UC Irvine

UC Irvine Previously Published Works

Title

Potent multitarget FAAH-COX inhibitors: Design and structure-activity relationship studies

Permalink

https://escholarship.org/uc/item/6pn8j3kr

Authors

Migliore, Marco
Habrant, Damien
Sasso, Oscar
et al.

Publication Date

2016-02-01
DOI
10.1016/j.ejmech.2015.12.036

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Research paper

Potent multitarget FAAH-COX inhibitors: Design and structure-activity relationship studies

Marco Migliore ${ }^{\text {a }}$, Damien Habrant ${ }^{\text {a, }}$, Oscar Sasso ${ }^{\text {a }}$, Clara Albani ${ }^{\text {a, }}{ }^{2}$,
${ }^{\text {a }}$ Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
${ }^{\mathrm{b}}$ Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine 92697-4621, USA

A R T I C L E I N F O

Article history:

Received 28 October 2015
Received in revised form
9 December 2015
Accepted 19 December 2015
Available online 23 December 2015

Keywords:

FAAH
COX
Hybrid scaffold
Multitarget inhibitors
Structure-activity relationship
Inflammation

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) exert their pharmacological effects by inhibiting cyclooxygenase (COX)-1 and COX-2. Though widely prescribed for pain and inflammation, these agents have limited utility in chronic diseases due to serious mechanism-based adverse events such as gastrointestinal damage. Concomitant blockade of fatty acid amide hydrolase (FAAH) enhances the therapeutic effects of the NSAIDs while attenuating their propensity to cause gastrointestinal injury. This favorable interaction is attributed to the accumulation of protective FAAH substrates, such as the endocannabinoid anandamide, and suggests that agents simultaneously targeting COX and FAAH might provide an innovative strategy to combat pain and inflammation with reduced side effects. Here, we describe the rational design and structure-active relationship (SAR) properties of the first class of potent multitarget FAAH-COX inhibitors. A focused SAR exploration around the prototype 10r (ARN2508) led to the identification of achiral (18b) as well as racemic (29a-c and 29e) analogs. Absolute configurational assignment and pharmacological evaluation of single enantiomers of $\mathbf{1 0 r}$ are also presented. (S)-(+)-10r is the first highly potent and selective chiral inhibitor of FAAH-COX with marked in vivo activity, and represents a promising lead to discover novel analgesics and anti-inflammatory drugs.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely utilized to treat pain and inflammation [1], but their chronic use is hindered by a variety of potentially serious adverse events that include gastrointestinal (GI) mucosal lesions, bleeding and perforations [2-5]. Conventional NSAIDs inhibit the two isoforms of cyclooxygenase (COX), COX-1 and COX-2, which catalyze the first committed steps in the biosynthetic pathway that converts arachidonic acid (AA) into inflammatory prostanoids such as prostaglandin $\mathrm{E}_{2}\left(\mathrm{PGE}_{2}\right)$ and thromboxane $\mathrm{A}_{2}\left(\mathrm{TXA}_{2}\right)$ [6]. The dual role of

[^0]COX-1-derived PGE_{2} as inflammation promoter and mucosal tissue protectant explains, at least in part, why NSAIDs cause damage to the GI tract [7-10]. Efforts to overcome this problem have led to the development of selective COX-2 inhibitors, which combine a high level of anti-inflammatory efficacy with a reduced propensity to cause injury to the GI mucosa [6]. Nevertheless, the use of COX-2 inhibitors has been linked to a distinctive set of adverse cardiovascular effects [11,12]. Thus, the need for safe and effective drugs that can be used in the treatment of chronic inflammatory disorders remains urgent.

A promising approach to meet this need is offered by targeting with a single agent more than one component of the inflammatory cascade [13-15]. Agents designed to achieve this objective include nitric oxide (NO) donors-NSAIDs [16,17], COX-2 inhib-itors-NO-donors [18,19], hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ donors-NSAIDs [20-22], as well as compounds that block distinct enzymes of the AA pathway, such as COX/lipoxygenase [23,24] and COX-2/soluble epoxy hydrolase (sEH) [25]. Another potential multitarget strategy to treat inflammation is the concomitant inhibition of COX and fatty acid amide hydrolase (FAAH) [26] [27-33], a serine hydrolase
that deactivates a family of analgesic and anti-inflammatory lipid amides that are produced by host-defense cells and other cells in the body [34,35]. These lipid mediators include the endocannabinoid anandamide (arachidonoylethanolamide) - which engages cannabinoid- $1\left(\mathrm{CB}_{1}\right)$ and CB_{2} receptors to suppress neutrophil migration [36] and prevent immune-cell recruitment [37,38] - as well as the endogenous peroxisome proliferator-activate receptor- α (PPAR- α) agonists, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) [39-41]. In addition to opposing pain and inflammation, these FAAH substrates are also protective of the GI mucosa [42,43]. Indeed, studies in animal pain models have shown that co-administration of FAAH and COX inhibitors results in a synergistic potentiation of analgesia along with reduced gastric damage [44-46].

In several chronic inflammatory conditions, including inflammatory bowel disease (IBD), FAAH [47-49] and COX-2 [50] are expressed at abnormally high levels. This simultaneous upregulation may help establish a pathological state that exacerbates inflammation by amplifying inflammatory COX-dependent signals at the expense of defensive FAAH-regulated mediators. This hypothesis predicts that drugs targeting both COX and FAAH should have substantial anti-inflammatory efficacy combined with reduced GI toxicity. In a recent study, we provided support to this hypothesis using a multitarget modulator based on the hybrid scaffold 1 (Fig. 1) [51]. This scaffold merges key pharmacophores of two known classes of FAAH and COX inhibitors - O-aryl carbamates [52-58] such as [3-(3-carbamoylphenyl)phenyl] N-cyclohexylcarbamate (URB597, 2) [54,57], and 2-aryl propionic acids [6] such as flurbiprofen, 3a [59-61] - which share a biphenyl core as a common structural motif (A and B rings, Fig. 1). Moreover, structure-activity relationship (SAR) studies of these scaffolds supported the hypothesis of additional elements of structural overlapping, such as the oxygenated substituents at the 3^{\prime}-position of the A phenyl ring, corresponding to the carbamate functionality of $\mathbf{2}[53,54,56$] and the ether moieties of $\mathbf{3 b}$ or $\mathbf{3 c}$ [61], respectively (Fig. 1).

This SAR work led to the identification of compound $\mathbf{1 0 r}((\pm)-2-$ [3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid, ARN2508) [51] as a potent in vivo active inhibitor of intracellular FAAH and COX activities, which exerts profound anti-inflammatory effects in mouse models of IBD without causing COX-dependent gastric toxicity [51]. In the present study, (a) we outline the indepth SAR investigations that led to the discovery of compound 10r [51]; (b) we report an expansion of this SAR work, which culminated in the identification of several new and potent multitarget inhibitors (18b, 29a-c and 29e); and, finally (c) we describe the absolute configurational assignment and pharmacological properties of single enantiomers of $\mathbf{1 0 r}$, identifying $(S)-(+)-\mathbf{1 0 r}$ as the first chiral inhibitor of FAAH-COX with marked in vivo activity.

2. Results and discussion

2.1. Chemistry

Compounds 10a-t were synthesized from the corresponding phenol 8 through a carbamoylation reaction, using commercially available isocyanates, followed by the hydrolysis of the methyl esters 9a-t, under acidic conditions (Scheme 1).

The intermediate $\mathbf{8}$ was prepared in four steps, starting from the acid 4, obtained as previously described [62]. Compound 4 was converted to the corresponding methyl ester 5, under standard acidic conditions, to afford, after catalytic hydrogenation with ammonium formate in the presence of Pd / C, the resulting aniline $\mathbf{6}$. Compound $\mathbf{6}$ was then transformed into the corresponding diazonium salt, that was reacted in situ with NaI to obtain the phenyl iodide 7 in good yield, which was converted, under ligand less Suzuki cross coupling conditions [63], to the biphenyl derivatives 8 and 13a-c in excellent yield (Schemes 1-3).

3-Hydroxypropyl derivative 12 was synthesized by reduction of the methyl ester $\mathbf{8}$ to the alcohol $\mathbf{1 1}$ (Scheme 1). Although lithium aluminum hydride succeeded in reducing the ester $\mathbf{8}$, a significant des-fluorinated side product was observed and separation of the two compounds was troublesome. Therefore, a milder reducing agent, such as zirconium borohydride generated in situ, was used to afford a clean conversion of $\mathbf{8}$ to $\mathbf{1 1}$ [64], which was then converted to 12 under standard carbamoylation reaction conditions (Scheme 1).

Carbamates 15a-b and urea 15c were prepared from the corresponding phenols 13a-b and aniline 13c, respectively, through a carbamoylation reaction using n-hexyl-isocyanate, followed by acidic hydrolysis of the methyl esters 14a-c (Schemes 2 and 3). The reverse carbamate $\mathbf{1 5 d}$ was prepared upon activation of the aniline 13 c with triphosgene, and, then, reaction with n-hexanol, followed by acidic hydrolysis of the methyl ester $\mathbf{1 4 d}$ (Scheme 3).

Compounds 18a and 21a-b were synthesized by reacting the phenyl iodides 16b and 19a-b, with (3-hydroxyphenyl)boronic acid under Suzuki cross coupling conditions, followed by carbamoylation reaction of phenols $\mathbf{1 7}$ and 20a-b under standard conditions (Schemes 4 and 5).

Compounds 18a and 21b were then transformed into the corresponding acids 18b and 21c under standard acidic hydrolysis (Schemes 4 and 5).

Compounds 29a-g were synthesized following the synthetic sequence described in Scheme 6 p -Nitrofluorobenzenes 22ad were reacted with diethyl methylmalonate followed by decarboxylation to the corresponding acids 23a-d. 23a-d and the commercially available 23e were converted into methyl esters 24a\mathbf{e} in acidic MeOH . In addition, the phenolic intermediate $\mathbf{2 4 d}$ was directly converted into the corresponding $O-B n$ protected 24f,

Fig. 1. Rational design of a 'hybrid scaffold' for FAAH and COX inhibition.

10a, R = c-hexyl
10b, $R=c$-pentyl
10c, $R=c$-butyl
10d, R = c-propyl
10e, $\mathrm{R}=c$-hexyl- CH_{2}
10f, $\mathrm{R}=$ c -hexyl- $\left(\mathrm{CH}_{2}\right)_{2}$
$\mathbf{1 0 g}, \mathrm{R}=$ iso-propyl
10h, $\mathrm{R}=$ iso-butyl
9a-t
(9r, R = n-hexyl)

10i, $R=P h$
10j, $\mathrm{R}=\mathrm{Ph}-\mathrm{CH}_{2}$
10k, $\mathrm{R}=\mathrm{Ph}-\left(\mathrm{CH}_{2}\right)_{2}$
101, $\mathrm{R}=\mathrm{Ph}-\left(\mathrm{CH}_{2}\right)_{3}$
$10 \mathrm{~m}, \mathrm{R}=\mathrm{Ph}-\left(\mathrm{CH}_{2}\right)_{4}$
10n, R = ethyl
100, $\mathrm{R}=n$-propyl
10p, $\mathrm{R}=n$-butyl
10q, R = n-pentyl
10r, R = n-hexyl
10s, $\mathrm{R}=n$-heptyl
10t, $\mathrm{R}=n$-octyl
12

Scheme 1. Synthesis of compounds 10a-t and 12. Reagents and conditions: (a) MeOH, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{rt}, 15 \mathrm{~h}, 93 \%$; (b) $\mathrm{HCO}_{2} \mathrm{NH}_{4}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, 3 \mathrm{~h}, 94 \%$; (c) $\mathrm{NaNO} 2,3 \mathrm{M} \mathrm{HCl}, 0^{\circ} \mathrm{C}$, 30 min, then NaI, $60^{\circ} \mathrm{C}, 2 \mathrm{~h}, 55 \%$; (d) (3-hydroxyphenyl)boronic acid, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{EGME} / \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 15 \mathrm{~h}, 84 \%$; (e) RNCO, DMAP, MeCN, rt, $15 \mathrm{~h}, 38-99 \%$; (f) $6 \mathrm{M} \mathrm{HCl}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~d}$, $26-73 \%$; (g) $\mathrm{ZrCl}_{4}, \mathrm{NaBH}_{4}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~h}, 96 \%$; (h) n-hexyl-NCO, DMAP, MeCN, rt, $15 \mathrm{~h}, 73 \%$.
under standard reaction conditions.
Reduction of the nitro group was carried out using iron in presence of HCl for compounds $\mathbf{2 4 a}$ and $\mathbf{2 4 f}$, and ammonium formate in the presence of Pd / C for compounds $\mathbf{2 4 b}-\mathbf{c}$ and $\mathbf{2 4 e}$. Compound $\mathbf{2 5 f}$ was obtained from $\mathbf{2 5 e}$ by standard nitration reaction. Diazotation/Sandmayer reaction of the anilines 25a-f gave the iodides 26a-f, which were converted to carbamates 28a-f via Suzuki and carbamoylation reactions. Compounds 28a-f were then transformed into the corresponding acids 29a-f under standard acidic hydrolysis. Finally, the aniline $\mathbf{2 9 g}$ was obtained from the nitrophenyl 29f, under standard hydrogenation conditions.

2.2. SAR exploration of the first class of potent multitarget FAAHCOX inhibitors

2.2.1. Rational drug design: merging strategy and identification of hit 10a

We started our SAR exploration with compound 10a [51], which was designed by merging essential pharmacophores of the FAAH inhibitor, URB597, 2, and those of the NSAID, flurbiprofen, 3a (Fig. 1). The inhibitory potencies of 2, 3a and 10a against rat brain FAAH, ovine testis COX- 1 and human recombinant COX-2 are reported in Table 1.

Compound 10a inhibited FAAH and COX activities with relatively weak potencies (IC_{50} values, in $\mu \mathrm{M}$: $\mathrm{FAAH}=8.2$; $\mathrm{COX}-1=7.9$; COX-2 > 100). Nevertheless, these initial results encouraged us because 10a was one of the most potent FAAH/COX-1 inhibitors
previously reported [27,28,30,32,33,65].
We started, therefore, an SAR exploration around 10a with the objective of identifying chemical and structural determinants that might improve potency on the three targets in a balanced manner.
2.2.2. Study of the effect of the nature of R group: cycloalkanes, small-branched alkanes and phenyls

We prepared a series of analogs bearing cycloalkyl groups with different ring size at the N -terminal of the carbamate functionality (Table 1).

We observed that, while the potency against FAAH was retained with the c-pentyl analog $\mathbf{1 0 b}\left(\mathrm{IC}_{50}=4.8 \mu \mathrm{M}\right)$, a 10 -fold loss in potency occurred with the c-butyl derivative $\mathbf{1 0 c}\left(\mathrm{IC}_{50}=48.7 \mu \mathrm{M}\right)$ and complete loss of activity ($\mathrm{IC}_{50}>100 \mu \mathrm{M}$) with the c-propyl derivative 10d. With regard to COX activity, while the c-pentyl analog 10b showed a comparable potency against COX-1 ($\mathrm{IC}_{50}=4.4 \mu \mathrm{M}$), the c-butyl analog $\mathbf{1 0}$ c was 10 -fold more potent than compound 10a ($\mathrm{IC}_{50}=0.72 \mu \mathrm{M}$). Conversely, the c-propyl analog 10d displayed an IC_{50} value similar to compounds 10a and 10b against COX-1 $(=5.4 \mu \mathrm{M})$ and was indeed the only compound in this series that showed modest activity against COX-2 ($\mathrm{IC}_{50}=74.3 \mu \mathrm{M}$).

The N-terminal region of the carbamate functionality in 10a may engage in beneficial interactions with the acyl chain-binding domain of FAAH [26] [56,57], as well as the hydrophobic channels present in COX-1 and COX-2 [6]. [61] To capture such interactions, we prepared a series of analogs bearing lipophilic aliphatic and aromatic N-terminal substituents with diverse steric properties

13a

14a

15a

13b \downarrow e

14b

15b

Scheme 2. Synthesis of compounds 15a-b. Reagents and conditions: (a) (2hydroxyphenyl)boronic acid, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{EGME} / \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 15 \mathrm{~h}, 84 \%$; (b) n-hexylNCO, DMAP, MeCN, rt, $15 \mathrm{~h}, 88 \%$; (c) $6 \mathrm{M} \mathrm{HCl}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~d}, 90 \%$; (d) (4-hydroxyphenyl) boronic acid, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{EGME} / \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 15 \mathrm{~h}, 59 \%$; (e) n-hexyl-NCO, DMAP, MeCN, rt, $15 \mathrm{~h}, 72 \%$; (f) $6 \mathrm{M} \mathrm{HCl}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~d}, 46 \%$.

(Table 1).

The insertion of a methylene group adjacent to the c-hexyl ring of 10a - compound 10e-led to a significant increase of potency toward FAAH (23-fold) and COX-1 (10-fold), but no COX-2 inhibition ($\mathrm{IC}_{50}>100 \mu \mathrm{M}$). A further homologation, compound $10 f$, showed a 400 -fold increase in potency toward FAAH and a 50 -fold increase in potency toward COX-1, compared to 10a. Interestingly, $\mathbf{1 0 f}$ also inhibited COX-2 with an IC_{50} of $10.8 \mu \mathrm{M}$.

Next, we investigated the effects of small and branched alkyl groups, the iso-propyl $\mathbf{1 0 g}$ and the iso-butyl $\mathbf{1 0 h}$ - as truncated analogs of $10 \mathbf{a}$ and $10 \mathbf{e}$, respectively. These modifications were detrimental for FAAH and COX inhibitory activities compared to 10a and 10e, respectively.

While the replacement of the c-hexyl ring with a phenyl group (10i) was not tolerated by FAAH, in analogy to previous reports on the class of O-aryl carbamates [56,57], this modification led to a gain in inhibitory activity toward COX-1 and COX-2. The insertion of a methylene group adjacent to the phenyl ring of $\mathbf{1 0 i}$ - compound $\mathbf{1 0 j}$-caused a 10 -fold increase in potency toward FAAH, compared to 10i, but had almost no impact on COX-1 activity and dramatic loss on COX-2. Homologation (10k-m) resulted in a progressive enhancement of the inhibitory potency toward FAAH, but this trend was more erratic for COX-1 and COX-2: compound 101 was most active analog with $\mathrm{IC}_{50}=0.58 \mu \mathrm{M}$ and $6.2 \mu \mathrm{M}$ against COX-1 and COX-2, respectively.

These findings might reflect differences in the depth of
lipophilic pockets of FAAH and COX enzymes [6,26].

2.2.3. Study of the effect of the nature of the R group: linear alkanes. Identification of 10r (ARN2508)

Since the $\left(\mathrm{CH}_{2}\right)_{n}$ homologation at the N-terminal site appeared to be critical for the modulation of the biological activities at both targets, we prepared a series of carbamates bearing linear alkyl groups (alkyl $=\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{n}\right)$ with $n=1$ to 7) at N-terminal region (Table 2).

In analogy to the reported SAR results on the class of O-aryl carbamates [56], potency toward FAAH increased with increased length of the $\left(\mathrm{CH}_{2}\right)_{n}$ chain $(n=1-7)$. A different trend was observed for COX-1 and COX-2, where insertion of short $\left(\mathrm{CH}_{2}\right)_{n}$ chains ($n=1-2$) led to compounds ($\mathbf{1 0 n - 0}$) that were weak COX-1 inhibitors and had no activity against COX-2. On the other hand, insertion of $n=3-5\left(\mathrm{CH}_{2}\right)_{n}$ chains (10p-r) increased the inhibitory potencies for COX-1 and COX-2 from sub-micromolar to nanomolar IC_{50}, whereas insertion of $n=6-7\left(\mathrm{CH}_{2}\right)_{n}$ chains (10s-t) was detrimental.

These results are in agreement with those above reported in the homologation of the $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{n}$ chain series ($n=1-4$, compounds $\mathbf{1 0 i} \mathbf{- m}$, Table 1).

From this SAR exploration, we identified 10r (ARN2508) [51], which bears a n-hexyl chain at the N-terminal site, as a potent multitarget inhibitor of FAAH, COX-1 and COX-2 $\left(\mathrm{IC}_{50}\right.$: $\mathrm{FAAH}=31 \mathrm{nM} ;$ COX-1 $=12 \mathrm{nM} ;$ COX-2 $=430 \mathrm{nM}$) (Table 2). In addition to its high balanced potency, the highest reported thus far [27,28,30,32,33,65], we found that 10r displays no off-target activities on a panel of >90 biologically relevant targets, and effectively engages its intended targets after oral administration in mice [51].

These results encouraged us to initiate a more focused SAR exploration to define the effect of additional chemical and structural modifications in various regions of $\mathbf{1 0 r}$ scaffold.

2.2.4. Focused SAR exploration around 10r (ARN2508) and identification of 18b, 29a-c, \boldsymbol{e} and $(S)-(+)-10 \boldsymbol{r}$

In particular, we focused our interest on the role and position of carbamate group in the A phenyl ring (Table 3 and Table 4), as well as the role of the propionic acid functionality and the fluorine atom in the B phenyl ring (Table 5 and Table 6).
2.2.4.1. Role and position of carbamate group in the A phenyl ring. We first investigated the effect of the position of the carbamate group in the A phenyl ring, which indeed appeared to play an important role in the inhibition of both FAAH and COX (Table 3). In agreement with the rational design of our hybrid scaffold 1 (Fig. 1), the $C\left(2^{\prime}\right)$-derivative 15a (ortho derivative) showed a 70 -fold decrease in potency toward FAAH, a 60-fold decrease in potency toward COX-1, and a complete loss of activity toward COX-2, when compared to the $C\left(3^{\prime}\right)$-isomer $\mathbf{1 0 r}$ (meta derivative) (Table 3).

On the other hand, the $C\left(4^{\prime}\right)$-derivative $15 \mathbf{b}$ (para derivative) exhibited a slight loss of potency toward FAAH compared to $\mathbf{1 0 r}$, but both COX inhibitions were completely suppressed (Table 3). These results support the hypothesis that the bent shape of the O biphenyl moieties, which is known to better fit the FAAH enzyme surface [53], is also important in the recognition by COX-1 and COX2, possibly through a better superimposition to the conformations adopted by the fatty acyl chain of the natural substrate/product (the first two cis-double bonds of AA) when bound to COX-1 [66] and COX-2 [67].

Next, we replaced the carbamate moiety with alternative functional groups, such as urea (15c) [51] and reversed carbamate (15d) [51] (Table 4).

13c

Scheme 3. Synthesis of compounds 15c-d. Reagents and conditions: (a) (3-aminophenyl)boronic acid, Pd(OAc$)_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{EGME} / \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 15 \mathrm{~h}, 91 \%$; (b) n-hexyl-NCO, DMAP, MeCN, rt, $15 \mathrm{~h}, 65 \%$; (c) $6 \mathrm{M} \mathrm{HCl}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~d}, 38 \%$; (d) triphosgene, toluene, reflux, 15 h , then n-hexanol, rt, $15 \mathrm{~h}, 82 \%$; (e) $6 \mathrm{M} \mathrm{HCl}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~d}, 59 \%$.

Scheme 4. Synthesis of compound 18b. Reagents and conditions: (a) MeOH , conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{rt}, 15 \mathrm{~h}$, quant.; (b) (3-hydroxyphenyl)boronic acid, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{~K} 2 \mathrm{CO} 3, \mathrm{EGME} / \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 15 \mathrm{~h}$, 71%; (c) n-hexyl-NCO, DMAP, MeCN, rt, $15 \mathrm{~h}, 64 \%$; (d) 6 M HCl, THF, rt, $2 \mathrm{~d}, 62 \%$.

Scheme 5. Synthesis of compound 21a and 21c. Reagents and conditions: (a) (3-hydroxyphenyl)boronic acid, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{EGME} / \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 15 \mathrm{~h}, 86-92 \%$; (c) n-hexyl-NCO, DMAP, MeCN, rt, $15 \mathrm{~h}, 86 \%$-quant.; (d) $6 \mathrm{M} \mathrm{HCl}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~d}, 34 \%$.

As expected from the rational design of our class of multitarget inhibitors, 15c and 15d showed a significant decrease in potency toward FAAH, whilst retaining COX-1 and COX-2 inhibitory activities compared to $\mathbf{1 0 r}$.

These results support the hypothesis that the mechanism of action of this class of compounds is similar to the one reported for the O-aryl carbamates (acylation of FAAH Ser 241) [57] and that COX inhibition does not rely on any irreversible binding mode at the expense of the carbamate group of $\mathbf{1 0 r}$. Reported dialysis experiments on $\mathbf{1 0 r}$ are in agreement with this mechanistic speculation [51].
2.2.4.2. Role of the propionic acid functionality in the B phenyl ring. We then turned our attention to the role of the propionic acid in the B phenyl ring (Table 5).

