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Purpose: Precision cancer medicine is dependent on accurate prediction of disease and treatment outcome, re-
quiring integration of clinical, imaging and interventional knowledge. User controlled pipelines are capable of
feature integration with varied levels of human interaction. In this work we present two pipelines designed to
combine clinical, radiomic (quantified imaging), and RTx-omic (quantified radiation therapy (RT) plan) in-
formation for prediction of locoregional failure (LRF) in head and neck cancer (H&N).

Methods: Pipelines were designed to extract information and model patient outcomes based on clinical features,
computed tomography (CT) imaging, and planned RT dose volumes. We predict H&N LRF using: 1) a highly
user-driven pipeline that leverages modular design and machine learning for feature extraction and model de-
velopment; and 2) a pipeline with minimal user input that utilizes deep learning convolutional neural networks
to extract and combine CT imaging, RT dose and clinical features for model development.

Results: Clinical features with logistic regression in our highly user-driven pipeline had the highest precision
recall area under the curve (PR-AUC) of 0.66 (0.33-0.93), where a PR-AUC = 0.11 is considered random.
CONCLUSIONS: Our work demonstrates the potential to aggregate features from multiple specialties for con-
ditional-outcome predictions using pipelines with varied levels of human interaction. Most importantly, our
results provide insights into the importance of data curation and quality, as well as user, data and methodology
bias awareness as it pertains to result interpretation in user controlled pipelines.

1. Introduction prognosis is highly beneficial.

We define treatment specific-conditional prognosis as the prediction

Prognostics are an important part of cancer care [1,2] that estimates
the risk of an individual’s outcome based on multiple variables (e.g.
tumour, patient and environmental). It aids in treatment decisions and
differs from aetiological research where the goal is to explain whether
an outcome can be attributed to a specific risk factor [3]. In addition to
the traditional prognostic factors mentioned above, integration of
treatment information to form a treatment specific-conditional
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of a treatment’s effect, if administered as intended, on the patient’s
outcome [4]. The volume and variety of features available for inclusion
in these types of predictions is expanding rapidly. This is in part the
result of a hypothesis in cancer management that by analyzing an ex-
tensive set of features that encompass the nuances of disease processes
and treatments that we can achieve “Precision Medicine” [5-7]. Fea-
tures can vary from highly cited and tested measurements designed to
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probe and describe the nuances of both a patient and corresponding
disease [8-11], to more experimental imaging, tissue and treatment
features that describe the activity of tumours before and during treat-
ment [12]. These features can even include those generated through
automation that explore disease outcome correlations with image signal
values (i.e. radiomics) [13-15]. Quantified interventional features have
the potential to be combined with these features for a truly compre-
hensive view of a patient’s treatment-influenced course of disease.

In head and neck (H&N) radiation therapy (RT) it is known that the
dose fractionation and quality of an RT plan can impact overall and
locoregional failure (LRF) free survival [16-18]. Dose volume histo-
grams (DVH) are calculated to evaluate a RT plan based on RT dose
delivered to volumes of tissue [19,20]. Metrics calculated using the
DVHs are known predictors of both toxicity and outcome [21], but lack
spatial dose information that is indicative of a patient’s disease and
surrounding intrinsic anatomical variations. Recent research quanti-
fying spatial dose distributions for patients has found utility in toxicity
prediction [22,23] and may similarly benefit treatment-specific condi-
tional prognosis outcome prediction. However, as the number of
prognostic factors that we consider increases, our methods for knowl-
edge integration must change.

The agglomeration of diverse features represents a movement to-
wards precision medicine, but also the utilization of big data in cancer
care [5,6,24]. Approaches and pipelines for big data feature integration
would provide flexible solutions that could drive data exploration and
clinical decision support systems forward; an idea that was demon-
strated by Mobadersany et al. [25] who combined deep learning and
traditional user defined features. Additionally, these ‘big machines’ can
be thought of as user-controlled pipelines requiring a spectrum of user
interaction and assurance while evaluating intermediate byproducts
and tuning various operating parameters.

In this work, we build two generalized feature integration pipelines
for cancer treatment specific conditional prognosis; one of which is a
highly user-driven process, while the other is substantially automated.
Both pipelines leverage clinical, radiomic, and interventional features
extracted from personalized RT plans (henceforth referred to as RTx-
omic features). As a proof of concept, we applied our pipelines to a H&N
dataset to determine how the conditional-prognostic performance of
clinical features may be impacted by RTx-omic and radiomic features
during LRF prediction, and whether conclusions could be drawn re-
garding the influence of user bias on user-controlled pipelines.

