18, 224, 232-

234] 

Lipoxal 
Liposomal formulation of 

oxaliplatin 
Phase II Advanced cancer 

[222-224, 

235] 
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Product name Composition Status Therapeutic indication References 

INGN 401 
Liposomal formulation of the 

tumor suppressor gene FUS1 
Phase II Metastatic lung cancer [236-238] 

EndoTAG-1 
Paclitaxel-loaded cationic 

liposomes 
Phase II 

Anti-angiogenesis, breast, liver 

and pancreatic cancers 
[18, 218, 239] 

Atragen 
Liposomal retinoic acid 

(tretinoin) 
Phase II 

Recurrent or refractory Hodgkin´s 

disease1 and metastatic kidney 

cancer (in combination with 

Interferon alfa) 

[18, 126] 

SLIT2 cisplatin 
Nebulized liposomal 

formulation of cisplatin 
Phase I/II 

Osteosarcoma metastatic to the 

lung 
[18, 240, 241] 

OSI-211 

Liposomal formulation of 

lurtotecan (analogue of 

campthothecin) 

Phase I/II 

Phase II: recurrent small cell lung 

cancer, advanced ovarian cancer, 

metastatic or locally recurrent 

head and neck cancer 

Phase I: advanced or metastatic 

solid tumors 

[18, 242-245] 

OSI-7904L 
Liposomal thymidylate synthase 

inhibitor 
Phase I/II 

Phase II: gastric or 

gastroesophageal cancer, biliary 

tract cancer, and head and neck 

cancer 

Phase I: refractory or recurrent 

advanced colorectal cancer (in 

combination with oxaliplatin), and 

solid tumors (in combination with 

cisplatin) 

[18, 246-248] 

L-Annamycin Liposomal annamycin Phase I/II 
Breast cancer and acute 

lymphocytic leukemia 

[18, 238, 249-

251] 

                                                           
1 Study withdrawn 
2 SLIT: sustained release lipid inhalation targeting 



Product name Composition Status Therapeutic indication References 

LE-DT 
Liposome encapsulated 

docetaxel 
Phase I/II 

Phase II: advanced or metastatic 

pancreatic cancer, metastatic 

castrate resistant prostate cancer 

Phase I: solid tumors 

[18, 252] 

LEP-ETU 
Liposome-based paclitaxel 

formulation 
Phase I/II 

Phase II: metastatic breast cancer 

Phase I: advanced cancer 
[18, 239, 253] 

LE-SN-38 
Liposomes with SN-38 (the 

active metabolite of irinotecan) 
Phase I/II 

Phase II: colorectal cancer and 

small cell lung cancer 

Phase I: advanced cancer 

[18, 144, 254, 

255] 

2B3-101 
Pegylated liposomal 

doxorubicin 
Phase I/II 

Solid tumors, brain metastases of 

breast cancer, recurrent malignant 

glioma, and meningeal 

carcinomatosis 

[18, 256] 

Aroplatin, DACH 

platinum LNDDP 

Liposomal cisplatinum 

derivative agent 
Phase I/II 

Advanced pancreatic and 

colorectal cancer, malignant 

pleural mesothelioma, advanced 

solid malignancies, B-cell 

lymphoma 

[18, 224, 257, 

258] 

PLD-EIA Cationic liposomal EIA pDNA Phase I/II Breast and ovarian cancers [259] 

S-CKD602 
Pegylated liposomes with CKD-

602 (camptothecin derivative) 
Phase I Advanced malignancies [18, 260] 

Alocrest Vinorelbine liposomes injection Phase I Breast and lung cancer [197] 

ATI-1123 
Liposomal formulation of 

docetaxel 
Phase I Solid tumors [18, 261, 262] 

IHL-305 Pegylated liposomal irinotecan Phase I Advanced solid tumors [18, 207, 263] 

LE-rafAON 

Liposomal formulation 

containing c-Raf antisense 

oligodeoxynucleotides 

Phase I Advanced malignancies [264, 265] 

Oncolipin Liposomal interleukin 2 Phase I Non-Hodgkin lymphoma [259, 266] 



Product name Composition Status Therapeutic indication References 

C-VISA BikDD 

Cholesterol liposome 

formulation of C-VISA BikDD 

(plasmid) 

Phase I Advanced pancreatic cancer [18, 197] 

LiPlaCis 
Liposomal formulation of 

cisplatin 
Phase I Advanced or refractory tumors [18, 224] 

TL1 Topotecan liposomes injection Phase I 
Small lung cancer, ovarian cancer, 

and other advanced solid tumors 
[18] 

NL CPT-11 
Pegylated liposomes with 

irinotecan 
Phase I Recurrent high-grade gliomas [18, 197] 

 

Recently, new strategies in liposomal research have gained interest, and some clinical trials 

based on the combination of different chemotherapeutic agents, and stimuli-responsive 

release approaches, have been started [267, 268] This is the case of the phase I/II/III trials with 

liposomes containing cytarabine and daunorubicin (CPX-351) in the treatment of acute 

myeloid leukemia [18, 269-271], the phase II trials of liposomes containing irinotecan·HCl and 

floxuridine (CPX-1) as a therapy for advanced colorectal cancer [18, 218, 272], and the thermo-

sensitive liposomes containing doxorubicin (ThermoDox) in phase III for the treatment of 

hepatocellular carcinoma [18], and in phase I/II to recurrent chest wall breast cancer, locally 

recurrent breast cancer, primary and metastatic tumors of the liver, and metastatic colorectal 

cancer [18, 273, 274].   

With respect to immunoliposomes, although many preclinical studies can be found in the 

literature [24, 215, 275, 276] and a few clinical trials are in progress [18, 75, 277-279], no 

immunoliposome has reached the FDA approval. Moreover, there are other active targeting 

liposomes in clinical trials, like the phase I/II trials of MBP-426, a transferrin-targeted liposomal 

oxaliplatin formulation to treat advanced or metastatic solid tumors, second line gastric, 

gastroesophageal, or esophageal adenocarcinoma [18, 279-281].  
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Furthermore, active targeting liposome formulations are also being used in gene cancer 

therapy as delivery vehicles of either synthetic short interfering siRNA that silence certain 

genes involved in cancer promotion or plasmid encoding cDNAs for the recovery of tumor 

suppressor expression. Liposomes provide the nucleic acids with protection and reduced 

macrophage clearance [282-284]. There are several siRNA-loaded liposomal formulations 

under phase I clinical trials, like ALN-VSP that includes siRNA targeting VEGF and kinesin 

spindle protein for the treatment of solid tumors with liver involvement [18, 285], Atu07 with 

an siRNA that targets PKN3 [18, 286], or TKM-PLK1 that includes siRNA against PLK1 for the 

treatment of neuroendocrine tumors and adrenocortical carcinomas (phase I/II clinical trials) 

[283, 287, 288]. The phase I liposomic formulation SGT-53 includes plasmidic DNA that 

expresses the tumor suppressor gene p53 to treat solid tumors [280, 289]. 

 

Carbon nanotubes 

Carbon nanotubes are tubular hydrophobic networks of carbon atoms with a diameter of 

approximately 1-4 nanometers (depending on the number of graphene layers), 1-100 

micrometers in length and unique structural, electronic, optical and mechanical properties 

[290, 291]. Although carbon nanotubes are completely insoluble in all solvents, creating 

toxicity problems, limiting their length and diameter diminish this toxicity, and chemical 

modifications to their structure transform them in water-soluble carriers, increasing their 

biocompatibility and decreasing their toxicity [292-294]. Different anticancer drugs can be 

included in their inner cavity [295, 296] or in their surface [297] with a high payload due to 

their ultrahigh surface area. These novel carriers have the ability of cross the plasma 

membrane and enter into the cancerous cells (by endocytosis or penetration like a needle), 

having no influence the type of functionalization of the nanotubes or the type of cancer cells 

[298, 299]. In addition, the functionalized surface of the nanotubes can be bound to different 
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targeting moieties, leading to an enhanced tumor cell specificity of the cytotoxic agents, 

compared with the non-targeted carbon nanocarriers, and overcoming the multidrug 

resistance [300-306]. 

There are no FDA approvals or clinical trials in process up to date using carbon nanotubes, 

although the encouraging preclinical results in vitro and in vivo in cancer treatment via passive 

targeting show that this structures are promising nanocarriers for cancer treatment [18, 126, 

296, 297, 300, 307-316]. Active tumor targeting has been rarely reported in vivo [300, 317, 

318], usually without drug loading [301, 303, 319]. However, it should be noted the promising 

studies reported by Bhirde et al. [320, 321]. These authors, using a first-line cytotoxic agent 

(cisplatin), and a targeting moiety (epidermal growth factor, EGF) conjugated to the sidewall of 

single-walled nanotubes (SWNTs), have shown an enhanced efficacy to target squamous 

cancer cells that overexpress the epidermal growth factor receptor (EGFR), increased 

accumulation and uptake of the nanotubes by the tumor tissue, and an augmented efficacy to 

reduce the size of a head and neck tumor, compared with untargeted nanotubes without EGF 

molecules [320, 321]. This work is an example of multiple functionalization of the sidewall of 

carbon nanotubes that permit to carry several types of molecules with different functions in 

the same carrier, being very useful in cancer treatment [322-324]. More recently, Wang et al. 