Replacing the propionic acid group of $\mathbf{1 0 r}$ with several substituents had only a minor impact on the potency toward FAAH, compared to the effect observed on COX activities. In fact, methyl ester $9 \mathbf{r}$ retained FAAH inhibitory activity, compared to 10r, but completely lost activity toward both COX-1 and COX-2. Replacement of the carboxylic acid of $\mathbf{1 0 r}$ with the corresponding primary alcohol 12 resulted in a 10 -fold improvement in potency toward FAAH ($\mathrm{IC}_{50}=3 \mathrm{nM}$), a 100 -fold loss in potency

Scheme 6. Synthesis of compounds 29a-g. Reagents and conditions: (a) diethyl methylmalonate, $\mathrm{NaOH}, \mathrm{DMF}, \mathrm{rt}, 15 \mathrm{~h}$, then $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O} 110{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 48-87 \%$; (b) MeOH, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, rt, overnight, 81-98\%; (c) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $60^{\circ} \mathrm{C}, 15 \mathrm{~h}, 63 \%$; (d) $\mathrm{Fe}, \mathrm{HCl}, \mathrm{MeOH}, 65^{\circ} \mathrm{C}, 2 \mathrm{~h}, 64-94 \%$, for $\mathbf{2 4 a}$ and $\mathbf{2 4 f}$; (e) $\mathrm{HCO}_{2} \mathrm{NH}_{4}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, 3 \mathrm{~h}$, quant., for $\mathbf{2 4 b}$ c, and 24e; (f) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{HNO}_{3} 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}, 65^{\circ} \mathrm{C}, 2 \mathrm{~h}, 98 \%$; (g) $\mathrm{NaNO}_{2}, 3 \mathrm{M} \mathrm{HCl}, 0^{\circ} \mathrm{C}, 30$ min, then $\mathrm{NaI}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}, 55-72 \%$; (h) (3-hydroxyphenyl)boronic acid, $\mathrm{Pd}(\mathrm{OAc})_{2}$, $\mathrm{K}_{2} \mathrm{CO}_{3}$, EGME/ $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 15 \mathrm{~h}, 59-84 \%$; (i) n-hexyl-NCO, DMAP, MeCN, rt, $15 \mathrm{~h}, 89 \%$-quant.; (j) 2 M HCl , dioxane, $80^{\circ} \mathrm{C}, 15 \mathrm{~h}, 73-95 \%$; (k) cyclohexene, $10 \% \mathrm{Pd} / \mathrm{C} 80^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then 2 M HCl , 55\%.

Table 1
SAR exploration on the nature of R group: cycloalkanes, small-branched alkanes and phenyls.

Compound	R	$\begin{aligned} & \mathrm{FAAH}^{\mathrm{a}, \mathrm{~b}} \\ & \mathrm{IC}_{50}(\mu \mathrm{M}) \pm \mathrm{SD} \end{aligned}$	$\begin{aligned} & \text { COX-1 }{ }^{\mathrm{a}, \mathrm{~b}} \\ & \mathrm{IC}_{50}(\mu \mathrm{M}) \pm \mathrm{SD} \end{aligned}$	$\begin{aligned} & \text { COX-2 }{ }^{\mathrm{a}, \mathrm{~b}} \\ & \mathrm{IC}_{50}(\mu \mathrm{M}) \pm \mathrm{SD} \end{aligned}$
2, URB597	-	0.0017 ± 0.001	>100	>100
3a, flurbiprofen	-	>100	0.15 ± 0.018	1.06 ± 0.53
10a	c-hexyl	8.2 ± 2.4	7.9 ± 2.1	>100
10b	c-pentyl	4.8 ± 3.2	4.4 ± 2.0	>100
10c	c-butyl	48.7 ± 9.0	0.72 ± 0.02	>100
10d	c-propyl	>100	5.4 ± 2.9	74.3 ± 6.1
10e	c-hexyl- CH_{2}	0.36 ± 0.06	0.60 ± 0.04	>100
10 f	c-hexyl-($\left.\mathrm{CH}_{2}\right)_{2}$	0.018 ± 0.007	0.15 ± 0.03	10.8 ± 2.2
10 g	iso-propyl	>100	3.9 ± 2.1	>100
10h	iso-butyl	4.1 ± 2.1	8.2 ± 2.1	>100
10i	Ph	41.2 ± 3.4	0.27 ± 0.07	2.7 ± 0.3
10j	$\mathrm{Ph}-\mathrm{CH}_{2}$	4.18 ± 2.8	1.3 ± 0.6	>100
10k	$\mathrm{Ph}-\left(\mathrm{CH}_{2}\right)_{2}$	0.17 ± 0.07	6.3 ± 2.2	>100
101	$\mathrm{Ph}-\left(\mathrm{CH}_{2}\right)_{3}$	0.09 ± 0.01	0.58 ± 0.09	6.2 ± 0.3
10m	$\mathrm{Ph}-\left(\mathrm{CH}_{2}\right)_{4}$	0.027 ± 0.010	3.7 ± 2.8	>100

${ }^{\text {a }}$ Values are reported as mean values of ≥ 3 experiments performed.
${ }^{\mathrm{b}} \mathrm{IC}_{50}$ values were not determined for compounds showing less than 50% inhibition at concentrations of $100 \mu \mathrm{M}$ for FAAH and COXs.
toward COX-1 $\left(\mathrm{IC}_{50}=1.1 \mu \mathrm{M}\right)$ and in a complete loss of activity toward COX-2.

On the other hand, the removal of the α-methyl group, as in the
achiral des-methylated derivative 18b, caused a 2-fold decrease of the potency toward FAAH, compared to $\mathbf{1 0 r}$ ($\mathrm{IC}_{50}=63 \mathrm{nM}$ and 31 nM , respectively), and a 180 -fold reduction of potency toward

Table 2
SAR exploration on the nature of the R group: linear alkanes.

Compound	R	$\begin{aligned} & \mathrm{FAAH}^{\mathrm{a}, \mathrm{~b}} \\ & \mathrm{IC}_{50}(\mu \mathrm{M}) \pm \mathrm{SD} \end{aligned}$	$\begin{aligned} & \text { COX }-1^{\mathrm{a}, \mathrm{~b}} \\ & \mathrm{IC}_{50}(\mu \mathrm{M}) \pm \mathrm{SD} \end{aligned}$	$\begin{aligned} & \text { COX-2 }{ }^{\mathrm{a}, \mathrm{~b}} \\ & \mathrm{IC}_{50}(\mu \mathrm{M}) \pm \mathrm{SD} \end{aligned}$
10n	ethyl	>100	2.1 ± 0.9	>100
100	n-propyl	>100	1.65 ± 0.06	>100
10p	n-butyl	7.0 ± 1.8	0.26 ± 0.07	>100
10q	n-pentyl	0.57 ± 0.15	0.020 ± 0.009	0.16 ± 0.02
10r, ARN2508	n-hexyl	0.031 ± 0.002	0.012 ± 0.002	0.43 ± 0.02
10s	n-heptyl	0.011 ± 0.003	0.37 ± 0.10	0.32 ± 0.005
10t	n-octyl	0.003 ± 0.002	0.99 ± 0.07	28.8 ± 8.4

${ }^{\text {a }}$ Values are reported as mean values of ≥ 3 experiments performed.
${ }^{\mathrm{b}} \mathrm{IC}_{50}$ values were not determined for compounds showing less than 50% inhibition at concentrations of $100 \mu \mathrm{M}$ for FAAH and COXs.

Table 3
Effect of the position of the carbamate functionality on the A phenyl ring.

Compound	Position	$\mathrm{FAAH}^{\mathrm{a}, \mathrm{b}}$ $\mathrm{IC}_{50}(\mu \mathrm{M}) \pm$ SD	COX- $1^{\mathrm{a}, \mathrm{b}}$ $\mathrm{IC}_{50}(\mu \mathrm{M}) \pm$ SD	COX-2 $\mathrm{IC}_{50}(\mu \mathrm{M}) \pm$ SD
$\mathbf{1 5 a}$	$\mathrm{C}\left(2^{\prime}\right)$	2.2 ± 0.6	0.72 ± 0.04	>100
$\mathbf{1 5 b}$	$\mathrm{C}\left(4^{\prime}\right)$	0.068 ± 0.012	>100	>100

${ }^{\text {a }}$ Values are reported as mean values of ≥ 3 experiments performed.
${ }^{\mathrm{b}} \mathrm{IC}_{50}$ values were not determined for compounds showing less than 50% inhibition at concentrations of $100 \mu \mathrm{M}$ for FAAH and COXs.

Table 4
Carbamate replacement: urea and reversed carbamate derivatives.

| Compound | Y | X | $\mathrm{FAAH}^{\mathrm{a}}$
 $\mathrm{IC}_{50}(\mu \mathrm{M}) \pm \mathrm{SD}$ | COX-1 $^{\text {a }}$
 IC
 50$(\mu \mathrm{M}) \pm$ SD |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| COX-2 $^{\mathrm{a}}$ |
| :--- |
| $\mathrm{IC} \mathrm{C}_{50}(\mu \mathrm{M}) \pm$ SD |

${ }^{\text {a }}$ Values are reported as mean values of ≥ 3 experiments performed.

COX-1 ($\mathrm{IC}_{50}=2.1 \mu \mathrm{M}$ and 12 nM , respectively). The activity against COX-2 was slightly improved ($\mathrm{IC}_{50}=0.24 \mu \mathrm{M}$ and $0.43 \mu \mathrm{M}$ respectively). The methyl analog 21a [51] was active against FAAH in the same potency range of $\mathbf{1 0 r}\left(\mathrm{IC}_{50}=26 \mathrm{nM}\right.$ and 31 nM , respectively), while a completely loss of activity against COX enzymes was observed. A similar result was obtained with the carboxylic analog 21c, which also showed a 3 -fold reduction in potency toward FAAH, compared to $\mathbf{1 0 r}$ ($\mathrm{IC}_{50}=85 \mathrm{nM}$ and 31 nM , respectively).

Table 5
SAR exploration on the R group: role of the propionic acid functionality on the B phenyl ring.

Compound	R	$\begin{aligned} & \mathrm{FAAH}^{\mathrm{a}, \mathrm{~b}} \\ & \mathrm{IC}_{50}(\mu \mathrm{M}) \pm \text { SD } \end{aligned}$	$\begin{aligned} & \text { COX- } \mathrm{a}^{\mathrm{a}, \mathrm{~b}} \\ & \mathrm{IC}_{50}(\mu \mathrm{M}) \pm \mathrm{SD} \end{aligned}$	$\begin{aligned} & \mathrm{COX}-2^{\mathrm{a}, \mathrm{~b}} \\ & \mathrm{IC}_{50}(\mu \mathrm{M}) \pm \mathrm{SD} \end{aligned}$
9r	$\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{CH}_{3}$	0.052 ± 0.010	>100	>100
12	$\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$	0.003 ± 0.002	1.1 ± 0.3	>100
18b	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$	0.063 ± 0.010	2.1 ± 0.1	0.24 ± 0.04
21a	CH_{3}	0.026 ± 0.09	>100	>100
21c	$\mathrm{CO}_{2} \mathrm{H}$	0.085 ± 0.006	>100	>100

${ }^{\text {a }}$ Values are reported as mean values of ≥ 3 experiments performed.
${ }^{\mathrm{b}} \mathrm{IC}_{50}$ values were not determined for compounds showing less than 50% inhibition at concentrations of $100 \mu \mathrm{M}$ for FAAH and COXs.

Table 6
SAR exploration on the role of the X substituent on the B phenyl ring.

Compound	X	FAAH ${ }^{\text {a }}$ $\mathrm{IC}_{50}(\mu \mathrm{M}) \pm \mathrm{SD}$	$\begin{aligned} & \mathrm{COX}-1^{\mathrm{a}} \\ & \mathrm{IC}_{50}(\mu \mathrm{M}) \pm \mathrm{SD} \end{aligned}$	$\begin{aligned} & \mathrm{COX}-2^{\mathrm{a}} \\ & \mathrm{IC}_{50}(\mu \mathrm{M}) \pm \mathrm{SD} \end{aligned}$
29a	Cl	0.023 ± 0.008	0.009 ± 0.001	0.73 ± 0.21
29b	CH_{3}	0.010 ± 0.001	0.011 ± 0.001	1.40 ± 0.31
29c	CF_{3}	0.005 ± 0.001	0.01 ± 0.003	0.2 ± 0.08
29d	OH	0.035 ± 0.010	0.65 ± 0.07	13.0 ± 2.1
29e	H	0.003 ± 0.001	0.054 ± 0.011	0.69 ± 0.02
$29 f$	NO_{2}	0.009 ± 0.002	0.13 ± 0.03	0.930 ± 0.15
29g	NH_{2}	0.049 ± 0.023	0.22 ± 0.09	12.1 ± 0.6

${ }^{\text {a }}$ Values are reported as mean values of ≥ 3 experiments performed.

We conclude that FAAH tolerates substituents with different steric and electronic properties at the 4-position of the B phenyl ring, while COX-1 and COX-2 display a stringent requirement for a propionic or acetic acid groups in the same position.
2.2.4.3. Role of the fluorine atom in the B phenyl ring. To complete the SAR exploration of the B phenyl ring, we evaluated the effect of substituents with different electronic and steric properties, alternative to the fluorine atom (Table 6).

Substituting the fluorine with chlorine was tolerated: indeed, 29a was virtually equipotent against FAAH and COX-1, and marginally less potent on COX-2, compared to 10r. The same trend was observed with the methyl derivative 29b, which was slightly more potent than $\mathbf{1 0 r}$ against FAAH and equally potent on COX -1 , but less active against COX-2. The CF_{3} derivative 29c showed a 6fold and 2 -fold increase in potency toward FAAH and COX-2, respectively, and was as potent as $\mathbf{1 0}$ on COX-1.

Removal of the fluorine atom (29e) resulted in a 10 -fold increase in potency toward FAAH, compared to $\mathbf{1 0 r}$, and a slight decrease in activity for COX-1 and COX-2.

Compounds 29d and 29g, which bear- OH or $-\mathrm{NH}_{2}$ groups, respectively, inhibited FAAH with potencies similar to that of $\mathbf{1 0 r}$, whereas a clear loss in potency for both COX- 1 and COX-2 was observed. On the other hand, the NO_{2} derivative 29 f had higher
potency toward FAAH but loss lower potency toward both COX-1 and COX-2. We interpret these results to suggest that the electronic and steric properties of the substituents in the 3-position of the B phenyl ring affect FAAH recognition only slightly, whereas these same substituents influence COX-1 and COX-2 more markedly, with lipophilic groups being better tolerated than polar or H bond donator groups.
2.2.4.4. Stereochemical and pharmacological studies of 10r enantiomers. Finally, we subjected the best studied member of this class of inhibitors, the racemic compound 10r [51], to chiral HPLC separation and tested each of its enantiomers - $(-) \mathbf{- 1 0 r}$ (first eluted) and $(+)-\mathbf{1 0 r}$ (second eluted) - for the ability to inhibit FAAH, COX-1 and COX-2 (Table 7). FAAH showed no preference for either enantiomer, with each being more active than the racemate 10r. By contrast, in analogy to prior studies on different classes of FAAH/COX inhibitors [30,33], substantial differences were observed on COX-1 and COX-2. Compound (+)-10r was highly potent on both COX-1 $\left(\mathrm{IC}_{50}=0.29 \mathrm{nM}\right)$ and COX-2 $\left(\mathrm{IC}_{50}=50 \mathrm{nM}\right)$, whereas $(-)$-10r was weakly active on either target.

We completed our exploration on the two enantiomers of $\mathbf{1 0 r}$ by assigning their absolute stereo-configurations. As reported in Supporting Information (Scheme S1), a stereochemical correlation study allowed us unambiguously to assign the absolute stereochemistry of $(-)-\mathbf{1 0 r}$ and $(+)$-10r to the (R) - and (S) - configurations, respectively. These results are in agreement with earlier reports showing that the (S)-enantiomer is responsible for the COXinhibiting activity of aryl-propionic acid derivatives such as flurbiprofen [29,31,33,59].
2.2.4.5. In vivo experiments on (S)-(+)-10r. Finally, pharmacological experiments indicate that compound $(S)-(+)-10 r$ strongly engages its intended molecular targets in live mice. Intravenous administration of $(S)-(+)-\mathbf{1 0 r}(1 \mathrm{mg} / \mathrm{kg})$ lowered the concentrations of two COX products in circulation, prostacyclin and TXA 2 , as assessed surveying the stable metabolites, 6-keto- $\mathrm{PGF}_{1 \alpha}$ and TXB_{2} (Fig. 2A and B). Moreover, (S)-(+)-10r increased plasma levels of the FAAH substrate, OEA (Fig. 2C). In addition, (S)-(+)-10r demonstrated no off-target activities on a panel of >90 biologically relevant receptors, enzymes [including N-acylethanolamine amide hydrolase (NAAA), which is the primary enzyme involved in the deactivation of PEA and OEA in innate immune cells] and ion channels (Table S1). Further pharmacological studies on the (R)and (S)- series of this class of inhibitors will be reported in due course.

3. Conclusions

The present study outlines key SAR properties of a novel class of dual inhibitors of intracellular FAAH and COX activities, which are based on the hybrid scaffold $\mathbf{1}$. Several chemical variations of this scaffold were considered, which involved the carbamate moiety at the 3^{\prime}-position of the A phenyl ring, the R groups, and the propionic

Table 7
Evaluation of the enantiomers of $\mathbf{1 0 r}$.

Compound	FAAH $^{\mathrm{a}}$ IC 50$(\mu \mathrm{M}) \pm$ SD	COX-1 $^{\text {a }}$	
$\mathrm{IC}_{50}(\mu \mathrm{M}) \pm$ SD	COX-2 $\mathrm{IC}_{50}(\mu \mathrm{M}) \pm$ SD		
$(\pm)-\mathbf{1 0 r}$	0.031 ± 0.002	0.012 ± 0.002	0.43 ± 0.02
$(-)-\mathbf{1 0 r}$			
$(+)-\mathbf{1 0} \mathbf{r}^{\mathrm{b}}$	0.0099 ± 0.002	4.0 ± 1.3	22.8 ± 8.7

[^1]

Fig. 2. Plasma levels of COX metabolites and FAAH substrate after intravenous administration of (S)-(+)-10r (1 mg/kg): 6-keto-PGF 10 $^{(A)}$ (AXA ${ }_{2}$ (B) and OEA (C). Results are expressed as mean \pm s.e.m. of 6 independent determinations. ${ }^{*} P<0.05$, ${ }^{* *} P<0.01$ and ${ }^{* * *} P<0.001$ compared to vehicle mice, two-tailed Student's t test.
acid moiety and fluorine atom in the B phenyl ring. Introduction of different alkyl and aromatic groups in the N -terminal region of the carbamate functionality improved inhibitory potency toward both FAAH and COX. A more focused exploration around the potent, selective and orally available racemic inhibitor $\mathbf{1 0 r}$ [51] led to the identification of novel potent analogs, 29a-c, and e. Because of the problems associated with the development of racemic compounds, we extended our studies and identified two additional molecules, the achiral compound 18b and the enantiomer $(S)-(+)-\mathbf{1 0 r}$, which also display high inhibitory potency for FAAH/COX-1/COX-2.

The in vivo activity of $(S)-(+)-\mathbf{1 0 r}$ suggests that this agent may be used to probe the therapeutic utility of simultaneous FAAH-COX inhibition, especially in pathologies in which these enzymes are abnormally expressed.

4. Experimental part

4.1. Synthesis

Solvents and reagents were obtained from commercial suppliers and were used without further purification. URB597 was prepared following a reported procedure [54]. Flurbiprofen was purchased from Sigma-Aldrich (Milan, Italy). Melting points were determined on a Büchi $\mathrm{M}-560$ capillary melting point apparatus and are uncorrected. Automated column chromatography purifications were done using a Teledyne ISCO apparatus (CombiFlash ${ }^{\circledR}$ Rf) with prepacked silica gel columns of different sizes (from 4 g until 120 g). Mixtures of increasing polarity of Cy and EtOAc or DCM and MeOH were used as eluents. Preparative TLC analyses were performed using Macherey-Nagel pre-coated 0.05 mm TLC plates (SIL G-50 UV 254). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR experiments were run on a Bruker Avance III 400 system (400.13 MHz for ${ }^{1} \mathrm{H}$, and 100.62 MHz for ${ }^{13} \mathrm{C}$), equipped with a BBI probe and Z-gradient coil. ${ }^{19} \mathrm{~F}$ NMR experiments were run on a Bruker Avance III 600 system (546.6 MHz for ${ }^{19} \mathrm{~F}$), equipped with a 5 mm CryoProbe QCI ${ }^{1} \mathrm{H} /{ }^{19} \mathrm{~F}-{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$-D quadruple resonance and a Z -gradient coil. Spectra were acquired at 300 K , using deuterated dimethylsulfoxide (DMSO- d_{6}) or deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ as solvents. Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded in parts per million using the residual non-deuterated solvent as the internal standard (for DMSO$d_{6}: 2.50 \mathrm{ppm},{ }^{1} \mathrm{H} ; 39.52 \mathrm{ppm},{ }^{13} \mathrm{C}$; for $\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm},{ }^{1} \mathrm{H}$ and $77.16 \mathrm{ppm},{ }^{13} \mathrm{C}$). Data are reported as follows: chemical shift (ppm), multiplicity (indicated as: bs, broad signal; s, singlet; d, doublet; t, triplet; q, quartet; p, quintet, sx, sextet; m, multiplet and combinations thereof), coupling constants (J) in Hertz (Hz) and integrated
intensity. UPLC/MS analyses were run on a Waters ACQUITY UPLC/ MS system consisting of a SQD (Single Quadropole Detector) Mass Spectrometer equipped with an Electrospray Ionization interface and a Photodiode Array Detector. PDA range was $210-400 \mathrm{~nm}$. Analyses were performed on an ACQUITY UPLC BEH C18 column ($50 \times 2.1 \mathrm{mmID}$, particle size $1.7 \mu \mathrm{~m}$) with a VanGuard BEH C18 precolumn ($5 \times 2.1 \mathrm{mmID}$, particle size $1.7 \mu \mathrm{~m}$). Mobile phase was either $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ in $\mathrm{H}_{2} \mathrm{O}$ at pH 5 adjusted with $\mathrm{AcOH}(\mathrm{A})$ and 10 mM NH 44 OAc in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (95:5) at pH 5 (B). Electrospray ionization in positive and negative mode was applied. Analyses were performed with method A or B. Method A for compounds 10at, 15a-d, 18b, 21c and 29b-g: Gradient: 5-95\% B over 3 min. Flow rate $0.5 \mathrm{~mL} / \mathrm{min}$. Temperature $40^{\circ} \mathrm{C}$. Method B for compounds $\mathbf{9 r}$, 12, 21a and 29a: Gradient: $50-100 \%$ B over 3 min . Flow rate $0.5 \mathrm{~mL} /$ min. Temperature $40^{\circ} \mathrm{C}$. Purifications by preparative HPLC/MS were run on a Waters Autopurification system consisting of a 3100 Single Quadropole Mass Spectrometer equipped with an Electrospray Ionization interface and a 2998 Photodiode Array Detector. HPLC system included a 2747 Sample Manager, 2545 Binary Gradient Module, System Fluidic Organizer and 515 HPLC Pump. PDA range was $210-400 \mathrm{~nm}$. Purifications were performed on a XBridgeTM Prep C18 OBD column ($100 \times 19 \mathrm{mmID}$, particle size $5 \mu \mathrm{~m})$ with a XBridgeTM Prep C18 ($10 \times 19 \mathrm{mmID}$, particle size $5 \mu \mathrm{~m})$ Guard Cartridge. Mobile phase was $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ in $\mathrm{H}_{2} \mathrm{O}$ at pH 5 adjusted with $\mathrm{AcOH}(\mathrm{A})$ and $10 \mathrm{mM} \mathrm{NH} 4 \mathrm{NAc}^{\mathrm{OAc}}$ in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (95:5) at pH 5 (B). Electrospray ionization in positive and negative mode was used. Analyses by chiral HPLC were run on a Waters Alliance HPLC instrument consisting of an e2695 Separation Module and a 2998 Photodiode Array Detector. PDA range was $210-400 \mathrm{~nm}$. Analyses were performed isocratic on a Daicel ChiralPak AD column ($250 \times 4.6 \mathrm{mmID}$, particle size $10 \mu \mathrm{~m}$). Mobile phase was 0.1% TFA Heptane/2-Propanol (75:25). Separations of 10r by preparative chiral HPLC were run on a Waters Alliance HPLC instrument consisting of a 1525 Binary HPLC Pump, Waters Fraction Collector III and a 2998 Photodiode Array Detector. UV detection was at 240 nm . Purifications were performed isocratic on a Daicel ChiralPak AD column ($250 \times 10 \mathrm{mmID}$, particle size $10 \mu \mathrm{~m}$). Mobile phase was 0.1% TFA Heptane/2-Propanol (75: 25). Optical rotations were measured on a Rudolf Research Analytical Autopol II Automatic polarimeter using a sodium lamp (589 nm) as the light source; concentrations expressed in $\mathrm{g} / 100 \mathrm{~mL}$ using CHCl_{3} as a solvent and a 1 dm cell. Accurate mass measurement was performed on a Synapt G2 Quadrupole-ToF Instrument (Waters, USA), equipped with an ESI ion source; compounds were diluted to $50 \mu \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}$ and analyzed. Leucine Enkephalin ($2 \mathrm{ng} / \mathrm{mL}$) was used as lock mass reference compound for spectra calibration. All final compounds displayed $\geq 95 \%$ purity as determined by NMR and UPLC/MS analysis.

All the analytical data of intermediate compounds are reported in Supporting Material.

4.1.1. (\pm)-2-(3-fluoro-4-nitro-phenyl)propanoic acid (4)

Compound 4 was obtained as brown clear oil ($4.50 \mathrm{~g}, 81 \%$), according to the procedure reported in the literature starting from 2,4 -difluoronitrobenzene ($4.77 \mathrm{~g}, 30 \mathrm{mmol}$) [62].
4.1.2. (\pm)-Methyl 2-(4-nitro-3-fluoro-phenyl)propanoate (5)

To a solution of $4(4.50 \mathrm{~g}, 21.11 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{~mL})$ was added and the resulting solution was stirred at rt overnight. After solvent evaporation, the crude oil was diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and filtered through a pad of SiO_{2} to afford $\mathbf{5}$ as orange-brown oil ($4.45 \mathrm{~g}, 93 \%$).
4.1.3. (\pm)-Methyl 2-(4-amino-3-fluoro-phenyl)propanoate ($\mathbf{6}$)

To a solution of $\mathbf{5}(12.60 \mathrm{~g}, 55.46 \mathrm{mmol})$ in $\mathrm{MeOH}(222 \mathrm{~mL})$ was
added $10 \% \mathrm{Pd} / \mathrm{C}(2.35 \mathrm{~g}, 2.22 \mathrm{mmol})$ followed by addition of $\mathrm{HCO}_{2} \mathrm{NH}_{4}(20.98 \mathrm{~g}, 332.8 \mathrm{mmol})$. The solution was stirred at rt for 3 h , then, filtered through a pad of Celite and the filtrate was concentrated under reduced pressure. The residue was dissolved in EtOAc and filtered through a pad of SiO_{2} to afford $\mathbf{6}$ as an orange oil ($10.33 \mathrm{~g}, 94 \%$).

