

This is a repository copy of Assessment of potentially toxic trace element contamination in urban allotment soils and their uptake by onions: A preliminary case study from Sheffield, England.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/140065/

Version: Accepted Version

Article:

Weber, A.M., Mawodza, T., Sarkar, B. et al. (1 more author) (2019) Assessment of potentially toxic trace element contamination in urban allotment soils and their uptake by onions: A preliminary case study from Sheffield, England. Ecotoxicology and Environmental Safety, 170. pp. 156-165. ISSN 0147-6513

https://doi.org/10.1016/j.ecoenv.2018.11.090

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Assessment of potentially toxic trace element contamination in urban allotment soils and
2	their uptake by onions: A preliminary case study from Sheffield, England
3	
4	Annika M. Weber ^{1*} , Tinashe Mawodza ² Binoy Sarkar ^{3,4} and Manoj Menon ⁵
5	
6	¹ Department of Oncology and Metabolism, The Medical School, The University of Sheffield,
7	Beech Hill Road, Sheffield S10 2RX, United Kingdom
8	² Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield
9	S10 2TN, United Kingdom
10	³ Leverhulme Centre for Climate Change Mitigation, Department of Animal and Plant Sciences,
11	The University of Sheffield, Sheffield S10 2TN, United Kingdom
12	⁴ Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
13	⁵ Department of Geography, The University of Sheffield, Sheffield S10 2TN, United Kingdom
14	*Corresponding author: Annika M. Weber; The University of Sheffield;
15	email: annikamweber@gmail.com. Telephone: +1 720 212 9017
16	
17	
18	
19	
20	

21 Abstract

Toxic trace element (TTE) contamination in urban soils may pose potential health risks, 22 especially in cities with previous industrial activities. This study aimed to investigate soil 23 24 contamination in urban allotments in Sheffield, the uptake of TTEs in autumn and spring sown onions (Allium cepa), and their potential risks on human health via consumption of the crops. 25 Paired soil and plant samples were taken in triplicates from four private allotments to assess 26 potentially elevated levels of lead (Pb), zinc (Zn), copper (Cu), arsenic (As), and chromium (Cr). 27 These elements in soils exceeded the ambient background levels for England. Both Pb and As 28 exceeded some UK and EU soil tolerable limits. Concentration factors (CF) were calculated as 29 the ratio of trace element in the plant as compared to that in the soil, and uptake rates were in the 30 order Zn>Cu>Cr>Pb>As. Concentrations were higher for most TTEs in spring sown onions 31 (SSO), and had significantly higher CF (p<0.05) for Pb and Cr than autumn sown onions (ASO), 32 whereas the opposite was true for As. Toxic elements in plants did not exceed FAO/WHO intake 33 limits when considering TTE content per plant and consumption rates. Human health risk 34 35 assessment calculations using target hazard quotients (THQ) and hazard indexes (HI) indicated that consuming onions alone did not pose an immediate health risk. 36

37 Keywords

38 Urban agriculture; Allotment soils; Toxic trace elements; Plant uptake; Health risk assessment

- 40
- 41
- 42
- 43
- 44

45 1. Introduction

Nearly 50% of the global population now live in cities, and it is expected to rise to 70% 46 by 2050 (Malik et al., 2013; United Nations, 2008). At the same time, it is estimated that 47 approximately 800 million people across the world are engaged in some sort of agricultural 48 activity, contributing to 15-20% of the world's food production (Lorenz et al. 2015). Recently 49 urban agriculture is receiving significant momentum around major cities in the world as such 50 practices are closely associated with human health and wellbeing (Perez-Vazquez et al., 2005; 51 Sustainable Development Commission, 2008). This is a common technique to revamp unused 52 plots of land in urban areas for both the aesthetic appeal and to build neighbourhood cohesion 53 54 (Palmer, 2018). Some of these plots of land, however, may have been left unused for reasons such as previous soil contamination. 55

56 One of the major problems facing urban food production is toxic trace elements (TTEs) found in soil and produce (Alfaro et al., 2017; Antisari et al., 2015; Hu et al., 2013; Laidlaw et 57 al., 2018; Mitchell et al., 2014). Although there are various pathways for the intake of trace 58 59 elements, the transfer of elevated amounts of these TTEs into the food chain may adversely affect the health conditions of local population where the crops are consumed (Dehghani et al., 60 61 2017; Islam et al., 2007; Qing et al., 2015; Tchounwou et al., 2012). Exposure assessments of 62 these potentially harmful heavy metals through vegetable consumption is well documented, especially in areas with a history of smelting and mining activity (Augustsson et al., 2015; 63 Beccaloni et al., 2013; Chen et al., 2014; Intawongse and Dean, 2006; Pelfrêne et al., 2013; 64 Wang et al., 2012). Given many health and well-being benefits achieved through urban 65 agriculture, it is absolutely vital to adopt appropriate management of these urban soils and 66 monitor produce grown thereon for the presence of contaminants including TTEs. Public health 67 risk must be assessed to better understand exposure to TTEs via urban agricultural activities, 68

69 especially due to the growing trend of own-grown food consumption by urban dwellers

70 (Ngumbi, 2017; Palmer, 2018).

In the UK, there are an estimated 300,000 allotments, and 87 percent of households have 71 their own garden (Buck et al., 2016). Increased urbanisation and a history of industrial activities 72 and environmental pollution, however, have led to many UK cities reporting high levels of heavy 73 metals in gardens and allotments (Giusti, 2011; Knight, 2004; Moir and Thornton, 1989). In 74 many cases the sites were remediated, and allotment holders were advised not to consume crops 75 from the previously contaminated lands. No allotment holders demonstrated signs of toxic metal 76 77 poisoning, and blood level concentrations were within the normal range (Hough et al., 2004; Knight, 2004; Prasad and Nazareth, 2000). However, there is a serious lack of information about 78 the risk of TTE exposure in populations who consume foods, especially vegetable crops, grown 79 80 in allotment soils. In addition, some allotments might be located on a previously declared contaminated site but did not receive any real remediation treatment and now host agricultural 81 82 activity without any risk assessment for TTEs.