2. Methods

Our methods are designed to build and explore two pipelines for
patient information integration and outcome prediction: 1) A machine
learning pipeline that is inherently user-driven. Features are explicitly
defined and informed by prior-knowledge, and classification models are
finalized as a separate step in the pipeline; 2) a deep learning pipeline
that is more automated and allows spontaneous emergent features to be
learned by the machine, while simultaneously developing a classifier.
Both pipelines explored the impact of clinical, radiomic and RTx-omic
features on outcome predictions. In this study we use LRF prediction at
three years in H&N cancer as our case study. Predictions are performed
using different modeling methods, each of which has specific benefits to
our research question. This section details the data curation, and pi-
pelines used for our analysis.

3. Data curation and preparation

We used a single dataset from the Princess Margaret Cancer Centre
with institutional research board approval. The dataset contained
planning computed tomography (CT) DICOM images, DICOM RT
Structures, DICOM RT Dose, and clinical variables for 190 patients.
Gross tumour volumes (GTV) in the DICOM RT Structure file were
contoured by radiation oncologists (experience levels ranging between
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5 and 30 years) for intensity modulated radiation therapy (IMRT)
treatment based on clinical-radiological evidence of disease extent.
Often during contouring, simulation magnetic resonance imaging (MRI)
was fused with the planning CT to aid in target delineation.
Additionally, H&N Radiation Oncology Quality Assurance Rounds oc-
curred weekly for the opportunity to peer-review RT target volumes,
including the GTV and clinical target volumes (CTV). Additional patient
details can be found in Table 1 of the Supplementary Material.

The inclusion criteria for this study was an oropharynx disease site,
squamous cell carcinoma pathology, 70 Gy prescribed dose in 35
fractions to the primary GTV, and full delivery of prescribed dose.
Application of inclusion criteria reduced our dataset from 190 patients
to 160 patients with 18 LRF events at three years. This resulted in an
imbalanced dataset with an event rate of 11%; a challenging problem
for most modeling methods, but one we believe can be modeled using
appropriate disease, image and treatment descriptors. Furthermore, for
our highly user driven pipeline (hence forth referred to as Machine
Learning Pipeline and described below), only patients who did not have
dental artifacts (DA) were included. This was to safeguard our radiomic
features against spurious image signals [15] and reduced the dataset
further to 64 patients with 7 LRF events. For our more automated pi-
peline (hence forth referred to as the Deep Learning Pipeline and de-
scribed below) all 160 curated patients were used with the assumption
that the convolutional neural network (CNN) would learn to distinguish
between important and irrelevant machine generated features regard-
less of the DA status of the image.

4. Machine learning pipeline

Our Machine Learning Pipeline (MLP) (Fig. 1) was designed to allow
a researcher to have control over all aspects of feature definition, fea-
ture space reduction, and model building, and validation. This is typical
of the traditional clinical modeling or radiomics pipelines where fea-
tures are defined based on prior knowledge of the disease, or hand-
engineered and extracted from images.

4.1. Patient-specific features

The complexity of a patient’s disease generates a variety of char-
acteristics that may be of benefit when determining a treatment specific
conditional-prognosis. In our MLP we aim to describe the disease using
a variety of features that are known predictors of H&N patient LRF
(clinical features), as well as more exploratory features quantifying a
patient’s planning CT signal (radiomic features) and their personalized
RT treatment plan designed based on their intrinsic anatomical variants
(RTx-omics features). Following is a description of the features found in
the different feature classes. It should be noted that due to the small
number of events found in our dataset that our MLP suffers from the
‘curse of dimensionality’ — this is mitigated using feature space reduc-
tion which is described as a later step.

4.2. Clinical features

Clinical features for our patients were collected from the Princess
Margaret Cancer Center H&N Anthology. Patient Age, smoking status,
drinking status, disease subsite, T stage, N stage, overall stage, and p16
status were included as clinical features.