4.1.4. (\pm)-Methyl 2-(3-fluoro-4-iodo-phenyl)propanoate (7)

A solution of $\mathrm{NaNO}_{2}(0.70 \mathrm{~g}, 10.21 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ was added slowly to a solution of $\mathbf{6}(1.75 \mathrm{~g}, 9.76 \mathrm{mmol})$ in a 3 N HCl solution (29 mL) at $0^{\circ} \mathrm{C}$. After 30 min , $\mathrm{NaI}(1.54 \mathrm{~g}, 10.25 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ under stirring. The resulting mixture was slowly warmed to rt in 5 min , and then heated at $60{ }^{\circ} \mathrm{C}$ for 3 h . After cooling down to rt, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic phase was then washed with a 1 M solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (15 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was dissolved in EtOAc (50 mL), treated with activated carbon and then filtered through a pad of Celite. The filtrate was concentrated under reduced pressure and the yellow oil was purified by column chromatography (Cy: EtOAc, 95:5) to give $\mathbf{7}$ as a pale yellow oil ($1.70 \mathrm{~g}, 55 \%$).

4.1.5. General procedure for Suzuki cross coupling reaction (procedure A, 8, 13a-c, 17, 20a, b, 27a-f)

To a solution of the corresponding boronic acid (1.2 mmol) in EGME $/ \mathrm{H}_{2} \mathrm{O}(3: 1,0.25 \mathrm{M})$ were added $\mathrm{Pd}(\mathrm{OAc})_{2}(0.05 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{mmol})$, followed by the addition of the corresponding phenyl iodide (1.0 mmol). The dark reaction mixture was stirred at rt for 15 h , then diluted with EtOAc (40 mL) and filtered through a pad of Celite. The resulting filtrate was washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and a 1 M solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(20 \mathrm{~mL})$. After separation, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residues were purified by column chromatography (Cy/EtOAc).
4.1.5.1. (\pm)-Methyl 2-[3-fluoro-4-(3-hydroxyphenyl)phenyl]propanoate ($\mathbf{8}$). Compound $\mathbf{8}$ was prepared according to general procedure A using $7(3.27 \mathrm{~g}, 10.61 \mathrm{mmol})$ and 3-hydroxyphenylboronic acid ($1.76 \mathrm{~g}, 12.74 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 8 as a colorless oil ($2.46 \mathrm{~g}, 84 \%$).
4.1.5.2. (\pm)-Methyl 2-[3-fluoro-4-(2-hydroxyphenyl)phenyl]propanoate (13a). Compound 13a was prepared according to general method A using 7 ($0.31 \mathrm{~g}, 1 \mathrm{mmol}$) and 2-hydroxyphenylboronic acid $(0.17 \mathrm{~g}, 1.2 \mathrm{mmol})$. The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 13a as a white oil (230 mg , 84\%).
4.1.5.3. (\pm)-Methyl 2-[3-fluoro-4-(4-hydroxyphenyl)phenyl]propanoate (13b). Compound 13b was prepared according to general procedure A using 7 ($0.31 \mathrm{~g}, 1 \mathrm{mmol}$) and 4-hydroxyphenylboronic acid ($0.17 \mathrm{~g}, 1.2 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 95: 5) to afford 13b as a white solid (173 mg , 59\%).
4.1.5.4. (\pm)-Methyl 2-[4-(3-aminophenyl)-3-fluoro-phenyl]propanoate (13c). Compound 13 c was prepared according to general procedure A using 7 ($0.92 \mathrm{~g}, 3 \mathrm{mmol}$) and (3 -aminophenyl)boronic acid monohydrate ($0.56 \mathrm{~g}, 3.6 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 8: 2) to afford 13c as a yellow oil ($750 \mathrm{mg}, 91 \%$).
4.1.5.5. Methyl 2-[3-fluoro-4-(3-hydroxyphenyl)phenyl]acetate (17). Compound $\mathbf{1 7}$ was prepared according to general procedure A using $\mathbf{1 6 b}(1.00 \mathrm{~g}, 3.50 \mathrm{mmol})$ and 3-hydroxyphenylboronic acid (0.58 g ,
4.20 mmol). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 19a as white solid ($0.65 \mathrm{~g}, 71 \%$).
4.1.5.6. 3-(2-Fluoro-4-methyl-phenyl)phenol (20a). Compound 20a was prepared according to general procedure A using aryl iodide 19a ($236 \mathrm{~g}, 1 \mathrm{mmol}$) and 3-hydroxyphenylboronic acid (0.17 g , 1.2 mmol). The crude was purified by column chromatography ($\mathrm{Cy} /$ EtOAc, 9: 1) to afford 20a as a colorless oil ($187 \mathrm{mg}, 92 \%$).
4.1.5.7. Methyl 3-fluoro-4-(3-hydroxyphenyl)benzoate (20b). Compound 20b was prepared according to general procedure A using aryl iodide $\mathbf{1 9 b}$ ($1 \mathrm{~g}, 3.57 \mathrm{mmol}$) and 3-hydroxyphenylboronic acid ($0.59 \mathrm{~g}, 4.29 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 20b as a white solid (0.84 g , 86%).
4.1.5.8. (\pm)-Methyl 2-[3-chloro-4-(3-hydroxyphenyl)phenyl]propanoate (27a). Compound 27a was prepared according to general procedure A using $\mathbf{2 6 a}$ ($2.74 \mathrm{~g}, 8.44 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to give 27a as a white solid ($1.57 \mathrm{~g}, 64 \%$).
4.1.5.9. (\pm)-Methyl 2-[4-(3-hydroxyphenyl)-3-methyl-phenyl]propanoate (27b). Compound 27b was prepared according to general procedure A using $\mathbf{2 6 b}$ ($1.14 \mathrm{~g}, 3.75 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to give 27b as a colorless oil ($0.72 \mathrm{~g}, 71 \%$).
4.1.5.10. (\pm)-Methyl 2-[4-(3-hydroxyphenyl)-3-(trifluoromethyl) phenyllpropanoate (27c). Compound 27c was prepared according to general procedure A using $\mathbf{2 6 c}(1.07 \mathrm{~g}, 3 \mathrm{mmol})$. The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to give 27c as a white solid ($0.78 \mathrm{~g}, 80 \%$).
4.1.5.11. (\pm)-Methyl 2-[3-benzyloxy-4-(3-hydroxyphenyl)phenyl] propanoate (27d). Compound 27d was prepared according to general procedure A using $\mathbf{2 6 d}(1.00 \mathrm{~g}, 2.52 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to give 27d as a clear oil ($0.58 \mathrm{~g}, 63 \%$).
4.1.5.12. (\pm)-Methyl 2-[4-(3-hydroxyphenyl)phenyl]propanoate (27e). Compound 27e was prepared according to general procedure A using $\mathbf{2 6 e}$ ($1.45 \mathrm{~g}, 5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 8: 2) to afford 27e as a white oil ($760 \mathrm{mg}, 59 \%$).
4.1.5.13. (\pm)-Methyl 2-[4-(3-hydroxyphenyl)-3-nitro-phenyl]propanoate (27f). Compound $\mathbf{2 7 f}$ was prepared according to general procedure A using $\mathbf{2 6 f}$ ($1.76 \mathrm{~g}, 5.25 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 8: 2) to give $\mathbf{2 7 f}$ as a yellow solid ($1.1 \mathrm{~g}, 74 \%$).
4.1.6. General procedure for carbamoylation reaction (procedure B,

9a-t, 12, 14a-c, 18a, 28a-f)

To a solution of the corresponding phenol or aniline (1 mmol) in MeCN (0.5 M) was added DMAP (0.1 mmol) and the corresponding isocyanate (3.0 mmol). The resulting solution was stirred at rt for 15 h , then the solvent was concentrated under reduced pressure. The residues were purified by column chromatography (Cy/EtOAc or $\mathrm{DCM} / \mathrm{MeOH})$.
4.1.6.1. (\pm)-Methyl 2-[4-[3-(cyclohexylcarbamoyloxy)phenyl]-3-fluoro-phenylppropanoate (9a). Compound 9a was prepared according to general procedure B using $\mathbf{8}(274 \mathrm{mg}, 1 \mathrm{mmol})$ and c hexyl isocyanate ($376 \mathrm{mg}, 3 \mathrm{mmol}$). The crude was purified by
column chromatography (Cy/EtOAc, 9: 1) to afford 9a as a white solid ($261 \mathrm{mg}, 65 \%$).
4.1.6.2. (\pm)-Methyl 2-[4-[3-(cyclopentylcarbamoyloxy)phenyl]-3-fluoro-phenylppropanoate (9b). Compound 9b was prepared according to general procedure B using 8 ($274 \mathrm{mg}, 1 \mathrm{mmol}$) and c pentyl isocianate ($333 \mathrm{mg}, 3 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford $\mathbf{9 b}$ as a white solid ($235 \mathrm{mg}, 61 \%$).
4.1.6.3. (\pm)-Methyl 2-[4-[3-(cyclobutylcarbamoyloxy)phenyl]-3-fluoro-phenyl]propanoate (9c). Compound 9c was prepared according to general procedure B using 8 ($274 \mathrm{mg}, 1 \mathrm{mmol}$) and c butyl isocyanate ($291 \mathrm{mg}, 3 \mathrm{mmol}$). The crude colorless oil of $9 \mathbf{c}$ was used in the next step without further purification.
4.1.6.4. (\pm)-Methyl 2-[4-[3-(cyclopropylcarbamoyloxy)phenyl]-3-fluoro-phenyllpropanoate (9d). Compound 9d prepared according to general procedure B using $8(274 \mathrm{mg}, 1 \mathrm{mmol})$ and c-propyl isocyanate ($250 \mathrm{mg}, 3 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 9d as a white solid ($59 \mathrm{mg}, 38 \%$).
4.1.6.5. (\pm)-Methyl 2-[4-[3-(cyclohexylmethylcarbamoyloxy)phenyl]-3-fluoro-phenyllpropanoate (9e). Compound 9e was prepared according to general procedure B using $\mathbf{8}(137 \mathrm{mg}, 0.50 \mathrm{mmol})$ and c hexyl methyl isocyanate ($209 \mathrm{mg}, 1.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford $\mathbf{9 e}$ as a white solid ($165 \mathrm{mg}, 80 \%$).
4.1.6.6. (\pm)-Methyl 2-[4-[3-(2-cyclohexylethylcarbamoyloxy) phenyl]-3-fluoro-phenyl]propanoate (9f). Compound 9f was prepared according to general procedure B using $8(137 \mathrm{mg}$, 0.50 mmol) and c-hexyl ethyl isocyanate ($230 \mathrm{mg}, 1.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford $\mathbf{9 f}$ as a white solid ($179 \mathrm{mg}, 84 \%$).
4.1.6.7. (\pm)-Methyl 2-[3-fluoro-4-[3-(isopropylcarbamoyloxy)phenyl] phenyllpropanoate ($\mathbf{9 g}$). Compound $\mathbf{9 g}$ was prepared according to general procedure B using $8(157 \mathrm{mg}, 0.57 \mathrm{mmol})$ and isopropyl isocyanate ($145 \mathrm{mg}, 1.71 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 8: 2) to afford $\mathbf{9 g}$ as a white solid ($159 \mathrm{mg}, 77 \%$).
4.1.6.8. (\pm)-Methyl 2-[3-fluoro-4-[3-(isobutylcarbamoyloxy)phenyl] phenyllpropanoate ($\mathbf{9 h}$). Compound $\mathbf{9 h}$ was prepared according to general procedure B using $8(129 \mathrm{mg}, 0.47 \mathrm{mmol})$ and isobutyl isocyanate ($140 \mathrm{mg}, 1.41 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford $\mathbf{9 h}$ as a white solid ($138 \mathrm{mg}, 78 \%$).
4.1.6.9. (\pm)-Methyl 2-[3-fluoro-4-[3-(phenylcarbamoyloxy)phenyl] phenyllpropanoate (9i). Compound $9 \mathbf{9 i}$ was prepared according to general procedure B using 8 ($137 \mathrm{mg}, 0.5 \mathrm{mmol}$) and phenyl isocyanate ($179 \mathrm{mg}, 3 \mathrm{mmol}$) to afford $\mathbf{9 i}$ as a colorless oil (161 mg , 82\%).
4.1.6.10. (\pm)-Methyl 2-[4-[3-(benzylcarbamoyloxy)phenyl]-3-fluorophenyllpropanoate ($\mathbf{9 j}$). Compound $\mathbf{9 j}$ was prepared according to general procedure B using 8 ($137 \mathrm{mg}, 0.5 \mathrm{mmol}$) and benzylisocyanate ($199 \mathrm{mg}, 1.5 \mathrm{mmol}$) to afford $\mathbf{9 j}$ as a colorless oil which was used in the next step without further purification.
4.1.6.11. (\pm)-Methyl 2-[3-fluoro-4-[3-(phenethylcarbamoyloxy) phenyl]phenyl]propanoate (9k). Compound 9k was prepared
according to general procedure B using $\mathbf{8}(137 \mathrm{mg}, 0.5 \mathrm{mmol})$ and phenylethyl isocyanate ($221 \mathrm{mg}, 1.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 9k as a white solid ($165 \mathrm{mg}, 71 \%$).
4.1.6.12. (\pm)-Methyl 2-[3-fluoro-4-[3-(3-phenylpropylcarbamoyloxy) phenyl]phenyl]propanoate (91). Compound 91 was prepared according to general procedure B using $\mathbf{8}(137 \mathrm{mg}, 0.5 \mathrm{mmol})$ and phenylpropyl isocyanate ($241 \mathrm{mg}, 1.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 91 as a white solid ($174 \mathrm{mg}, 79 \%$).
4.1.6.13. (\pm)-Methyl 2-[3-fluoro-4-[3-(4-phenylbutylcarbamoyloxy) phenyllphenyl]propanoate $(\mathbf{9 m})$. Compound 9 m was prepared according to general procedure B using $8(121 \mathrm{mg}, 0.44 \mathrm{mmol})$ and phenylbutyl isocyanate ($231 \mathrm{mg}, 1.32 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 8: 2) to afford $\mathbf{9 m}$ as a white solid ($171 \mathrm{mg}, 86 \%$).
4.1.6.14. (\pm)-Methyl 2-[4-[3-(ethylcarbamoyloxy)phenyl]-3-fluorophenyllpropanoate ($\mathbf{9 n}$). Compound $\mathbf{9 n}$ was prepared according to general procedure B using 8 ($185 \mathrm{mg}, 0.68 \mathrm{mmol}$) and ethyl isocyanate ($145 \mathrm{mg}, 2.04 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 8: 2) to afford 9 n as a white solid ($176 \mathrm{mg}, 75 \%$).
4.1.6.15. (\pm)-Methyl 2-[3-fluoro-4-[3-(propylcarbamoyloxy)phenyl] phenyllpropanoate (90). Compound $\mathbf{9 0}$ was prepared according to general procedure B using 8 ($137 \mathrm{mg}, 0.50 \mathrm{mmol}$) and n-propyl isocyanate ($128 \mathrm{mg}, 1.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 90 as a white solid ($87 \mathrm{mg}, 48 \%$).
4.1.6.16. (\pm)-Methyl 2-[4-[3-(butylcarbamoyloxy)phenyl]-3-fluorophenylpropanoate ($\mathbf{9 p}$). Compound $\mathbf{9 p}$ was prepared according to general procedure B using 8 ($137 \mathrm{mg}, 0.50 \mathrm{mmol}$) and n-butyl isocyanate ($149 \mathrm{mg}, 1.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 9p as a white solid ($135 \mathrm{mg}, 72 \%$).
4.1.6.17. (\pm)-Methyl 2-[3-fluoro-4-[3-(pentylcarbamoyloxy)phenyl] phenyllpropanoate ($\mathbf{9 q}$). Compound $\mathbf{9 q}$ was prepared according to general procedure B using $\mathbf{8}(128 \mathrm{mg}, 0.47 \mathrm{mmol})$ and n-pentyl isocyanate ($159 \mathrm{mg}, 1.41 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1), the title compound to afford 9q as a white solid ($158 \mathrm{mg}, 87 \%$).
4.1.6.18. (\pm)-Methyl 2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl] phenyllpropanoate ($\mathbf{9 r}$). Compound $\mathbf{9 r}$ was prepared according to general procedure B using $\mathbf{8}(137 \mathrm{mg}, 0.5 \mathrm{mmol})$ and n hexyl isocyanate ($191 \mathrm{mg}, 1.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 9r as a white solid ($170 \mathrm{mg}, 85 \%$). Mp: 89-91 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.77$ ($\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), $7.50(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.47(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{h}-11$), 7.37 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 7.24 (m, 3H, H-2 H-6 H-8), 7.13 (dd, $J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), $3.91(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.62(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.06\left(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.48(\mathrm{p}, J=6.22 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-$ H-2'), 1.43 ($\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.28 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-5^{\prime}$), 0.87 (t, J = 6.9 Hz, 3H, R-H-6'). ${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}) $\delta 173.74(\mathrm{COOH}), 158.82(\mathrm{~d}, \mathrm{~J}=246.7 \mathrm{~Hz}, \mathrm{C}-3), 154.17(\mathrm{C}-9), 151.21$ (HNCOO), 142.75 (d, J = $7.8 \mathrm{~Hz}, \mathrm{C}-7$), 135.82 (C-1), 130.76 (d, $\mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{C}-5), 129.42(\mathrm{C}-11), 125.98(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, \mathrm{C}-4), 125.20(\mathrm{C}-$ 10), 124.02 (C-6), 121.86 (C-8), 121.20 (C-12), 115.20 (d, J $=23.4 \mathrm{~Hz}$, $\mathrm{C}-2), 51.95\left(\mathrm{OCH}_{3}\right), 43.77(\mathrm{CH}), 40.45\left(\mathrm{R}-\mathrm{C}-1^{\prime}\right), 30.91\left(\mathrm{R}-\mathrm{C}-4^{\prime}\right), 29.12$ (R-C-2'), 25.88 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), $22.02\left(\mathrm{R}-\mathrm{C}-5^{\prime}\right), 18.28\left(\mathrm{CH}_{3}\right), 13.87\left(\mathrm{R}-\mathrm{C}-6^{\prime}\right)$.
${ }^{19} \mathrm{~F}$ NMR (564 MHz , DMSO- d_{6}): δ 117.0. UPLC/MS analysis: Rt 2.00 min . MS (ES) $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{FNO}_{4}$ requires: 401, found $402[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 402.2081 measured $402.2087 \Delta \mathrm{ppm} 1.5$.
4.1.6.19. (\pm)-Methyl 2-[3-fluoro-4-[3-(heptylcarbamoyloxy)phenyl] phenyl]propanoate (9s). Compound 9s was prepared according to general procedure B using $8(137 \mathrm{mg}, 0.50 \mathrm{mmol})$ and n-heptyl isocyanate ($212 \mathrm{mg}, 1.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 9s as a white solid ($171 \mathrm{mg}, 82 \%$).
4.1.6.20. (\pm)-Methyl 2-[3-fluoro-4-[3-(octylcarbamoyloxy)phenyl] phenyl]propanoate (9t). Compound 9t was prepared according to general procedure B using $8(109 \mathrm{mg}, 0.40 \mathrm{mmol})$ and n-octyl isocyanate ($186 \mathrm{mg}, 1.2 \mathrm{mmol}$). The crude was purified by column chromatography ($\mathrm{Cy} / \mathrm{EtOAc}, 9: 1$) to afford 9 t as a white solid ($171 \mathrm{mg}, 99 \%$).
4.1.6.21. (\pm)-[3-[2-fluoro-4-(2-hydroxy-1-methyl-ethyl)phenyl] phenyl] N-hexylcarbamate (12). Compound 12 was prepared according to general procedure B using 11 ($123 \mathrm{mg}, 0.50 \mathrm{mmol}$) and n hexyl isocyanate ($127 \mathrm{mg}, 1 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 12 as a colorless oil ($137 \mathrm{mg}, 73 \%$). Mp: 59-60 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d) $\delta 7.77(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.44(\mathrm{t}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 7.17(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2 \mathrm{H}-6$), 7.12 (ddd, $J=8.1,2.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 4.69 (t, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.06\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right)$, $2.87(\mathrm{~h}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.46\left(\mathrm{~h}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.29(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-5^{\prime}\right), 1.21\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.87(\mathrm{t}$, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 158.8$ (d, $J=246.0 \mathrm{~Hz}, \mathrm{C}-3), 154.1(\mathrm{C}-9), 151.1$ (HNCOO), 147.7 (d, $J=7.3 \mathrm{~Hz}, \mathrm{C}-$ 7), $136.2(\mathrm{C}-1), 130.1(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{C}-5), 129.3(\mathrm{C}-11), 125.1(\mathrm{C}-10)$, 124.8 ($\mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}, \mathrm{C}-4$), $124.0(\mathrm{C}-6), 121.7$ (C-8), 120.9 (C-12), $114.9(\mathrm{~d}, \mathrm{~J}=22.4 \mathrm{~Hz}, \mathrm{C}-2), 66.5\left(\mathrm{CH}_{2}\right), 41.4(\mathrm{CH}), 40.4\left(\mathrm{R}-\mathrm{C}-1^{\prime}\right), 30.9$ (R-C-4'), 29.1 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 25.8 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), $22.0\left(\mathrm{R}-\mathrm{C}-5^{\prime}\right), 17.7\left(\mathrm{CH}_{3}\right), 13.8$ (R-C-6'). ${ }^{19}$ F NMR (564 MHz, DMSO- d_{6}): δ 118.0. UPLC/MS analysis: Rt 2.60 min. MS (ES) $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{FNO}_{3}$ requires 373 , found $374[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 374.2131 measured $374.2149 \Delta \mathrm{ppm} 4.8$.
4.1.6.22. (\pm)-Methyl 2-[3-fluoro-4-[2-(hexylcarbamoyloxy)phenyl] phenyllpropanoate (14a). Compound 14a was prepared according to general procedure B using 13a ($137 \mathrm{mg}, 0.5 \mathrm{mmol}$) and n-hexyl isocyanate ($191 \mathrm{mg}, 1.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 14a as a white oil ($178 \mathrm{mg}, 88 \%$).
4.1.6.23. (\pm)-Methyl 2-[3-fluoro-4-[4-(hexylcarbamoyloxy)phenyl] phenyllpropanoate (14b). Compound 14b was prepared according to general procedure B using $\mathbf{1 3 b}$ ($137 \mathrm{mg}, 0.5 \mathrm{mmol}$) and n-hexyl isocyanate ($191 \mathrm{mg}, 1.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 14b as a white solid ($146 \mathrm{mg}, 72 \%$).
4.1.6.24. (\pm)-Methyl 2-[3-fluoro-4-[3-(hexylcarbamoylamino) phenyl]phenyl]propanoate (14c). Compound 14c was prepared according to general procedure B using $13 c(153 \mathrm{mg}, 0.56 \mathrm{mmol})$ and n-hexyl isocyanate ($214 \mathrm{mg}, 1.7 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 14c as a white solid (146 mg, 65\%).
4.1.6.25. Methyl 2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl] phenyl]acetate (18a). Compound 18a was prepared according to
general procedure B using 17 ($130 \mathrm{mg}, 0.50 \mathrm{mmol}$) and n-hexyl isocyanate ($191 \mathrm{mg}, 1.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 18a as a white solid ($123 \mathrm{mg}, 64 \%$).
4.1.6.26. [3-(2-fluoro-4-methyl-phenyl)phenyl] N-hexylcarbamate (21a). Compound 21a was prepared according to general procedure B using 20a ($101 \mathrm{mg}, 0.50 \mathrm{mmol}$) and n-hexyl isocyanate ($191 \mathrm{mg}, 1.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 20a as a white solid (142 mg , 86%). Mp: $56-57{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.76$ (t, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.45(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.41(\mathrm{t}, J=8.0,1 \mathrm{H}, \mathrm{H}-$ 11), 7.35 (d, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 7.22 (m, 1H, H-8), 7.12 (m, 3H, H-2 H-6 H-11), $3.06\left(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.47(\mathrm{p}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}$), $1.28\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{H}-4^{\prime \prime} \mathrm{H}-5^{\prime}\right), 0.87(\mathrm{t}$, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 158.8(\mathrm{~d}$, $J=247.0 \mathrm{~Hz}, \mathrm{C}-3), 154.2(\mathrm{C}-9), 151.1$ (HNCOO), $140.0(\mathrm{~d}, J=8.3 \mathrm{~Hz}, \mathrm{C}-$ 7), 136.2 (C-1), 130.2 (d, $J=3.6 \mathrm{~Hz}, \mathrm{C}-5$), 129.3 (C-11), 125.5 (C-10), 125.1 (C-6), 124.3 (d, J = $12.9 \mathrm{~Hz}, \mathrm{C}-4$), 121.7 (C-8), 120.9 (C-12), 116.4 (d, J = $22.3 \mathrm{~Hz}, \mathrm{C}-2$), $40.4\left(\mathrm{R}-\mathrm{C}-1^{\prime}\right), 30.9\left(\mathrm{R}-\mathrm{C}-4^{\prime}\right), 29.1\left(\mathrm{R}-\mathrm{C}-2^{\prime}\right), 25.8$ (R-C-3'), 22.0 ($\mathrm{R}-\mathrm{C}-5^{\prime}$), $20.4\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{R}-\mathrm{C}-6^{\prime}\right) .{ }^{19} \mathrm{~F}$ NMR (564 MHz , DMSO- d_{6}): δ 118.0. UPLC/MS analysis: Rt 2.17 min . MS (ES) $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{FNO}_{2}$ requires 329 , found $330[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~F}$ $[\mathrm{M}+\mathrm{H}]^{+}$: calculated 330.1869 measured $330.189 \Delta \mathrm{ppm} 6.4$.
4.1.6.27. Methyl 3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]benzoate (21b). Compound 21b was prepared according to general procedure B using $\mathbf{2 0 b}$ ($0.84 \mathrm{~g}, 3.41 \mathrm{mmol}$) and n-hexyl isocyanate (1.30 g , $10.23 \mathrm{mmol})$. The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 21b as a white solid (1.27 g , quant.).
4.1.6.28. (\pm)-Methyl 2-[3-chloro-4-[3-(hexylcarbamoyloxy)phenyl] phenyllpropanoate (28a). Compound 28a was prepared according to general procedure B using $\mathbf{2 7 a}(1.57 \mathrm{~g}, 5.40 \mathrm{mmol})$. The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to give 28a as a colorless oil ($2.12 \mathrm{~g}, 94 \%$).
4.1.6.29. (\pm)-Methyl 2-[4-[3-(hexylcarbamoyloxy)phenyl]-3-methylphenyllpropanoate (28b). Compound 28b was prepared according to general procedure B using $\mathbf{2 7 b}(0.72 \mathrm{~g}, 2.66 \mathrm{mmol})$. The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to give 28b a white solid ($0.94 \mathrm{~g}, 89 \%$).
4.1.6.30. (\pm)-Methyl 2-[4-[3-(hexylcarbamoyloxy)phenyl]-3-(trifluoromethyl)phenyl]propanoate (28c). Compound 28c was prepared according to general procedure B using 27 c (0.78 g , 2.41 mmol). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to give $\mathbf{2 8 c}$ as a white solid ($1.02 \mathrm{~g}, 94 \%$).
4.1.6.31. (\pm)-Methyl 2-[3-benzyloxy-4-[3-(hexylcarbamoyloxy) phenyllphenyl]propanoate (28d). Compound 28d was prepared according to general procedure B using $\mathbf{2 7 d}(1.00 \mathrm{~g}, 2.52 \mathrm{mmol})$. The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to obtain 28d as a clear oil (0.72 g ,quant.).
4.1.6.32. (\pm)-Methyl 2-[4-[3-(hexylcarbamoyloxy)phenyl]phenyl] propanoate (28e). Compound 28e was prepared according to general procedure B using 27e ($128 \mathrm{mg}, 0.5 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc, 9: 1) to afford 28e as a white solid ($123 \mathrm{mg}, 64 \%$).
4.1.6.33. (\pm)-Methyl 2-[4-[3-(hexylcarbamoyloxy)phenyl]-3-nitrophenyllpropanoate (28f). Compound $\mathbf{2 8 f}$ was prepared according to general procedure B using 27 f ($0.85 \mathrm{~g}, 2.82 \mathrm{mmol}$). The crude was purified by column chromatography (Cy/EtOAc 9: 1) to give $\mathbf{2 8 f}$ as a
yellow oil ($1.17 \mathrm{~g}, 97 \%$).