[325] reported water-soluble single-walled carbon nanotubes conjugated with docetaxel and 

NGR (Asn-Gly-Arg) peptide to target tumor angiogenesis. These authors showed enhanced in 

vitro and in vivo efficacy in the PC3 cell line and in a murine S180 cancer model, compared to 

free docetaxel [325]. In the last two years, the number of in vivo studies with targeted carbon 

nanotubes has slightly increased. Ji et al. [326] reported a new chitosan modified single walled 

carbon nanotubes that selectively deliver doxorubicin to SMMC-7721 liver cancer cells due to 

the folic acid conjugated to the chitosan outer layer. These modified carbon nanotubes are 

able to kill the HCC SMMC-7721 hepatocellular carcinoma cell line and to minimize the growth 

of tumors on nude mice with liver cancer, showing enhanced pharmaceutical efficiency and 
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decreased in vivo toxicity compared to free doxorubicin [326]. Datir et al. [327] described a 

multiwalled doxorubicin-loaded carbon nanotube-hyaluronic acid conjugate that target and is 

internalize by A549 human lung adenocarcinoma cells via hyaluronan receptors. This targeted 

system showed higher cytotoxicity and apoptotic activity than free doxorubicin. In vivo, the 

doxorubicin-loaded carbon nanotube-hyaluronic acid showed enhanced accumulation in 

Ehlrich ascites tumor bearing mice model, compared with free doxorubicin and non-targeted 

carbon nanotubes, and higher inhibition of tumor growth in breast cancer-induced rats, 

compared with free doxorubicin, not detecting any toxicity in mice and rats [327]. Ren and 

collaborators [328] developed doxorubicin-loaded PEGylated oxidized multi-walled carbon 

nanotubes with angiopep-2 as targeting ligand to the treatment of brain glioma. The superior 

anti-glioma effect of this system, compared to free doxorubicin, was demonstrated in vitro by 

its cytotoxicity on C6 glioma cells and in vivo by an increase in the median survival time of mice 

with glioma [328]. Singh et al. [329] functionalized multi-walled carbon nanotubes with folic 

acid to specifically deliver gemcitabine to breast cancer cells. These smart carbon nanotubes 

are able to generate a sustained release of gemcitabine at the lysosomal pH at the tumor site, 

generating an enhanced cytotoxic response on MCF-7 human breast cancer cell line, compared 

to free gemcitabine and non-targeted carbon nanotubes. In vivo studies revealed that folic 

acid-conjugated multi-walled carbon nanotubes released appreciable gemcitabine in the 

systemic circulation, with lesser accumulation in liver, kidney, spleen and lungs, compared to 

the free drug and the non-targeted carbon nanotubes. The in vivo pharmacokinetic parameters 

showed an enhanced residence time and half-life with respect to the free drug and the non-

targeted system [329].  

 

 

 

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado



Polymeric nanocarriers 

Polymeric nanocarriers are polymer-based drug nanocarriers with different possible 

structures: amphiphilic core/shell (polymeric micelles), hyperbranched macromolecules 

(dendrimers), or capsules/particles (polymeric nanoparticles). Despite the numerous 

advantages and the clinical validation of liposomes, they show problems of stability and a 

limited control of drug release. Polymeric nanocarriers are able to overcome these liposomal 

limitations, since they are more stable in vivo, show higher drug circulation times, higher 

loading capacities, and the ability to produce more controlled and targeted drug release 

profiles, both during prolonged periods of time and at different predetermined rates [330, 

331]. 

Polymeric micelles: They are promising vehicles for the delivery of poorly soluble cytotoxic 

drugs that allow a controlled drug release. Polymeric micelles are composed of amphiphilic 

block copolymers that form nanosized spheroidal micellar structures with a hydrophobic core 

which can contain poorly-water soluble anticancer drugs and a hydrophilic shell that allows the 

inclusion of hydrophilic drugs and provides stability to the micelle. This results in long 

circulation times of the drug in blood and makes this formulation an appropriate carrier for 

intravenous administration [332-334]. In addition to solve the solubility problems of numerous 

anticancer drugs by including them into polymeric micelles, the reduced size of the micelle (20-

80 nm), which is sufficient to accommodate a high amount of anticancer drugs, and their 

uniformity, increase even more the circulation time of the drug in the bloodstream and 

provide better permeability to the anticancer drugs, improving their delivery from the blood 

vessels deep into the tumors, and generating a uniform distribution of the cytotoxic drug 

throughout the anomalous tissue [335, 336]. Polymeric micelles will get more clinical 

significance when some drawbacks of the conventional formulations, like their insufficient 

stability in systemic circulation and the premature drug leakage, that may cause side effects 
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and a decrease of effectiveness, are overcome [332, 337]. Some research is being done in this 

direction [338, 339] either by stimuli-responsive approaches [340-344], core crosslinking, drug 

entrapment in the core by covalent binding with linkers [345, 346], functionalization strategies 

with targeting moieties [347-350], or combinations [351, 352]. 

In spite of the promising characteristics of the polymeric micelles, there are only eight 

polymeric micelle-based formulations that include anticancer agents currently in clinical trials 

[338, 353, 354]. Genexol-PM (paclitaxel encapsulated in monomethoxy-poly(ethylene glycol)-

block-poly(D,L-lactide)), that is currently involved in 13 clinical trials, is the polymeric micelle 

with a more advanced state of development. In fact, it is under phase II, III and IV clinical trials 

for the treatment of advanced, recurrent or metastatic breast cancer; is under phase II for the 

treatment of advanced urothelial cancer, advanced head and neck cancer, and advanced non-

small-cell lung cancer; is under phase I/II clinical trials for the treatment of ovarian cancer and 

advanced or metastatic pancreatic cancer; and has been approved by the Korean drug 

administration for the treatment of breast and lung cancer [18, 85, 354-356]. The other clinical 

trials currently under development with this structures are: the phase I trial with polymeric 

micelles composed of methoxy-poly(ethylene glycol)-block-poly(D,L-lactide) loaded with 

docetaxel (Nanoxel-PM) [357], the phase I trial of NC 4016, a PEG-poly(glutamic acid) 

polymeric micelle of oxaliplatin [18, 197], the polymeric micelles composed of PEG and PAA 

that incorporate doxorubicin (NK911) (phase I/II trials) [358] or paclitaxel (NK105) (phase II/III 

trials) [18, 359, 360], the phase I/II trials of the pegylated polymeric micelles NC-6004 

(Nanoplain: PEG + poly-glutamic acid) [18, 361] and NK012 (PEG + poly-glycolic acid) [18, 362], 

containing cisplatin or SN38, respectively, and the phase II/III trials of the P-glycoprotein-

targeting pluronic micelle of doxorubicin (SP1049C) that was labeled as orphan drug by the 

FDA in 2008 [347, 354]. 
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Dendrimers: These are highly branched three-dimensional synthetic polymeric 

macromolecules (10-100 nm). Since dendrimers are synthesized from a central core by 

consecutive and controlled polymeric reactions that allow a high level of control over their 

architecture, it is possible to adjust the biocompability and the pharmacokinetics of the carrier 

by tuning the chemical synthesis of the dendrimer. This novel and emerging carrier family 

bears promising features for its use in the oncology field, like uniform properties 

(monodisperse size and well-defined shape), biodegradability and biocompability, good water 

solubility, high drug loading capacity, and multiple functional groups in its surface that 

influence its toxicity and permit the conjugation of multiple molecules at the same time, like 

anticancer drugs, targeting moieties, and PEG to increase the water solubility and the 

circulation time of the drugs in blood [363-366]. The unique uniformity of dendrimers gives 

them the ability to cross the membrane of cancer cells and decreases the carrier clearance by 

macrophagues. Despite these promising characteristics, dendrimers share a limiting feature 

with polymer therapeutics: the multistep synthesis that increases production costs. The 

anticancer drug can be either non-covalently encapsulated in the core of the dendrimer or 

covalently conjugated to its surface, being possible to customize the drug release profiles by 

controlled depolymerization processes [334, 365, 367, 368]. The encapsulation of anticancer 

drugs in amphiphilic dendrimers with a hydrophobic core surrounded by hydrophilic branches 

permits only the utilization of these dendrimers in local treatments (intratumoral injections), 

because, although it solubilizes the hydrophobic drugs and leaves the drug unaltered, 

produces toxicity and generates an uncontrolled drug release [365, 369-373]. The covalent 

attachment of anticancer prodrugs to the surface groups of the dendrimer by chemical 

conjugation offers, in addition to the enhanced solubilization of the drugs, some advantages 

compared to the non-covalent encapsulation of the drugs into the dendrimer, namely the 

multiple attachment of different hydrophobic or hydrophilic anticancer drugs and the 

controlled release of the drugs depending on the linkers used [374-376].  
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Dendrimers have been used as passive anticancer nanocarriers [365, 369, 370, 377-379]. An 

early example of in vivo passive targeting Is the conjugation of a sodium carboxyl-terminated 

G-3.5 polyamidoamine (PAMAM) dendrimer with cisplatin for the treatment of B16F10 

induced melanomas, achieving an enhanced antitumor efficacy compared with the free drug 

[372]. Also, there are preclinical promising in vitro and in vivo results with active targeting 

dendrimers [73, 365], for example antibody-dendrimer conjugates showed better efficacy than 

free antibodies [380-383], peptide (RGD) dendrimer conjugates showed enhanced tumor 

targeting [384-386], and folic acid functionalized dendrimers generated better tumor 

accumulations than untargeted controls or free drug, producing a stronger reduction of the 

tumor size [73, 387-390]. The slow translation of these preclinical studies to clinical trials may 

be due to the current toxicity of dendrimers [391, 392], with the aim of the current research in 

the development of new biocompatible and less toxic alternatives [367, 393-399]. 

 

Polymeric nanoparticles: This group may be the most effective carriers for controlled and 

prolonged anticancer targeted drug delivery. They can be defined as biodegradable colloidal 

systems that include spherical nano-sized polymeric particles, where cytotoxic drugs can be 

encapsulated or physically entrapped within a polymeric matrix (nanospheres) or entrapped 

into a cavity surrounded by a polymeric membrane (nanocapsules), being also possible the 

conjugation of the anticancer drug to the surface or the core of the particles [198, 400]. In the 

case of insoluble drugs, it is possible to produce a hydrophobic interaction between the drug 

and the core of the particle, increasing its solubility [401]. When a drug is conjugated to the 

particle, the properties of the linkers play a crucial role in the pharmacological properties of 

the complex, for example, they can make them stable in the bloodstream at pH=7 and be 

decomposed at pH=5.5, the typical pH in tumors, or be stable in blood, but be cleaved by 

lysosomal enzymes in the tumors [402]. In addition to their protective properties, these 
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carriers also offer: multiple delivery of synergic drugs, reduced toxicity with a limited 

interaction with healthy cells, long circulation times (stealth nanoparticles), and enhanced 

uptake by cancer cells, characteristics they share with other nanocarriers; but in addition they 

show: better stability, more homogeneous size distribution, better controllable 

physicochemical properties, higher drug payload, and more controlled drug release via 

diffusion through the polymer matrix or by erosion and degradation of the particles, compared 

with other colloidal systems (e.g. liposomes, polymeric micelles) [403]. The generation of 

nanoparticles includes biodegradable and biocompatible natural or synthetic polymers that 

already have FDA approval. Synthetic polymers, like polyglutamic acid and polyglycolic acid 

(PGA), polyethylene glycol (PEG), polycaprolactone (PCL), polylactic acid (PLA), polyaspartate 

(PAA), poly(D, L-lactide-co-glycolic) acid (PLGA), and N-(2-hydroxypropyl)-methacrylamide 

copolymer (HPMA), are frequently used, since they are easily manufactured and degraded 

after use, and produce a sustained release of the active compounds over the time [280]. 