4.3. Radiomic features

PyRadiomics 2.0 [26] was used to extract radiomic features
(n 99) that quantified the planning CT (in Hounsfield Units, HU)
within a patient’s GTV. Images were resampled to an isotropic pixel size
of 1 mm using BSpline interpolation, and a bin width of 25 was used for
texture feature calculation [27]. All features from the first order sta-
tistics (n = 18), shape (n = 12) and texture (GLCM (n = 23), GLSZM
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Fig. 1. Machine Learning Pipeline for generalized feature analysis and outcome prediction in H&N patients. Step 1: application of inclusion and exclusion criteria;
Step 2: extraction of generalized features — clinical, radiomic and RTx-omic; Step 3: random sampling of patients into training and validation datasets; Step 4: feature
grouping based on goal of determining added benefit of radiomic and RTx-omic features; Step 5: reduction of feature set based on spearman rank values calculated
within a specific feature grouping; Step 6: tuning, fitting and validating of three different modeling techniques; Step 7: calculation of PR-AUC based on model

prediction of patient outcome across 100 iterations of Steps 3-6.

(n = 16), GLDM (n = 14) and GLRLM (n = 16)) classes were extracted.
For details on feature equations please see the extensive PyRadiomics
documentation [28].

4.4. RTx-omic features

RTx-omic features were extracted using PyRadiomics 2.0 and a
custom PyRadiomics module designed to quantify relationships be-
tween two ROIs. First order statistical features were extracted from the
planned dose volume, where the voxels represent planned RT dose
(Gy), instead of HU as was quantified with the radiomic features. These
features were extracted from the GTV, CTV70 (clinical target volume at
70 Gy), CTV56 (elective clinical target volume at 56 Gy) and iso-
contours at 95 and 100% of 70, 63 and 56 Gy, which were generated by
thresholding the planned dose volume. Shape features for the iso-
contours and CTV70 were also calculated.

Tumour coverage was quantified using the custom PyRadiomics
module. The module was developed to calculate the Euclidean distance
between two ROI edges and centers, as well as Dice and Jaccard me-
trics, and volume differences. These metrics were calculated to compare
all isocontours against CTV70 and CTV56. RTx-omic features were
defined in collaboration with a medical physicist, radiation therapist
and radiation oncologist.

4.5. Ensemble LRF prediction and validation

We explored the impact of radiomic, RTx-omic and clinical feature
groups on prediction of LRF at three years using a multi-step process
that explored a variety of modeling methods.

4.6. Data splitting and feature grouping

Our dataset was split into 75% training and 25% testing sets. The
data was randomly sampled and stratified to ensure equal distribution

of LRF events in each set; this resulted in the training and testing sets
containing 5-6 and 1-2 patients, respectively. Feature groups were
combined to explore the added predictive value of radiomic and RTx-
omic features on accepted clinical factors. This resulted in the following
combinations of features 1) clinical, 2) radiomic and RTx-omic; and 3)
clinical, radiomic and RTx-omic. (Step 4 in Fig. 1).

4.7. Feature space reduction

Each of the three training set feature groupings underwent feature
space reduction to decrease the number of correlated features and the
chances of overfitting to the training data. Feature space reduction
involved calculating the Spearman rank value for each feature against
all other features in the feature group of interest. If the Spearman rank
value between two features was greater than or equal to 0.3 the features
were considered correlated and one of them was dropped/removed.
Clinical features were never dropped, since the goal was to determine
added value above accepted clinical features, features correlated to
volume were dropped first, and if two features still remained, the fea-
ture that was correlated to the most number of other features was
dropped (Step 5 in Fig. 1).

4.8. Model tuning, fitting and validation

After feature space reduction, model tuning, fitting and validation
was performed using the training dataset. Three different modeling
techniques available in Python’s Scikit Learn package [29] were ex-
plored: a) logistic regression with recursive feature elimination (LOG)
[30] - a highly interpretable method of modeling widely accepted in
the clinical environment; b) random forest (RF) [31,32] — a more
complex method aggregating multiple decision trees together to reduce
bias and variance; c) isolation forest (IF) [33,34] — an ensemble of
isolation trees designed to detect data anomalies, such as an LRF event
in our dataset. Tuning parameters and methods can be found in our
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Supplementary Materials.

After tuning based on the feature grouping of interest, a LOG, RF
and IF model were fit to the training data for the same feature group of
interest. The fit and tuned LOG, RF and IF models were used to predict
the probability of a testing patient experiencing an LRF event, which
was saved in an array (Step 6 in Fig. 1). Steps 3-6 of Fig. 1, Data
Splitting and Feature Grouping, Feature Space Reduction, and Model
Tuning, Fitting and Validation, were repeated 100 times for different
splits of the data.