4.1.7. General procedure for methyl ester hydrolysis (procedure C,

10a-t, 15a-d, 18b, 21c, 29a-f)

To a solution of the corresponding methyl ester (1.0 mmol) in THF (0.1 M) was added $6 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and the mixture was stirred at rt until the disappearance of the starting material was noted by UPLC-MS analysis. $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the suspension was extracted with EtOAc (20 mL). After evaporation, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residues were purified by crystallization ($\mathrm{Et}_{2} \mathrm{O} / \mathrm{Cy}, \mathrm{Et}_{2} \mathrm{O} /$ pentane, TBME), preparative TLC (Cy/EtOAc) or preparative HPLC.
4.1.7.1. (\pm)-2-[4-[3-(cyclohexylcarbamoyloxy)phenyl]-3-fluorophenylppropanoic acid (10a). Compound 10a was prepared according to general procedure C using $\mathbf{9 a}(261 \mathrm{mg}, 0.65 \mathrm{mmol})$. The crude was purified by preparative HPLC to afford 10a as a white solid ($65 \mathrm{mg}, 26 \%$). Mp: $152-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.73(\mathrm{~d}, J=7.8,1 \mathrm{H}, \mathrm{NH}), 7.50(\mathrm{t}, J=8.3,1 \mathrm{H}, \mathrm{H}-$ 5), 7.47 (t, $J=7.9,1 \mathrm{H}, \mathrm{H}-11$), 7.37 (d, $J=7.7,1 \mathrm{H}, \mathrm{H}-10$), $7.24(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ $2 \mathrm{H}-6 \mathrm{H}-8), 7.14(\mathrm{~d}, J=8.0,1 \mathrm{H}, \mathrm{H}-12)$, 3.78 ($\mathrm{q}, J=7.1,1 \mathrm{H}, \mathrm{CH}$), 3.33 (m, 1H, R-H-1'), 1.84 (m, 2H, R-H-2'), 1.71 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime}$), 1.56 (m , $1 \mathrm{H}, \mathrm{R}-\mathrm{H}-4^{\prime}$), 1.41 ($\mathrm{d}, J=7.1,3 \mathrm{H}, \mathrm{CH}_{3}$), 1.23 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime} \mathrm{R}-\mathrm{H}-3^{\prime}, \mathrm{R}-\mathrm{H}-$ $\left.4^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 174.7$ (COOH), 158.7 (d, $J=246.1 \mathrm{~Hz}, \mathrm{C}-3), 153.3$ (C-9), 151.2 (HNCOO), 143.4 (d, $J=8.0 \mathrm{~Hz}, \mathrm{C}-$ 7), 135.9 (C-1), 130.6 (C-5), 129.4 (C-11), 125.7 (d, J = $13.0 \mathrm{~Hz}, \mathrm{C}-4$), 125.1 (C-10), 124.0 (C-6), 121.8 (C-8), 121.1 (C-12), 115.1 (d, $J=23.2 \mathrm{~Hz}, \mathrm{C}-2$), $49.7\left(\mathrm{R}-\mathrm{C}-1^{\prime}\right), 44.0(\mathrm{CH}), 32.4\left(\mathrm{R}-\mathrm{C}-2^{\prime}\right), 25.1(\mathrm{R}-\mathrm{C}-$ $\left.4^{\prime}\right), 24.5\left(\mathrm{R}-\mathrm{C}-3^{\prime}\right), 18.2\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (564 MHz, DMSO- d_{6}): $\delta 117.3$. UPLC/MS analysis: Rt 2.41 min . MS (ES) $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FNO}_{4}$ requires 385, found $386[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 386.1768 measured $386.1781 \Delta \mathrm{ppm} 3.4$.
4.1.7.2. (\pm)-2-[4-[3-(cyclopentylcarbamoyloxy)phenyl]-3-fluorophenylppropanoic acid (10b). Compound 10b was prepared according to general procedure C using $\mathbf{9 b}$ ($235 \mathrm{mg}, 0.61 \mathrm{mmol}$). The crude was purified by crystallization from TBME to afford 10b as a white solid ($95 \mathrm{mg}, 42 \%$). Mp: $151-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) $12.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.81(\mathrm{~d}, J=7.2,1 \mathrm{H}, \mathrm{NH}), 7.50(\mathrm{t}$, $J=8.3,1 \mathrm{H}, \mathrm{H}-5), 7.47(\mathrm{t}, J=7.9,1 \mathrm{H}, \mathrm{H}-11), 7.37(\mathrm{~d}, J=7.5,1 \mathrm{H}, \mathrm{H}-10)$, 7.23 (m, 3H, H-2 H-6 H-8), 7.14 (dd, $J=7.9,2.3,1 \mathrm{H}, \mathrm{H}-12$), 3.85 (h, $\left.J=6.6,1 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 3.78(\mathrm{q}, J=7.1,1 \mathrm{H}, \mathrm{CH}), 1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.67$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime}$), 1.50 (m, 4H, R-H-2' R-H-3'), 1.41 ($\mathrm{d}, \mathrm{J}=7.1,3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 174.7$ (COOH), 158.7 ($\mathrm{d}, J=247.4 \mathrm{~Hz}$, C-3), 153.6 (C-9), 151.1 (HNCOO), 143.4 (d, J = $7.8 \mathrm{~Hz}, \mathrm{C}-7$), 135.9 (C1), 130.6 (C-5), 129.4 (C-11), 125.7 ($\mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{C}-4$), 125.1 (C-10), 124.0 (C-6), 121.8 (C-8), 121.2 (C-12), 115.1 (d, $J=23.2 \mathrm{~Hz}, \mathrm{C}-2$), 52.3(R-C-1'), $44.0(\mathrm{CH}), 32.1\left(\mathrm{R}-\mathrm{C}-2^{\prime}\right), 23.2\left(\mathrm{R}-\mathrm{C}-3^{\prime}\right), 18.2\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (564 MHz , DMSO- d_{6}): $\delta 117.3$. UPLC/MS analysis: Rt 2.41 min . MS (ES) $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FNO}_{4}$ requires 371 , found $372[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 372.1611 measured 372.1603 $\Delta \mathrm{ppm}-2.1$.
4.1.7.3. (\pm)-2-[4-[3-(cyclobutylcarbamoyloxy)phenyl]-3-fluorophenyl]propanoic acid (10c). Compound 10c was prepared according to general procedure C using $9 \mathbf{c}$. The crude was purified by preparative HPLC to afford $\mathbf{1 0 c}$ as a white solid ($66 \mathrm{mg}, 37 \%$ over 2 steps). Mp: $140-141{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.47$ (s, $1 \mathrm{H}, \mathrm{COOH}), 8.10(\mathrm{~d}, J=7.9,1 \mathrm{H}, \mathrm{NH}), 7.49(\mathrm{t}, J=8.3,1 \mathrm{H}, \mathrm{H}-5), 7.46(\mathrm{t}$, $J=7.9,1 \mathrm{H}, \mathrm{H}-11), 7.38(\mathrm{~d}, J=7.0,1 \mathrm{H}, \mathrm{H}-10), 7.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2 \mathrm{H}-6 \mathrm{H}-$ 8), 7.13 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-12$), $4.02\left(\mathrm{~h}, J=8.2,1 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 3.78(\mathrm{q}, J=7.1,1 \mathrm{H}$, CH), 2.18 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}$), 1.98 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}$), 1.61 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime}$), $1.41(\mathrm{~d}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $\left.\mathrm{d}_{6}\right) \delta 174.7$ (COOH), 158.7 (d, $J=246.2 \mathrm{~Hz}, \mathrm{C}-3$), 152.9 (C-9), 151.0 (HNCOO), 143.43 (d, $J=7.7 \mathrm{~Hz}, \mathrm{C}-7), 135.9(\mathrm{C}-1), 130.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}, \mathrm{C}-5), 129.4(\mathrm{C}-11)$,
125.7 ($\mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}, \mathrm{C}-4$), 125.2 (C-10), 124.0 (C-6), 121.9 (C-8), 121.2 (C-12), 115.1 (d, J = $23.3 \mathrm{~Hz}, \mathrm{C}-2$), 45.7 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 44.0 (CH), 30.1 (R-C-2'), $18.2\left(\mathrm{CH}_{3}\right), 14.3$ (R-C-3'). ${ }^{19} \mathrm{~F}$ NMR ($564 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): δ 117.3. UPLC/MS analysis: Rt 2.17 min . MS (ES) $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FNO}_{4}$ requires 357, found $358[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 358.1455 measured $358.1452 \Delta \mathrm{ppm}-0.8$.
4.1.7.4. (\pm)-2-[4-[3-(cyclopropylcarbamoyloxy)phenyl]-3-fluorophenyllpropanoic acid (10d). Compound 10d was prepared according to general procedure C using 9 d ($59 \mathrm{mg}, 0.17 \mathrm{mmol}$). The crude was purified by preparative HPLC to afford $\mathbf{1 0 d}$ as a white solid ($35 \mathrm{mg}, 60 \%$). Mp: $117-188{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.97(\mathrm{~d}, J=2.3,1 \mathrm{H}, \mathrm{NH}), 7.50(\mathrm{t}, J=8.4,1 \mathrm{H}, \mathrm{H}-$ 5), 7.47 (t, $J=7.9,1 \mathrm{H}, \mathrm{H}-11$), $7.38(\mathrm{~d}, J=7.5,1 \mathrm{H}, \mathrm{H}-10), 7.23(\mathrm{~m}, 3 \mathrm{H}$, H-2 H-6 H-8), 7.14 (d, $J=7.9,1 \mathrm{H}, \mathrm{H}-12$), 3.78 ($\mathrm{q}, \mathrm{J}=7.1,1 \mathrm{H}, \mathrm{CH}$), 2.57 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}$), 1.41 (d, J = 7.1, 3H, CH H_{3}), 0.64 (m, 2H, R-H-2'), 0.50 (m, 2H, R-H-2'). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}) $\delta 174.7$ (COOH), 158.7 (d, $J=246.5 \mathrm{~Hz}, \mathrm{C}-3$), 154.8 (C-9), 151.0 (HNCOO), 143.4 (d, $J=7.9 \mathrm{~Hz}, \mathrm{C}-7), 135.9$ (C-1), 130.6 (d, $J=2.2 \mathrm{~Hz}, \mathrm{C}-5), 129.4$ (C-11), 125.7 (d, J=13.1 Hz, C-4), 125.2 (C-10), 124.0 (C-6), 121.8 (C-8), 121.2 (C-12), $115.1(\mathrm{~d}, J=23.0 \mathrm{~Hz}, \mathrm{C}-2), 44.0(\mathrm{CH}), 23.0\left(\mathrm{R}-\mathrm{C}-1^{\prime}\right), 18.2\left(\mathrm{CH}_{3}\right)$, 5.7 (R-C-2'). ${ }^{19} \mathrm{~F}$ NMR (564 MHz, DMSO- d_{6}): δ 117.3. UPLC/MS analysis: Rt 1.96 min. MS (ES) $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNO}_{4}$ requires 343 , found 344 $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 344.1298 measured $344.1298 \Delta \mathrm{ppm} 0$.
4.1.7.5. (\pm)-2-[4-[3-(cyclohexylmethylcarbamoyloxy)phenyl]-3-fluoro-phenylppropanoic acid (10e). Compound 10e was prepared according to general procedure C using $\mathbf{9 e}(157 \mathrm{mg}, 0.38 \mathrm{mmol})$. The crude was purified by crystallization from pentane $/ \mathrm{Et}_{2} \mathrm{O}$ to afford 10e as a white solid ($93 \mathrm{mg}, 61 \%$). Mp: $142-143{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 12.46$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}$), $7.79(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, NH), 7.50 (t, $J=8.1,1 \mathrm{H}, \mathrm{H}-5$), $7.47(\mathrm{t}, J=7.9,1 \mathrm{H}, \mathrm{H}-11$), 7.37 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 7.24(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2 \mathrm{H}-6 \mathrm{H} .8), 7.13(\mathrm{dd}, J=7.6$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 3.78(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.92(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$, R-H-1'), 1.67 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime}$ R-H-4'R-H-5'), 1.46 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}$), 1.41 (d, J=7.1 Hz, 3H, CH3), 1.18 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-5^{\prime}$), $0.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-$ $\left.3^{\prime}\right){ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 175.2$ (COOH), 159.2 (d, $J=246.4 \mathrm{~Hz}, \mathrm{C}-3), 154.8$ (C-9), 151.7 (HNCOO), 143.9 (d, $J=7.6 \mathrm{~Hz}, \mathrm{C}-$ 7), 136.4 (C-1), 131.1 (d, $J=3.7 \mathrm{~Hz}, \mathrm{C}-5$), 129.9 (C-11), 126.2 (d, $J=13.0 \mathrm{~Hz}, \mathrm{C}-4), 125.6$ (C-10), 124.5 (d, $J=2.9 \mathrm{~Hz}, \mathrm{C}-6), 122.3$ (d, $J=3.0 \mathrm{~Hz}, \mathrm{C}-8), 121.6$ (C-12), 115.6 (d, $J=23.3 \mathrm{~Hz}, \mathrm{C}-2$), 47.2 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 44.5 (CH), 38.1 (R-C-2'), 30.7 (R-C-3'), 26.5 ($\left.\mathrm{R}-\mathrm{C}-5^{\prime}\right), 25.8$ ($\left.\mathrm{R}-\mathrm{C}-4^{\prime}\right)$, $18.7\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (564 MHz, DMSO- d_{6}): $\delta 117.3$. UPLC/MS analysis: Rt 2.57 min. MS (ES) $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FNO}_{4}$ requires 399 , found 400 $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 400.1924 measured $400.193 \Delta \mathrm{ppm} 1.5$.
4.1.7.6. (\pm)-2-[4-[3-(2-cyclohexylethylcarbamoyloxy)phenyl]-3-fluoro-phenyllpropanoic acid (10f). Compound $\mathbf{1 0 f}$ was prepared according to general procedure C using $\mathbf{9 f}(149 \mathrm{mg}, 0.35 \mathrm{mmol}$). The crude was purified by crystallization from pentane/ $\mathrm{Et}_{2} \mathrm{O}$ to afford 10f as a white solid ($98 \mathrm{mg}, 68 \%$). Mp: $118-119{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 12.07$ (s, 1H, COOH), $7.74(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$, NH), 7.48 (m, 2H, H-5), 7.37 (d, J=7.0 Hz, 1H, H-11), 7.23 (m, 3H, H-2 $\mathrm{H}-6 \mathrm{H}-8$), 7.13 (dd, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 3.78 (q, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 3.09 ($\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}$), 1.66 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{R}-\mathrm{H}-5^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-$ 6^{\prime}), 1.41 ($\mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.34 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime} \mathrm{R}-\mathrm{H}-3^{\prime}$), 1.19 (m, $3 \mathrm{H}, \mathrm{R}-\mathrm{H}-5^{\prime} \mathrm{R}-\mathrm{H}-6^{\prime}$), 0.88 (m, 2H, R-H-4'). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO$\left.d_{6}\right) \delta 174.7(\mathrm{COOH}), 158.7(\mathrm{~d}, J=246.5 \mathrm{~Hz}, \mathrm{C}-3), 154.1(\mathrm{C}-9), 151.2$ (HNCOO), 143.4 (d, $J=7.8 \mathrm{~Hz}, \mathrm{C}-7)$), 135.9 (C-1), 130.6 (d, $J=3.5 \mathrm{~Hz}$, C-5), 129.4 (C-11), 125.7 (d, J=13.1 Hz, C-4), 125.1 (C-10), 124.0 (d, $J=3.1 \mathrm{~Hz}, \mathrm{C}-6), 121.8$ (C-8), 121.1 (C-12), 115.1 (d, $J=23.1 \mathrm{~Hz}, \mathrm{C}-2$), 44.0 (CH), 38.2 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 36.6 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 34.4 ($\mathrm{R}-\mathrm{C}-4^{\prime}$), 26.0 ($\mathrm{R}-\mathrm{C}-6^{\prime}$), 25.7 (R-C-5'), $18.2\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (564 MHz, DMSO- d_{6}): δ 117.3.