However, natural polymers, like chitosan, alginate, dextran, heparin, albumin, gelatin or 

collagen, are less used since, in spite of being non-toxic, abundant in nature, inexpensive, and 

easily biodegraded, they present relatively fast release profiles, and they are not naturally pure 

and homogeneous, requiring a purification step before their use [250, 404]. Nevertheless, 

natural polymers are recently gaining interest as usable options, since the generation of 

nanocarriers with them is performed by mild methods (ionic gelation, coacervation, or 

complex complexation) [405].  

Polymeric nanoparticles are currently in preclinical and clinical development, but in spite of 

their promising characteristics described above, in general, they haven’t reached FDA 

approval. In fact, currently there is only one polymeric nanoparticle available in the market, 

Abraxane (ABI-007), an albumin-bound paclitaxel nanoparticle that was approved by the FDA 

in 2005 for the treatment of metastatic breast cancer. Later, it was approved for the first-line 

treatment of advanced non-small cell lung cancer (October, 2012) and for the metastatic 
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pancreatic cancer (September, 2013). Also, it is in phase III trials for the treatment of 

malignant melanoma [18, 406-412]. Moreover, there are another 10 formulations under 

clinical trials that are included in the Table 2 [126]. 

 

Table 1. Main examples of polymeric nanoparticles in clinical trials. 

Product name Composition Status Therapeutic indication References 

BA-0033 

(Doxorubicin 

Transdrug, Livitag) 

Nanoparticulate formulation of 

polyisohexylcryano-acrylate containing 

doxurrubicin 

Phase III Advanced hepatocellular carcinoma 
[18, 197, 

413, 414] 

DHAD-PBCA-NPs 

Mitoxantrone-loaded 

polybutylcyanacrylate nanoparticle 

formulation 

Phase II Hepatocellular carcinoma [415] 

IT-101 (CRLX101) 
Campthothecin coupled to cyclodextrin-

PEG copolymer nanoparticles 
Phase I/II 

Phase II: ovarian cancer and 

recurrent small cell lung cancer 

Phase I/II: advanced solid tumors 

Pilot trial: advanced or metastatic 

stomach, gastroesophageal, or 

esophageal cancer 

[18, 155, 

176, 416] 

BIND-014 (DTXL-

TNP) 

(PLA-PEG or PLGA-PEG) PSMA4-targeted 

nanoparticle formulation with docetaxel5 
Phase I/II 

Phase II: metastatic castration-

resistant prostate cancer and non-

small cell lung cancer 

Phase I: advanced or metastatic 

cancer 

[18, 417-

419] 

ABI-008 
Nanoparticle albumin-bound formulation 

of docetaxel (nab-docetaxel) 
Phase I/II 

Metastatic breast cancer and 

hormone-refractory prostate cancer 

[18, 197, 

420, 421] 

                                                           
3 First nanoparticle to enter in clinical trials. 
4 PSMA: prostate-specific membrane antigen. 
5 The nanoparticles were targeted to PSMA using ACUPA (S,S-2-[3-[5-amino-1-carboxypentyl]-ureido]-
pentanedioic acid) 
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Product name Composition Status Therapeutic indication References 

ABI-009 
Nanoparticle albumin-bound formulation 

of rapamycin (nab-rapamycin) 
Phase I/II 

Advanced non-hematologic 

malignancies and nonmuscle 

invasive bladder cancer. 

[18, 197, 

420-422] 

ABI-010 
Nanoparticle albumin-bound formulation 

of 17-AAG (nab-17-AAG) 
Phase I Solid tumors 

[18, 197, 

420, 421] 

ABI-011 
Nanoparticle albumin-bound formulation 

of thiocolchine dimer 
Phase I 

Advanced solid tumors or 

lymphomas 

[18, 197, 

420, 421] 

CALAA-01 

Cyclodextrin-PEG-transferrin receptor-

targeted nanoparticles containing anti-

RRM2 siRNA 

Phase I Solid tumors 
[18, 423-

426] 

Docetaxel-PNP 
Polymeric nanoparticle formulation of 

docetaxel 
Phase I Advanced solid malignancies 

[18, 85, 

427] 

 

 

In the next section we will discuss in detail some of the more advanced preclinical studies with 

polymeric nanoparticles for cancer treatment. 

 

3. Preclinical studies of polymeric nanoparticles for targeted cancer therapy. 

As mentioned before, polymeric nanoparticles are promising carriers in cancer therapy 

because they have enabled the efficient co-delivery of multiple cytotoxic compounds and 

other therapeutic agents with synergic properties to tumors, allowing a longer bloodstream 

half-life, showing reduced toxicity and improving pharmacokinetics. In addition to these 

characteristics that they share with other carriers in the nano-sized scale, polymeric 

nanoparticles offer enhanced features, like higher stability in different biological fluids, tunable 



surface chemistry, size distributions near to monodispersion, controllable physicochemical 

properties, higher drug loading, and controlled drug release [403, 428]. For the liberation of 

the active compounds from the polymeric nanoparticles, the use of biodegradable and 

biocompatible synthetic and natural polymers produces controlled release profiles by diffusion 

or erosion and degradation mechanisms [330, 331]. The long-term sustained drug release 

supplied by polymeric nanoparticles is more effective and produces fewer side effects, than 

the pulse supply of chemotherapeutic agents at high concentrations (traditional 

chemotherapy) [429]. The properties of nanoparticles, like their size, surface charge, structure, 

stability, and porosity, which are determined by the properties of the components of the 

particles, and the process used to generate them, will determine their in vitro and in vivo 

behavior.  

The use of polymeric systems in cancer therapy started upon the description in 1976 by Langer 

and Folkman of the first controlled release system of macromolecules with polymers [430]. In 

1979, Couvreur and colleagues described in vitro and in vivo studies using polymeric 

nanoparticles composed of polyalkylcyanoacrylate for the release of doxorubicin [431]. The 

early formulations of polymeric nanoparticles applied to cancer therapy in the 1980s were 

used for the treatment of hepatocarcinoma, bronchopulmonary tumors and myelomas 

(macrophage-infiltrated tumours) since they were delivered directly to the mononuclear 

phagocytic system (MPS), exploiting the opsonisation and clarification of the particles by the 

macrophages once in the bloodstream [432, 433]. The next step was the targeting of the rest 

of tumours by “stealth” polymeric nanoparticles with long circulation times in the bloodstream 

and reduced opsonisation by macrophages [434-436]. In fact, in 1994, Langer and colleagues 

described poly(lactic acid)/poly(lactic-co-glycolic acid) (PLA/PLGA) and PEG block copolymer 

nanoparticles as long-circulating stealth polymeric nanoparticles with therapeutic applications 

[437]. Later, biodegradable polymeric nanoparticles have been developed as promising and 
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effective carriers for an advanced and personalized chemotherapy due to the progresses in 

material science and engineering [432, 438-441].  

In spite of the low quantity of clinical trials operative, and the fact that only one formulation 

has gotten FDA approval, polymeric nanoparticles have a huge potential in cancer therapy, 

being one of the most widely studied nano-platforms in this field [442], being only second to 

studies with conventional platforms like “liposomes” [443]. 

90% of the papers based on cancer therapeutics with polymeric nanoparticles have been 

published in the last 6 years, which shows the interest that these formulations have recently 

achieved [443]. The most promising and advanced preclinical studies of polymeric 

nanoparticles applied to active and passive cancer treatment in these years will be analyzed in 

detail in this section. 

 

A) Passive targeting. 

Nanoparticles accumulate in tumors mostly because of the enhanced permeability and 

retention effect (EPR effect), which is due to angiogenic processes that produce highly 

permeable blood vessels in tumors and their characteristic abnormal lymphatic drainage that 

leads to the accumulation of the nano-scale particles in them, allowing the release of the 

cytotoxic drugs close to the tumor cells [444]. Next, the most promising and advanced 

polymeric nanoparticulate formulations using passive targeting to deliver different cytotoxic 

agents will be presented. 

 

Formulations loaded with cisplatin. 

Kim et al. [445] encapsulated cisplatin in the hydrophobic cores of nano-sized-aggregates 

formed in an aqueous medium with hydrophobically modified glycol chitosans, achieving a 
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drug loading efficiency of about 80 %. In vitro, these nanoparticles of about 300-500 nm 

released the cytotoxic agent in a sustained manner, showing less drug cytotoxicity than the 

free drug, probably due to this sustained drug release. In vivo, the nanoparticles applied to 

tumour-bearing C3H/HeN male mice, showed prolonged circulation in blood, better targeting 

ability, successful accumulation in tumours, enhanced antitumor activity, and less toxicity 

compared to free drug. 

Mattheolabakis and co-workers [446] developed long-circulating cisplatin-loaded PLGA-

monomethoxy-PEG nanoparticles to passively target tumors. This nanoparticulate formulation 

allowed a prolonged residence time of cisplatin in systemic circulation after its intravenous 

administration in mice [447], while maintaining an anticancer activity in prostate cancer cells 

comparable with free cisplatin [448]. In addition, high doses of cisplatin included in the PLGA-

mPEG nanoparticles were well tolerated in BALB/c mice [446]. The authors demonstrated the 

antitumor activity of the system by a reduction in tumor growth in SCID (severe combined 

immunodeficiency) mice with HT29 colon adenocarcinoma tumors, showing higher survival 

rates compared to the treatment with free cisplatin [446]. In another work with a similar 

loading of cisplatin to PLGA nanoparticles to avoid its side effects without decreasing the drug 

efficacy, Moreno et al. [449] used the nanoparticulate formulation in tumor-bearing mice, 

decreasing the tumor volume and activating apoptosis, leading to a significant antitumor 

activity with lower side effects than conventional cisplatin. 

Cisplatin loaded on to gelatin-poly(acrylic acid) nanoparticles (100 nm), which allow a high 

drug load and stability, produced a sustained drug release and showed enhanced in vivo 

antitumor activity and high accumulation of the particles in the vicinity of the tumor in a mice 

liver cancer model [450]. 
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Nanoparticles loaded with doxorubicin. 