4.9. Ensemble prediction

After fitting 100 models for each of the feature groupings, and each
of the modeling types, we performed an ensemble prediction of treat-
ment specific conditional-prognosis for H&N patient LRF at three years.
Each combination of feature grouping and modeling method had an
array where a row represented a patient and a column represented one
of the 100 iterations. The average probability of a patient experiencing
an LRF event across the 100 iterations was taken to be that patient’s
probability of experiencing an LRF event. The precision recall area
under the curve (PR-AUC) (described below) for a given feature
grouping and modeling method was calculated on the average patient
LRF event probability. Confidence intervals (CI)were calculated using
bootstrapping.

4.10. Deep learning pipeline

In our Deep Learning Pipeline (DLP) a deep learning network was
utilized to minimize user influence (Fig. 2). This gave the system con-
trol over what features to extract and how to combine them in the most
beneficial way for LRF prediction. Three deep learning networks (DLNs)
were trained: 1) Clinical, 2) Radiomic + RTx-omic, and 3) Clin-
ical + Radiomic + RTx-omic. Patient image, RTDose and contour
volumes were used in models 2 and 3.

Physica Medica 70 (2020) 145-152

5. Data encoding, generation and pre-processing
5.1. Clinical data encoding

The categorical clinical features (i.e. smoking status, drinking
status, disease subsite, T stage, N stage, overall stage, and p16 status)
were one-hot-encoded using the function “OneHotEncoder” from
Python’s scikit-learn 0.22 package [29] to obtain binary categorizations
that are easier for the machine to interpret. Age is a continuous variable
and remained unaltered.

5.2. Contour volume generation

The three-dimensional (3D) contour volumes were generated by
combining each patient’s GTV, CTV56 and CTV70 into a single volume,
where the intersection of all three regions of interest was denoted by a
1, the intersection of CTV56 and CTV70 was denoted by a 2, and the
remaining portion of CTV56 was denoted by a 3.

5.3. Image, dose and contour pre-processing

The 3D image, dose and contour volumes were processed prior to
usage in CNN training or testing using a multistep procedure:

1) Voxels in the CT image, RTDose volume and contour volume were
interpolated to isotropic 1 mm?® sizes. SimpleITK’s linear resampling
image filter was used for the CT image and RTDose, and a nearest
neighbor resampling filter was used for the contour volume. This
reduced variability in the images and therefore improved processing
by the CNN.

2) The CT image and RTDose volume were normalized based on the
mean and standard deviation of the population CT and RTDose
volumes, respectively. Normalization ensures similar data distribu-
tions, allowing for fast convergence during network training.

a)
Training Data: Data Preprocessing:
Linear 1 Linear 2
Clinical Features 1x16 1x8
Age T
HxSmoking | N
Hot Encoding
HxDrinking | Stage
Subsite P16
Fully
Connected: Soft Max:
1xn 1x2
b)

3 channels
Conv_1:
4x64x64x64  Conv_2:

8§x32x32x32

Tmage

Conv_3:

Resampling 16x16x 16 x 16 Conv 4
* IxIxl isotropic voxels % i6 i i6.x 16 A
Normalization Az;rig; )l(’(goiugg
* Image . gz
* RTDose / -
Resize
* 128x128x128 i S
Image and RTDose = g Convolution + ReLU
+ Linear "
CTV70, CTV56 ROIs 9 Max pooling
and GTV + Nearest neighbor Avg. pooling
Linear + SELU
Random Augmentation ' Fully connected
* Flip 60% probability ' Soft max

« Affine 60% probability

Fig. 2. Deep Learning Pipeline for generalized feature analysis and outcome prediction in H&N patients. a) the features, pre-processing, and linear layers used for our
Clinical network. n in the fully connected layer is 8. b) the data, pre-processing steps and CNN layers for our Radiomic + RTxomic network. n in the fully connected
layer is 16384. The final network described is the Clinical + Radiomic + RTx-omic network which combines both a) and b). In this network, n in the fully connected

layer is 16392.
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Table 1
PR-AUC and corresponding confidence intervals (CI) for both pipelines.