UPLC/MS analysis: Rt 2.69 min . MS (ES) $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FNO}_{4}$ requires 413, found $414[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 414.2081 measured $414.2096 \Delta \mathrm{ppm}$ 3.6.
4.1.7.7. (\pm)-2-[3-fluoro-4-[3-(isopropylcarbamoyloxy)phenyl]phenyl] propanoic acid (10g). Compound $\mathbf{1 0 g}$ was prepared according to general procedure C using $\mathbf{9 g}$ ($159 \mathrm{mg}, 0.44 \mathrm{mmol}$). The crude was purified by crystallization from pentane/ $\mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{1 0 g}$ as a white solid ($65 \mathrm{mg}, 43 \%$). Mp: $131-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) 12.43 (s, 1H, COOH), 7.73 (d, J = $\left.7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 7.51$ (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.48(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-10$), 7.25 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2 \mathrm{H}-6 \mathrm{H}-8$), 7.15 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), $3.79(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.67\left(\mathrm{~m}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.42(\mathrm{~d}$, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}) $\delta 175.3$ (COOH), 159.2 ($\mathrm{d}, \mathrm{J}=246.5 \mathrm{~Hz}, \mathrm{C}-3$), 153.7 (C-9), 151.6 (HNCOO), 143.9 (d, J = $8.0 \mathrm{~Hz}, \mathrm{C}-7$), 136.4 (C-1), 131.1 (d, $J=3.7 \mathrm{~Hz}, \mathrm{C}-5)$, 129.8 (C-11), 126.2 (d, $J=13.1 \mathrm{~Hz}, \mathrm{C}-4$), 125.6 (C-10), 124.5 (d, $J=3.2 \mathrm{~Hz}, \mathrm{C}-6$), 122.3 (C-8), 121.7 (C-12), 115.6 (d, $J=23.1 \mathrm{~Hz}, \mathrm{C}-2), 44.5(\mathrm{CH}), 43.1\left(\mathrm{R}-\mathrm{C}-1^{\prime}\right), 22.8\left(\mathrm{R}-\mathrm{C}-2^{\prime}\right), 18.7$ $\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (564 MHz , DMSO- d_{6}): δ 117.3. UPLC/MS analysis: Rt 2.09 min . MS (ES) $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNO}_{4}$ requires 345 , found $346[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 346.1455 measured $346.1458 \Delta \mathrm{ppm} 0.9$.
4.1.7.8. (\pm)-2-[3-fluoro-4-[3-(isobutylcarbamoyloxy)phenyl]phenyl] propanoic acid (10h). Compound $\mathbf{1 0 h}$ was prepared according to general procedure C using $\mathbf{9 h}(138 \mathrm{mg}, 0.38 \mathrm{mmol})$. The crude was purified by crystallization from pentane/ $\mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{1 0 h}$ as a white solid ($57 \mathrm{mg}, 42 \%$). Mp: $128-130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) $12.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.84(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.51(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.48(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 7.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-10$), 7.25 (m, 3H, H-2 H-6 H-8), 7.15 (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 12), 3.79 ($\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 2.91 (t, $\left.J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.76$ (hept, $\left.J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.42\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90(\mathrm{~d}$, $\left.J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 175.2$ (COOH), 159.2 (d, J = $246.3 \mathrm{~Hz}, \mathrm{C}-3$), 154.9 (C-9), 151.7 (HNCOO), 143.9 (d, J = 7.7 Hz, C-7), 136.4 (C-1), 131.1 (d, J = $3.5 \mathrm{~Hz}, \mathrm{C}-5$), 129.9 (C-11), 126.2 (d, $J=13.1 \mathrm{~Hz}, \mathrm{C}-4), 125.6$ (C-10), 124.5 (d, J=3.1 Hz, C6), 122.3 (d, $J=2.9 \mathrm{~Hz}, \mathrm{C}-8$), 121.6 (C-12), 115.6 (d, $J=23.1 \mathrm{~Hz}, \mathrm{C}-2$), 48.5 (R-C-1'), 44.5 (CH), 28.7 (R-C-2'), 20.4 (R-C-3'), $18.7\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (564 MHz, DMSO- d_{6}): δ 117.3. UPLC/MS analysis: Rt 2.24 min . MS (ES) $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FNO}_{4}$ requires 359 , found $360[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 360.1611 measured 360.1631 $\Delta \mathrm{ppm}$ 5.6.
4.1.7.9. (\pm)-2-[3-fluoro-4-[3-(phenylcarbamoyloxy)phenyl]phenyl] propanoic acid (10i). Compound 10i was prepared according to general procedure C using $9 \mathbf{i}(87 \mathrm{mg})$. The crude was purified by preparative HPLC to afford $\mathbf{1 0 i}$ as a white solid ($31 \mathrm{mg}, 37 \%$). Mp: $145-146{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$, $10.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-5 \mathrm{H}-11 \mathrm{R}-\mathrm{Ph}-3^{\prime}\right), 7.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-12$), 7.40 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 7.33 (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{Ph}-2^{\prime}$), 7.26 (m, $3 \mathrm{H}, \mathrm{H}-2 \mathrm{H}-6 \mathrm{H}-10$), 7.05 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{R}-\mathrm{Ph}-4^{\prime}$), 3.78 (q, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.41\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d ${ }_{6}$) 174.7 (COOH), 158.8 (d, $J=246.5 \mathrm{~Hz}, \mathrm{C}-3$), 151.5 (C-9), 150.5 (HNCOO), 143.5 (d, $J=8.0 \mathrm{~Hz}, \mathrm{C}-7$), 138.5 ($\mathrm{R}-\mathrm{Ph}-1^{\prime}$), 136.1 (C1), 130.6 ($\mathrm{d}, \mathrm{J}=2.9 \mathrm{~Hz}, \mathrm{C}-5$), 129.6 ($\mathrm{C}-11$), 128.8 ($\mathrm{R}-\mathrm{Ph}-3^{\prime}$), 125.7 ($\mathrm{C}-$ 10), 125.6 ($\mathrm{d}, \mathrm{J}=13.1 \mathrm{~Hz}, \mathrm{C}-4$), 124.0 (C-6), 122.9 ($\mathrm{R}-\mathrm{Ph}-4^{\prime}$), 122.0 (C8), 121.3 (C-12), 118.4 (R-Ph-2'), 115.2 (d, J = $23.3 \mathrm{~Hz}, \mathrm{C}-2$), 44.1, 18.2. ${ }^{19}$ F NMR (564 MHz, DMSO- d_{6}): δ 117.3. UPLC/MS analysis: Rt 2.05 min . MS (ES) $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{FNO}_{4}$ requires 379 , found $380[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 380.1298 measured $380.1296 \Delta \mathrm{ppm}-0.5$.
4.1.7.10. (\pm)-2-[4-[3-(benzylcarbamoyloxy)phenyl]-3-fluoro-phenyl] propanoic acid ($\mathbf{1 0 j} \mathbf{j}$. Compound $\mathbf{1 0 j}$ was prepared according to general procedure C using $\mathbf{9 j}$. The crude was purified by preparative HPLC to afford $\mathbf{1 0 j}$ as a white solid ($69 \mathrm{mg}, \mathbf{3 5 \%}$ over 2 steps). Mp: $120-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.47$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}$), 8.36 (t, $J=6.1,1 \mathrm{H}, \mathrm{NH}$), 7.49 (m, 2H H-5 H-11), 7.36 (m, 5H, H-10 R-Ph-2' R-Ph-3'), 7.27 (m, 2H, H-8 R-Ph-4'), 7.23 (m, 2H, H-2 H-6), 7.17 (dd, $J=7.8,1.7,1 \mathrm{H}, \mathrm{H}-12$), $4.29\left(\mathrm{~d}, J=6.1,2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 3.78(\mathrm{q}, J=7.1$, $1 \mathrm{H}, \mathrm{CH}), 1.41\left(\mathrm{~d}, J=7.1,3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 174.7$ (COOH), 158.7 (d, $J=246.3 \mathrm{~Hz}, \mathrm{C}-3), 154.5(\mathrm{C}-9), 151.1$ (HNCOO), 143.4 (d, J = 7.6 Hz, C-7), 139.1 (R-Ph-1), 135.9 (C-1), 130.6 ($\mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{C}-5$), 129.4 (C-11), 128.3 (R-Ph-3), 127.1 (R-Ph-2), 126.9 (R-Ph-4), 125.7 (d, J = $12.9 \mathrm{~Hz}, \mathrm{C}-4$), 125.3 (C-10), 124.0 (C-6), 121.8 (C-8), 121.2 (C-12), 115.1 (d, $J=23.2 \mathrm{~Hz}, \mathrm{C}-2$), 44.1 (CH), 44.0 (R-C$\left.1^{\prime}\right)$, $18.2\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (564 MHz, DMSO- d_{6}): $\delta 117.3$. UPLC/MS analysis: Rt 2.27 min. MS (ES) $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{FNO}_{4}$ requires 393, found 394 $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 394.1455 measured $394.1462 \Delta \mathrm{ppm} 1.8$.
4.1.7.11. (\pm)-2-[3-fluoro-4-[3-(phenethylcarbamoyloxy)phenyl] phenyllpropanoic acid (10k). Compound 10k was prepared according to general procedure C using $\mathbf{9 k}$. The crude was purified by crystallization from $\mathrm{Et}_{2} \mathrm{O}$ /pentane to afford 10k as a white solid ($58 \mathrm{mg}, 41 \%$). Mp: $104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.45$ (s , $1 \mathrm{H}, \mathrm{COOH}), 7.88(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 7.48 (t, J = $7.91 \mathrm{H}, \mathrm{H}-11$), 7.37 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{R}-\mathrm{Ph}-4$), 7.31 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{R}-\mathrm{Ph}-3$), 7.23 (m, 6H, H-10 H-2 H-6 H-8 R- Ph-2), 7.11 (dd, J = 7.7, 1.7 Hz, 1H, $\mathrm{H}-12$), 3.78 ($\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.31 ($\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}$), $2.80\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.41\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right){ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}) $\delta 175.2$ (COOH), 159.2 (d, J = $245.8 \mathrm{~Hz}, \mathrm{C}-3$), 154.6 (C-9), 151.1 (HNCOO), 143.9 (d, $J=7.7 \mathrm{~Hz}, \mathrm{C}-7$), 139.5 (R-Ph-1), 136.4 (C-1), 131.1 (d, J = 3.4 Hz, C-5), 129.9 (C-11), 129.1 (R-Ph-2), 128.8 (R-Ph-3), 126.6 (R-Ph-4), 126.2 (d, J = $13.0 \mathrm{~Hz}, \mathrm{C}-4$), 125.7 (C10), 124.5 (d, $J=2.8 \mathrm{~Hz}, \mathrm{C}-6), 122.3$ (d, $J=2.6 \mathrm{~Hz}, \mathrm{C}-8$), 121.6 (C-12), 115.6 (d, $J=23.1 \mathrm{~Hz}, \mathrm{C}-2), 44.5(\mathrm{CH}), 42.5$ (R-C-1'), 35.6 (R-C-2'), 18.7 $\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (564 MHz , DMSO- d_{6}): δ 117.3. UPLC/MS analysis: Rt 2.37 min . MS (ES) $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{FNO}_{4}$ requires 407 , found $408[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 408.1611 measured $408.1626 \Delta \mathrm{ppm}$ 3.7.
4.1.7.12. (\pm)-2-[3-fluoro-4-[3-(3-phenylpropylcarbamoyloxy)phenyl] phenyllpropanoic acid (10l). Compound $\mathbf{1 0 1}$ was prepared according to general procedure C using $91(174 \mathrm{mg}, 0.40 \mathrm{mmol})$. The crude was purified by preparative TLC (Cy/EtOAc, 5: 5) to afford 101 as a white solid ($44 \mathrm{mg}, 26 \%$). Mp: $82-83^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 12.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.87(\mathrm{t}, J=5.53 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.51(\mathrm{t}$, $J=8.04 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.48(\mathrm{t}, J=8.20 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11)$, 7.38 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{R}-\mathrm{Ph}-4), 7.22$ (m, 9H, H-2 H-6 H-8 H-10 H-12 R- Ph-2 R-Ph-3), 3.78 ($\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.09\left(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right)$, $2.63\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.78\left(\mathrm{p}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime}\right), 1.41(\mathrm{~d}$, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d $\left.\mathrm{d}_{6}\right) \delta 175.2$ (COOH), 159.2 (d, $J=246.1 \mathrm{~Hz}, \mathrm{C}-3$), 154.7 (C-9), 151.6 (HNCOO), 143.9 (d, $J=8.1 \mathrm{~Hz}, \mathrm{C}-7), 142.0(\mathrm{R}-\mathrm{Ph}-1), 136.4(\mathrm{C}-1), 131.1(\mathrm{~d}, J=3.3 \mathrm{~Hz}, \mathrm{C}-5)$, 129.9 (C-11), 128.8 (R-Ph-3), 128.7 (R-Ph-2), 126.2 (R-Ph-4), 125.7 (d, J = $3.5 \mathrm{~Hz}, \mathrm{C}-4$), 124.6 (C-10) 124.5 (C-6), 122.3 (C-8), 121.70 (C12), 115.6 ($\mathrm{d}, J=23.5 \mathrm{~Hz}, \mathrm{C}-2$), $44.5(\mathrm{CH}), 40.5\left(\mathrm{R}-\mathrm{C}-1^{\prime}\right), 32.8$ ($\left.\mathrm{R}-\mathrm{C}-\mathrm{B}^{\prime}\right)$, 31.4 (R-C-2'), $18.7\left(\mathrm{CH}_{3}\right) .{ }^{19}$ F NMR (564 MHz, DMSO- d_{6}): $\delta 117.3$. UPLC/MS analysis: Rt 2.46 min. MS (ES) $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{FNO}_{4}$ requires 421, found $422 \quad[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 422.1768 measured $422.1776 \Delta \mathrm{ppm}$ 1.9.
4.1.7.13. (\pm)-2-[3-fluoro-4-[3-(4-phenylbutylcarbamoyloxy)phenyl] phenylppropanoic acid (10m). Compound $\mathbf{1 0 m}$ was prepared according to general procedure C using $\mathbf{9 m}$ ($171 \mathrm{mg}, 0.38 \mathrm{mmol}$). The crude was purified by preparative TLC (Cy/EtOAc, 5: 5) to afford
$\mathbf{1 0 m}$ as a white solid ($70 \mathrm{mg}, 43 \%$). Mp: $101-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 12.47$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}$), $7.80(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$, NH), 7.47 (m, 2H, H-5 H-8), 7.37 (d, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{R}-\mathrm{Ph}-4$), 7.19 (m, 9H, H-2 H-6 H-8 H-10 H-12 R-Ph-2 R-Ph-3), 3.78 (q, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, CH), $3.10\left(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 2.60\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-4^{\prime}\right)$, 1.60 ($\mathrm{q}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime}$), $1.50\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.41$ $\left(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 175.2$ (COOH), 159.2 (d, $J=246.3 \mathrm{~Hz}, \mathrm{C}-3$), 154.7 (C-9), 151.6 (HNCOO), 143.9 (d, $J=7.5 \mathrm{~Hz}, \mathrm{C}-7$), 142.5 (R-Ph-1), 136.4 (C-1), 131.0 (d, $J=3.6 \mathrm{~Hz}, \mathrm{C}-5), 129.9$ (C-11), 128.7 (R-Ph-3), 128.6 (R-Ph-2), 126.1 (R-Ph-4), 125.7 (d, $J=2.4 \mathrm{~Hz}, \mathrm{C}-4), 124.6$ (C-10) 124.5 (C-6), 122.3 (d, $J=3.1 \mathrm{~Hz}, \mathrm{C}-8$), 121.6 (C-12), 115.6 (d, $J=23.2 \mathrm{~Hz}, \mathrm{C}-2$), 44.5 (CH), 40.7 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 35.2 ($\mathrm{R}-\mathrm{C}-4^{\prime}$), 29.3 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 28.7 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 18.7 $\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (564 MHz, DMSO- d_{6}): δ 117.3. UPLC/MS analysis: Rt 2.59 min . MS (ES) $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{FNO}_{4}$ requires 435 , found $436[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 436.1924 measured $436.1936 \Delta \mathrm{ppm} 2.8$.
4.1.7.14. (\pm)-2-[4-[3-(ethylcarbamoyloxy)phenyl]-3-fluoro-phenyl] propanoic acid (10n). Compound $\mathbf{1 0 n}$ was prepared according to general procedure C using $8(104 \mathrm{mg}, 0.30 \mathrm{mmol})$. The crude was purified by crystallization from $\mathrm{Et}_{2} \mathrm{O} /$ pentane to afford 10 n as a white solid ($37 \mathrm{mg}, 37 \%$). Mp: $93-94^{\circ}{ }^{\circ}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 12.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.79(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.51(\mathrm{t}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.48(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-10$), 7.25 (m, 3H, H-2 H-6 H-8), 7.15 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), $3.79(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.12\left(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.42(\mathrm{~d}$, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $\left.\mathrm{d}_{6}\right) \delta 175.3(\mathrm{COOH}), 159.2(\mathrm{~d}, J=245.9 \mathrm{~Hz}, \mathrm{C}-3)$, 154.5 (C-9), 151.6 (HNCOO), 143.9 (d, J = $7.6 \mathrm{~Hz}, \mathrm{C}-7$), 136.4 (C-1), 131.1 (d, $J=3.6 \mathrm{~Hz}, \mathrm{C}-5), 129.9(\mathrm{C}-11), 126.2(\mathrm{~d}, J=13.0 \mathrm{~Hz}, \mathrm{C}-4)$, 125.7 (C-10), 124.5 (d, J = 3.0 Hz, C-6), 122.3 (d, J = $3.1 \mathrm{~Hz}, \mathrm{C}-8$), 121.7 (C-C-12), 115.6 (d, J = $23.4 \mathrm{~Hz}, \mathrm{C}-2$), 44.5 (CH), 35.7 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 18.7 $\left(\mathrm{CH}_{3}\right), 15.3$ (R-C-2'). ${ }^{19}$ F NMR (564 MHz , DMSO- d_{6}): $\delta 117.3$. UPLC/ MS analysis: Rt 1.95 min. MS (ES) $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FNO}_{4}$ requires 331, found $332[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 332.1298 measured $332.1304 \Delta \mathrm{ppm} 1.8$.
4.1.7.15. (\pm)-2-[3-fluoro-4-[3-(propylcarbamoyloxy)phenyl]phenyl] propanoic acid (100). Compound $\mathbf{1 0 0}$ was prepared according to general procedure C using 8 ($87 \mathrm{mg}, 0.24 \mathrm{mmol}$). The crude was purified by preparative TLC (Cy/EtOAc, 5: 5) to afford $\mathbf{1 0 o}$ as a white solid ($57 \mathrm{mg}, 68 \%$). Mp: $113-114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.47(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (ddt, $J=9.9,3.9,1.7 \mathrm{~Hz}$, 3 H), 7.14 (ddd, $J=8.2,2.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ (td, $J=7.1,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{~h}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz DMSO- d_{6}) $\delta 174.7$ (COOH), 158.7 (d, J = $246.5 \mathrm{~Hz}, \mathrm{C}-3$), 154.2 (C-9), 151.2 (HNCOO), 143.4 (d, $J=7.8 \mathrm{~Hz}, \mathrm{C}-7$), 135.9 (C-1), 130.6 (C-5), 129.4 (C-11), 125.7 (d, $J=12.9 \mathrm{~Hz}, \mathrm{C}-4$), 125.1 (C-10), 124.0 (C-6), 121.8 (C-8), 121.1 (C12), 115.1 ($\mathrm{d}, \mathrm{J}=23.2 \mathrm{~Hz}, \mathrm{C}-2$), 44.0 (CH), 42.2 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 22.4 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), $18.2\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{R}-\mathrm{C}-3^{\prime}\right) .{ }^{19} \mathrm{~F}$ NMR ($564 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 117.3$. UPLC/MS analysis: Rt 2.10 min . MS (ES) $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNO}_{4}$ requires 345, found $346[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 346.1455 measured $346.1459 \Delta \mathrm{ppm} 1.2$.
4.1.7.16. (\pm)-2-[4-[3-(butylcarbamoyloxy)phenyl]-3-fluoro-phenyl] propanoic acid (10p). Compound 10p was prepared according to general procedure C using $\mathbf{9 p}$ ($135 \mathrm{mg}, 0.36 \mathrm{mmol}$). The crude was purified by crystallization from $\mathrm{Cy} / \mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{1 0 p}$ as a white solid ($75 \mathrm{mg}, 58 \%$). Mp: $110-111^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.79(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.50(\mathrm{t}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 7.47$ (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 7.37 ($\mathrm{d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 7.23 (m, 3H, H-2 H-6 H-8), 7.13 (ddd, $J=8.1,2.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$),
$3.78(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.06\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.46(\mathrm{p}$, $\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.40\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32(\mathrm{~h}, J=7.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime}\right), 0.89\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-4^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6}) $\delta 174.8$ (COOH), 158.8 ($\mathrm{d}, \mathrm{J}=246.0 \mathrm{~Hz}, \mathrm{C}-3$), 154.2 (C-9), 151.2 (HNCOO), 143.4 (d, $J=8.0 \mathrm{~Hz}, \mathrm{C}-7$), 135.9 (C-1), 130.6 (d, $J=2.9 \mathrm{~Hz}, \mathrm{C}-5), 129.4$ (C-11), 125.7 (d, $J=12.8 \mathrm{~Hz}, \mathrm{C}-4), 125.2$ (C-10), 124.0 (C-6), 121.8 (C-8), 121.2 (C-12), 115.2 (d, J = $23.3 \mathrm{~Hz}, \mathrm{C}-2$), 44.1 (CH), 40.1 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 31.3 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 19.4 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), $18.2\left(\mathrm{CH}_{3}\right), 13.6$ ($\mathrm{R}-\mathrm{C}-$ $\left.4^{\prime}\right) .{ }^{19}$ F NMR (564 MHz, DMSO- d_{6}): δ 117.3. UPLC/MS analysis: Rt 2.25 min . MS (ES) $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FNO}_{4}$ requires 359 , found $360[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 360.1611 measured 360.1615Δ ppm 1.1.
4.1.7.17. (\pm)-2-[3-fluoro-4-[3-(pentylcarbamoyloxy)phenyl]phenyl] propanoic acid (10q). Compound 10q was prepared according to general procedure C using $9 \mathbf{q}(149 \mathrm{mg}, 0.39 \mathrm{mmol})$. The crude was purified by crystallization from pentane/Et $\mathrm{E}_{2} \mathrm{O}$ to afford $\mathbf{1 0 q}$ as a white solid ($85 \mathrm{mg}, 59 \%$). Mp: $105-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) $12.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.77(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.51(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 7.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-10$), 7.23 (m, 3H, H-2 H-6 H-8), 7.14 (dd, $J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 12), 3.78 ($\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.06 ($\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}$), 1.48 (p, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.41\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29(\mathrm{~m}, 4 \mathrm{H}, \mathrm{R}-$ $\left.\mathrm{H}-3^{\prime \prime} \mathrm{R}-\mathrm{H}-4^{\prime \prime}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-5^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6}) 175.2 (COOH), 159.2 ($\mathrm{d}, \mathrm{J}=246.4 \mathrm{~Hz}, \mathrm{C}-3$), 154.6 (C-9), 151.7 (HNCOO), 143.9 (d, J = 7.6 Hz, C-7), 136.4 (C-1), 131.1 (d, $J=3.6 \mathrm{~Hz}, \mathrm{C}-5), 129.9(\mathrm{C}-11), 126.2(\mathrm{~d}, J=13.2 \mathrm{~Hz}, \mathrm{C}-4), 125.6$ (C-10), 124.5 (d, $J=3.3 \mathrm{~Hz}, \mathrm{C}-6$), 122.3 (C-8), 121.6 (C-12), 115.6 (d, $J=23.4 \mathrm{~Hz}, \mathrm{C}-2), 44.5(\mathrm{CH}), 40.9$ (R-C-1'), 29.3 (R-C-2'), 28.9 (R-C$\left.4^{\prime}\right)$, 22.2 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), $18.7\left(\mathrm{CH}_{3}\right), 14.38$ ($\mathrm{R}-\mathrm{C}-5^{\prime}$). ${ }^{19} \mathrm{~F}$ NMR (564 MHz , DMSO- d_{6}): δ 117.3. UPLC/MS analysis: Rt 2.42 min . MS (ES) $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FNO}_{4}$ requires 373, found $374[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~F}$ $[\mathrm{M}+\mathrm{H}]^{+}$: calculated 374.1768 measured $374.1778 \Delta \mathrm{ppm}$ 2.7.
4.1.7.18. (\pm)-2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl] propanoic acid (10r). Compound 10r was prepared according to general procedure C using 9 ($142 \mathrm{mg}, 0.35 \mathrm{mmol}$). The crude was purified by crystallization from $\mathrm{Et}_{2} \mathrm{O}$ /pentane to afford $\mathbf{1 0 r}$ as a white solid ($41 \mathrm{mg}, 30 \%$). Mp: 102- $103{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.79(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.51(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.48(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 7.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-10$), 7.25 (m, 3H, H-2 H-6 H-8), 7.15 (dd, $J=8.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 12), 3.79 ($\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.07 ($\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}$), 1.47 (p, $\left.J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.42\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30(\mathrm{~m}, 6 \mathrm{H}, \mathrm{R}-$ H-3' R-H-4' R-H-5'), 0.88 (t, $\left.J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $)_{6}$) 175.2 (COOH), 159.2 (d, $J=246.4 \mathrm{~Hz}, \mathrm{C}-3$), 154.6 (C-9), 151.7 (HNCOO), 143.9 (d, J = $8.0 \mathrm{~Hz}, \mathrm{C}-7$), 136.4 (C-1), 131.0 (d, $J=3.5 \mathrm{~Hz}, \mathrm{C}-5), 129.9$ (C-11), 126.2 (d, $J=13.1 \mathrm{~Hz}, \mathrm{C}-4$), 125.6 (C-10), 124.5 (d, $J=3.0 \mathrm{~Hz}, \mathrm{C}-6$), 122.3 (d, $J=2.6 \mathrm{~Hz}, \mathrm{C}-8$), 121.6 (C-12), 115.6 (d, J = $23.2 \mathrm{~Hz}, \mathrm{C}-2$), 44.5 (CH), 40.9 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 31.4 (R-C4^{\prime}), 29.6 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 26.3 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 22.5 ($\mathrm{R}-\mathrm{C}-5^{\prime}$), 18.7 (CH_{3}), 14.3 ($\mathrm{R}-\mathrm{C}-$ $\left.6^{\prime}\right) .{ }^{19} \mathrm{~F}$ NMR ($564 \mathrm{MHz}, \mathrm{DMSO}_{6}$): δ 117.3. UPLC/MS analysis: Rt 2.60 min . MS (ES) $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{FNO}_{4}$ requires 387 , found $388[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 388.1924 measured $388.1927 \Delta \mathrm{ppm} 0.8$.
4.1.7.19. (\pm)-2-[3-fluoro-4-[3-(heptylcarbamoyloxy)phenyl]phenyl] propanoic acid (10s). Compound 10s was prepared according to general procedure C using $9 s(160 \mathrm{mg}, 0.38 \mathrm{mmol}$). The crude was purified by crystallization from pentane/Et ${ }_{2} \mathrm{O}$ to afford $\mathbf{1 0 s}$ as a white solid ($85 \mathrm{mg}, 55 \%$). Mp: $104-105{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.77(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.50(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 7.47(\mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}-11), 7.37(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 10), 7.24 (m, 3H, H-2 H-6 H-8), 7.13 (dd, $J=8.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), $3.78(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.06\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.47(\mathrm{p}$,
$\left.J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.41\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27(\mathrm{~m}, 8 \mathrm{H}, \mathrm{R}-\mathrm{H}-$ $\left.3^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-5^{\prime} \mathrm{R}-\mathrm{H}-6^{\prime}\right), 0.86$ (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-7^{\prime}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 174.7$ (COOH), 158.7 (d, J = $246.5 \mathrm{~Hz}, \mathrm{C}-3$), 154.1 (C-9), 151.2 (HNCOO), 143.4 (d, $J=7.6 \mathrm{~Hz}, \mathrm{C}-7$), 135.9 (C-1), 130.6 ($\mathrm{d}, J=3.6 \mathrm{~Hz}, \mathrm{C}-5$), 129.4 (C-11), 125.7 ($\mathrm{d}, J=13.1 \mathrm{~Hz}, \mathrm{C}-4$), 125.2 (C-10), 124.0 (d, J = 3.2 Hz, C-6), 121.8 (C-8), 121.1 (C-12), 115.1 ($\mathrm{d}, \mathrm{J}=23.3 \mathrm{~Hz}, \mathrm{C}-2$), 44.0 (CH), 40.4 (R-C-1'), 31.2 (R-C-4'), 29.1 (R-C2^{\prime}), 28.3 ($\mathrm{R}-\mathrm{C}-5^{\prime}$), 26.1 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 22.0 ($\mathrm{R}-\mathrm{C}-6^{\prime}$), $18.2\left(\mathrm{CH}_{3}\right), 13.9$ ($\mathrm{R}-\mathrm{C}-$ 7^{\prime}). ${ }^{19} \mathrm{~F}$ NMR (564 MHz, DMSO- d_{6}): δ 117.3. UPLC/MS analysis: Rt 2.70 min . MS (ES) $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{FNO}_{4}$ requires 401 , found $402[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 402.2081 measured $402.2096 \Delta \mathrm{ppm}$ 3.7.
4.1.7.20. (\pm)-2-[3-fluoro-4-[3-(octylcarbamoyloxy)phenyl]phenyl] propanoic acid (10t). Compound 10t was prepared according to general procedure C using 9 t ($141 \mathrm{mg}, 0.33 \mathrm{mmol}$). The crude was purified by crystallization from pentane/ $\mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{1 0 t}$ as a white solid ($41 \mathrm{mg}, 30 \%$). Mp: 103-104 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.78(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.50(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-10$), 7.25 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2 \mathrm{H}-6 \mathrm{H}-8$), 7.15 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), $3.79(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ch}), 3.07\left(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.48(\mathrm{p}$, $\left.J=6.6,2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.42\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, 10H, R-H-3' R-H-4' R-H-5' R-H-6' R-H-7'), 0.87 (t, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-$ $\left.\mathrm{H}-8^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 175.2$ (COOH), 159.2 (d, $J=246.4 \mathrm{~Hz}, \mathrm{C}-3), 154.6$ (C-9), 151.7 (HNCOO), 143.9 (d, $J=8.0 \mathrm{~Hz}, \mathrm{C}-$ 7), 136.4 (C-1), 131.0 (d, $J=3.6 \mathrm{~Hz}, \mathrm{C}-5), 129.9$ (C-11), 126.23 (d, $J=13.1 \mathrm{~Hz}, \mathrm{C}-4), 125.6(\mathrm{C}-10), 124.5(\mathrm{~d}, J=3.1 \mathrm{~Hz}, \mathrm{C}-6), 122.3$ (C-8), 121.6 (C-12), 115.6 (d, J = $23.3 \mathrm{~Hz}, \mathrm{C}-2$), 44.5 (CH), 40.9 (R-C-1'), 31.7 (R-C-6'), 29.6 (R-C-2'), 29.1 (R-C-4'), 29.1 ($\left.R-C-5^{\prime}\right), 26.7\left(R-C-3^{\prime}\right), 22.5$ (R-C-7'), $18.7\left(\mathrm{CH}_{3}\right), 14.4$ (R-C-8'). ${ }^{19} \mathrm{~F}$ NMR (564 MHz, DMSO- d_{6}): δ 117.3. UPLC/MS analysis: Rt 2.86 min . MS (ES) $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{FNO}_{4}$ requires 415 , found $416[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{HRMS} \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 416.2237 measured $416.2249 \Delta \mathrm{ppm} 2.9$.
4.1.7.21. (\pm)-2-[3-fluoro-4-[2-(hexylcarbamoyloxy)phenyl]phenyl] propanoic acid (15a). Compound 15a was prepared according to general procedure C using $\mathbf{1 4 a}$ ($200 \mathrm{mg}, 0.5 \mathrm{mmol}$). The crude was purified by preparative TLC (Cy/EtOAc, 5: 5) to afford 15a as a white oil ($175 \mathrm{mg}, 90 \%$). Mp: 61-63 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 12.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.55(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.42(\mathrm{td}$, $J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 7.36$ (dd, $J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 7.28(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-5 \mathrm{H}-11$), 7.17 (m, 3H, H-2 H-6 H-9), 3.76 (q, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 2.92\left(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.40\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.32 ($\mathrm{p}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}$), 1.25 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-5^{\prime}$), 0.86 (t, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 174.8$ (COOH), 158.9 (d, $J=246.2 \mathrm{~Hz}, \mathrm{C}-3$), 154.0 (C-8), 148.5 (HNCOO), 143.2 (d, J = 7.5 Hz, C-7), 131.3 (C-5), 131.0 (C-12), 128.9 (C-10), 128.1 (C-1), 125.0 (C-11), 123.4 (C-9), 123.3 (C-6), 123.1 (C4), 114.5 (d, $J=22.9 \mathrm{~Hz}, \mathrm{C}-2$), 44.1 (CH), 40.2 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 30.8 (R-C4^{\prime}), 28.9 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 25.6 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 22.0 ($\mathrm{R}-\mathrm{C}-5^{\prime}$), $18.3\left(\mathrm{CH}_{3}\right), 13.8$ ($\mathrm{R}-\mathrm{C}-$ $\left.6^{\prime}\right) .{ }^{19} \mathrm{~F}$ NMR ($564 \mathrm{MHz}, \mathrm{DMSO}_{6}$): δ 117.3. UPLC/MS analysis: Rt 2.47 min . MS (ES) $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{FNO}_{4}$ requires 387 , found $388[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 388.1924 measured $388.1945 \Delta \mathrm{ppm} 5.4$.
4.1.7.22. (\pm)-2-[3-fluoro-4-[4-(hexylcarbamoyloxy)phenyl]phenyl] propanoic acid (15b). Compound 15b was prepared according to general procedure C using $\mathbf{1 4 b}$ ($146 \mathrm{mg}, 036 \mathrm{mmol}$). The crude was purified by crystallization from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Cy}$ to afford $\mathbf{1 5 b}$ as a white solid ($65 \mathrm{mg}, 46 \%$). Mp: $136-137{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.78(\mathrm{t}, J=5.6,1 \mathrm{H}, \mathrm{NH}), 7.53(\mathrm{~d}, J=7.5,2 \mathrm{H}, \mathrm{H}-$ $8 \mathrm{H}-12$), 7.48 ($\mathrm{t}, J=8.3,1 \mathrm{H}, \mathrm{H}-5$), 7.23 (m, 2H, H-2 H-6), 7.19 (d, $J=8.6,2 \mathrm{H}, \mathrm{H}-9 \mathrm{H}-11), 3.77(\mathrm{q}, J=7.1,1 \mathrm{H}, \mathrm{CH}), 3.06(\mathrm{q}, J=6.7,2 \mathrm{H}, \mathrm{R}-$ $\left.\mathrm{H}-1^{\prime}\right), 1.47\left(\mathrm{p}, J=6.7,2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.41\left(\mathrm{~d}, J=7.4,3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29(\mathrm{~m}$,
$\left.6 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-5^{\prime}\right), 0.88$ (t, $\left.J=6.7,3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $)_{6} \delta 174.8$ (COOH), 158.8 (d, $J=245.9 \mathrm{~Hz}, \mathrm{C}-3$), 154.1 (C-10), 150.7 (HNCOO), 143.0 (d, $J=8.0 \mathrm{~Hz}, \mathrm{C}-7$), 131.4 (C-1), 130.5 (C-5), 129.5 (C-8 C-12), 125.9 (d, $J=13.2 \mathrm{~Hz}, \mathrm{C}-4$), 124.0 (C-6), 121.8 (C-9 C-11), 115.1 (d, J = 23.3 Hz, C-2), 44.0 (CH), 40.4 (R-C-1'), 30.9 (R-C-4'), 29.1 (R-C-2'), 25.8 (R-C-3'), 22.0 (R-C-5'), 18.2 (CH_{3}), 13.8 (R-C-6'). ${ }^{19}$ F NMR (564 MHz, DMSO- d_{6}): δ 117.3. UPLC/MS analysis: Rt 2.59 min. MS (ES) $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{FNO}_{4}$ requires 387, found 388 $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\quad \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 388.1924 measured $388.194 \Delta \mathrm{ppm} 4.1$.
4.1.7.23. (\pm)-2-[3-fluoro-4-[3-(hexylcarbamoylamino)phenyl] phenyllpropanoic acid (15c). Compound 15c was prepared according to general procedure C using $\mathbf{1 4 c}(117 \mathrm{mg}, 0.29 \mathrm{mmol})$. The crude was purified by preparative TLC (DCM/MeOH, 9: 5) to afford 15c as a white solid ($43 \mathrm{mg}, 38 \%$). Mp: $84-85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.46$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}$), 8.49 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}^{\prime}\right), 7.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8)$, 7.43 (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $7.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 7.30(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 7.22 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2)$, 7.04 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), $6.14(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 3.76(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.07\left(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-$ 2^{\prime}), 1.40 (d, J = 7.1 Hz, 3H, CH3), 1.29 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-5$), 0.87 (t, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 175.3$ (COOH), 159.2 (d, $J=245.8 \mathrm{~Hz}, \mathrm{C}-3), 155.6$ (HNCONH^{\prime}), 143.47 (d, $J=8.0 \mathrm{~Hz}, \mathrm{C}-7), 141.3(\mathrm{C}-9), 135.7(\mathrm{C}-1), 130.9(\mathrm{~d}, J=3.8 \mathrm{~Hz}, \mathrm{C}-5)$, 129.3 (C-11), 127.3 (d, J = $13.2 \mathrm{~Hz}, \mathrm{C}-4$), 124.3 (C-10), 121.7 (C-12), 118.2 (C-6), 117.4 (C-8), 115.5 (d, $J=23.1 \mathrm{~Hz}$), $44.5(\mathrm{CH}), 39.5$ (R-C1^{\prime}), 31.4 ($\mathrm{R}-\mathrm{C}-4^{\prime}$), 30.1 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 26.5 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 22.5 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 18.7 $\left(\mathrm{CH}_{3}\right), 14.4$ (R-C-6'). ${ }^{19} \mathrm{~F}$ NMR (564 MHz , DMSO- d_{6}): $\delta 117.2$. UPLC/ MS analysis: Rt 2.32 min. MS (ES) $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{3}$ requires 386 , found $387[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 387.2084 measured $387.2091 \Delta \mathrm{ppm}$ 1.8.
4.1.7.24. (\pm)-2-[3-fluoro-4-[3-(hexoxycarbonylamino)phenyl]phenyl] propanoic acid (15d). Compound 15d was prepared according to general procedure C using $\mathbf{1 4 d}$ ($143 \mathrm{mg}, 0.36 \mathrm{mmol}$). The crude was purified by preparative TLC (Cy/EtOAc, 5: 5) to afford 15d as a white solid ($82 \mathrm{mg}, 59 \%$). Mp: $63-64{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.46$ (s, 1H, COOH), 9.70 (s, 1H, NH), 7.66 (s, 1H, H-8), 7.49 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 7.42(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.36(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-11$), 7.23 (m, 1H, H-6), 7.21 (m, 1H, H-2), 7.14 (d, J = 6.8 Hz, 1H, $\mathrm{H}-12), 4.08\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 3.77(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.62$ ($\mathrm{p}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}$), $1.40\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30(\mathrm{~m}, 6 \mathrm{H}, \mathrm{R}-$ H-3' R-H-4' R-H-5'), 0.87 (t, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 175.3$ (COOH), 159.2 (d, $J=246.1 \mathrm{~Hz}, \mathrm{C}-3$), 154.1 (OCONH), 143.6 (d, J = $8.0 \mathrm{~Hz}, \mathrm{C}-7$), 139.9 (C-9), 135.8 (C-1), 130.9 (d, $J=3.7 \mathrm{~Hz}, \mathrm{C}-5), 129.44(\mathrm{C}-11), 127.0(\mathrm{~d}, J=13.2 \mathrm{~Hz}, \mathrm{C}-4)$, 124.4 (d, J = $3.1 \mathrm{~Hz}, \mathrm{C}-6$), 123.1 (C-12), 118.9 (C-8), 118.0 (C-10), 115.6 (d, $J=23.4 \mathrm{~Hz}, \mathrm{C}-2), 64.7\left(\mathrm{R}-\mathrm{C}-1^{\prime}\right), 44.5(\mathrm{CH}), 31.3\left(\mathrm{R}-\mathrm{C}-2^{\prime}\right), 28.9(\mathrm{R}-$ C-4'), 25.5 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 22.5 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), $18.7\left(\mathrm{CH}_{3}\right), 14.3$ ($\mathrm{R}-\mathrm{C}-6^{\prime}$). ${ }^{19} \mathrm{~F}$ NMR (564 MHz, DMSO- d_{6}): δ 117.2. UPLC/MS analysis: Rt 2.64 min . MS (ES) $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{FNO}_{4}$ requires 387 , found $388[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 388.1924 measured 388.1934 $\Delta \mathrm{ppm}$ 2.6.
4.1.7.25. 2-[3-Fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]acetic acid (18b). Compound 18b was prepared according to general procedure C using $\mathbf{1 8 a}$ ($123 \mathrm{mg}, 0.32 \mathrm{mmol}$). The crude was purified by crystallization from pentane/ $\mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{1 8 b}$ as a white solid ($73 \mathrm{mg}, 62 \%$). Mp: $90-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.44$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}$), $7.77(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.48(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 7.47 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 7.37 (dq, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 7.23 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{H}-8$), 7.20 (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.13$ (ddd, $J=8.1$, $2.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 3.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.06$ (td, $J=7.1,5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-$ H-1'), 1.47 ($\mathrm{p}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}$), 1.29 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-$
$\left.5^{\prime}\right), 0.87\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 172.1(\mathrm{COOH}), 158.6(\mathrm{~d}, \mathrm{~J}=245.9 \mathrm{~Hz}, \mathrm{C}-3), 154.2(\mathrm{C}-9), 151.2$ (HNCOO), 137.2 (d, $J=8.4 \mathrm{~Hz}, \mathrm{C}-7$), 136.0 (C-1), 130.3 (d, $J=3.5 \mathrm{~Hz}$, C-5), 129.4 (C-11), 126.0 (d, J = 3.1 Hz, C-6), 125.5 ($\mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, \mathrm{C}$) 4), 125.2 (C-10), 121.8 (C-8), 121.1 (C-12), 117.1 ($\mathrm{d}, J=23.2 \mathrm{~Hz}, \mathrm{C}-2$), 40.4 (CH), 39.8 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 30.9 ($\mathrm{R}-\mathrm{C}-4^{\prime}$), 29.1 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 25.9 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 22.0 (R-C-5'), 13.8 (R-C-6'). ${ }^{19}$ F NMR (564 MHz, DMSO- d_{6}): $\delta 118.0$. UPLC/MS analysis: Rt 2.43 min . MS (ES) $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{FNO}_{2}$ requires 373, found $374[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 374.1768 measured $374.1763 \Delta \mathrm{ppm}-1.3$.
4.1.7.26. 3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]benzoic acid (21c). Compound 21c was prepared according to general procedure C using 21b ($1.27 \mathrm{~g}, 3.40 \mathrm{mmol}$). Mp: $180-181{ }^{\circ} \mathrm{C}$. The crude was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH}, 99: 1$) to afford 21b as a white solid ($0.41 \mathrm{~g}, 34 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 13.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.85(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.80(\mathrm{t}$, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 7.76 (dd, $J=11.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 7.68 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.51(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 7.44(\mathrm{dq}, J=7.7$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 7.32 (q, J = $1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 7.19 (ddd, J = 8.0, 2.4, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 3.06\left(\mathrm{td}, J=7.1,6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.46(\mathrm{p}$, $\left.J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.28\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-5^{\prime}\right), 0.87(\mathrm{t}$, $\left.J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 166.0$ (COOH), 158.7 (d, $J=247.8 \mathrm{~Hz}, \mathrm{C}-3$), 154.2 (C-9), 151.3 (HNCOO), 135.2 (C-1), 132.3 (d, J = 6.6 Hz, C-7), 131.6 (d, $J=13.4 \mathrm{~Hz}, \mathrm{C}-4), 131.1$ (C-5), 129.6 (C-11), 125.7 (C-6), 125.4 (C-12), 122.1 (C-8), 122.0 (C10), 116.7 ($\mathrm{d}, \mathrm{J}=24.3 \mathrm{~Hz}, \mathrm{C}-2$), 40.5 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 30.9 (R-C-4'), 29.1 ($\mathrm{R}-\mathrm{C}-$ 2^{\prime}), 25.9 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 22.0 ($\mathrm{R}-\mathrm{C}-5^{\prime}$), 13.9 ($\mathrm{R}-\mathrm{C}-6^{\prime}$). ${ }^{19} \mathrm{~F}$ NMR (564 MHz , DMSO- d_{6}): δ 116.4. UPLC/MS analysis: Rt 2.28 min . MS (ES) $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FNO}_{4}$ requires 359, found $360[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~F}$ $[\mathrm{M}+\mathrm{H}]^{+}$: calculated 360.1611 measured $360.1617 \Delta \mathrm{ppm}$ 1.7.
4.1.7.27. (\pm)-2-[3-chloro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl] propanoic acid (29a). Compound 29a was prepared according to general procedure C using 28a ($2.12 \mathrm{~g}, 5.07 \mathrm{mmol}$). The crude was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH}, 98: 2$) to give 29a as a white solid ($1.95 \mathrm{~g}, 98 \%$). Mp: $48-59^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) $\delta 12.49$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}$), $7.76(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.48$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 7.45(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 7.34$ (dd, $J=8.0 \mathrm{~Hz} 1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.26(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-10)$, 7.14 (m, 2H, H-8 H-12), 3.78 (q, J = $7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.05 (q, $\left.J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.46\left(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.41(\mathrm{~d}$, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-5^{\prime}\right), 0.87(\mathrm{t}$, $\left.\mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 174.8$ (COOH), 154.1 (C-9), 150.8 (NHCOO), 142.7 (C-7), 139.4 (C-1), 137.3 (C-3), 131.4 (C-5), 131.0 (C-4), 129.0 (C-11), 128.9 (C-2), 126.7 (C-6), 125.7 (C-10), 122.3 (C-12), 121.0 (C-8), 43.9 (CH), 40.4 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 30.9 ($\mathrm{R}-\mathrm{C}-4^{\prime}$), 29.1 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 25.9 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 22.0 ($\mathrm{R}-\mathrm{C}-5^{\prime}$), 18.3 (CH_{3}), 13.9 (R-C-6'). UPLC/MS analysis: Rt 1.24 min. MS (ES) $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClNO}_{4}$ requires 403, found 404, $406[\mathrm{M}+\mathrm{H}]^{+}, 402,404[\mathrm{M}-\mathrm{H}]^{-}$. HRMS $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 404.1629; measured 404.1644 $\Delta \mathrm{ppm}$ 3.7.
4.1.7.28. (\pm)-2-[4-[3-(hexylcarbamoyloxy)phenyl]-3-methyl-phenyl] propanoic acid (29b). Compound 29b was prepared according to general procedure C using 28b ($0.94 \mathrm{~g}, 2.36 \mathrm{mmol}$). The crude was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH}, 98: 2$) to give 29b as a white solid ($0.76 \mathrm{~g}, 84 \%$). Mp: 89-90 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.75(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.43(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 7.22 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$), 7.17 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-5 \mathrm{H}-6 \mathrm{H}-10$), 7.09 (ddd, $J=8.1,2.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 7.05 (m, 1H, H-8), 3.69 (q, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.06\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 2.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ph}-$ CH_{3}), 1.47 ($\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}$), $1.40\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{H}-4^{\prime} \mathrm{H}-5^{\prime}$), $0.88\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}) $\delta 175.2$ (COOH), 154.2 (C-9), 150.9 (HNCOO),
142.0 (C-7), 140.4 (C-1), 138.9 (C-3), 134.7 (C-4), 129.5 (C-5), 129.4 (C-2), 129.0 (C-11), 125.4 (C-6), 125.0 (C-10), 122.1 (C-8), 120.1 (C12), 44.3 (CH), 40.4 (R-C-1'), 30.9 (R-C-4'), 29.1 (R-C-2'), 25.9 (R-C$\left.3^{\prime}\right)$, 22.0 ($\mathrm{R}-\mathrm{C}-5^{\prime}$), $20.1\left(\mathrm{Ph}^{2}-\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right), 13.9$ (R-C-6'). UPLC/MS analysis: Rt 2.70 min. MS (ES) $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}$ requires 383 , found 384 $[\mathrm{M}+\mathrm{H}]^{+}, 382[\mathrm{M}-\mathrm{H}]^{-}$. HRMS $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 384.2175; measured $384.2177 \Delta \mathrm{ppm} 0.5$.
4.1.7.29. (\pm)-2-[4-[3-(hexylcarbamoyloxy)phenyl]-3-(trifluoromethyl)phenylppropanoic acid (29c). Compound 29c was prepared according to general procedure C using 28 c (1.02 g , $2.26 \mathrm{mmol})$. The crude was purified by column chromatography (DCM/MeOH, 98: 2) to give 29c as a white solid ($0.8 \mathrm{~g}, 81 \%$). Mp: $95-97^{\circ} \mathrm{C}$ [dec]. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$, $7.75(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.73(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 7.64$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.43(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11)$, 7.39 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10 \mathrm{H}-12), 7.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 3.91$ $(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.05\left(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.47(\mathrm{p}$, $\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right), 1.44\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27(\mathrm{~m}, 6 \mathrm{H}, \mathrm{R}-\mathrm{H}-$ $3^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-5^{\prime}$), $0.85\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right){ }^{3}{ }^{3} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 174.8$ (COOH), 154.0 (C-9), 150.5 (HNCOO), 141.4 (C-7), 140.0 (C-4), 138.2 (C-1), 132.3 (C-5), 131.3 (C-6), 128.8 (C-11), 126.7 $(\mathrm{q}, J=29.1 \mathrm{~Hz}, \mathrm{C}-3), 125.2(\mathrm{C}-10), 125.1(\mathrm{C}-2), 124.0(\mathrm{q}, J=274.2 \mathrm{~Hz}$, CF_{3}), 121.8 (C-8), 121.1 (C-12), 44.0 (CH), 40.4 ($\left.\mathrm{R}-\mathrm{C}-1^{\prime}\right), 30.9$ ($\mathrm{R}-\mathrm{C}-4^{\prime}$), 29.1 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 25.9 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 22.0 ($\mathrm{R}-\mathrm{C}-5^{\prime}$), 18.3 (CH_{3}), 13.8 ($\mathrm{R}-\mathrm{C}-6^{\prime}$). ${ }^{19} \mathrm{~F}$ NMR (564 MHz, DMSO- d_{6}): δ 54.3. UPLC/MS analysis: Rt 2.63 min . MS (ES) $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{3}$ requires 437, found $438[\mathrm{M}+\mathrm{H}]^{+}$, $436[\mathrm{M}-\mathrm{H}]^{-}$. $\mathrm{HRMS} \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 438.1892; measured $438.189 \Delta \mathrm{ppm}-0.5$.
4.1.7.30. (\pm)-2-[4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid (29e). Compound 29e was prepared according to general procedure C using $\mathbf{2 8 e}(123 \mathrm{mg}, 0.32 \mathrm{mmol})$. The crude was purified by crystallization from $\mathrm{Et}_{2} \mathrm{O}$ /pentane to afford $\mathbf{2 9 e}$ as a white solid ($73 \mathrm{mg}, 62 \%$). Mp: $125-127{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.76(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-3 \mathrm{H}-5), 7.42$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), $7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 11), 7.38 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{H}-6$), 7.34 (s, 1H, H-8), 7.08 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 3.73(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.06(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.47$ ($\mathrm{p}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}$), 1.39 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), 1.29 (m, 6H, R-H-3' R-H-4' R-H-5'), 0.88 (t, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-$ $\left.6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 175.7$ (COOH), 154.7 (C-9), 152.1 (HNCOO), 141.6 (C-7), 141.2 (C-4), 138.3 (C-1), 130.1 (C-11), 128.5 (C2 C-6), 127.2 (C-3 C-5), 123.5 (C-12), 121.1 (C-10), 120.2 (C-8), 44.7 (CH), 40.9 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 31.4 ($\mathrm{R}-\mathrm{C}-4^{\prime}$), 29.6 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 26.3 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 22.5 ($\mathrm{R}-\mathrm{C}-5^{\prime}$), $18.9\left(\mathrm{CH}_{3}\right), 14.3$ ($\left.\mathrm{R}-\mathrm{C}-6^{\prime}\right)$. UPLC/MS analysis: Rt 2.30 min . MS (ES) $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4}$ requires 369 , found $370[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 370.2018 ; measured 370.2027 $\Delta \mathrm{ppm}$ 2.4.
4.1.7.31. (\pm)-2-[4-[3-(hexylcarbamoyloxy)phenyl]-3-nitro-phenyl] propanoic acid (29f). Compound $29 f$ was prepared according to general procedure C using $28 f(0.26 \mathrm{~g}, 0.51 \mathrm{mmol})$. The crude was purified by column chromatography (DCM/MeOH, 97: 3) to give $\mathbf{2 9 f}$ as a cream colored solid ($870 \mathrm{mg}, 77 \%$). Mp: $93-94{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 12.66$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}$), 7.91 ($\mathrm{d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 7.79(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.69(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$, 7.53 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $7.44(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 7.16 (m, 2 H , $\mathrm{H}-10 \mathrm{H}-12), 7.07(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 3.92(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 3.05 ($\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}$), 1.46 ($\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}$), 1.45 (d, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.28 (m, 6H, R-H-3' R-H-4' R-H-5'), 0.86 (t, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 174.6$ (COOH), 154.0 (C-9), 151.2 (HNCOO), 148.6 (C-3), 142.6 (C-7), 137.8 (C-1), 132.7 (C-4), 132.1 (C-6), 131.9 (C-5), 129.6 (C-11), 124.3 (C-12), 123.2 (C-2), 121.6 (C-10), 120.9 (C-8), 43.9 (CH), 40.5 ($\mathrm{R}-\mathrm{C}-1^{\prime}$), 30.9
(R-C-4'), 29.1 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 25.9 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 22.0 ($\mathrm{R}-5^{\prime}$), $18.2\left(\mathrm{CH}_{3}\right), 13.9$ ($\mathrm{R}-$ C-6'). UPLC/MS analysis: Rt 2.44 min. MS (ES) $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires 414, found $415[\mathrm{M}+\mathrm{H}]^{+}, 369\left[\mathrm{M}-\mathrm{H}-\mathrm{CO}_{2}\right]^{-}$. HRMS $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+}$: calculated 415.1869; measured $415.188 \Delta \mathrm{ppm} 2.6$.
4.1.8. (\pm)-3-[2-fluoro-4-(2-hydroxy-1-methyl-ethyl)phenyl]phenol (11)