Park and co-workers [451] reported that pegylated PLGA nanoparticles enhanced the anti-

tumoral activity of doxorubicin and reduced the cardiomyopathies produced by the 

commercially available liposomal formulation of doxorubicin, Doxil. This formulation had 

enhanced cytotoxicity compared to free doxorubicin, in vitro on A20 murine B-cell lymphoma 

cells, and in vivo in subcutaneously implanted solid tumors in mice due to the increased uptake 

of the nanoparticles by the malignant cells. 

An upgrade of these particles was achieved by Gelperina and collaborators, which found a way 

to cross the blood-brain barrier by doxorubicin-loaded PLGA nanoparticles coated with 

poloxamer 188 or polysorbate 80 that generated enhanced anti-tumor activity against 

intracranial glioblastoma in rats [452]. Shortly after, this formulation was slightly modified by 

Wohlfart et al. and tested by histological and immunohistochemical methods to ensure their 

anti-tumor efficacy in a glioblastoma rat model [453]. The modifications proposed by these 

authors were the stabilization by polyvinylalcohol (PVA) and human serum albumin (HAS), and 

the inclusion of lecithin in the core of the PLGA/HSA formulations that stabilize the coating of 

poloxamer 188 due to the affinity between both components. Studies on a rat glioblastoma 

model demonstrated the enhanced anti-tumor effect of the doxorubicin-loaded lecithin-

containing PLGA/HSA formulation coated with poloxamer 188, the key ingredient for the 

delivery of the drug to the brain [453]. 

 

Paclitaxel encapsulation. 

Paclitaxel has been encapsulated into PEGylated PCL-PLGA nanoparticles, enhancing the in 

vitro and in vivo cytotoxic effect of the commercial formulation of paclitaxel, Taxol [454]. In 

vitro studies in Human Cervix Carcinoma Cells (HeLa) revealed higher anti-tumoral activity and 
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cytotoxicity than Taxol. The paclitaxel-loaded nanoparticles also showed in vivo greater 

inhibition of the tumor growth on TLT-tumor-bearing mice than the Taxol formulation. 

Paclitaxel encapsulation into PLGA nanoparticles has been also used as a promising 

formulation to eradicate hypoxic tumor cells. Jin and co-workers [455] demonstrated an 

enhanced in vitro cytotoxicity of the paclitaxel in breast carcinoma (MCF-7) and cervix 

carcinoma (HeLa) cell lines, compared to the free drug, observing cellular uptake by 

fluorescence microscopy. In addition, using mice they observed the biodistribution of the 

paclitaxel-loaded particles to the liver and the spleen. In order to achieve long-circulating 

paclitaxel-loaded  PLGA nanoparticles, Parveen and Sahoo [456] coated  PLGA nanoparticles 

with a blend of chitosan and polyethylene glycol. This system was able to encapsulate 

hydrophobic drugs due to the PLGA core, and to bypass the phagocytic attack (increasing their 

circulation time) due to their hydrophilic coating with a blend of chitosan and polyethylene 

glycol. In vitro studies in retinoblastoma, breast, and pancreatic cancer cell lines revealed an 

increased antiproliferative activity over PLGA nanoparticles and the free drug due to an 

enhanced cellular uptake and cytotoxicity of the PLGA-CS-PEG nanoparticles. 

In an approach for improving the traditional paclitaxel formulation in Cremophor EL, Oh and 

collaborators, included paclitaxel in nanoparticles generated by a temperature-induced phase 

transition, with a mixture of Pluronic F-68 and liquid PEG, being this process solvent free [457]. 

This particulate system was applied in vivo to male mice with tumors induced by the 

subcutaneous injection of SCC-7 (squamous cell carcinoma) cells, showing increased circulation 

time in bloodstream, enhanced targeting efficiency, and higher antitumor efficacy, compared 

to the conventional drug. 

Paclitaxel has also been loaded in poly(N-vinylpyrrolidone)-b-poly(epsilon-caprolactone) (PVP-

b-PCL) nanoparticles (100 nm) generated by a modified nano-precipitation method, achieving 

a good drug loading (>25 %), and high encapsulation efficiency (>85 %) [458]. The antitumor 
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efficacy was studied in vitro on different cancer cell lines, showing a sustained drug release 

profile, similar drug cytotoxicity (once released) compared to Taxol, and no cytotoxicity if they 

were empty (no drug). They also analyzed the efficacy of this formulation in vivo using a mice 

model of hepatic tumors, finding a significantly higher antitumor activity compared to the 

conventional Taxol formulation, increased half-life in the bloodstream, and enhanced targeting 

efficiency. 

 

Nanoparticles which incorporate curcumin. 

Anand et al. [459] prepared curcumin-loaded biodegradable nanoparticles (80.9 nm) based on 

PLGA and PEG-5000 as stabilizer. The encapsulated curcumin had enhanced cellular uptake 

and bioactivity in vitro (antitumor, anti-invasive and antiangiogenic effects) compared to free 

curcumin, inducing apoptosis in leukemic cells and suppressing proliferation in different tumor 

cell lines. In vivo studies in mice revealed also superior bioavailability and half-life than free 

curcumin. This drug has been also encapsulated in a nano-scale particulate system using 

glycerol monooleate and pluronic F-127, which is able to solubilize the hydrophobic curcumin 

and protect this drug from hydrolysis and biotransformation, and to deliver the anti-cancer 

agent in a sustained way, producing longer antiproliferative effects [460]. This nanoparticulate 

system showed in vitro an enhanced uptake and accumulation in different cancer cell lines 

compared to free curcumin, inducing apoptosis. In vivo, the encapsulated curcumin displayed 

an increased half-life and higher bioavailability in mice, compared to native curcumin [460]. 

Also working with curcumin Duan and co-workers [461] synthesized novel positive-charged 

curcumin-loaded poly(butyl) cyanoacrylate nanoparticles coated with chitosan (200 nm) with 

high encapsulation efficiencies (90 %), increasing the solubility of curcumin and avoiding the 

drug clearance by the RES system. The curcumin particles showed comparable in vitro efficacy 

to the free drug in hepatocarcinoma cells, and inhibited the growth of the tumors in vivo in 
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murine xenograft models of hepatic carcinoma, having an important antiangiogenic effect 

[461]. 

 

Other drugs used for incorporation in nanoparticles. 

Bernardi and collaborators [462] demonstrated in vivo the reduction of the tumor size in a 

xenograft rat model of glioma treated with indomethacin-loaded biocompatible polymeric 

nanocapsules that achieved an increase in the intracerebral drug concentration, with half of 

the animals carrying just residual cancerous cells after the treatment. The gliomas treated with 

the indomethacin-loaded particles showed less invasive characteristics according the 

pathological analyses. The survival of the rats was much longer with the nanocapsules that 

contained indomethacin than within the control groups (animals treated with unloaded 

nanocapsules or with the free drug). 

Zhang et al. [463] prepared safe chitosan-polyaspartic acid nanoparticles by ionic gelification 

technique to deliver 5-fluorouracil in a sustainable way in mice. In a human gastric carcinoma 

model was observed enhanced anti-tumor effects with reduced bone marrow suppression 

compared to the free drug. 

Other promising formulations in a very early stage of development can be found in the 

literature of this increasingly important field. For example, ImaRx Therapeutics is developing a 

branching block copolymer self-assembled nanoparticulate formulation of irinotecan 

metabolite (MRX-952) [197, 464]. 

 

Polymeric nanoparticles that incorporate macromolecules. 

In addition to small molecular weight anticancer drugs, polymeric nanoparticles are able to 

incorporate, macromolecules as genes or proteins. Kim et al. [465] encapsulated efficiently the 
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RGD peptide that targets the integrin alfaV-beta3 which is the most important integrin during 

the angiogenic processes that feed the tumors, and is expressed and exposed on the surface of 

activated endothelial cells but not in other endothelial cells or normal tissue. Encapsulation 

enhances the antiangiogenic and anti-tumoral efficacy of this peptide. The authors used self-

assembled glycol chitosan nanoparticles (230 nm) to increase RGD in vivo half-life, obtaining a 

stronger anti-angiogenic effect. The intratumoral administration of this formulation enhanced 

the tumor growth inhibition, decreasing the microvessel density compared to the free peptide 

formulation. Hu and Zhang [466] loaded the recombinant human endostatin-endostar in PEG-

PLGA nanoparticles to increase in vivo their anticancer effect in mice and rabbits. In vitro, the 

encapsulated endostar showed longer circulation times in blood. In vivo, the PLGA 

nanoparticles were able to distribute, in a sustainable way, a larger amount of endostatin to 

solid tumors, and enhanced significantly the inhibition of the tumor growth, augmenting the 

antitumor effect of endostar. 

 

Oral anticancer passive nanoparticulate formulations. 

The development of oral anticancer polymeric nano-scale formulations is very interesting due 

to their easy uptake and stress-less characteristics. Thus, Jain and colleagues have shown that 

oxaliplatin-loaded hyaluronic acid-chitosan nanoparticles encapsulated in Eudragit S100-

coated pellets efficiently targeted colorectal tumors in mice upon oral delivery, and a 

prolonged accumulation once in the tumor, providing an enhanced antitumor activity with 

reduced systemic toxicity [467]. Moreover, Shaikh and collaborators [468] improved up to 9-

fold the in vivo oral bioavailability of curcumin by long-term PLGA nanoparticles using cetyl 

trimethylammonium bromide (CTAB), polyvinyl alcohol (PVA), Pluronic F-68, or vitamin E TPGS 

(d-alpha tocopheryl polyethylene glycol 1000 succinate) as stabilizers, being PVA the most 

promising. It is also of interest the preclinical oral formulation of irinotecan BA-018 (Irinotecan 

Transdrug) for the treatment of colorectal cancer that continues the Transdrug nanoparticles 

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado



technology with one formulation on phase III trial, the BA-003 or Doxorubicin Transdrug 

(already mentioned above) [197]. In addition, Kalaria et al. [469] improved the in vivo oral 

bioavailability and decreased the cardiotoxicity of doxorubicin in female Sprague-Dawley rats 

with 185 nm PLGA nanoparticles using PVA as stabilizer. In vitro studies revealed a sustained 

release of the drug during 24 days and the ability of the nanoparticles to decrease the drug 

induced toxicity. Paclitaxel, docetaxel and tamoxifen have been other cytotoxic agents to be 

formulated for oral administration in association with polymeric nanoparticles. Bhardwaj et al. 