Physica Medica 70 (2020) 145-152

Random performance PR-AUC = 0.11  User-Driven Pipeline

Automated Pipeline

Random Forest
® Random stratified
subsampling
® 75/25% split
DA patients excluded

Logistic Regression
® Random stratified
subsampling
® 75/25% split
DA patients excluded

Isolation Forest
® Random stratified
subsampling
® 75/25% split
DA patients excluded

Deep Learning
® 10 fold cross validation
® 20 epochs

DA patients included

Clin.
Rad. + RTx.
Clin. + Rad. + RTx.

0.61 (0.25-0.96)
0.12 (0.05-0.22)
0.33 (0.12-0.73)

0.66 (0.33-0.93)
0.19 (0.07-0.56)
0.15 (0.08-0.48)

0.42 (0.18-0.75)
0.26 (0.15-0.62)
0.20 (0.12-0.50)

0.38 (0.23-0.54)
0.36 (0.17-0.54)
0.32 (0.20-0.45)

3) CT Images, RTDose volumes and contour volumes were resized to a
grid size of 128°. Resizing was performed using the open-source
scikit-image library [35], which preserves the image’s HU distribu-
tion. The aspect ratio of the volumes were maintained by padding
each of the volumes to a uniform size based on the largest dimension
in the 3D volume.

4) Two types of data augmentation were performed to introduce ran-
domness to the training data and minimize the chances of over-
fitting. 1) Flipping of the volumes in the lateral direction. 2) affine
transformations with rotations between —16 and + 16 degrees,
translation in vertical and horizontal directions by 15% or the vo-
lumes width and height, and scaling by factors between 0.85 and
1.25. Each of the two different data augmentation types had a
mutually exclusive chance of occuring of 60%.

5.4. CNN architecture and training

We used the open-source python library, PyTorch [36], to train our
deep learning networks. A virtual machine from VMware, Inc. with 10
Intel Xeon CPU E5-2690 processors and a NVIDIA Tesla K40m GPU was
used for training and testing. Ten-fold stratified cross validation was
performed using the 160 curated patients and 18 LRF events.

1) Clinical DLN: Utilized only the clinical features described above
(Fig. 2a). The one hot encoded feature representations, along with
the unaltered age feature were pushed through a two linear neural
network layers with weighted optimization to account for class
imbalance. The first layer underwent scaled exponential linear units
(SELU) activation [37], the output of the second layers was used as
input to a single fully connected layer. Outcomes were predicted
using softmax classification.

2) Radiomic + RTx-omic DLN: Used the patient image, RTDose and
associated contour volume in a three-dimensional, three-channel,
four-layer CNN (Fig. 2b). The outputs of all layers, except the final
layer, underwent batch normalization, rectified linear unit func-
tioning (ReLU) activation and max pooling [38,39]. The output of
the final layer of the CNN underwent average pooling followed by a
fully connected layer and softmax classification. The first CNN layer
had convolutional kernel sizes of 5 with a padding of 2; the re-
maining layers used a size of 3 and padding of 1. Weighted opti-
mization was used to account for imbalanced class distributions.

3) Clinical + Radiomic + RTxomic DLN: A combination of the two
previously described networks (Fig. 2 a and b). The output of the
final linear layer from Clinical and the output from the final CNN
layer from Radiomic + RTxomic are combined in the fully con-
nected layer prior to softmax classification. Weighted optimization
was used to account for imbalanced class distributions.

5.5. Scoring metric

In order to take into account the large class imbalance found in our
dataset, the area under the PR-AUC was used for performance

149

evaluation. PR-AUCs are more sensitive to class imbalances, and
therefore provide a better metric of evaluation for our study compared
to the more commonly used receiver operator characteristic curves
[40].

Precision is the ratio of the number of true positives divided by the
sum of true positives and false positives (Eqn. (1)).

. True Positives
Precision =

@

Recall is the ratio of the number of true positives divided by the sum
of true positives and false negatives (Eqn.2).

True Positives + False Posivites

Recall = True Positives

True Positives + False Negatives

(2)

When determining whether a PR-AUC is better than random the
balance of classes must be considered. This is achieved by determining
the probability of randomly guessing a positive event, given by the
number of positive events divided by the sum of the positive and ne-
gative events, which is equivalent to the event rate of the dataset. For
our dataset, a PR-AUC of 0.11 is considered random performance. PR-
AUCs were calculated for our work using Python’s Sci-kit learn library
[29].

For additional comparison, the PR-AUC of univariate GTV volume
was calculated, a known prognostic factor for H&N cancer [41].