To a solution of ZrCl_{4} ($291 \mathrm{mg}, 1.25 \mathrm{mmol}$) in THF (5 mL), NaBH_{4} ($189 \mathrm{mg}, 5 \mathrm{mmol}$) was added at rt . Upon mixing the reagents, gas evolution is immediately observed and a cream colored suspension was obtained. A solution of $\mathbf{8}(274 \mathrm{mg}$, 1 mmol) in THF (1 mL) was added and the mixture was stirred at rt for 2 h . The reaction was carefully quenched by the addition of $2 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and then extracted with EtOAc. The solvent was removed under reduced pressure and the residue was purified by column chromatography (Cy/EtOAc, 7: 3) to afford 11 as a white solid ($235 \mathrm{mg}, 96 \%$).

4.1.9. (\pm)-Methyl 2-[3-fluoro-4-[3-(hexoxycarbonylamino)phenyl]

 phenyl]propanoate (14d)To a suspension of $\mathbf{1 3 c}(114 \mathrm{mg}, 0.44 \mathrm{mmol})$ in toluene (10 mL), triphosgene was added ($392 \mathrm{mg}, 1.32 \mathrm{mmol}$) and the resulting mixture was refluxed for $15 \mathrm{~h} n$-hexanol ($224 \mathrm{mg}, 2.20 \mathrm{mmol}$) was added and stirring was continued at rt for further 15 h . The solvent was removed under reduced pressure and the residue was purified by column chromatography (Cy/EtOAc, 9:1) to afford 14d as a white solid ($145 \mathrm{mg}, 82 \%$).

4.1.10. Methyl 2-(3-fluoro-4-iodo-phenyl)acetate (16b)

To a solution of $\mathbf{1 6 a}(1 \mathrm{~g}, 3.57 \mathrm{mmol})$ in $\mathrm{MeOH}(54 \mathrm{~mL})$, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{~mL})$ was added and the resulting solution was stirred at rt overnight. After solvent evaporation, the crude oil was diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and filtered through a pad of SiO_{2} to afford $\mathbf{1 6 b}$ as a yellow liquid (1.03 g , quant.).

4.1.11. (\pm)-2-(3-chloro-4-nitro-phenyl)propanoic acid (23a)

Step 1: To a solution of $\mathbf{2 2 a}(4.70 \mathrm{~g}, 27.0 \mathrm{mmol})$ and diethyl methylmalonate ($4.13 \mathrm{~mL}, 25.0 \mathrm{mmol}$) in DMF (31 mL), NaOH ($1.11 \mathrm{~g}, 28 \mathrm{mmol}$) was added. The mixture was stirred at rt for 15 h . The dark red solution was poured into ice, acidified with concentrated $\mathrm{HCl}(4 \mathrm{~mL})$ and extracted with TBME. The organic solvent was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to give orange oil $(8.24 \mathrm{~g})$ which was used for the next step without any further purification.