[470] formulated PLGA nanoparticles using a quaternary ammonium salt didodecyl 

dimethylammonium bromide (DMAB) as stabilizer to deliver orally paclitaxel to treat chemical-

induced breast cancer in rats, being safe and non-toxic to cells, and reducing the tumor burden 

in a Sprague Dawley rats model. Zhao and Feng [471] developed paclitaxel-loaded 

nanoparticles composed of PLGA and vitamin E TPGS that increased 10 times the in vivo oral 

bioavailability of Taxol. In vitro experiments in MCF-7 human breast cancer cell line showed 

higher effectiveness of this formulation over Taxol. Agüeros et al. [472] significantly increased 

the in vivo oral bioavailability of paclitaxel in rats by its encapsulation into nanoparticles based 

on cyclodextrins (beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin) that inhibit the 

detoxification activity of P-glycoprotein and P450 cytochrome and solubilize the lipophilic 

paclitaxel, and poly(anhydride) with bioadhesive properties. Zabaleta et al. [473] reported the 

use of PEGylated poly(anhydride) nanoparticles for the oral delivery of paclitaxel. PEGylation 

enhanced the intestinal permeation of paclitaxel compared to free Taxol, obtaining the best 

results with low molecular weight PEGs (2000 and 6000) that give enhanced bioadhesive 

properties to the nanoparticles and inhibit the activity of P-glycoprotein and P450 cytochrome, 

increasing the drug half-life. In vivo, pharmacokinetic studies of PEGylated poly(anhydride) 

nanoparticles in rats revealed high and prolonged plasma levels of paclitaxel, being also 

dependent on the molecular weight of PEG. The oral bioavailability of paclitaxel-loaded 

nanoparticles also increased significantly when the molecular weight of PEG decreased, being 
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always higher that in the case of non-PEGylated nanoparticles. Feng et al. [474] developed four 

nanoparticle formulations based on PLGA, PLA, vitamin E TPGS and montmorillonite (MMT) for 

the oral delivery of docetaxel. In vitro, cell viability studies showed that PLA-TPGS/MMT and 

PLA-TPGS nanoparticles were more effective that the commercial formulation of docetaxel, 

Taxotere. In vivo, pharmacokinetic studies in Sprague-Dawley rats demonstrated that the PLA-

TPGS/MMT and PLA-TPGS nanoparticle formulations showed up to 26.4- and 20.6-fold longer 

half-life, respectively, compared to the intravenous injection of Taxotere at the same dose. In 

addition, both nanoparticle formulations gave better oral bioavailability of docetaxel than 

Taxotere. Jain et al. [475] reported tamoxifen-loaded PLGA nanoparticles that increased 11 

times the in vivo oral bioavailability of the free drug. In vitro experiments with the mouse 

breast cancer cells C1271, showed an increased cytotoxicity of the nanoparticulate formulation 

over the free drug since, as shown by imaging techniques, the particles were localized in the 

nuclear region of the cells. As shown in a model of chemically induced breast tumors, the 

accumulation in the tumors was higher than commercial tamoxifen, with a better anti-tumoral 

activity and stronger reduction of the tumor size [475]. 

 

The combination of chemotherapy-loaded nanoparticles with radiotherapy has shown to 

have enhanced tumor accumulation and a better intratumoral distribution of the anticancer 

drugs, improving the native antitumor activity of the cytotoxic agents. Radiotherapy produces 

the overexpression of VEGF and FGF and the induction of endothelial cell apoptosis that 

increases the tumor blood vessels permeability, producing a reduction of the interstitial fluid 

pressure and the tumor cell density that increases the particle retention and distribution inside 

the tumors [476, 477]. In addition, the combination of chemotherapy-loaded nanoparticles 

and photo-hyperthermia therapy allows to deliver anticancer drugs and heat to the 

tumorigenic regions, demonstrating a clear synergistic effect compared with chemotherapy or 
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hyperthermia alone. Thus, Park et al. [478] developed doxorubicin-loaded PLGA-gold half-shell 

nanoparticles by coating biodegradable doxorubicin-loaded PLGA nanoparticles with a film of 

gold. The multifunctional nanoparticles were endocytosed and accumulated within human 

cervical cancer (HeLa) cells, where particles were degraded, releasing the doxorubicin, and the 

heat was generated with near-infrared irradiation (NIR) over the gold layer that is NIR 

resonant. NIR irradiation, in addition to produce the hyperthermic treatment, generated a 

photothermal controlled delivery of doxorubicin that increased the release rate of the 

cytotoxic drug. The combined chemo- and photothermal treatment obtained with these 

nanoparticles generated enhanced cytotoxic effects, decreasing treatment times. 

 

B) Active targeting. 

As mentioned above, active targeting is achieved by attaching specific ligands to the 

nanoparticle structure, allowing a selective recognition of different receptors or antigens 

overexpressed in the tumor cell surfaces, increasing the cytotoxicity of the anticancer agents in 

tumors and avoiding most of their side effects, since the exposure of healthy cells to the drug 

is minimized [479]. The functionalization of the surface of the polymer nanoparticles, not only 

provides active targeting characteristics to the particles, but also improves therapeutic efficacy 

of cytotoxic drugs and overcomes the multidrug resistance (MDR) [480, 481]. 

In this section we summarize some of the more promising and advanced polymeric 

nanoparticulate formulations developed to date. 

 

Albumin-based targeting: 

Albumin-bound nanoparticles not only accumulate in the tumors by the EPR effect, but also by 

binding to glycoprotein 60 receptor that facilitates the endothelial transcytosis. Once in the 
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tumor interstitium, tumor cells overexpress the albumin binding protein BM-40 (SPARC, 

osteonectin) that binds to the albumin-nanoparticles, leading to the uptake of the carrier into 

the tumor cells by endocytosis [482, 483].  

After the already mentioned success of the albumin-bound platform (nab), with one 

formulation on market (Abraxane), and four in clinical trials (ABI-008 to 011), where the 

anticancer drug is mixed with human serum albumin (3-4 %) in an aqueous solvent and pass 

under a high pressure jet to form the 100-200 nm nanoparticles, there is currently a preclinical 

study of a novel taxane nab of 70 nm including docetaxel (ABI-013) [484]. This nanoparticle 

formulation showed in vivo superior activity, improved stability, and enhanced antitumor 

activity over the solvent-based docetaxel, when tested on mice models of human breast, colon 

and lung cancer [484]. In addition, studies in monkeys and rats demonstrated that ABI-013 is a 

an effective cytotoxic agent without cardiovascular or central nervous system effects [485]. 

Moreover, an albumin-based Apo2L nanoparticle system was designed by Kim et al. to improve 

the solubility and the pharmacokinetic properties of the apoptotic agent Apo2 ligand (tumor 

necrosis factor-related apoptosis-induced ligand) that selectively binds to tripartite death 

receptors, which are overexpressed on tumor cells [486]. 

 

Hyaluronic acid-based targeting: 

Hyaluronic acid (HA), in addition to its biodegradability and biocompability, is able to bind 

specifically to some cancer cells that overexpress the glycoprotein CD44 receptor [487]. Choi et 

al. [488] designed self-assembled amphiphilic hyaluronic acid nanoparticles to actively target 

the CD44 receptor overexpressed by SCC7 cancer cells. The authors demonstrated the in vitro 

efficient intracellular uptake of the nanoparticles by fluorescence labeling, and the 

accumulation in vivo of the particles into the tumor in tumor-bearing mice after two days in 

the bloodstream by a fluorescence imaging system [488]. The PEGylation of these self-
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assembled hyaluronic acid nanoparticles can improve active and passive tumor targeting in 

tumor-bearing mice, reducing the liver uptake, increasing the circulation time and the 

accumulation of the particles [489, 490]. Cho et al. [491] reported non-toxic self-assembled 

nanoparticles composed of a hyaluronic acid-ceramide conjugate and Pluronic 85 for 

intravenous delivery of docetaxel. The small size of the particles (< 150 nm) and the outside 

location of the hyaluronic acid allowed the delivery of docetaxel by passive and active 

targeting. The incorporation of Pluronic 85 enhances the drug solubility, stabilizes the nano-

scale formulation, and helps to overcome the multidrug resistance. In vitro studies showed an 

enhanced cellular uptake in CD44-overexpressing MCF-7 cells by receptor-mediated 

endocytosis, and multidrug resistance avoidance in MCF-7 and ADR cell lines. In vivo studies by 

near-infrared fluorescence imaging demonstrated the tumor targeting of this nanoparticulate 

formulation in mice bearing tumors overexpressing the CD44 receptor. 

 

Biotin-based targeting: 

Vitamin H or biotin can be used as a targeting ligand against tumors. Surface receptors for 

vitamin H have usually a higher concentration in tumors than in normal tissues, since cancer 

cells require an extra amount of this vitamin due to their fast proliferation [492]. Taheri et al. 

[493, 494] developed human serum albumin (HSA) nanoparticles for the targeted delivery of 

methotrexate, using biotin as targeting ligand. These biotin-conjugated methotrexate-loaded 

human serum albumin nanoparticles showed higher cytotoxicity in vitro than non-

functionalized particles and free methotrexate. Moreover, in vivo studies in mice with 4T1 

breast carcinoma that overexpresses the biotin receptor revealed that this biotin 

functionalized HSA nanoparticles enhanced the methotrexate antitumor efficacy and reduced 

its toxic effects compared to non-targeted nanoparticles or the free drug, decreasing the 

tumor volume and increasing the survival of the animals. Patil et al. [80] used PLGA 

nanoparticles to achieve the simultaneous targeted delivery of an anticancer drug, paclitaxel, 
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and tariquidar, an inhibitor of P-glycoprotein, to drug-resistant tumors, using also biotin as 

targeting ligand. These dual agent nanoparticles showed an enhanced cytotoxicity in vitro, 

compared to the same formulation loaded with paclitaxel alone, since they produced an 

increased accumulation of the drug in the drug-resistant cells due to the inhibition of P-

glycoprotein. Enhanced tumor growth inhibition was also observed in a mouse drug-resistant 

model, at a dose of paclitaxel that was ineffective without the presence of tariquidar. 