83 TTEs may also accumulate at higher than ambient background levels due to anthropogenic activities. This may occur due to atmospheric deposition throughout urban areas 84 from fossil fuel combustion and dust from contaminated sites. The most significant source of 85 86 lead contamination in vegetables derives from the aerial deposition of particulates (Giusti, 2011; 87 Hough et al., 2004). Other areas especially vulnerable to contamination are those with a history of waste and sewage sludge dumping, metalliferous mining and smelting, and metallurgical 88 industries (Alloway, 2004, 1995; Culbard et al., 1988; Douay et al., 2013). Thus, many previous 89 90 industrial sites now used for gardening purposes may pose a significant risk to human health. Human exposure to potentially toxic metals by ingestion depends largely on their 91 concentrations in consumed crops. The amount of metal taken up by plants in relation to the 92 93 amount of that present in the soil can be represented by the concentration factor (CF), defined as

the ratio of the plant concentration of a metal (as dry weight) to its concentration in the soil (Noli 94 and Tsamos, 2016). Many factors regulate this ratio as not all metal ions in the soil are 95 bioavailable to plants. Metal concentrations in plants are influenced by physicochemical 96 properties of the soil and levels of metal concentrations in the soil. Soil pH is an especially 97 important physicochemical characteristic in assessing the mobility of metal cations. Generally, 98 TTE cations are most mobile under acidic soil conditions, and decrease in bioavailability with 99 increasing pH (Gebrekidan et al., 2013; Jung, 2008; Malik et al., 2013; Sauvé et al., 2000). 100 However, it is important to note that this relationship can be confounded as the effect of 101 changing metal ion reactivity is highly variable (Caporale and Violante, 2016; Hough et al., 102 103 2003). Some plants have also demonstrated metal tolerance mechanisms due to various traits such as selective uptake of ions, the decreased permeability of membranes and localisation of 104 105 metals in certain areas of the plant (Jitendra Kumar et al., 2015; Viehweger, 2014). Typically, the 106 highest concentrations of pollutants are found in plant roots and the lowest in plant seeds 107 (Sharma and Dubey, 2005). Such defence mechanisms also depend on the type of metal, as the 108 same plant may take up different quantities depending on the element itself (Fytianos et al., 2001; Stasinos et al., 2014a, 2014b). 109

110 Both soil and plant factors as discussed above could potentially alter the TTE chemistry 111 and mobility in the soil plant system. As a result, a contaminated allotment which was declared 112 safe several years ago for growing crops might become unsafe soil today. Therefore, the overarching aim of this investigation is to evaluate the potential risks to human health through 113 114 consumption of allotment-grown vegetables, which will directly feed into urban soil ecosystem 115 services including food security, health and well-being of urban population. This investigation focuses on onions, which are one of the most widely grown and consumed vegetables in the UK. 116 Specifically, this study aims to: determine the concentrations and spatial variation of Pb, Zn, Cu, 117 As, and Cr in allotment soils in Sheffield, UK, assess the uptake of above metals by spring and 118

autumn sown onions (A. cepa), and estimate the risk to humans based on the onion consumptionrates.

121

122 **2. Materials and methods**

123 2.1. Study area

This investigation was carried out in the city of Sheffield in South Yorkshire, England, 124 UK, which is home to centuries of industrial activities with an international reputation in the 125 steel industry. High levels of Pb were previously reported in Sheffield, where levels of Pb over 126 11,000 mg kg⁻¹ in the top 50 cm of soil were discovered in domestic gardens, while the Soil 127 Guideline Value for residential land use with plant uptake is 450 mg Pb kg⁻¹ (DEFRA and 128 Environment Agency, 2002; Knight, 2004). Investigation into the area's history revealed there 129 had been a Pb rolling mill and smelter in operation until the late 19th century in the location 130 where homes now stand. As the homes were built before any contamination assessment 131 development controls, residents were not aware of the high levels of Pb in the area. Since 132 133 concentrations of Pb in these domestic gardens were well above the UK trigger levels, remediation was later undertaken. Such findings raise the concern of other possible contaminated 134 135 sites in Sheffield, especially where there is the potential for ingestion of elevated TTEs via own-136 grown foods. In a geochemical survey of Sheffield to identify metal pollution across the city, where gardens were tested, all TTE concentrations exceeded their Soil Guideline Value (SGVs) 137 for residential land use with plant uptake (Rawlins et al., 2005). In Sheffield alone, there are 138 139 more than 70 allotment sites with over 3,000 plots (Sheffield City Council, 2017).

140

141 2.2. Allotment site selection

142 Initially the project was designed to sample the allotments owned by Sheffield City143 Council, however, access to these sites was denied. Privately owned allotment sites were then

144 contacted for testing, which were only six in number, as compared to the 70 sites owned by the city council. Out of these six site managers contacted, only four agreed to participate in the study 145 and provided access to their plots. The locations of these allotments is depicted in the 146 147 Supplementary Information (SI: Figure 1). Allotments identified were: Well Community Allotments (WCA), Brightside Gardens (BSG), Oughtibridge Allotments (OBA), and 148 Handsworth & Richmond Allotments (HRA). All allotments were within ~5 miles from the 149 Sheffield city centre. An investigation into the previous land use patterns of these allotment sites 150 151 was performed using Digimaps (EDINA Historic Digimap Service, 1890). Archived maps dating back to the year 1890 indicated no sign of previous industrial activity on these allotment sites. 152 153 WCA, OBA, and HRA were documented allotments dating back at least 100 years. BSG also has a long history of allotment use, though some major Sheffield industrial works neighboured the 154 155 site. In a questionnaire about plot maintenance, all participants answered that they watered their 156 plots exclusively with rainwater collected at allotment sites. Questionnaires about fertiliser and 157 compost use also were completed by each participant to identify possible confounding factors.