6. Results

PR-AUC values above 0.11 are considered to have better than
random performance. Our MLP with clinical features and LOG mod-
eling had the overall highest PR-AUC for LRF prediction at three years
of 0.66 (0.33-0.93). RF modeling performed best with clinical features
only (PR-AUC = 0.61 (0.25-0.96)), and IF also performed best when
utilizing only clinical features (PR-AUC = 0.42 (0.18-0.75)). Our DLP
performed best with only clinical features as well (0.38(0.23-0.54)).
PR-AUC values for all modeling methods and feature combinations can
be found in Table 1. All of the above mentioned models and feature
groups performed better than our univariate GTV volume predictor,
which had a PR-AUC of 0.21.

Table 2 presents the number of features that were retained after
feature set reduction and model fitting in our MLP. The number of
features was averaged across all 100 fittings for each of the feature
groupings and modeling methods. It can be seen that all clinical fea-
tures are retained after feature set reduction in the clinical feature
grouping, as is expected based on the design of the feature set reduction
method. Additionally, radiomic and RTx-omic features are known to
correlate to clinical and volume features; therefore, more features were
retained in the radiomic + RTxomic model than the -clin-
ical + radiomic + RTxomic model.

7. Discussion

The ability to conditionally prognosticate a cancer patient’s out-
come based on their treatment is foundational to making personalized
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Table 2
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The number of features remaining after feature set reduction (FSR) and model fitting for the user-driven pipelines. The average number of features and standard

deviations are presented.

User-Driven Pipeline

Random Forest

Logistic Regression

Isolation Forest

FSR Modeling FSR Modeling FSR Modeling
Clin. 8 0 31 8 0 6 = 2 8 =0 6 =0
Rad. + RTx. 409 = 0 3+1 409 + 0 31 + 56 409 + 6 0
Clin. + Rad. + RTx. 95 = 13 4 £ 1 128 + 21 27 + 29 150 = 15 6 =0

cancer medicine a reality. To accommodate existing and rapidly
emerging patient and treatment information, processes are required to
integrate the variety of disease features available, including RTx-omic
features that precisely quantify the treatment. Our work presents two
user controlled pipelines where clinical features with LOG had the
highest PR-AUC when predicting LRF at three years for H&N cancer
patients. More importantly, our results provide insight pertaining to the
development of user-controlled pipelines for outcome prediction. In
particular, the importance of curation, and user, data and methodology
bias awareness as it pertains to result interpretation.

The clinical features selected for this study provided the highest PR-
AUC for H&N LRF prediction at three years when combined with LOG
modeling in our highly bespoke user driven pipeline. Although a pro-
mising result, large CIs indicate that subsampling was important and
too few LRF events were present in our data. Additionally, the large Cls
prevent us from definitively stating one model is better than another.
Both of these observations suggest that a larger dataset may have re-
sulted in a different final observation. These results are not to say that
imaging and RT treatment features do not provide additional in-
formation important to the prediction of LRF, only that with the current
data and our current features they do not draw immediate conclusions.

When utilizing imaging and RT treatment information only, our DLP
performed better than all three MLP modeling methods. This result may
indicate that the machine was able to detect and extract features that
were not seen and more informative than the hand-engineered/user-
knowledge-informed features present in our MLP. Additionally, in our
DLP, the Radiomic + RTx-omic DLN had comparable performance to
the Clinical DLN (0.36 (0.17-0.54) vs. 0.38 (0.23-0.54), respectively, p-
value = 0.97). This indicates that information could be extracted from
images and RT treatment plans that is useful for conditional prog-
nostics; we just have yet to obtain enough data to strengthen this signal.
Future work may also be able to utilize larger resampling grids to retain
more imaging and treatment details, providing more nuanced in-
formation to the machine. Despite this promise, LOG prediction with
clinical features still performed better than both of these networks, and
could be due to the breadth of knowledge included in the curation of
clinical feature definition [42-44], therefore requiring less complicated
modeling techniques.

Additionally, the DLP had more consistent PR-AUCs and smaller CIs
across all feature combinations when compared to MLP modeling
methods. This may be affected by differences in training/validation
data, but it also seems to indicate that by using a less user-driven ap-
proach we are able to obtain more consistent information out of all data
types when using our defined topology. These observations also lead
the authors to suggest that various modeling methods, feature selection
techniques, topology configurations, and levels of human interaction
are tested during model development to determine the optimal per-
formance for a given research question. This type of testing has been
performed by other groups when utilizing radiomic features for out-
come prediction [45,46] and would ensure that the best results for that
given research question are achieved.