 

Folate-based targeting: 

Folate or folic acid is used as a targeting ligand because it selectively binds to cell surface folate 

receptors that are overexpressed mainly on epithelial cancers of the mammary gland, ovary, 

lung, nose, throat, colon, prostate, and brain, as well as in hematologic cancers, like the 

chronic and acute myelogenous leukemias, or the non-Hodgkin´s lymphomas, and in sarcomas, 

such as uterine sarcoma and osteosarcoma [495, 496]. Folate conjugated nanoparticles bind to 

folate receptors and are internalized by the cancerous cells, being able to release the cytotoxic 

drug contained in the particle to the cytoplasm of the tumor cell [497]. 

Patil et al. functionalized the surface of paclitaxel-loaded PLA-PEG nanoparticles with biotin 

and folic acid in a single step, achieving an in vivo enhanced tumor accumulation and efficacy 

in a mouse MCF7 tumor xenograft model [498].  

Seemingly Parveen and co-workers conjugated folic acid to the surface of chitosan 

nanoparticles for active and sustainable targeted delivery of doxorubicin to retinoblastoma 

[499]. The high affinity of folic acid to the folate receptors generated an enhanced intracellular 

uptake of the particles by the retinoblastoma cells, increasing the cytotoxic effects of the free 

doxorubicin or the doxorubicin-loaded particles without the targeting moiety. In another 

approach for increasing the efficiency of doxorubicin, Zhang and colleagues [500] designed a 

novel biocompatible poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanocarrier (240 nm) 
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with folic acid as targeting ligand for selective delivery of the drug. In vitro studies showed an 

enhanced cellular uptake and cytotoxicity in folate receptor-overexpressed cancer cells 

compared to non-targeted nanoparticles of the same formulation. In vivo, this new 

formulation revealed a stronger anti-tumor activity than control nanoparticles. 

Nukolova et al. [501] reported folate-targeting nanogels using diblock copolymer poly(ethylene 

oxide)-b-poly(methacrylic acid) (PEO-b-PMA). In vitro studies with human ovarian carcinomas 

cell lines that overexpress folate receptors, demonstrated enhanced cellular uptake compared 

to non-targeted nanogels. In vivo studies showed that this formulation enhanced the anti-

tumor activity and reduced the renal toxicity of cisplatin in a mice model of ovarian cancer. 

Wang et al. [481] studied the potential of paclitaxel-loaded folate-targeted heparin 

nanoparticles to minimize the P-glycoprotein mediated multidrug resistance. Studies with the 

epidermal carcinoma KB-8-5 cancer cells, that overexpress the P-glycoprotein, showed the 

superior activity of these folate-targeted nanoparticles in inhibiting proliferation, compared to 

the non-targeted particles or the free drug. This effect was produced by the enhanced cellular 

uptake and intracellular retention of these paclitaxel-loaded targeted particles, and in vivo, 

using a mice model, they produced a delay in the growth of drug-resistant tumors, being 

demonstrated that folate-targeted nanoparticles help to overcome drug resistance in this 

model.  

Liang et al. [502] demonstrated that paclitaxel-loaded PLGA-PEG nanoparticles decorated with 

folate (220 nm) showed enhanced cytotoxicity against endometrial carcinoma, observing 

cellular uptake, particle accumulation by both passive and active targeting, and anti-tumoral 

activity in endometrial carcinoma HEC-1A cells and tumor-bearing mice. 

In order to solve the low solubility of SN-38, the active metabolite of irinotecan, Ebrahimnejad 

and colleagues developed SN-38-loaded PLGA nanoparticles with efficient drug loading and 

gradual release profiles. The particles were surface modified with polyethylene glycol-folate, 
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showing higher plasma concentration in Wistar rats than free SN-38, and superior body 

distribution [503].  

 

Transferrin-based targeting: 

Transferrin is a membrane glycoprotein that supports the transport of iron to rapidly growing 

cells [504]. The elevated demand of iron in tumorous tissues leads to an overexpression of 

transferrin receptors (TfRs) in the surface of the cancerous cells that can be used for the 

delivery of chemotherapeutic agents linked to transferrin that binds to the TfRs [504-506]. Like 

folate, transferrin-conjugated nanoparticles bind to these receptors in the tumoral cells, 

inducing its endocytosis and release the anticancer drug there [480]. 

Hong and colleagues [507] developed stealth transferrin receptor-targeting nanoparticles (Tf-

PEG-NP) containing a poly(ethylene) glycol-hydroxycamptothecin conjugate (PEG-HCPT 

conjugate). These particles showed a sustained release profile in vitro, and better behavior in 

S180 solid tumors induced in mice, than the PEG-HCPT conjugates, with longer circulation 

times in blood, enhanced tumor accumulation, and increased antitumor activity. 

Transferrin receptor can be used for the delivery of anticancer drugs to the brain due to the 

overexpression of this receptor on the surface of the endothelial cells of the blood-brain 

barrier (BBB) [508]. Gan and Feng [509] developed biodegradable poly(lactide)-D-alfa-

tocopheryl polyethylene glycol succinate diblock copolymer nanoparticles (PLA-TPGS NPs) for 

targeted delivery of docetaxel across the blood-brain barrier, using transferrin as targeting 

ligand. This nanoparticle formulation showed more cellular uptake and cytotoxicity over PLGA 

and PLA-TPGS non-targeting nanoparticles containing docetaxel and the free commercial 

docetaxel under the trade name Taxotere. Moreover, Jain et al. [510] reported transferrin-

conjugated PLGA-PEG nanoparticles to deliver temozolomide to the brain, showing an in vitro 

increased cytotoxicity compared to the free drug. Fluorescence imaging in vivo studies with a 
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confocal laser scanning microscopy demonstrated an enhanced cellular uptake of these 

particles, and their localization in the brain tissues in rats, confirming the role of transferrin in 

the anticancer drug delivery to the brain. 

 

Aptamer-based targeting: 

Aptamers (short nucleic-acid-based ligands), like folate and transferrin, are effective ligands for 

the specific targeting of tumor cells [511].  

Dhar et al. delivered cisplatin to prostate cancer cells by nanoparticles conjugated to the A10 

aptamer that targeted the prostate-specific membrane antigen (PSMA) overexpressed in 

prostate tumors. For this purpose they used non-toxic poly(D,L-lactic-co-glycolic acid)-b-

poly(ethylene glycol) nanoparticles (150 nm) incorporating inactive platinum prodrugs (5% 

w/w Pt(IV)) with the A10 PSMA aptamer conjugated to their surface by the carbodiimide 

chemistry [49, 512, 513]. Comparing with the free drug, the PSMA aptamer-containing 

nanoparticles were 80 times more cytotoxic to prostate cancer cells [512]. The particles not 

only enhanced the drug pharmacokinetics in vivo, increasing its circulation times in blood and 

decreasing its accumulation in the kidneys, but also improved the drug antitumor efficacy 

compared to its conventional formulation, rising the drug maximum tolerated dose and the 

therapeutic index of the platinum drug [49]. The new formulation showed amplified antitumor 

efficacies in rat and mouse models, reducing the size of prostate tumors at considerably lower 

dosage of anticancer drugs [49]. 

Nucleolin, a protein overexpressed in the plasma membrane of cancer cells was employed by 

Guo et al. [514] to design PEG-PLGA nanoparticles linked to AS1411, a DNA aptamer that 

specifically binds nucleolin, and used this combination to deliver paclitaxel to C6 glioma cells, 

improving the anti-glioma efficacy of the commercial formulation of the drug. The authors 

observed that longer circulation times and increased cytotoxicity were achieved due to the 
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specific binding of the A1411 aptamer to nucleolin and ulterior internalization of the particles. 

In vivo, this formulation produced an enhanced inhibition of tumor growth and an increased 

drug accumulation at the tumor on mice bearing C6 glioma xenografts and intracranial rat C6 

gliomas, compared to non-targeted nanoparticles and Taxol. 

 

Monoclonal antibodies-based targeting: 

Monoclonal antibodies (mAb), like aptamers, can be conjugated to the surface of nanoparticles 

(immuno-nanoparticles) being able to specifically target antigens or receptors overexpressed 

in tumors.  

One of the mAb targets with a higher clinical relevance is the epidermal growth factor receptor 

(EGFR), which is found overexpressed in a wide variety of tumors, including: breast, ovarian, 

prostate, bladder, non-small cell lung, head and neck cancers and glioblastoma. Conjugation by 

carbodiimide chemistry of an EGFR-antibody to the surface of polymeric poly(lactide-co-

glycolide) nanoparticles loaded with rapamycin has been used to selectively target the 

extracellular ligand binding domain of EGFR [515]. This approach showed an enhanced 

antiproliferative activity over the same nanoparticles without the targeting moiety and over 

free rapamycin, being observed an increased uptake on malignant MCF-7 breast cancer cells 

by confocal microscopy and fluorescence spectroscopy. Moreover, flow cytometry studies 

showed that the active targeted particles induced cell cycle arrest and apoptosis. 

HER2 is also a member of the EGFR family that is overexpressed in breast and ovarian cancers 

and is associated with angiogenic processes [516]. The conjugation of anti-HER2 mAbs to the 

surface of polymeric nanoparticles promotes their intracellular accumulation due to the 

internalization of the antigens via receptor-mediated endocytosis [70, 84, 517]. Cirstoiu-Hapca 

and co-workers [518] developed paclitaxel-loaded poly (DL-lactic acid) immuno-nanoparticles 

with anti-HER2 mAbs (trastuzumab, Herceptin) covalently conjugated to their surface to 
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actively target ovarian tumor cells that overexpress HER2 receptors. In vitro studies showed 

the enhanced cytotoxic effects of these immuno-nanoparticles at low drug concentrations 

compared to other paclitaxel formulations (either the same nanoparticles without the 

targeting moiety, with irrelevant mAbs or the free drug) [518]. The better therapeutic efficacy 

of this formulation was demonstrated by bioluminescence imaging in a disseminated xenograft 

ovarian cancer mouse model, showing, the polymeric immuno-nanoparticles, higher anti-

tumor activity than free paclitaxel. These results were confirmed by the longer survival rate of 

mice treated with the immuno-nanoparticles, compared to mice treated with free paclitaxel, 

paclitaxel-loaded nanoparticles with a irrelevant quantity of rituximab, or trastuzumab alone 

[519]. HER2 antibodies (trastuzumab) have been also linked to non-toxic human serum 

albumin (HSA) nanoparticles for the specific delivery of methotrexate to tumors [520]. These 

trastuzumab-conjugated methotrexate-loaded human serum albumin nanoparticles presented 

higher cytotoxicity than non-functionalized particles or free methotrexate, showing an 

increased uptake by HER2 positive cells compared to non-targeted nanoparticles [520]. 