158

159 2.3. Soil sampling and analysis

A total of 10 plots were tested, with soil and onion samples taken in triplicate from each plot (total soil samples n=30, total onion samples n=30). One plot was tested at WCA, and three plots were tested at BSG, OBA, and HRA. All soil and plant samples were taken between June and July 2017.

164 Core samples were collected from each plot, from a depth of 0 to 20 cm using a small 165 hand auger, avoiding the edges of individual plots. Soil samples were prepared and analysed 166 using standard procedures for soil bulk density, soil texture, pH (deionized H₂O and CaCl₂ 167 extracts), electrical conductivity (EC), and total C and N. Total C and N were measured by an 168 elemental analyser (Vario El CubeCN, Elementar, Germany). A Delta-50 X-ray fluorescence

169	spectrometer (XRF) was used in the benchtop workstation to provide a rapid simultaneous								
170	measurement of TTE concentrations in soil samples. Each sample was analysed using three								
171	beams (50 kV, 40 kV, and 15 kV); each beam was run for 60 seconds. XRF was performed in								
172	triplicate, with a total of 9-minute run per sample, and the average metal concentration values of								
173	each beam were used for the analysis.								
174									
175	2.4. Plant sampling and analysis								
176	Onions (Allium cepa) were chosen for this study as they represent a common own-grown								
177	vegetable and were cultivated by all participants. As selection was based on plot holder								
178	participation, rather than requiring all participants to cultivate under the same conditions,								
179	different types of onions were likely obtained. This was considered appropriate as the emphasis								
180	0 of this study was on the variability of metal uptake in onions and its relation to soil								
181	concentrations. The onions were divided into two categories according to their planting time, as								
182	their edible parts differed:								
183	• "Autumn sown onions (ASO)" (n=6) were planted in October/November 2016, and were								
184	collected from two plots at HRA. Being fully grown onions, the inner bulb (outer skin								
185	removed) was considered edible.								
186	• "Spring sown onions (SSO)" (n=24) were planted in March/April 2017, and were								
187	collected from WCA, BSG, OBA, and one plot at HRA. Having the maturity of a spring								
188	onion, the entire bulb and 10 cm of the stem were considered edible.								
189									
190	Onions selected for analysis were chosen away from the borders of the plot to avoid								
191	samples with potential contamination from factors outside the plot. The entire plant was removed								
192	carefully with a hand trowel. Each onion sample was washed with tap water as to simulate								

193 household cleaning practices. Any visible soil particles were washed away. Samples were first air dried, and then at 70 °C in a hot-air oven for at least one week. Once dried, non-edible parts 194 of the plants were removed according to their classification as mentioned above (ASO or SSO), 195 196 and the remaining edible parts of each sample was milled using a ball mill, creating a homogenous mixture. Acid digestion was performed using EPA Method 3050B (SW-846) (EPA, 197 1996), and the extracts were analysed for TTEs using inductively coupled plasma mass 198 spectrometry (ICP-MS, Model DRC 11, Pelkin Elmer, USA). 199 All ICP-MS concentrations of TTEs in plants were generated as dry weight (dw) basis. 200 To assess soil-plant relationships and TTE uptake by plants, concentration factors (CF) were 201 determined. This was calculated as the ratio of TTE concentrations detected in the plants (dry 202 weight basis) over its concentration in the corresponding soil (dry weight basis). 203 204 205 206 2.5. Human health risk assessment 207 To evaluate the impact of onion consumption with potentially elevated levels of TTEs on

human health, a risk assessment was performed. Exposure to TTE depends on the concentration
of the element in the food and the daily food consumption rate. Estimated daily intake (EDI) can
therefore be calculated using Eq. 1 (Chamannejadian et al., 2013; Hang et al., 2009; Zheng et al.,
2007):

212
$$EDI = \frac{C \times Con}{BW}$$
 (Eq. 1)

213 Where, EDI (μ g kg⁻¹ Bw⁻¹ day⁻¹) is the amount of TTE consumed; C (μ g g⁻¹) is the 214 concentration of TTE in onion; Con (g person⁻¹ day⁻¹) is the average daily consumption of 215 vegetables in the UK, assuming worst case scenario that all vegetables consumed were raw 216 onions (20 g person⁻¹ day⁻¹ for males, 38 g person⁻¹ day⁻¹ for females (Bates et al., 2014); Bw is

the average body weight (83.6 kg for males and 70.2 kg for females, Office for National 217

Statistics, 2010). 218

The standard EPA method for risk assessment states that the risk of non-carcinogenic 219 220 effects is determined as the ratio of the dose from exposure to site media as compared to a dose that is thought to be of no risk (USEPA, 2001). This is the target hazard quotient (THQ). A 221 quotient value less than one indicates no significant risk of non-carcinogenic effects. THQ can be 222 223 determined by Eq. 2 (Zheng et al., 2007):

224
$$THQ = \frac{EDI}{RfD}$$
 (Eq. 2)

Where, RfD is the reference oral dose (µg kg⁻¹ day⁻¹). RfD values used for Pd, Zn, Cu, Cr, 225 As were 3.5, 300, 40, 1500, 50 µg kg⁻¹ day⁻¹ (FAO/WHO, 1997; UNEP/FAO/WHO, 1992; US 226 EPA IRIS, 2018). In many cases, however, exposure may result from two or more pollutants, 227 228 creating an additive effect. To calculate the additive effect, hazard index (HI) is generated as the sum of a mixture of toxic elements (Eq. 3) (Hang et al., 2009; Zheng et al., 2007): 229

$$HI = \sum_{n=1}^{i} THQ_n$$
 (Eq. 3)

231

232

2.6. Data analysis 233

All statistical analyses were performed using Excel 2016 and SPSS Statistics 23 software 234 235 packages, and plots were made using GraphPad Prism (7.03) software.