Step 2: $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL}), \mathrm{AcOH}(38 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(13 \mathrm{~mL})$ were added to the orange oil ($8.24 \mathrm{~g}, 25 \mathrm{mmol}$) and the reaction mixture was refluxed for 24 h . AcOH was removed under reduced pressure, and the mixture was extracted with DCM. The organic layer was then extracted with a saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and the aqueous layer was acidified with 1 N HCl , and extracted with DCM. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give 23a as an orange oil ($5.00 \mathrm{~g}, 87 \%$).

4.1.12. (\pm)-Methyl 2-(3-chloro-4-nitro-phenyl)propanoate (24a)

$23 \mathrm{a}(5.00 \mathrm{~g}, 21.78 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(27 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{SO}_{4}$ ($58 \mathrm{~mL}, 1.09 \mathrm{mmol}$) was added and the mixture was stirred for 15 h . The solvent was removed under reduced pressure and the residue taken up in TBME, activated carbon was added and then the mixture passed through an allumina pad. The solvent was removed under reduced pressure to give $\mathbf{2 4 a}$ as a yellow oil ($4.57 \mathrm{~g}, 86 \%$).

4.1.13. (\pm)-Methyl 2-(4-amino-3-chloro-phenyl)propanoate (25a)

Iron powder ($4.19 \mathrm{~g}, 75 \mathrm{mmol}$) was added to a solution of $\mathbf{2 4 a}$ ($4.57 \mathrm{~g}, 18.76 \mathrm{mmol}$) in $\mathrm{MeOH} / \mathrm{HCl}(7: 1,40 \mathrm{~mL})$. The mixture was refluxed for 2 h , then filtered through a pad of Celite. The solvent
was removed under reduced pressure and taken up in $\mathrm{H}_{2} \mathrm{O}$, the thick slurry was basified with $\mathrm{K}_{2} \mathrm{CO}_{3}$, EtOAc was added, filtered through a pad of Celite and the two phases separated. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give 25a as an orange oil ($2.57 \mathrm{~g}, 64 \%$).

4.1.14. (\pm)-Methyl 2-(3-chloro-4-iodo-phenyl)propanoate (26a)

A solution of $\mathrm{NaNO}_{2}(0.91 \mathrm{~g}, 13.2 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added slowly to a solution of $\mathbf{2 5 a}(2.57 \mathrm{~g}, 12.03 \mathrm{mmol})$ in a mixture of $2 \mathrm{~N} \mathrm{HCl}(54 \mathrm{~mL})$ and dioxane (24 mL) at $0^{\circ} \mathrm{C}$. After stirring for 15 min at $0^{\circ} \mathrm{C}$, $\mathrm{NaI}(1.98 \mathrm{~g}, 13.23 \mathrm{mmol})$ was added, and then the mixture was stirred for 15 h , after which $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added. The solution was extracted with TBME, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, passed through an alumina pad and evaporated. The residue was purified by column chromatography (Cy: EtOAc, 95: 5) to obtain 26a as a colorless oil ($2.74 \mathrm{~g}, 70 \%$).

4.1.15. (\pm)-2-(3-methyl-4-nitro-phenyl)propanoic acid (23b)

Step 1: To a solution of 22b ($3.26 \mathrm{~mL}, 26.75 \mathrm{mmol}$) and diethyl methylmalonate ($4.59 \mathrm{~mL}, 25 \mathrm{mmol}$) in DMF (31 mL), NaOH (1.11 g , 27.75 mmol) was added. The mixture was stirred at rt for 15 h . The dark red solution was poured into ice, acidified with concentrated $\mathrm{HCl}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic solvent was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to give yellow oil (7.73 g) which was used for the next step without any further purification.

Step 2: $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL}), \mathrm{AcOH}(41 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(12 \mathrm{~mL})$ were added to the oil ($7.73 \mathrm{~g}, 25 \mathrm{mmol}$) and the mixture was refluxed for 24 h . AcOH was removed under reduced pressure and the product was extracted with DCM and washed with brine. The organic layer was treated with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$, and the separated aqueous layer was acidified with concentrated HCl , extracted with DCM, washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent 23b was obtained as brown clear oil ($2.50 \mathrm{~g}, 48 \%$) which was used for the next step without any further purification.
4.1.16. (\pm)-Methyl 2-(3-methyl-4-nitro-phenyl)propanoate (24b)

To a solution of 23b ($2.5 \mathrm{~g}, 11.95 \mathrm{mmol}$) in $\mathrm{MeOH}(120 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{SO}_{4}(0.22 \mathrm{~mL}, 1.2 \mathrm{mmol})$ was added and the mixture was stirred at rt for 15 h . The solvent was removed under reduced pressure and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and passed through a pad of alumina. The solvent was evaporated to obtain $\mathbf{2 4 b}$ as a yellow oil ($2.17 \mathrm{~g}, 81 \%$).
4.1.17. (\pm)-Methyl 2-(4-amino-3-methyl-phenyl)propanoate (25b)

To a mixture of $\mathbf{2 4 b}(2.17 \mathrm{~g}, 9.72 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(0.52 \mathrm{~g}$, $0.49 \mathrm{mmol}), \mathrm{HCO}_{2} \mathrm{NH}_{4}(3.68 \mathrm{~g}, 58.33 \mathrm{mmol})$ was added and stirred for 1 h . The catalyst was filtered through a pad of Celite and the solvent evaporated. The residue was taken up in EtOAc, passed through a pad os SiO_{2} and evaporated to $\mathbf{2 5 b}$ as a yellow oil (1.85 g , 98\%).

4.1.18. (\pm)-Methyl 2-(4-iodo-3-methyl-phenyl)propanoate (26b)

A solution of $\mathrm{NaNO}_{2}(0.71 \mathrm{~g}, 10.24 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added slowly to a solution of $\mathbf{2 5 b}(1.85 \mathrm{~g}, 9.57 \mathrm{mmol})$ in 2 N HCl $(43 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min a solution of $\mathrm{NaI}(2.15 \mathrm{~g}$, 14.36 mmol) was added dropwise and the mixture was allowed to reach rt and stirred for 2 h , then warmed to $60{ }^{\circ} \mathrm{C}$ for other 2 h $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by column chromatography (Cy/EtOAc, 95: 5) to give 26b as clear oil (1.14 g, 39%).

4.1.19. (\pm)-2-[4-nitro-3-(trifluoromethyl)phenyl]propanoic acid

 (23c)Step 1: To a solution of 22c ($3.74 \mathrm{~mL}, 26.75 \mathrm{mmol}$) and diethyl methylmalonate ($4.13 \mathrm{~mL}, 25 \mathrm{mmol}$) in DMF (30 mL), $\mathrm{NaOH}(1.11 \mathrm{~g}$, 27.75 mmol) was added. The mixture was stirred at rt for 15 h . The mixture was stirred at rt for 15 h . The dark red solution was poured into ice, acidified with concentrated $\mathrm{HCl}(4 \mathrm{~mL})$ and extracted with TBME. The organic solvent was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to give orange oil (9.1 g) which was used for the next step without any further purification. Step 2: $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, $\mathrm{AcOH}(37 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(12 \mathrm{~mL})$ were added to the orange oil and the mixture was refluxed for 24 h . AcOH was removed under reduced pressure, and the mixture was extracted with DCM. The organic layer was then extracted with a saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and the aqueous layer was acidified with 1 N HCl , and extracted with DCM. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give 23 c as an orange oil ($5.59 \mathrm{~g}, 85 \%$).

4.1.20. (\pm)-Methyl 2-[4-nitro-3-(trifluoromethyl)phenyl] propanoate (24c)

$\mathbf{2 3 c}(5.59 \mathrm{~g}, 21.24 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(28 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{SO}_{4}$ ($58 \mathrm{~mL}, 1.06 \mathrm{mmol}$) was added and the mixture was stirred for 19 h . The solvent was removed under reduced pressure and the residue taken up in TBME, activated carbon was added and then the mixture passed through an allumina pad. The solvent was removed under reduced pressure to give $\mathbf{2 4 c}$ as an orange oil ($5.70 \mathrm{~g}, 97 \%$).

4.1.21. (\pm)-Methyl 2-[4-amino-3-(trifluoromethyl)phenyl]

 propanoate (25c)To a mixture of $\mathbf{2 4 c}(5.59 \mathrm{~g}, 20.17 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(1.07 \mathrm{~g}$, $1.01 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL}) \mathrm{HCO}_{2} \mathrm{NH}_{4}(7.63 \mathrm{~g}, 121.00 \mathrm{mmol})$ was added and stirred at rt for 1 h . The catalyst was filtered through a pad of Celite and the solvent evaporated. The residue was taken up in EtOAc, passed through a pad os SiO_{2} and evaporated to $\mathbf{2 5}$ c as a dark red oil (4.94 g , quant.).

4.1.22. (\pm)-Methyl 2-[4-iodo-3-(trifluoromethyl)phenyl]propanoate

 (26c)A solution of $\mathrm{NaNO}_{2}(1.48 \mathrm{~g}, 21.38 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added slowly to a solution of $\mathbf{2 5 c}(4.94 \mathrm{~g}, 19.98 \mathrm{mmol})$ in 2 N HCl $(90 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min a solution of $\mathrm{NaI}(4.49 \mathrm{~g}$, 29.97 mmol) was added dropwise and the mixture was allowed to reach rt and stirred for 2 h , then warmed to $60^{\circ} \mathrm{C}$ for other 2 h $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added and the product was extracted with TBME, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by column chromatography (Cy: EtOAc, 95: 5) to give 26c as clear oil (5.51 g , 77\%).

4.1.23. (\pm)-2-[4-[3-(hexylcarbamoyloxy)phenyl]-3-hydroxyphenyl]propanoic acid (29d)

To a solution of $\mathbf{2 8 d}(0.72 \mathrm{~g}, 1.49 \mathrm{mmol})$ in EtOH (29 mL), Pd/C ($78 \mathrm{mg}, 74 \mathrm{mmol}$) and cyclohexene ($9 \mathrm{~mL}, 88 \mathrm{mmol}$) were added and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h . The catalyst was filtered through a pad of Celite and the solvent was removed under reduced pressure. The residue oil was taken up in dioxane (15 mL), $2 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$ was added and the solution was stirred at $80^{\circ} \mathrm{C}$ for 15 h . The solvent was removed under reduced pressure and the residue was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH}, 98$: 2) to obtain $\mathbf{2 9 d}$ as a white solid ($414 \mathrm{mg}, 73 \%$). Mp: 61-62 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 9.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 7.74 (t, J = $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 7.38 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-11 \mathrm{H}-12$), $7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 8), 7.22 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.02 (m, 1H, H-10), 6.90 (d, J = 1.5 Hz , $1 \mathrm{H}, \mathrm{H}-11$), 6.81 (dd, J = 7.9, 1.5 Hz, 1H, H-2), $3.61(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 3.06 ($\left.q, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.47\left(\mathrm{p}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right)$,
$1.36\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.28\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\mathrm{H}-5^{\prime}\right)$, 0.88 $\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) 175.2 (COOH), 154.3 (C-9), 154.2 (C-3), 150.8 (HNCOO), 141.9 (C-7), 139.4 (C-1), 130.20 (C-5), 128.6 (C-11), 125.4 (C-12), 125.3 (C-4), 122.0 (C8), 119.8 (C-10), 118.7 (C-6), 114.9 (C-2), 44.4 (CH), $40.4\left(\mathrm{R}-\mathrm{C}-1^{\prime}\right), 30.9$ (R-C-4'), 29.2 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 25.9 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 22.0 ($\mathrm{R}-\mathrm{C}-5^{\prime}$), $18.4\left(\mathrm{CH}_{3}\right), 13.9$ (R-C-6'). UPLC/MS analysis: Rt 2.33 min . MS (ES) $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{5}$ requires 385 , found $386[\mathrm{M}+\mathrm{H}]^{+}, 384[\mathrm{M}-\mathrm{H}]^{-}$. HRMS $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}$: calculated 386.1967; measured $386.1975 \Delta \mathrm{ppm} 2.1$.

4.1.24. (\pm)-Methyl 2-(4-nitrophenyl)propanoate (24e)

To a solution of $23 \mathrm{e}(1.95 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{~mL})$ was added and the resulting solution was stirred overnight at rt. After solvent evaporation, the crude oil was diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and filtered through a pad of SiO_{2} to afford $\mathbf{2 4 e}$ as yellow oil (2.10 g , quant.)

4.1.25. (\pm)-Methyl 2-(4-aminophenyl)propanoate (25e)

To a solution of $24 e(1.05 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(0.37 \mathrm{~g}, 0.35 \mathrm{mmol})$ followed by the addition of $\mathrm{HCO}_{2} \mathrm{NH}_{4}(1.9 \mathrm{~g}, 30 \mathrm{mmol})$. The solution was stirred at rt for 1 h . The solution was filtered through a pad of Celite and the filtrate was concentrated under reduced pressure. The residue was dissolved in EtOAc and filtered through a pad of SiO_{2} to afford $\mathbf{2 5 e}$ as an offwhite solid (0.89 g , quant.).

4.1.26. (\pm)-Methyl 2-(4-iodophenyl)propanoate (26e)

A solution of $\mathrm{NaNO}_{2}(0.69 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ was added slowly to a solution of $\mathbf{2 5 e}(1.75 \mathrm{~g}, 9.76 \mathrm{mmol})$ in 28 mL of 3 N HCl at $0^{\circ} \mathrm{C}$. After stirring for 1 h at $0^{\circ} \mathrm{C}, \mathrm{NaI}(1.50 \mathrm{~g}, 10 \mathrm{mmol})$ was added. The resultant mixture was slowly warmed to rt for 5 min , and heated at $60^{\circ} \mathrm{C}$ for 2 h . After cooling down to rt , the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic phase was then washed with a 1 M solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation, the residue was dissolved in EtOAc (40 mL) and treated with activated carbon and filtered through a pad of Celite. The solvent was removed under reduced pressure and the orange oil was purified by column chromatography (Cy/EtOAc, 95:5) to give 26e as a clear oil ($2.05 \mathrm{~g}, 72 \%$).

4.1.27. (\pm)-Methyl 2-(4-amino-3-nitro-phenyl)propanoate (25f)

Step 1: A solution of $\mathbf{2 5 e}(3.58 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(100 \mathrm{~mL})$ was heated at $130^{\circ} \mathrm{C}$ for 1 h . The solution was poured into $\mathrm{H}_{2} \mathrm{O}$, stirred for 3 h , then evaporated. The residual solid was taken up in $\mathrm{H}_{2} \mathrm{O}$ and filtered under vaccum to obtain a yellow solid. This solid was dissolved in $\mathrm{MeOH}(100 \mathrm{~mL})$ and $37 \% \mathrm{HCl}(5 \mathrm{~mL})$ was added. The solution was stirred for 2 h and the organic solvent was removed under reduced pressure. $\mathrm{H}_{2} \mathrm{O}$ was added and the precipitate was filtered under vacuum and washed with $\mathrm{H}_{2} \mathrm{O}$ to obtain methyl 2-(4acetamidophenyl) propanoate as a cream colored solid ($2.21 \mathrm{~g}, 50 \%$).

Step 2: (\pm)-Methyl 2-(4-acetamidophenyl)propanoate (2.21 g , $10 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(10 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C} . \mathrm{HNO}_{3}(1 \mathrm{~mL}, 14 \mathrm{mmol})$ was added and the mixture was stirred for 2 h . The yellow solution was poured in ice while stirring was continued. The aqueous layer was extracted with DCM, the organic layer was evaporated and the residue was taken up in DCM and washed with saturated aqueous NaHCO_{3} solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give (\pm)-methyl 2-(4-acetamido-3-nitro-phenyl)propanoate as a dark orange oil ($2.60 \mathrm{~g}, 98 \%$). Step 3: To a solution of (\pm)-methyl 2-(4-acetamido-3-nitro-phenyl)propanoate ($2.60 \mathrm{~g}, 9.77 \mathrm{mmol}$) in $\mathrm{MeOH}(98 \mathrm{~mL}) \mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL}, 183 \mathrm{mmol})$ was added and the mixture was stirred at reflux for 2 h . MeOH was evaporated under reduced pressure and the solution was carefully poured into a aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 120 \mathrm{~mL})$, then extracted with EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give 25 f as a dark
orange oil (2.20 g , quant.) which was used in the next step without further purification.

4.1.28. (\pm)-Methyl 2-(4-iodo-3-nitro-phenyl)propanoate (26f)

A solution of $\mathrm{NaNO}_{2}(0.74 \mathrm{~g}, 10.79 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added slowly to a solution of $\mathbf{2 5 f}(2.20 \mathrm{~g}, 9.81 \mathrm{mmol})$ in a mixture of $2 \mathrm{~N} \mathrm{HCl}(44 \mathrm{~mL})$ and dioxane (20 mL) at $0^{\circ} \mathrm{C}$. After stirring for 5 min at $0^{\circ} \mathrm{C}$, $\mathrm{NaI}(1.47 \mathrm{~g}, 9.81 \mathrm{mmol})$ was added and the reaction mixture was stirred for 30 min , after which $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added. The solution was extracted with TBME, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue which was purified by column chromatography (Cy: EtOAc, 95: 5) to obtain 26 f as a yellow oil ($1.00 \mathrm{~g}, 30 \%$).

4.1.29. (\pm)-2-[3-amino-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]

 propanoic acid hydrochloride (29g)To a solution of $\mathbf{2 9 g}(0.87 \mathrm{~g}, 2.10 \mathrm{mmol})$ in $\mathrm{MeOH}(21 \mathrm{~mL}), \mathrm{Pd} / \mathrm{C}$ $(223 \mathrm{mg}, 0.21 \mathrm{mmol})$, cyclohexene ($5.32 \mathrm{~mL}, 52.48 \mathrm{mmol}$) were added and the solution was stirred at $80^{\circ} \mathrm{C}$ for 2 h . The mixture was filtered through a pad of Celite and the solvent removed under reduced pressure to give a residue which was purified by column chromatography (DCM/MeOH, 96: 4) to obtain a glassy oil, which was dissolved in dioxane (10 mL) and concentrated $\mathrm{HCl}(1 \mathrm{~mL})$ was added. The solvent was removed under reduced pressure and the residue oil was suspended in DCM and $\mathrm{Et}_{2} \mathrm{O}$. The solid was filtered under vacuum to obtain $\mathbf{2 9 g}$ as an off-white solid ($488 \mathrm{mg}, 55 \%$). Mp: $180{ }^{\circ} \mathrm{C}$ [dec]. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\mathrm{d}_{6} \delta 12.51$ ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{COOH}), 7.79(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.48(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 7.35$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 7.29 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{H}-5$), $7.22(\mathrm{~m}, 2 \mathrm{H}$, H-6 H-8), 7.16 (dd, $J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 3.73 (q, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 3.05 ($\left.\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.45\left(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}\right)$, 1.39 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.29 (m, 6H, R-H-3' R-H-4' R-H-5'), 0.87 ($\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}$), NH_{3}^{+}not visible. ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 174.9$ (COOH), 154.2 (C-9), 151.4 (HNCOO), 145.1 (C-3), 142.1 (C-7), 138.1 (C-1), 131.3 (C-2), 129.7 (C-11), 125.5 (C-12), 124.9 (C-6), 122.1 (C-8), 121.2 (C-10), 120.8 (C-5), 44.2 (CH), 40.5 (R-C-1'), 31.0 ($\mathrm{R}-\mathrm{C}-4^{\prime}$), 29.2 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 25.9 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 22.1 ($\left.\mathrm{R}-\mathrm{C}-5^{\prime}\right), 18.3\left(\mathrm{CH}_{3}\right)$, 13.9 (R-C-6'). UPLC/MS analysis: Rt 2.46 min . MS (ES) $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 384 , found $385[\mathrm{M}+\mathrm{H}]^{+}, 383[\mathrm{M}-\mathrm{H}]^{-}$. $\mathrm{HRMS} \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$: calculated 385.2127; measured $385.2161 \Delta \mathrm{ppm} 8.8$.

4.1.30. Chiral HPLC separation of $\mathbf{1 0 r}$

10r ($500 \mathrm{mg}, 1.29 \mathrm{mmol}$) was subjected to chiral HPLC separation to afford the two enantiomers.
4.1.30.1. (-)-2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl] propanoic acid ((-)-10r). First eluted enantiomer (15.2 min), 112 mg (45\%). Mp: 99-100 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.29$ ($\mathrm{s}, 1 \mathrm{H}$, COOH), $7.79(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.51(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.48$ ($\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 7.39 ($\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 7.25 (m, 3H, H$2 \mathrm{H}-6 \mathrm{H}-8$), 7.15 (dd, $J=8.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 3.79 (q, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 3.07 ($\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}$), 1.47 ($\mathrm{p}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-\mathrm{L}^{\prime}$), 1.42 (d, J=7.1 Hz, 3H, CH3), 1.30 (m, 6H, R-H-3' R-H-4' R-H-5'), 0.88 ($\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}) 175.2 (COOH), 159.2 (d, J = 246.4 Hz, C-3), 154.6 (C-9), 151.7 (HNCOO), 143.9 (d, $J=8.0 \mathrm{~Hz}, \mathrm{C}-7$), 136.4 (C-1), 131.0 ($\mathrm{d}, J=3.5 \mathrm{~Hz}, \mathrm{C}-5$), 129.9 (C-11), 126.2 (d, J = $13.1 \mathrm{~Hz}, \mathrm{C}-4), 125.6$ (C-10), $124.5(\mathrm{~d}, J=3.0 \mathrm{~Hz}, \mathrm{C}-$ 6), 122.3 ($\mathrm{d}, J=2.6 \mathrm{~Hz}, \mathrm{C}-8$), 121.6 (C-12), 115.6 ($\mathrm{d}, J=23.2 \mathrm{~Hz}, \mathrm{C}-2$), 44.5 (CH), 40.9 ($\mathrm{R}-\mathrm{C}-1^{\prime}, 31.4$ (R-C-4'), 29.6 ($\mathrm{R}-\mathrm{C}-2^{\prime}$), 26.3 ($\mathrm{R}-\mathrm{C}-3^{\prime}$), 22.5 (R-C-5'), 18.7 (CH_{3}), 14.3 (R-C-6'). ${ }^{19} \mathrm{~F}$ NMR (564 MHz , DMSOd_{6}): δ 117.3. UPLC/MS analysis: Rt 2.58 min . MS (ES) $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{FNO}_{4}$ requires 387 , found $388[\mathrm{M}+\mathrm{H}]^{+} .[\alpha]_{\mathrm{D}}^{20}-29^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .>99.5 \%$ ee. HRMS $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 388.1924; measured $388.1919 \Delta \mathrm{ppm}-1.3$.
4.1.30.2. (+)-2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl] propanoic acid ((+)-10r). Second eluted enantiomer (25.7 min), $172 \mathrm{mg}(45 \%) . \mathrm{Mp}: 101-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.79(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.51(\mathrm{t}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 7.48$ (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 7.39 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 7.25 (m, 3H, H-2 H-6 H-8), 7.15 (dd, $J=8.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 3.79 (q, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.07\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{R}-\mathrm{H}-1^{\prime}\right), 1.47(\mathrm{p}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{R}-\mathrm{H}-2^{\prime}$), $1.42\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{R}-\mathrm{H}-3^{\prime} \mathrm{R}-\mathrm{H}-4^{\prime} \mathrm{R}-\right.$ $\left.\mathrm{H}-5^{\prime}\right), 0.88\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{R}-\mathrm{H}-6^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d ${ }_{6}$) $\delta 175.2$ (COOH), 159.2 (d, $J=246.4 \mathrm{~Hz}, \mathrm{C}-3), 154.6(\mathrm{C}-9), 151.7$ (HNCOO), 143.9 (d, J = 8.0 Hz, C-7), 136.4 (C-1), 131.0 (d, $J=3.5 \mathrm{~Hz}$, C-5), 129.9 (C-11), 126.2 (d, J=13.1 Hz, C-4), 125.6 (C-10), 124.5 (d, $J=3.0 \mathrm{~Hz}, \mathrm{C}-6), 122.3$ (d, $J=2.6 \mathrm{~Hz}, \mathrm{C}-8), 121.6$ (C-12), 115.6 (d, $J=23.2 \mathrm{~Hz}, \mathrm{C}-2), 44.5(\mathrm{CH}), 40.9\left(\mathrm{R}-\mathrm{C}-1^{\prime}\right), 31.4\left(\mathrm{R}-\mathrm{C}-4^{\prime}\right), 29.6(\mathrm{R}-\mathrm{C}-$ 2^{\prime}), 26.3 (R-C-3'), 22.5 ($\mathrm{R}-\mathrm{C}-5^{\prime}$), $18.7\left(\mathrm{CH}_{3}\right), 14.3$ ($\mathrm{R}-\mathrm{C}-6^{\prime}$). ${ }^{19} \mathrm{~F}$ NMR (564 MHz, DMSO- d_{6}): δ 117.3. UPLC/MS analysis: Rt 2.59 min . MS (ES) $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{FNO}_{4}$ requires 387 , found $388[\mathrm{M}+\mathrm{H}]^{+} .[\alpha]_{\mathrm{D}}^{20}+29^{\circ}(c 1.0$, $\left.\mathrm{CHCl}_{3}\right) .>99.5 \%$ ee. HRMS $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~F} \quad[\mathrm{M}+\mathrm{H}]^{+}$: calculated 388.1924; measured $388.1927 \Delta \mathrm{ppm} 0.8$.

4.2. Enzyme assays

Quantitative ${ }^{1} \mathrm{H}$ NMR analyses of DMSO- d_{6} stock solutions of tested compounds are performed using PULCON method (PUlse Length based CONcentration determination, Bruker software, topspin 3.0) $[68,69]$.