In addition to their use as tools for the delivery of small molecular weight drugs, polymeric 

immunonanoparticles are able to deliver macromolecules as genes or proteins. Chen et al. 

[521] developed PLGA immuno-nanoparticles containing the proteic toxin PE38KDEL, by 

coupling Fab’ (fragments antigen-binding) of a humanized anti-HER2 monoclonal antibody to 

the nanoparticles by the carbodiimide chemistry. The presence of the anti-HER2 Fab’ 

enhanced the in vitro cytotoxicity of the PE38KDEL-loaded nanoparticles against breast cancer 

cell lines that overexpress HER2 receptors. In vivo, the immuno-nanoparticles showed an 

increased anti-tumor activity in tumor-bearing mice over the control immunotoxin (anti-HER2 

Fab’ conjugated to the toxin PE38KDEL), and a higher inhibition of the tumor growth, in a 

tumor xenograft model overexpressing the HER2 receptor, over the control immunotoxin. The 

toxicity of PE38KDEL on normal tissues was decreased dramatically by the inclusion of the 

toxin into the PLGA nanoparticles. Kos and colleagues [522] used poly(D,L-lactide-co-glycolide) 
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(PLGA) nanoparticles with a cytokeratin specific monoclonal antibody (anti-cytokeratin mAb) 

conjugated to their surface for specific targeting of MCF-10A neoT invasive breast epithelial 

cells. The particles were loaded with cystatin, a potent protease inhibitor. The polymeric 

nanocarrier was able to specifically identify the cancerous cells that overexpress cytokeratin 

and released the inhibitor in the endosomes/lysosomes, inactivating the lysosomal cysteine 

protease cathepsin B that induces the tumor progression. 

 

Peptidic targeting: 

Peptides, like antibodies, can be used as ligands to specifically discern tumor cells, with the 

advantage of being less expensive and complex than antibodies. 

One important aim of peptidic targeting is the integrin alfaVbeta3 that is overexpressed on 

tumor cells and is involved in angiogenesis. This integrin is recognized by the peptide sequence 

arginine-glycine-aspartic acid (RGD) [523, 524]. Wang et al. [525] coupled PEG and RGD 

peptide to PLGA nanoparticles to deliver doxorubicin to various malignant integrin-

overexpressing cancer cell lines, inducing apoptosis specifically to malignant cells. Danhier and 

coworkers [526] developed RGD-conjugated PLGA-based nanoparticles to specifically deliver 

paclitaxel to the tumor endothelium, enhancing the anti-tumor efficacy of paclitaxel in vitro 

and in vivo. In vitro, the targeted particles showed an increased cellular uptake mediated by 

their binding affinity with alfaVbeta3 integrin, compared with the non-targeted particles of the 

same formulation. The authors also demonstrated the targeting characteristics of the particles 

and an enhanced survival of mice bearing syngenic transplantable liver tumors (TLT). 

Another peptidic sequence with targeting characteristics is the Angiopep-2 that binds to the 

low-density lipoprotein receptor-related protein (LRP), which is overexpressed in the blood-

brain barrier, in the malignant glioblastoma multiforme, and in benign pituitary gland tumors. 

Angiopep-2 has been coupled to the surface of paclitaxel-loaded poly(ethylene glycol)-co-
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poly(epsilon-caprolactone) nanoparticles to overcome the brain-blood barrier and target brain 

glioma [527]. This study, using U87 MG glioma cells, demonstrated enhanced apoptosis and 

antiproliferative activity, being possible to check the LRP-mediated endocytosis of the 

nanoparticles by the glioma cells using rhodamine-isothiocyanate labeling. Imaging analysis of 

mice bearing U87 MG gliomas, showed the accumulation of the Angiopep-2-conjugated 

nanoparticles in the tumors, showing their efficiency as carriers and the ability of Angiopep-2 

to facilitate the crossing of the blood-brain barrier [527]. 

Cyclo-(1-12)-PenITDGEATDSGC (cLABL) or lymphocyte function associated antigen-1 (LFA-1)-

derived cyclic peptide is another peptidic formulation that can be used as ligand for targeting 

the ICAM-1 receptors, which are overexpressed in lymphomas, melanomas, renal, pancreatic, 

bladder and lung carcinomas [528]. Chuda et al. [529] developed PLGA nanoparticles coupled 

with cLABL as targeting ligand to specifically deliver doxorubicin to A549 lung epithelial cells 

that overexpress ICAM-1 receptors. This peptidic ligand, coupled to the particles, increased 

their cellular uptake being rapidly internalized into these cancer cells. 

In addition, certain peptide sequences, known as nuclear localization signals (NLS) can 

specifically induce cytoplasmic factors to enter and target the cell nucleus [530]. Thus, Misra 

and collaborators [531] coupled a NLS to the surface of poly(D,L-lactide-co-glycolide) 

nanoparticles loaded with doxorubicin allowing directly deliver of the drug to the nucleus of 

breast cancer cells. Studies in the MCF-7 breast cancer cell line revealed the sustained release 

of the cytotoxic agent, and the better antiproliferative activity of the NLS-conjugated 

nanoparticles, compared to the non-targeted particles and the free drug, due to an enhanced 

uptake and accumulation of the drug in the nucleus of the cells. 

Functionalization of nanoparticles with peptides that bind to specific receptors in the 

angiogenic endothelial cells results in an enhanced targeted drug delivery directly to the 

tumors, inhibiting the angiogenesis processes at the same time. RGD, that binds to integrins, 
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overexpressed on tumor vessels, and aspargine-glycine-arginine (NGR) peptides, that bind to 

CD13 isoforms, also overexpressed in tumor vasculature, have shown high affinity for 

angiogenic vessels [532, 533]. The use of a tumor-homing peptide, iRGD, an RGD peptide that 

contains a tumor penetrating peptide (CendR or C-end rule), results in an optimized delivery of 

anticancer drugs deeply to the tumors. These novel peptides are able, not only to bind to the 

surface of integrins-expressing vascular cells, but also to penetrate into the tumors once 

proteolytically cleaved into the CendR motif fragment that binds to the neuropilin-1 receptor 

responsible for tumor penetration [534, 535]. Conjugating the iRGD peptide and other tumor-

homing peptides to the surface of abraxane (paclitaxel-loaded albumin nanoparticles) 

enhances significantly the anti-tumor activity of untargeted abraxane in mice, since the tumor-

homing peptides facilitate the accumulation and penetration of the nanoparticles in tumors 

[534, 536]. Similarly, the F3 peptide binds to nucleolin, a protein that is overexpressed on the 

surface of tumor endothelial cells [537]. Winer et al. [538] used non-toxic F3-conjugated 

polyacrylamide nanoparticles to deliver cisplatin to tumor vessels in murine and human 

ovarian cancer models. In vitro, the nanoparticles showed to be highly specificity for both, 

tumor and tumor endothelial cells, being cytotoxic only against the tumor endothelial cells. In 

vivo, the nanoparticles bind mainly to tumor vessels, generating a rapid tumor regression due 

to their antivascular effect [538].  

Finally, it is important to highlight the use of active targeting nanoparticles for the treatment 

of multi-drug resistant (MDR) cancers that commonly overexpress the epidermal growth 

factor receptor (EGFR). For example, to overcome the MDR Milane and co-workers [539] 

modified nanoparticles with an EGFR-specific peptide (GE11) and loaded them with a drug 

combination of paclitaxel, that prevents cell division, and lodinamine, that induces apoptosis 

and decreases MDR. The authors, using a nude mice bearing MDR human breast cancer, 

proved the safety and efficacy of this nanoparticulate formulate that uses a combination of 

chemotherapy and active targeting to overcome the MDR. This nanocarrier system showed a 
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superior efficacy compared to a treatment with a single anticancer agent either in the form of 

nanoparticles or in solution, and produced an alteration of the MDR phenotype of the tumor, 

decreasing the expression of MDR associated proteins. The authors demonstrated that this 

combination of EGFR-targeted paclitaxel/lodinamine-loaded nanoparticles was the only 

treatment that decreased tumor volume during 28 days, being less toxic than the anticancer 

drugs in solution.  

 

C) Polymeric nanoparticles in cancer gene therapy. 

Small interfering RNA (siRNA) has recently emerged as a promising therapeutic approach for 

the treatment of different diseases, like neurodegenerative disorders, infectious diseases and 

cancer, due to their ability to silence certain genes involved in these threatening diseases [540, 

541].  

As we already mentioned above, liposomes have been used in gene cancer therapy, as delivery 

vehicles that provide protection from renal clearance and enzymatic digestion of siRNAs in 

plasma, allowing enhanced penetration through the capillary endothelium, and efficient 

cellular uptake [282, 284]. However, liposomes have not been the only platform used for 

delivering siRNA. Polymeric micelles [542-546], polymer conjugates [547-550], and polymeric 

nanoparticles [551-557] have also shown promising efficacy as non-viral carriers for the 

delivery of siRNAs in the treatment of different diseases.  

Polymeric nanoparticles have interesting advantages with respect to other non-viral carriers 

for siRNA delivery: they are easy to scale-up, have improved stability and better safety 

regarding both to the materials used and to the manufacturing processes [552]. In fact, in 

addition to the above mentioned phase I trial of CALAA-01 (cyclodextrin-PEG-transferrin 

receptor-targeting nanoparticles with anti-RRM2 siRNA), there are promising preclinical works 
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in cancer therapy using polymeric nanoparticles as non-viral carriers for siRNA delivery. Some 

of them will be described below. 

Yang et al. [558] described the systemic delivery of specific siRNA by cationic lipid assisted 

polymeric nanoparticles (170-200 nm) with encapsulation efficiencies above the 90 %. The 

particles were generated by a double emulsion-solvent evaporation technique using 

poly(ethylene glycol)-b-poly(d,l-lactide), a cationic lipid, and siRNA. This novel formulation 

showed an efficient in vitro cellular uptake and apoptosis, escaping from endosomes. Using a 

mice model of liver cancer the authors showed that their formulation produced in vivo a 

down-regulation of gene expression. In a MDA-MB-435s murine xenograft model, using 

nanoparticles carrying siRNA against Plk1, a mitotic promoter highly expressed in tumors, a 

complete ablation of the tumor growth was observed. 