236

3. Results 237

3.1. Soil physiochemical properties 238

ni

m 1 1 0

The bulk density, pH, EC and C:N ratio are presented in Table 1. Soil textures were 239

either silty loam or sandy loam. Bulk densities were generally low as crops were grown with 240

241	soil-garden compost mixture. All soils were between the pH ranges of 5.6-6.9 (pH with CaCl ₂),
242	the lowest mean pH was found in OBA (mean pH=5.6). The soil with the highest EC was in plot
243	1 in BSG (808.3 μ S cm ⁻¹), and the lowest in plot 1 in OBA (419.3 μ S cm ⁻¹). The average percent
244	C contents was 11.04 %, but varied from 6.18 to 11.88 %. The C:N ratio varied from 14.85 to
245	22.25.
246	
247	3.2. TTE concentrations in soils
248	Three soil samples from each plot were averaged to determine mean TTE concentrations.
249	The soil Pb, Zn, Cu, Cr and As concentrations are represented in Figure 1 (a-e) for comparative
250	purposes and to identify outliers, as the data was not symmetrically distributed. The data from
251	each plot are also presented as Supplementary Information (SI: Table 1), which includes

background pH and TTE concentrations in England, the UK Soil Guidelines Values (SGV), and

the EU tolerable limits.

Allotment	Plot	Bulk Density (g/cm ³)	pH (H ₂ 0)	pH (CaCl ₂)	Conductivity (µS/cm)	% N	% C	C:N
Well Community Allotments (WCA)	1	0.69 ± 0.07	6.2 ± 0.20	5.9 ± 0.20	442.7 ± 47.7	0.35 ± 0.01	6.18 ± 0.40	17.60 ± 1.0
Brightside Gardens (BSG)	1	0.88 ± 0.13	7.0 ± 0.20	6.8 ± 0.10	808.3 ± 237.0	0.33 ± 0.01	6.91 ± 0.40	21.13 ± 1.3
	2	0.74 ± 0.08	7.0 ± 0.40	6.8 ± 0.20	508.3 ± 51.1	0.39 ± 0.03	7.63 ± 1.0	19.25 ± 1.0
	3	0.64 ± 0.03	7.1 ± 0.10	6.8 ± 0.10	505.0 ± 66.2	0.41 ± 0	8.98 ± 0.10	21.77 ± 0.50
Mean		0.75 ± 0.08	7.0 ± 0.20	6.8 ± 0.10	607.2 ± 118.1	0.38 ± 0.02	7.84 ± 0.5	20.71 ± 0.90
Oughtibridge Allotments (OBA)	1	0.46 ± 0.03	5.8 ± 0.10	5.6 ± 0.10	419.3 ± 73.9	0.56 ± 0.06	9.23 ± 1.2	16.33 ± 0.40
	2	0.46 ± 0.05	6.0 ± 0.30	5.7 ± 0.30	421.3 ± 99.0	0.41 ± 0.04	6.73 ± 0.7	16.21 ± 0.30
	3	0.48 ± 0.02	5.8 ± 0.10	5.6 ± 0.10	660.3 ± 138.1	0.52 ± 0.05	7.71 ± 0.8	14.85 ± 0.60
Mean		0.46 ± 0.03	5.9 ± 0.20	5.6 ± 0.20	500.3 ± 103.7	0.50 ± 0.05	7.89 ± 0.9	15.80 ± 0.40
Handsworth & Richmond Allotments (HRA)	1	0.51 ± 0.07	6.4 ± 0.10	6.2 ± 0.10	641.3 ± 128.0	0.53 ± 0.04	11.88 ± 1.2	22.25 ± 0.60
	2	0.55 ± 0.10	7.2 ± 0.10	6.9 ± 0.10	732.0 ± 136.5	0.59 ± 0.02	10.94 ± 0.7	18.65 ± 0.60
	3	0.58 ± 0.07	6.1 ± 0.10	5.8 ± 0.10	525.0 ± 56.0	0.60 ± 0.02	10.83 ± 0.8	17.99 ± 0.39
Mean		0.54 ± 0.08	6.6 ± 0.10	6.3 ± 0.10	632.8 ± 106.9	0.57 ± 0.03	11.21 ± 0.9	19.63 ± 1.87

Table 1. Soil characteristics, means and standard deviations of three samples from each plot and allotment means where more than one plot was sampled.

Figure 1a-e. Boxplots showing median, 25th and 75th percentiles of TTE in soil (mg kg⁻¹). Allotments are WCA Well Community Allotments, BSG Brightside Gardens, OBA Oughtibridge Allotments, HRA Handsworth & Richmond Allotments. Note the Y-axis scale differs between graphs. Significant differences (p<0.05) between the different groups are shown using lower case letters.