4.2.1. In vitro rat FAAH radiometric assay

Rat FAAH was prepared from male Sprague Dawley rat brains, homogenized in a potter in 20 mM of Tris $\mathrm{HCl} \mathrm{pH} 7.4,0.32 \mathrm{M}$ sucrose. The radiometric assay used to measure FAAH activity was performed in eppendorf tubes: $50 \mu \mathrm{~g}$ of total rat brain homogenate were pre-incubated in $445.5 \mu \mathrm{~L}$ of assay buffer (50 mM Tris- HCl pH 7.4, 0.05% Fatty acid-free bovine serum albumin (BSA)) with $4.5 \mu \mathrm{~L}$ of inhibitor (at appropriate concentration in DMSO) or DMSO alone (to measure FAAH total activity) for 10 min at $37^{\circ} \mathrm{C}$. The blank (no activity control) was prepared using $445.5 \mu \mathrm{~L}$ of assay buffer and $4.5 \mu \mathrm{~L}$ of DMSO without the $50 \mu \mathrm{~g}$ of total rat brain homogenate.

After 10 min of pre-incubation with test compounds, the reaction was started by adding of $50 \mu \mathrm{~L}$ of substrate and incubating for 30 min at $37^{\circ} \mathrm{C}$. The substrate was prepared in assay buffer in order to achieve the final concentration of $1 \mu \mathrm{M}$ arachidonoyl ethanolamide (Cayman Chemical N. 90050) and 0.6 nM anandamide [ethanolamine- $1-{ }^{3} \mathrm{H}$] (American Radiolabeled Chemicals Inc., ART. 0626 , conc. $1 \mathrm{mCi} / \mathrm{mL}, \mathrm{S} . \mathrm{A} .60 \mathrm{Ci} / \mathrm{mmol}$). The reaction was stopped by adding cold $1: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH}$. After 10 min of centrifugation ($845 \times \mathrm{g}$ at $4^{\circ} \mathrm{C}$) $600 \mu \mathrm{~L}$ of aqueous phase were transferred into scintillation vials previously filled with 3 mL of scintillation fluid (Ultima Gold ${ }^{\mathrm{TM}}$, Perkin Elmer Inc., Cat. 6013329). Radioactivity was measured by liquid scintillation counting (MicroBeta2 LumiJET Perkin Elmer Inc.).

4.2.2. In vitro COX assay

COX activity was measured using a commercial kit (COX Inhibitor Screening Assay Kit - Cayman Chemical N. 560131) which includes both ovine COX-1 and human recombinant COX-2 enzymes. Inhibitors were pre-incubated with either ovine COX-1 or human COX-2 in order to screen isozyme-specific inhibition. Differently than described in the kit protocol, the reaction was carried out in the presence of $5 \mu \mathrm{M}$ arachidonic acid while for the blank sample (no activity) the two enzymes were inactivated for 40 min at $100^{\circ} \mathrm{C}$. It was then measured the amount of PGF2 α produced by reduction with SnCl_{2} of COX-derived PGH2, via enzyme immunoassay (EIA) using a PG-specific antibody and competing with a PGacetylcholinesterase conjugate.

Absorbance was measured at 412 nm with a Tecan Infinite M200 plate reader and data were processed according to manufacturer's instructions.

The median inhibitory concentrations (IC_{50}) were determined by non-linear regression analysis of the Log [concentration]/ response curves generated with mean replicate values using a four parameter Hill equation curve fitting with GraphPad Prism 5 (GraphPad Software Inc., CA-USA). IC $_{50}$ values are means of ≥ 3 experiments performed in duplicate.

4.2.3. Ex vivo lipid analyses

All procedures performed were in accordance with the Ethical Guidelines of the International Association for the Study of Pain, Italian regulations on the protection of animals used for experimental and other scientific purposes (D.M. 116192), and European Economic Community regulations (O.J. of E.C. L 358/1 12/18/1986). Great care was taken to minimize suffering of the animals and to reduce the number of animals used. Mice were housed in groups of 5 in ventilated cages containing autoclaved cellulose paper as nesting material with free access to food and water. They were maintained under a $12 \mathrm{~h} \mathrm{light/dark} \mathrm{cycle} \mathrm{(lights} \mathrm{on} \mathrm{at} \mathrm{08:00} \mathrm{a.m),}$. controlled temperature ($21 \pm 1{ }^{\circ} \mathrm{C}$) and relative humidity ($55 \pm 10 \%$). The animals were randomly divided in groups of 6 . Behavioral testing was performed between 9:00 a.m. and 5:00 p.m. Scientists running the experiments were not aware of the treatment protocol at the time of the test (blind procedure). Mice were decapitated under anesthesia 1 h after intravenous injection of (S) -$(+)-\mathbf{1 0 r})(1 \mathrm{mg} / \mathrm{kg})$. Blood (0.3 mL) was collected through a left cardioventricular puncture with heparinized syringes and centrifuged at $2000 \times \mathrm{g}$ for 30 min to obtain plasma. OEA was extracted from plasma and measured by LC/MS as described. Briefly, $300 \mu \mathrm{~L}$ of plasma were centrifuged with cold acetone (1 mL) containing $\left[{ }^{2} \mathrm{H}_{4}\right]$-OEA (Cayman Chemical). Lipids were extracted with CHCl_{3} (2 vol), the organic phases were washed with water (1 vol), collected, dried under nitrogen and reconstituted in $\mathrm{MeOH}(0.2 \mathrm{~mL}$). LC/MS analyses were conducted on a Xevo TQ LC-MS/MS system (Waters) equipped with a BEH C18 column (Waters, Milford MA), using a linear gradient of MeCN in water. Quantification was performed monitoring the MRM transitions. Analyte peak areas were compared with a standard calibration curve ($1 \mathrm{nM}-10 \mu \mathrm{M}$). Tissue levels of TXA 2 and 6 -keto- PGF $_{1 \alpha}$ were determined using ELISA kits (ABcam, Cambridge, UK), following manufacturer's instructions.

Conflict of interest

The authors declare the following competing financial interest: Daniele Piomelli, Rita Scarpelli, Marco Migliore, Damien Habrant are inventors on the patent application WO2014023643, filed by the University of California and Fondazione Istituto Italiano di Tecnologia, which protects novel compounds disclosed in this paper.

Acknowledgment

The authors thank Dr Angelo Reggiani for helpful discussions, Ms Silvia Venzano and Mr Luca Goldoni for technical support and the National Institute on Drug Abuse (grant DA012413 to D.P.) for financial support.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.ejmech.2015.12.036.

References

[1] J. Steinmeyer, Pharmacological basis for the therapy of pain and inflammation with nonsteroidal anti-inflammatory drugs, Arthritis Res. 2 (2000) 379-385.
[2] J.F. Fries, NSAID gastropathy: the second most deadly rheumatic disease? Epidemiology and risk appraisal, J. Rheumatol. Suppl. 28 (1991) 6-10.
[3] R. Tamblyn, L. Berkson, W.D. Dauphinee, D. Gayton, R. Grad, A. Huang, L. Isaac, P. McLeod, L. Snell, Unnecessary prescribing of NSAIDs and the management of NSAID-related gastropathy in medical practice, Ann. Intern Med. 127 (1997) 429-438.
[4] B.K. Reuter, N.M. Davies, J.L. Wallace, Nonsteroidal anti-inflammatory drug enteropathy in rats: role of permeability, bacteria, and enterohepatic circulation, Gastroenterology 112 (1997) 109-117.
[5] N.M. Davies, J.L. Wallace, Nonsteroidal anti-inflammatory drug-induced gastrointestinal toxicity: new insights into an old problem, J. Gastroenterol. 32 (1997) 127-133.
[6] A.L. Blobaum, L.J. Marnett, Structural and functional basis of cyclooxygenase inhibition, J. Med. Chem. 50 (2007) 1425-1441.
[7] J.L. Wallace, NSAID gastroenteropathy: past, present and future, Can. J. Gastroenterol. 10 (1996) 451-459.
[8] J.L. Wallace, Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn't the stomach digest itself? Physiol. Rev. 88 (2008) 1547-1565.
[9] J.L. Wallace, L. Vong, NSAID-induced gastrointestinal damage and the design of GI-sparing NSAIDs, Curr. Opin. Investig. Drugs 9 (2008) 1151-1156.
[10] E. Ricciotti, G.A. FitzGerald, Prostaglandins and inflammation, Arterioscler. Thromb. Vasc. Biol. 31 (2011) 986-1000.
[11] J.A. Mitchell, T.D. Warner, COX isoforms in the cardiovascular system: understanding the activities of non-steroidal anti-inflammatory drugs, Nat. Rev. Drug Discov. 5 (2006) 75-86.
[12] J. Zhang, E.L. Ding, Y. Song, Adverse effects of cyclooxygenase 2 inhibitors on renal and arrhythmia events: meta-analysis of randomized trials, JAMA 296 (2006) 1619-1632.
[13] C.A. Rouzer, L.J. Marnett, Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways, Chem. Rev. 111 (2011) 5899-5921.
[14] F. Piscitelli, V. Di Marzo, "Redundancy" of endocannabinoid inactivation: new challenges and opportunities for pain control, ACS Chem. Neurosci. 3 (2012) 356-363.
[15] S. Maione, B. Costa, V. Di Marzo, Endocannabinoids: a unique opportunity to develop multitarget analgesics, Pain 154 (Suppl. 1) (2013) S87-S93.
[16] J.L. Wallace, L.J. Ignarro, S. Fiorucci, Potential cardioprotective actions of noreleasing aspirin, Nat. Rev. Drug Discov. 1 (2002) 375-382.
[17] L. Lazzarato, M. Donnola, B. Rolando, E. Marini, C. Cena, G. Coruzzi, E. Guaita, G. Morini, R. Fruttero, A. Gasco, S. Biondi, E. Ongini, Searching for new NOdonor aspirin-like molecules: a new class of nitrooxy-acyl derivatives of salicylic acid, J. Med. Chem. 51 (2008) 1894-1903.
[18] R.R. Ranatunge, M. Augustyniak, U.K. Bandarage, R.A. Earl, J.L. Ellis, D.S. Garvey, D.R. Janero, L.G. Letts, A.M. Martino, M.G. Murty, S.K. Richardson, J.D. Schroeder, M.J. Shumway, S.W. Tam, A.M. Trocha, D.V. Young, Synthesis and selective cyclooxygenase-2 inhibitory activity of a series of novel, nitric oxide donor-containing pyrazoles, J. Med. Chem. 47 (2004) 2180-2193.
[19] K. Chegaev, L. Lazzarato, P. Tosco, C. Cena, E. Marini, B. Rolando, P.A. Carrupt, R. Fruttero, A. Gasco, NO-donor COX-2 inhibitors. New nitrooxy-substituted 1,5-diarylimidazoles endowed with COX-2 inhibitory and vasodilator properties, J. Med. Chem. 50 (2007) 1449-1457.
[20] J.L. Wallace, Hydrogen sulfide-releasing anti-inflammatory drugs, Trends Pharmacol. Sci. 28 (2007) 501-505.
[21] J.L. Wallace, G. Caliendo, V. Santagada, G. Cirino, S. Fiorucci, Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat, Gastroenterology 132 (2007) 261-271.
[22] J.L. Wallace, G. Caliendo, V. Santagada, G. Cirino, Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346), Br. J. Pharmacol. 159 (2010) 1236-1246.
[23] C. Charlier, C. Michaux, Dual inhibition of cyclooxygenase-2 (COX-2) and 5lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal antiinflammatory drugs, Eur. J. Med. Chem. 38 (2003) 645-659.
[24] P.N. Rao, Q.H. Chen, E.E. Knaus, Synthesis and structure-activity relationship studies of 1,3-diarylprop-2-yn-1-ones: dual inhibitors of cyclooxygenases and lipoxygenases, J. Med. Chem. 49 (2006) 1668-1683.
[25] S.H. Hwang, K.M. Wagner, C. Morisseau, J.Y. Liu, H. Dong, A.T. Wecksler, B.D. Hammock, Synthesis and structure-activity relationship studies of ureacontaining pyrazoles as dual inhibitors of cyclooxygenase-2 and soluble epoxide hydrolase, J. Med. Chem. 54 (2011) 3037-3050.
[26] M. Seierstad, J.G. Breitenbucher, Discovery and development of fatty acid amide hydrolase (FAAH) inhibitors, J. Med. Chem. 51 (2008) 7327-7343.
[27] M.T. Cocco, C. Congiu, V. Onnis, M. Morelli, O. Cauli, Synthesis of ibuprofen heterocyclic amides and investigation of their analgesic and toxicological properties, Eur. J. Med. Chem. 38 (2003) 513-518.
[28] S. Holt, B. Paylor, L. Boldrup, K. Alajakku, S. Vandevoorde, A. Sundstrom, M.T. Cocco, V. Onnis, C.J. Fowler, Inhibition of fatty acid amide hydrolase, a key endocannabinoid metabolizing enzyme, by analogues of ibuprofen and indomethacin, Eur. J. Pharmacol. 565 (2007) 26-36.
[29] K.C. Duggan, D.J. Hermanson, J. Musee, J.J. Prusakiewicz, J.L. Scheib, B.D. Carter, S. Banerjee, J.A. Oates, L.J. Marnett, (R)-Profens are substrate-selective
inhibitors of endocannabinoid oxygenation by COX-2, Nat. Chem. Biol. 7 (2011) 803-809.
[30] A.D. Favia, D. Habrant, R. Scarpelli, M. Migliore, C. Albani, S.M. Bertozzi, M. Dionisi, G. Tarozzo, D. Piomelli, A. Cavalli, M. De Vivo, Identification and characterization of Carprofen as a multitarget fatty acid amide Hydrolase Cyclooxygenase inhibitor, J. Med. Chem. 55 (2012) 8807-8826.
[31] M.A. Windsor, D.J. Hermanson, P.J. Kingsley, S. Xu, B.C. Crews, W. Ho, C.M. Keenan, S. Banerjee, K.A. Sharkey, L.J. Marnett, Substrate-selective inhibition of cyclooxygenase-2: development and evaluation of achiral profen probes, ACS Med. Chem. Lett. 3 (2012) 759-763.
[32] C.J. Fowler, E. Bjorklund, A.H. Lichtman, P.S. Naidu, C. Congiu, V. Onnis, Inhibitory properties of ibuprofen and its amide analogues towards the hydrolysis and cyclooxygenation of the endocannabinoid anandamide, J. Enzyme Inhib. Med. Chem. 28 (2013) 172-182.
[33] M. Cipriano, E. Bjorklund, A.A. Wilson, C. Congiu, V. Onnis, C.J. Fowler, Inhibition of fatty acid amide hydrolase and cyclooxygenase by the N -(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen, Eur. J. Pharmacol. 720 (2013) 383-390.
[34] C.N. Serhan, N. Chiang, T.E. Van Dyke, Resolving inflammation: dual antiinflammatory and pro-resolution lipid mediators, Nat. Rev. Immunol. 8 (2008) 349-361.
[35] C. Morisseau, B.D. Hammock, Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health, Annu. Rev. Pharmacol. Toxicol. 53 (2013) 37-58.
[36] F. Massa, G. Marsicano, H. Hermann, A. Cannich, K. Monory, B.F. Cravatt, G.L. Ferri, A. Sibaev, M. Storr, B. Lutz, The endogenous cannabinoid system protects against colonic inflammation, J. Clin. Invest. 113 (2004) 1202-1209
[37] M.T. Cencioni, V. Chiurchiu, G. Catanzaro, G. Borsellino, G. Bernardi, L. Battistini, M. Maccarrone, Anandamide suppresses proliferation and cytokine release from primary human T-lymphocytes mainly via CB2 receptors, PLoS One 5 (2010) e8688.
[38] V. Chiurchiu, M.T. Cencioni, E. Bisicchia, M. De Bardi, C. Gasperini, G. Borsellino, D. Centonze, L. Battistini, M. Maccarrone, Distinct modulation of human myeloid and plasmacytoid dendritic cells by anandamide in multiple sclerosis, Ann. Neurol. 73 (2013) 626-636.
[39] J. Fu, S. Gaetani, F. Oveisi, J. Lo Verme, A. Serrano, F. Rodriguez De Fonseca, A. Rosengarth, H. Luecke, B. Di Giacomo, G. Tarzia, D. Piomelli, Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha, Nature 425 (2003) 90-93.
[40] J. LoVerme, R. Russo, G. La Rana, J. Fu, J. Farthing, G. Mattace-Raso, R. Meli, A. Hohmann, A. Calignano, D. Piomelli, Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-alpha, J. Pharmacol. Exp. Ther. 319 (2006) 1051-1061.
[41] M. Suardiaz, G. Estivill-Torrus, C. Goicoechea, A. Bilbao, F. Rodriguez de Fonseca, Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain, Pain 133 (2007) 99-110.
[42] D.E. Wilson, Role of prostaglandins in gastroduodenal mucosal protection, J. Clin. Gastroenterol. 13 (Suppl. 1) (1991) S65-S71
[43] K. Wright, N. Rooney, M. Feeney, J. Tate, D. Robertson, M. Welham, S. Ward, Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing, Gastroenterology 129 (2005) 437-453.
[44] P.S. Naidu, L. Booker, B.F. Cravatt, A.H. Lichtman, Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception, J. Pharmacol. Exp. Ther. 329 (2009) 48-56.
[45] O. Sasso, R. Bertorelli, T. Bandiera, R. Scarpelli, G. Colombano, A. Armirotti, G. Moreno-Sanz, A. Reggiani, D. Piomelli, Peripheral FAAH inhibition causes profound antinociception and protects against indomethacin-induced gastric lesions, Pharmacol. Res. 65 (2012) 553-563.
[46] T.W. Grim, S. Ghosh, K.L. Hsu, B.F. Cravatt, S.G. Kinsey, A.H. Lichtman, Combined inhibition of FAAH and COX produces enhanced anti-allodynic effects in mouse neuropathic and inflammatory pain models, Pharmacol. Biochem. Behav. 124 (2014) 405-411.
[47] D. Richardson, R.G. Pearson, N. Kurian, M.L. Latif, M.J. Garle, D.A. Barrett, D.A. Kendall, B.E. Scammell, A.J. Reeve, V. Chapman, Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis, Arthritis Res. Ther. 10 (2008) R43.
[48] A. Di Sabatino, N. Battista, P. Biancheri, C. Rapino, L. Rovedatti, G. Astarita, A. Vanoli, E. Dainese, M. Guerci, D. Piomelli, S.L. Pender, T.T. MacDonald, M. Maccarrone, G.R. Corazza, The endogenous cannabinoid system in the gut of patients with inflammatory bowel disease, Mucosal Immunol. 4 (2011) 574-583.
[49] J. Suarez, Y. Romero-Zerbo, L. Marquez, P. Rivera, M. Iglesias, F.J. BermudezSilva, M. Andreu, F. Rodriguez de Fonseca, Ulcerative colitis impairs the acylethanolamide-based anti-inflammatory system reversal by 5aminosalicylic acid and glucocorticoids, PLoS One 7 (2012) e37729.
[50] Singer II, D.W. Kawka, S. Schloemann, T. Tessner, T. Riehl, W.F. Stenson Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease, Gastroenterology 115 (1998) 297-306.
[51] O. Sasso, M. Migliore, D. Habrant, A. Armirotti, C. Albani, M. Summa, G. Moreno-Sanz, R. Scarpelli, D. Piomelli, Multitarget fatty acid amide hydrolase/cyclooxygenase blockade suppresses intestinal inflammation and protects against nonsteroidal anti-inflammatory drug-dependent gastrointestinal damage, FASEB J. 29 (2015) 2616-2627.
[52] S. Kathuria, S. Gaetani, D. Fegley, F. Valino, A. Duranti, A. Tontini, M. Mor,
G. Tarzia, G. La Rana, A. Calignano, A. Giustino, M. Tattoli, M. Palmery, V. Cuomo, D. Piomelli, Modulation of anxiety through blockade of anandamide hydrolysis, Nat. Med. 9 (2003) 76-81.
[53] G. Tarzia, A. Duranti, A. Tontini, G. Piersanti, M. Mor, S. Rivara, P.V. Plazzi, C. Park, S. Kathuria, D. Piomelli, Design, synthesis, and structure-activity relationships of alkylcarbamic acid aryl esters, a new class of fatty acid amide hydrolase inhibitors, J. Med. Chem. 46 (2003) 2352-2360.
[54] M. Mor, S. Rivara, A. Lodola, P.V. Plazzi, G. Tarzia, A. Duranti, A. Tontini, G. Piersanti, S. Kathuria, D. Piomelli, Cyclohexylcarbamic acid 3'- or 4'substituted biphenyl-3-yl esters as fatty acid amide hydrolase inhibitors: synthesis, quantitative structure-activity relationships, and molecular modeling studies, J. Med. Chem. 47 (2004) 4998-5008.
[55] G. Tarzia, A. Duranti, G. Gatti, G. Piersanti, A. Tontini, S. Rivara, A. Lodola, P.V. Plazzi, M. Mor, S. Kathuria, D. Piomelli, Synthesis and structure-activity relationships of FAAH inhibitors: cyclohexylcarbamic acid biphenyl esters with chemical modulation at the proximal phenyl ring, ChemMedChem 1 (2006) 130-139.
[56] M. Mor, A. Lodola, S. Rivara, F. Vacondio, A. Duranti, A. Tontini, S. Sanchini, G. Piersanti, J.R. Clapper, A.R. King, G. Tarzia, D. Piomelli, Synthesis and quantitative structure-activity relationship of fatty acid amide hydrolase inhibitors: modulation at the N-portion of biphenyl-3-yl alkylcarbamates, J. Med. Chem. 51 (2008) 3487-3498.
[57] M. Mileni, S. Kamtekar, D.C. Wood, T.E. Benson, B.F. Cravatt, R.C. Stevens, Crystal structure of fatty acid amide hydrolase bound to the carbamate inhibitor URB597: discovery of a deacylating water molecule and insight into enzyme inactivation, J. Mol. Biol. 400 (2010) 743-754.
[58] J.R. Clapper, G. Moreno-Sanz, R. Russo, A. Guijarro, F. Vacondio, A. Duranti, A. Tontini, S. Sanchini, N.R. Sciolino, J.M. Spradley, A.G. Hohmann, A. Calignano, M. Mor, G. Tarzia, D. Piomelli, Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism, Nat. Neurosci. 13 (2010) 1265-1270.
[59] R.G. Kurumbail, A.M. Stevens, J.K. Gierse, J.J. McDonald, R.A. Stegeman, J.Y. Pak, D. Gildehaus, J.M. Miyashiro, T.D. Penning, K. Seibert, P.C. Isakson, W.C. Stallings, Structural basis for selective inhibition of cyclooxygenase- 2 by
anti-inflammatory agents, Nature 384 (1996) 644-648
[60] B.S. Selinsky, K. Gupta, C.T. Sharkey, P.J. Loll, Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and timeindependent inhibitors elicit identical enzyme conformations, Biochemistry 40 (2001) 5172-5180.
[61] C.I. Bayly, W.C. Black, S. Leger, N. Ouimet, M. Ouellet, M.D. Percival, Structurebased design of COX-2 selectivity into flurbiprofen, Bioorg. Med. Chem. Lett. 9 (1999) 307-312.
[62] G. Lu, R. Franzén, X.J. Yu, Y.J. Xu, Synthesis of flurbiprofen via Suzuki reaction catalyzed by Palladium charcoal in water, Chin. Chem. Lett. 17 (2006) 461-464.
[63] A. Del Zotto, F. Amoroso, W. Baratta, P. Rigo, Very fast Suzuki-Miyaura reaction catalyzed by $\mathrm{Pd}(\mathrm{OAc}) 2$ under aerobic conditions at room temperature in EGME/H2O, Eur. J. Org. Chem. 2009 (2009) 110-116.
[64] S. Narasimhan, R. Balakumar, Zirconium borohydride - a versatile reducing agent for the reduction of electrophilic and nucleophilic substrates, Synth. Commun. 30 (2000) 4387-4395.
[65] W.C. Bartolini, Brian M., Chen Barbara, Chien Yueh-Tyng, Currie Mark G., Milne Todd G., Pearson, J.J.Z. James Philip; Talley, Craig, Cyclooxygenase 2 (COX-2) and Fatty Acid Amide Hydrolase (FAAH) Inhibitors for Therapeutic Use, WO2005002525.
[66] M.G. Malkowski, S.L. Ginell, W.L. Smith, R.M. Garavito, The productive conformation of arachidonic acid bound to prostaglandin synthase, Science 289 (2000) 1933-1937.
[67] J.R. Kiefer, J.L. Pawlitz, K.T. Moreland, R.A. Stegeman, W.F. Hood, J.K. Gierse, A.M. Stevens, D.C. Goodwin, S.W. Rowlinson, L.J. Marnett, W.C. Stallings, R.G. Kurumbail, Structural insights into the stereochemistry of the cyclooxygenase reaction, Nature 405 (2000) 97-101.
[68] G. Wider, L. Dreier, Measuring protein concentrations by NMR spectroscopy, J. Am. Chem. Soc. 128 (2006) 2571-2576.
[69] I.W. Burton, M.A. Quilliam, J.A. Walter, Quantitative 1H NMR with external standards: use in preparation of calibration solutions for algal toxins and other natural products, Anal. Chem. 77 (2005) 3123-3131.

[^0]: * Corresponding author.
 ** Corresponding author.
 E-mail addresses: piomelli@uci.edu (D. Piomelli), rita.scarpelli@iit.it (R. Scarpelli).
 ${ }^{1}$ Present address: In-Cell-Art, 21 rue de la Noue Bras de Fer, 44200 Nantes, France.
 ${ }^{2}$ Present address: Covagen AG, Wagistrasse 25, 8952, Zürich Schlieren, Switzerland.

[^1]: ${ }^{\text {a }}$ Values are reported as mean values of ≥ 3 experiments performed.
 ${ }^{\mathrm{b}}(R)$-configurated enantiomer of $\mathbf{1 0 r}$ (see Supporting Information for details).
 c (S)-configurated enantiomer of $\mathbf{1 0 r}$ (see Supporting Information for details).