Other studies introduced a plasmid that contains an siRNA sequence, targeting the Methyl-

CpG binding domain protein 1 (MBD1), into non-cytotoxic PLGA-Poloxamer nanoparticles 

[559]. MBD1 is a transcriptional repressor that mediates chromatin replication and has been 

found overexpressed in human pancreatic carcinomas and colorectal cancer [560]. These 

MDB1-siRNA-nanoparticles were uptake by the tumor cells and induced apoptosis, inhibiting 

the growth of cultured human pancreatic cancer cells [559].  

Andersen et al. [561] developed non-cytotoxic nanoparticles with a polymeric matrix of PLGA 

and a coating of polyethyleneimine (PEI) and cetylated PEI, and used it for in vitro siRNA 

delivery into human osteosarcoma (U20S) and macrophage (J774.1) cell lines, targeting the 

antiapoptotic oncogene BCL-w and the inflammatory cytokine TNFalfa respectively. With this 

formulation they achieved a high cellular uptake and obtained a significant reduction in the 

expression of, both BCLw and TNFalfa, without a significant toxicity.  

Patil et al. [562] achieved in vivo the active targeting of tumors coupling biotin (as a ligand for 

breast cancer cells) to siRNA-loaded PLGA-based nanoparticles with a PEI coating. This system 
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was efficient in silencing the overexpression of the drug efflux transporter P-glycoprotein (P-

gp), and allowed to overcome tumor drug resistance. In addition, the authors loaded the 

particles with the anticancer drug, paclitaxel. A synergy between paclitaxel and the P-gp 

targeted siRNA was observed, since the particles loaded with both elements showed higher 

cytotoxicity in vitro than nanoparticles loaded with paclitaxel alone. Moreover, the inclusion of 

the ligand on the surface of the nanoparticles increased the drug accumulation in the tumor 

cells. Studies with a mouse model of a drug resistant breast cancer, showed enhanced 

inhibition of tumor growth using the nanoparticles loaded with both paclitaxel and P-gp 

targeted siRNA, being the dose of paclitaxel used ineffective without the siRNA. Similarly, Han 

et al. [563] coupled RGD peptide to chitosan nanoparticles for active targeting of siRNA to the 

integrin alfaVbeta3, which is overexpressed on tumor cells and the tumor vasculature, 

enhancing the antitumor activity compared to non-targeted siRNA-loaded nanoparticles. The 

authors demonstrated in vivo selective intratumoral and tumor vasculature delivery of the 

siRNA in mice models of ovarian cancer, generating targeted silencing of different genes that 

promote tumor growth. 

Moreover, there are other promising polymeric nanoparticulate formulations for siRNA 

delivery in very early stage of development, for example, a pharmaceutical company, with the 

support of a US NIH (National Institute of Health) grant, is developing STP503, a polymeric 

nanoparticulate formulation (Trisilensa) for the treatment of breast cancer by siRNA targeting 

EGFR, Raf-1 and mTOR transcripts [564]. The same company with the support of the NIH has 

other similar promising formulations in discovery stage, like STP801 that uses siRNA cocktail 

therapeutics to treat non-small lung cancer (NSCLC) by targeting EGFR, VEGF and Cox-2 gene 

expression, and STP523 that uses siRNA targeting EGFR, VEGF and AGT to treat glioblastoma 

multiforme [564]. 
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4. Conclusions and future perspectives. 

Although conventional chemotherapy has been the cornerstone in the fight against cancer, is 

far from being totally satisfactory due to problems related with their formulation and 

pharmacokinetics, the acquired resistance to some cytotoxic agents, and, overall, their toxicity 

and indiscriminate action, that make necessary a more selective therapy. This selectivity is 

being achieved with the development of targeted chemotherapeutics that specifically target 

the biologic transduction pathways involved in tumor growth and differentiation. Many 

examples have arisen in the last years that show the efficacy of this approach. Thus, most of 

the anticancer drugs approved for clinical use in the last decade have a known signaling target. 

These new biological weapons include: a) monoclonal antibodies that are designed to bind to 

specific proteins in cancer cells so that the immune system can recognize and attack them, or 

specifically stick to and block the signals from growth factor receptors overexpressed in 

tumors; b) small molecules inhibitors, like the tyrosine kinase inhibitors, that are used to block 

signaling pathways involved in abnormal growth; c) anti-apoptotic molecules; or d) blockers of 

tumoral neo-angiogenesis.  

Other approaches allow the delivery of cytotoxic drugs to molecular targets overexpressed on 

tumor cells by conjugating these drugs to monoclonal antibodies or peptide ligands via a 

chemical linker, or by the incorporation of cytotoxic drug into a nanocarrier that either 

passively targets the tumors by the enhanced permeability and retention effect, or actively 

targets the tumors by conjugating targeting moieties on the surface of the nanocarrier, helping 

also to overcome the multidrug resistance. Currently, in more than 50 % of the cancers treated 

a cure can not be achieved and drug nanocarriers might help to decrease this percentage. 

Liposomes and polymer conjugates were the first nanocarriers to be approved by FDA, 

however only 5 liposomal drugs and 2 polymer-protein conjugates are in the market up to 

date. There are no polymeric micelles, polymer-drug conjugates, dendrimers, carbon 



nanotubes or polymeric nanoparticles available for clinical use, except for Abraxane, an 

albumin-bound paclitaxel nanoparticle approved by the FDA in 2005 for the treatment of 

metastatic breast cancer, and that recently has got the approval for the first-line treatment of 

advanced non-small cell lung cancer (October, 2012) and for the metastatic pancreatic cancer 

(September, 2013). In spite of these data, numerous clinical trials are currently in 

development, which makes all these new nano-platforms promising carriers to passively or 

actively deliver numerous cytotoxic anticancer drugs, improving their clinical efficacy and 

reducing their toxicity. 

Among the different carriers developed for the selective delivery of cytotoxic drugs, polymeric 

nanoparticles seem to be one of the more promising carriers in cancer targeted therapy, since 

they provide enhanced stability in biological fluids, tuneable surface conjugation chemistry, 

more monodisperse size distributions, more controllable physicochemical properties, higher 

drug loading, and more controlled drug releasing rates, in addition to their long circulation in 

blood, reduced toxicity, improved pharmokinetics, and efficient co-delivery of multiple 

cytotoxic compounds to tumors, characteristics that they share with the others nanocarriers.  

Looking into the future, the use of cancer theragnostics, combining anticancer targeted 

therapy and diagnosis by multifunctional nanocarriers that contain therapeutic and imaging 

agents, might become promising cancer treatments because they allow to detect selectively 

cancerous cells, kill them with minimal side effects, visualize them thought real time in vivo 

imaging techniques, and monitor the effects generated by the treatment in real time [565]. 

Magnetic nanoparticles are clear examples of theragnostics nanosystems since they are 

anticancer drug carriers with an inorganic core of iron oxide, manganese oxide, or other 

magnetic materials that act as contrast agent materials in magnetic resonance imaging (MRI) 

having higher magnetic susceptibility than traditional contrast agents [566]. By surface 

modification: targeting moieties, cytotoxic drugs or fluorescence dyes can be included in these 
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magnetic particles to provide multifunctional properties [567]. In addition to active targeting, 

magnetic nanoparticles can be driven to tumors by magnetic fields (magnetic drug targeting). 

After anticancer drug delivery and accumulation in tumors (chemotherapy) is achieved, 

oscillating magnetic fields over magnetic nanoparticles can generate heat that will be used for 

the thermal ablation of tumors grown in deep/poorly accessible areas (hyperthermia). In 

addition, as the magnetic field is not absorbed by normal tissues, they are not damaged [259]. 

Unlike gold and carbon based inorganic nanoparticles, magnetic nanoparticles are able to 

degrade to Fe ions in acidic conditions, for example in the lysosomes of cells, decreasing the 

potential long-term toxicity of nanoparticles [281]. Quantum dots are another example of the 

emerging theragnostic nanosystems. In this case these semiconductor-based nanoparticles 

offer tumor imaging properties by acting as fluorescent probes that are able to emit intense 

signals at any wavelength between blue and infrared depending on their chemical composition 

and size [568]. These minuscule particles (2-8 nm) are usually covered by amphiphilic polymers 

that not only provide them biocompability and solubility properties, but also facilitate their 

functionalization by conjugation of targeting moieties and small molecule anticancer drugs to 

their surface, providing additional properties to this imaging agent, like active tumor targeting 

and anticancer drug therapy, without any loss of fluorescence intensity [568]. Moreover, 

quantum dots, in addition to be able to kill cancerous cells by chemotherapy, can act as 

photosensitizers that, in conjunction with light of specific wavelength and oxygen, produce 

reactive oxygen species that selectively induce apoptosis of cancer cells by oxidizing critical 

elements in them (photodynamic therapy) [568]. Inorganic nanocarriers, including mainly gold 

nanoparticles, magnetic nanoparticles and quantum dots, are the best examples of 

multifunctional theragnostics nanosystems that not only act as therapeutic agents, but also act 

as contrast agent materials in imaging and diagnosis applications. However, tThis review focus 

on drug nanocarriers as cytotoxic drug carriers, and theragnostic materials, and magnetic 

hyperthermia in particular, could be the aim of a different extensive review. 
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Although polymeric nanoparticles have a huge potential in the future cancer therapy, being 

one of the most widely studied nano-platforms in this field and offering a more effective and 

less toxic option to patients, a low quantity of clinical trials is operative, and only one 

formulation has gotten FDA approval. This clinical failure is due to the numerous challenges 

that need to be solved in the near future, such as the accumulation of the carriers in liver and 

spleen and, the low therapeutic efficiency inside the tumors, and the different barriers that 

have to be crossed to reach and enter the cancer cells, even after this carriers penetrate into 

the tumor vasculature. OAnother great challenge isis the research on the discovery of newy of 

ligands or targeting moieties needed to drive the carrier to specific organs or tumors, so wein 

order to achieve the the site-specific delivery of the chemotherapy-containing nanocarriers to 

cancerous tissue,. Another innovation needed for polymeric nanocarrier improvement is to 

achieve the releasinge of the anticancer agents in a controlled way by the development of 

stimuli sensitive carriers. 
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