256 The SGVs are set by the UK to assess the risk to human health from contaminated soil exposure. SGVs differ based on land usage, with the SGVs for allotments used here for comparison. The previous SGV for As has 257 been modified from 20 mg kg⁻¹ to 43 mg kg⁻¹ in the current guidelines (DEFRA and Environment Agency, 258 2002; Environment Agency, 2009). Only plot 2 in HRA had As concentration above the current SGV (43 mg 259 kg⁻¹). All allotments had concentrations above the previous As SGV (20 mg kg⁻¹). The previous Pb SGV was 260 450 mg kg⁻¹, of which plot 1 at WCA had concentrations above this limit. Plot 2 at HRA, and plots 2 and 3 at 261 BSG exceeded the previous SGV for Cr (130 mg kg⁻¹). No new guidelines were issued, and these previous 262 SGVs have now been withdrawn (DEFRA and Environment Agency, 2002). 263

European countries have a variety of methods to determine human/environmental risk levels

associated with TTE concentrations in soil. Most recently, Finnish legislation has been applied

internationally as it provides an appropriate representation of mean values used by different national systems 266 267 within Europe (Ministry of the Environment, 2007; van der Voet et al., 2013), and are referred hereto as the 'EU tolerable limits'. The EU tolerable limit values presented in SI: Table 1 are guideline values, where if 268 they are exceeded, the area poses health/ecological risks. These EU tolerable limits are higher than the UK's 269 SGVs for all metals except for Pb. Almost all plots sampled in this study had concentrations higher than this 270 EU tolerable level of Pb (200 mg kg⁻¹). Most plots also had Zn levels higher than the EU tolerable limit (250 271 mg kg⁻¹), with plot 2 at HRA almost tripled the limit (727.33 mg kg⁻¹). Soil concentrations of Cu, As, and Cr 272 did not exceed the EU tolerable limits. 273

All data sets were confirmed to be normally distributed. Differences in mean metal concentrations between the four allotments were analysed using SPSS one-way ANOVA. Concentrations of Pb between allotments were significantly different (p<0.05), the same was true for Zn, Cu, and Cr between allotments. However, there was no significant difference in As levels between allotments (p>0.05).

The data showed a positive relationship between soil pH (in H_2O) and concentrations of Zn, Cu and Cr. This is illustrated in Figure 2a-c, regression coefficients are statistically significant (p<0.05). Multiple regression

Figure 2a-c. Statistically significant relationships (p<0.05) between the soil concentration of Zn (a), Cu (b) and Cr (c) and soil pH (in H_2O) (n=30).

analysis was employed to identify any relationship between soil physicochemical properties and

concentrations of TTE in soils. Significant regression (p < 0.05) were found between Zn vs pH ($R^2=0.4593$),

283 Cu vs pH ($R^2=0.234$), and Cr vs pH ($R^2=0.5671$)

284

285 3.3. TTE concentrations in plants

The Joint Food and Agriculture Organisation/World Health Organisation (FAO/WHO) Expert 286 Committee on Food Additives (JECFA) identify maximum levels for contaminants and toxins in foods for Pb 287 and As (FAO/WHO, 2011a), and are presented for comparison in SI: Table 2. Figure 3 depicts TTE 288 concentrations in plants. Assessment of WCA TTE concentrations in relation to the other allotments is 289 limited as only one plot at this allotment was tested. HRA plots 1 and 3 are ASO, while all others are SSO. 290 All metals, except As, were lower in ASO than SSO. BSG had the highest mean concentrations of Pb in 291 plants (0.23 mg kg⁻¹). Mean Zn concentrations in plants were similar between allotments and ranged from 292 3.17 mg kg⁻¹ to 8.55 mg kg⁻¹. Cu concentration ranged from 0.35 mg kg⁻¹ to 0.85 mg kg⁻¹. No As was 293 detected in WCA nor in plot 2 at OBA and mean As concentration was the highest in plants at HRA. 294 Concentrations of Cr ranged from 0.02 mg kg⁻¹ to 0.34 mg kg⁻¹ with concentrations 15 times higher in SSO 295 than ASO. Six plots had plants with Pb levels higher than the FAO/WHO guidelines of 0.10 mg kg⁻¹. No 296 plants had levels higher than the FAO/WHO guidelines for As (0.10 mg kg⁻¹). 297

298

299 3.4. Concentration Factor (CF)

A higher CF indicates more mobile/bioavailable metal ions in the soil. The order of metal uptake/transfer from soil to plant was Zn>Cu>Cr>Pb>As. These were calculated using means of all onions. The order of metal uptake from soil to plant was calculated as an average CF of each metal. No levels of As were detected in WCA nor in plot 2 at OBA, and thus CF could not be calculated for these two plots. Results are presented in Table 2. TTE uptake between ASO and SSO was also compared (Figure 4a-c). This was done to interpret metal uptake in relation to time spent in the ground, as well as to examine localisation of metals in the plant, as ASO and SSO differed in edible parts. ASO and SSO were grouped into CF_{Autumn} and CF_{Spring},

Allotment	Plot	Pb	Zn	Cu	Cr	As
Well Community Allotments (WCA)	1	1.88E-03	1.43E-01	7.06E-02	2.67E-02	ND ^a
Brightside Gardens (BSG)	1	6.20E-03	1.84E-01	7.89E-02	2.17E-02	1.06E-03
	2	9.90E-03	2.19E-01	1.04E-01	2.42E-02	1.08E-03
	3	6.18E-03	9.09E-02	1.72E-02	8.16E-03	1.18E-03
Oughtibridge Allotments (OBA)	1	7.29E-03	4.64E-01	7.31E-02	1.91E-02	8.63E-04
	2	9.37E-03	3.09E-01	1.70E-01	1.47E-02	ND^{a}
	3	4.52E-03	3.56E-01	1.24E-01	2.93E-01	1.03E-02
Handsworth & Richmond Allotments (HRA)	1*	1.97E-03	1.61E-01	4.83E-02	3.03E-03	8.58E-03
	2	6.62E-03	9.06E-02	5.71E-02	2.14E-02	1.57E-02
	3*	3.41E-03	1.05E-01	3.62E-02	1.36E-03	1.03E-02

Table 2. Concentration factor (CF), ratio of metal in plant (mg kg⁻¹, dry weight) to metal in soil (mg kg⁻¹, dry weight).

^aND, None Detected

*Denotes Autumn sown onions (ASO), all others are Spring sown onions (SSO).