Predictions utilizing quantitative image analysis and pattern re-
cognition has been an area of study for close to two decades [47,48].

Recent utilization of these methods in cancer prognostics with hand-
engineered features has found promising results, particularly in H&N
cancer [49-54]. Deep learning is also being researched for its utility in
this area [25,55]. In a recent study by Diamant et al. [56]., it was de-
termined that deep learning methods were capable of identifying tra-
ditional radiomic features, in addition to newly generated features, that
were beneficial in H&N outcome prediction. Although the above men-
tioned work is promising, a recent study by Ger et al. [57] found that
consistent associations between radiomic features and outcome in H&N
patients could not be found, even when utilizing large datasets
(n > 600) with standardized imaging practices.

Obtaining large, high quality clinical datasets that are applicable to
a given research question is challenging, as was seen in this study.
However, if a strong biomarker or feature is embedded in the data and
driving the outcome of interest it should be apparent, regardless of the
dataset size, which has a stronger impact on the CIs than the overall
performance [58]. When developing predictive models, it is understood
that more data is often preferred. Larger datasets improve statistical
analysis of the model and have a higher chance of containing hetero-
geneities that models may encounter during clinical usage. More im-
portantly, small datasets have increased potential for false positive and
false negative errors [59] that are detrimental to health care resources
and patient outcomes, respectively.

The authors believe that the largest limitation for this study was the
number of LRF events. The event rate for LRF was small, and in com-
bination with our dataset size, this left very few examples to learn from
during training. To account for the imbalance we used upsampling in
our MLP and weighted optimization in our DLP; however the large Cls
indicate the importance of subsampling in our study and the need for
larger more diverse data. Additionally, utilization of uniform and high
quality plans developed using the same planning criteria may have
negatively impacted the final conclusions. Namely, it is possible that
treatments were consistent enough that it was not possible to observe
any LRF causing variations. Despite this, we were able to demonstrate
the importance of benchmarking prognostic automated information
generation pipelines against clinical variables which already achieve
good predictions [15].

Another important limitation to the utilization of automated pipe-
lines and data analysis is that imposed by the operator/human. Human
knowledge is at the core of each step of an automated pipeline: data
curation and collection, data pre-processing, feature definition — either
through explicit definition or definition of a deep learning topology,
feature selection, and model tuning, fitting and validation. Curation of
the data in our study was guided by expert knowledge of clinical staff,
as was definition of our RTx-omic features. Feature selection and
modeling relied on prior author knowledge and experience. All of these
steps will ultimately be biased by whomever is performing the experi-
ments, which can be both a good and bad characteristic of the study.
Until we are able to explore all permutations of potential features and
machine learning methodologies within large datasets it is not possible
to make definitive statements about the impact that automated pipe-
lines will have on cancer care prognostics.

By not fully understanding the risks associated with applied
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methods, we are likely to obtain unstable and misinformed results.
From a user-driven pipeline perspective, some researchers [45,46] have
done an excellent job of publishing their results as a function of feature
selection and modeling method performance. These types of publica-
tions are a good starting point when designing an experiment. However,
researchers are urged to accurately publish all of their methods, not just
the ones that had the best results. Additionally, it is important to un-
derstand the risk of data contamination that occurs in these studies. It is
not common practice to have a true “Hold-Out” dataset [60], and
therefore caution is warranted whenever interpreting the out of sample
error rate, value and impact of a publications results.

By exploring the rationale behind various steps of our processes we
had important learnings regarding inherent biases present in current
user-controlled pipelines; particularly when working with small data-
sets that contain only a few event of interest examples. There is a desire
in this field to move towards the ‘Big Machine’ paradigm [61] as a way
to handle big data and provide a way to analyze and integrate the large
and diverse data pools found within healthcare in a consistent and in-
teroperable way. The processes that we have presented in this paper
could be considered the ‘little machine’, a proprietary example of how
the big machine would be operated. However, much larger and diverse
datasets are needed to make true progress.

8. Conclusion

Our work demonstrates the potential to aggregate together features
from multiple specialties for cancer patient outcome prediction in user-
controlled pipelines with various degrees of user interaction. Most
importantly, our results provide insight pertaining the importance of
data curation and quality, as well as operator, data and methodology
bias awareness as it pertains to result interpretation in user-controlled
pipelines.
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