Figure 3a-e. Boxplots showing median, 25th and 75th percentiles of TTE concentrations in plants (mg kg⁻¹, fw). Allotments are WCA Well Community Allotments, BSG Brightside Gardens, OBA Oughtibridge Allotments, HRA Handsworth & Richmond Allotments. HRA values include ASO and SSO data grouped together. Note the Y-axis scale differs between graphs. No As was detected in WCA.

Figure 4a-c. Boxplots showing median, 25^{th} and 75^{th} percentiles of significant different CF for Pb, As, and Cr, in ASO compared to SSO. Pb and Cr were significantly higher in SSO (p<0.05), while As was significantly higher in ASO (p<0.05). Significant differences are indicated using symbols (* p<0.05 and ** p<0.01). Note the Y-axis scale differs between graphs.

respectively, to compare uptakes. Mean CFs were determined for CF_{Autumn} and CF_{Spring} for each metal.

310 Uptakes of metals between ASO and SSO were compared using non-parametric Mann-Whitney U tests due

to the small ASO sample size (n=6), and because the data were not normally distributed. CF_{spring} had

significantly higher Pb (p=0.021) and Cr (p=0.00) than CF_{Autumn}, however, had significantly higher

313 As (p=0.029) than CF_{Spring}.

314

315 3.5. Potential health risk

The THQs of each TTE through onion consumption are listed in Table 3. All of the calculated THQ values were < 1, indicating health risks associated with TTE exposure for men and women are insignificant if residents only ingest one type of TTE from foodstuff. The potential health risk of the TTEs examined in the study combined or HI also was < 1 for both men and women. This suggests that there is no significant potential health risk for men or women consuming onions from these allotments when considering the collective effect of the levels of the five TTEs analysed in this study.

322

323 **4. Discussion**

324 4.1. Soil metal contamination in allotments

All allotment TTE concentrations were well above the ambient background levels for England,

however, they were similar to ambient pH for England (Barraclough, 2007). This demonstrates that there are

327 other external factors that have led to these increased levels of contaminants. A few plots exceeded the SGVs

for Pb, As, and Cr. These SGVs indicate levels of metals in allotments below which there are minimal long-

term health risks, concentrations above these limits should be further assessed to determine if remediation is

and necessary.

The EU tolerable limits set regulations on concentration levels allowed for TTEs depending on land usage and states the need for action if surpassed. The EU tolerable limits for all non-industrial land use are higher as compared to the UK's SGVs for all metals except for Pb. Such variation highlights the dependency

Individuals	Element	RfD ^a	EDI ^b	THQ ^c	HI^{d}
Males	Pb	3.5	0.034	0.010	0.018
	Zn	300	1.513	0.005	
	Cu	40	0.125	0.003	
	Cr	1500	0.036	0.000	
	As	50	0.005	0.000	
Females	Pb	3.5	0.076	0.022	0.041
	Zn	300	3.423	0.011	
	Cu	40	0.283	0.007	
	Cr	1500	0.081	0.000	
	As	50	0.011	0.000	

Table 3. Estimated daily intake by male and females and potential health risk due to onion consumption.

 $\overline{{}^{a}\text{Reference oral dose }(\mu g \text{ kg}^{-1} \text{ day}^{-1})}$

^bEstimated daily intake (µg kg⁻¹ day⁻¹)

^cTarget Hazard Quotient (EDI/RfD)

^dHazard Index when multiple metals are present (Σ THQ_n ; n = 1 to i)

of risk assessment on toxicological references employed. Most metal concentrations in allotment soils were
below the EU limits, except for Pb and some Zn concentrations.

Other UK allotment TTE concentrations are inconsistent and vary depending on location. A study of Pb in allotment soils in a London borough revealed concentrations that ranged from 513 to 2,910 mg kg⁻¹ (Prasad and Nazareth, 2000), whereas in Bristol the median Pb concentration was 210 mg kg⁻¹ (Giusti, 2011). Other metal median values in Bristol were 272.6 mg kg⁻¹Zn, 60.1 mg kg⁻¹Cu, 21.7 mg kg⁻¹ As, and 23.1 mg kg⁻¹ Cr (Giusti, 2011). Such results are consistent with concentrations found in this Sheffield study, however Cr concentrations in the Sheffield allotments were more than three times greater than those found in Bristol.

The largest survey of garden soils carried out by Culbard et al. (1988) analysed 4.650 garden soils 343 around Great Britain. Results indicated levels of Pb, Cu and Zn were elevated, with a mean Pb concentration 344 in garden soils of 298 mg kg⁻¹. Levels of Pb as high as 1,870 mg kg⁻¹ were found in areas with previous 345 mining history. A soil geochemical survey of Sheffield determined median Pb levels to be 161 mg kg⁻¹, and 346 where samples were from the domestic garden, all Pb concentrations were above the SGV of 450 mg kg⁻¹ 347 (Rawlins et al., 2005). As previously discussed, concerning levels of Pb, as high as 14,863 mg kg⁻¹, were 348 found in domestic gardens in a Sheffield neighbourhood that was previously a Pb rolling mill (Knight, 2004). 349 Such findings indicate the need for site specific risk assessment. 350

As found in this study, similar correlations between soil physiochemical properties and TTE concentrations were seen in the UK Soil and Herbage pollutant Survey (UKSHS), where significant positive correlations were found between Zn and pH (p=0.01) in the overall UK soil dataset (Barraclough, 2007). Consistent with results from this Sheffield study, Sauvé et al. (2000) also found a low correlation coefficient between Pb and pH, as compared to the correlation coefficient for Zn and pH.

356

357

359 4.2. Plant uptake and CF

Relatively neutral soil pH could explain low bioavailability of metals in soils (Ming et al., 2016). 360 There was a positive correlation seen when comparing Pb in plants vs soil pH ($R^2=0.2905$); however, no 361 correlation was significant for the other soil physiochemical characteristics (e.g., total C) and plant metal 362 concentrations. One of the most predictive factors in metal uptake by plants is pH, with low soil pH known to 363 increase metal mobilisation and bioavailable concentrations (Golia et al., 2008; Puga et al., 2015). All soils 364 tested had relatively neutral pH, indicating TTEs may be less mobile in these soil conditions as compared to 365 soil with lower pH values. This could explain the lack of correlation between soil-plant metal concentrations. 366 367 Though soil mixtures were homogenous upon the use of XRF, some metal distribution within allotments may not have been uniformly distributed and may have produced a seemingly high level of metal in comparison to 368 what onion fibrous roots were exposed to. This could also give a reason for the lack of correlation between 369 370 soil-plant concentrations of metals.

Though it was not shown here, a significant correlation was detected in As in soil to As in plant 371 $(R^2=0.4143)$. This is similar to other results especially those found in the derivation of SGVs for arsenic in 372 relation to root vegetables (Environment Agency, 2009; Zandsalimi et al., 2011). No other soil-plant 373 concentration correlations were significant. Lack of linearity between plant and soil concentrations of the 374 other metals can be explained by many factors influencing metal uptake by plants and complexity of ion 375 transfer. Variables such as soil physicochemical properties, applied fertilisers, the type of plant species, etc., 376 can influence these uptake rates (Chen et al., 2016; Chojnacka et al., 2005; Liu et al., 2015). Furthermore, 377 uptake of metals may result from sources other than soil, such as polluted air and water. Air contaminants are 378 less likely to affect root vegetables such as the ASO but may contribute to SSO contamination as the stems 379 are part of the edible vegetable. Contaminated particulates in the air have been documented to increase levels 380 of TTEs in plants (Antisari et al., 2015). This is especially important when examining Pb contamination as 381 combustion of leaded petrol in vehicles and coal combustion has led to increased atmospheric deposition and 382 remains the most significant source of Pb contamination in vegetables (Barraclough, 2007; Hough et al., 383

2004). Hand washing of vegetables also does not remove all soil particles and may contribute TTE concentrations of the onions. The maturity levels of the vegetable and different consumed parts also may explain the different observed concentrations of TTEs between the two groups. A noted limitation was also the lack of certainty on the onion cultivars used in the study and the small sample size of ASO. The soil TTE concentrations could have been different in these two plots as compared to the other SSO plots and could have had an influence on the results.

Additionally, defence mechanisms by plants may localise TTEs in different regions of the plant. 390 Selection of tissue analysed may greatly vary results of apparent metal concentrations in plants (Prasad and 391 392 Nazareth, 2000). In onions, Pb has been found to localise in the fibrous root tips, while the root base, closest to the bulb of the onion, has been found to have the lowest concentrations of Pb (Wierzbicka, 1987). Other 393 studies examining the uptake of Pb by onions, have reported Pb concentrations in leaf and shoots to be more 394 395 than double than that found in the bulb, with the largest amount of Pb found in the basal part of leaves. This above-below soil pattern of metal distribution was seen in multiple varieties of onions, and demonstrated a 396 great capacity to translocate Pb in its tissues in the presence of highly contaminated soils (Michalak and 397 Wierzbicka, 1998). It was seen in this study that SSO was higher in concentrations of almost all metals. This 398 could be explained by the localisation of TTEs in the basal portion of the leaves which were included for 399 sample analysis in SSO (as they were spring onions), but was removed in the ASO (as they were mature 400 onions). Though concentrations of As were higher in ASO than SSO, this could be due to the relatively high 401 levels of As in the soil at HRA (where the ASO were grown), as the SSO at HRA had even higher levels of 402 403 As.

The TTE concentrations in plants in this study are consistent with other reports of metal transfer capabilities by plants in contaminated soils (Augustsson et al., 2015; Chojnacka et al., 2005; Dinelli and Lombini, 1996). The CF order of metal uptake from soil to plant was Zn>Cu>Cr>Pb>As, which is well documented (Alexander et al., 2006; Chen et al., 2014; Intawongse and Dean, 2006; Islam et al., 2015; Wang et al., 2012; Xian, 1989). Fytianos et al. (2001) found much greater CFs, for example, CF in onions grown in contaminated soils were 0.35, 0.31, and 0.21 for Zn, Cu and Pb, respectively. However, this is still consistent
with previous results that Pb is especially known to not be readily taken up by plants, due in part to its
stronger adhesion to the soil matrix (Barraclough, 2007; Gebrekidan et al., 2013; Holmgren et al., 1993).
Such relationships were seen in this study where the WCA, which had the highest levels of Pb in the soil, had
some of the lowest concentrations of Pb in the plants. Augustsson et al. (2015) similarly found that root
vegetable metal concentrations were only moderately elevated, despite high concentrations in the soil where
they were grown, and most vegetables were below food contaminant legislation levels.

416

417 4.3. Consumption and health risk assessment

TTE concentrations, dry weight, in plants were converted to fresh weight (fw) basis using recorded 418 moisture contents (US EPA, 1997) for better comparison to FAO/WHO food standards (FAO/WHO, 2011a). 419 420 Six plots had onions that exceeded the FAO/WHO maximum level of Pb in root vegetables of 0.10 mg Pb kg⁻ ¹ fw (FAO/WHO, 2011a). FAO/WHO also previously suggested a provisional tolerable weekly intake 421 (PTWI) for adults of 0.025 mg Pb kg⁻¹ body weight (FAO/WHO, 2011b). In considering the amount of Pb 422 per plant and consumption rates, an unreasonable quantity of onions would need to be consumed per week to 423 reach this PTWI. This PTWI has now been withdrawn as recent dose-response analysis does not indicate any 424 threshold to be health protective for effects of Pb, and FAO/WHO have not established a new PTWI. Levels 425 of As concentrations in plants were well below the FAO/WHO maximum level for contaminants in foods of 426 0.10 mg As kg⁻¹ (FAO/WHO, 2011a). The highest concentration of As was the SSO at HRA (0.069 mg kg⁻¹). 427 428 This is consistent with other studies in which contaminated sites, even with significant soil pollution, did not vield vegetables with intakes above tolerable daily intakes (Augustsson et al., 2015; Beccaloni et al., 2013; 429 Chen et al., 2014; Fytianos et al., 2001; Pelfrêne et al., 2013; Wang et al., 2012). 430

Bioavailability and human exposure are often hard to assess as metals may be present in forms not harmful to the environmental or to human health. It is difficult to assess total exposure as the pathways of TTE intake may also include contaminated drinking water, oral soil ingestion, and consumption of other

contaminated food source. Within the body, many factors such as absorption in the gastrointestinal tract and 434 stomach acidity also affect exposure. Uptake from the gastrointestinal tract may differ according to element 435 species and to plant type (Augustsson et al., 2015; Intawongse and Dean, 2006). The actual harm posed to 436 allotment holders growing crops in soils with elevated levels of TTEs is likely to be minimal. Allotment 437 holders typically do not solely consume food grown in their allotments, which makes risk assessment more 438 difficult. Other variables may likewise affect contamination and metal exposure, for instance, vegetable 439 preparation and type of vegetable consumed vary in washing and peeling procedures to remove soil particles, 440 and absorb different amounts of metals (Alexander et al., 2006; Intawongse and Dean, 2006). 441

442 It is also important to note that though toxic exposure is ubiquitous among populations, some subpopulations will be disproportionately affected. Especially vulnerable groups such as children, elderly 443 444 adults, pregnant women or those with lowered immune systems due to chronic illness may experience more 445 serious effects from TTE exposure. For example, an adolescent that consumes that same quantity of contaminated foodstuffs, but with half the bodyweight of an adult, is more at risk for exposure. Furthermore, 446 prenatal exposure to certain TTEs has been documented to increase risk of cancer in childhood and interfere 447 with crucial developmental stages that can lead to adverse birth outcomes and increased risks of disease 448 449 (Balk et al., 2011; Bergman et al., 2012; Grandjean et al., 2007; Hines et al., 2010; Woodruff et al., 2008).

450

451 **5. Conclusions**

Evaluation of allotments in Sheffield revealed that concentrations of Pb, Zn, As, and Cr exceeded some UK and EU soil limit guidelines. Such findings do not necessarily lead to high levels of metals in plants grown in these soils, as little correlation was evident between soil and plant metal contents. This is due to a variety of factors governing the bioavailability and uptake of metals by plants. Because of this, onions grown in these soils did not exceed foodstuff regulations.

Following this initial screening, further detailed assessment of these areas can be completed in the
future, especially in those soils that exceeded limit guidelines. Also, as soil metal concentrations vary greatly

according to previous land use, site-specific risk assessments should be conducted, especially in zones withpast industrial history that are now used for gardening purposes.

461

462 Acknowledgements

463 Funding for this research was provided by the University of Sheffield, Department of Oncology and

- 464 Metabolism. We wish to thank Dr Peter Grabowski for project support, Mr Robert Ashurst and Mr Allan
- 465 Smalley for laboratory guidance, the University of Sheffield Math and Statistics Help for statistical analysis
- 466 assistance, the Sheffield Allotments Federation, and the Sheffield private allotment plot owners who
- 467 graciously offered their soil and plants for use in this research project.
- 468

469 Appendix A. Supplementary material

470 Supplementary information can be found in the online version.

References

- Alexander, P.D., Alloway, B.J., Dourado, A.M., 2006. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ. Pollut. 144, 736–745. doi:10.1016/j.envpol.2006.03.001
- Alfaro, M.R., do Nascimento, C.W.A., Ugarte, O.M., Álvarez, A.M., de Aguiar Accioly, A.M., Martín, B.C., Jiménez, T.L., Aguilar, M.G., 2017. First national-wide survey of trace elements in Cuban urban agriculture. Agron. Sustain. Dev. 37, 27. doi:10.1007/s13593-017-0437-7
- Alloway, B.J., 2004. Contamination of soils in domestic gardens and allotments: a brief overview. L. Contam. Reclam. 12, 179–188.
- Alloway, B.J., 1995. Heavy Metals in Soils, 2nd ed. Chapman and Hall, Glasgow.
- Antisari, L.V., Orsini, F., Marchetti, L., Vianello, G., Gianquinto, G., 2015. Heavy metal accumulation in vegetables grown in urban gardens. Agron. Sustain. Dev. 35, 1139–1147. doi:10.1007/s13593-015-0308-z
- Augustsson, A., Uddh-Soderberg, T., Hogmalm, K., Filipsson, M., 2015. Metal uptake by homegrown vegetables - The relative importance in human health risk assessments at contaminated sites. Environ. Res. 138, 181–190.
- Balk, J., Ondeck, M., West, N., Levine-Goldberg, A., Santa Rosa Mark Miller, K., Sayre, L.,Francisco Bay, S., 2011. Pesticides Matter: A Primer for Reproductive Health Physicians.
- Barraclough, D., 2007. UK Soil and Herbage Pollutant Survey Environmental concentrations of heavy metals in UK soil and herbage.
- Bates, B., Lennox, A., Prentice, A., Bates, C., Page, P., Nicholson, S., Swan, G., 2014. National

Diet and Nutrition Survey : Results from Years 1-4 (combined) of the Rolling Programme. Executive Summary. Public Heal. Engl. 4, 1–24. doi:10.1017/CBO9781107415324.004

- Beccaloni, E., Vanni, F., Beccaloni, M., Carere, M., 2013. Concentrations of arsenic, cadmium, lead and zinc in homegrown vegetables and fruits: Estimated intake by population in an industrialized area of Sardinia, Italy. Microchem. J. 107, 190–195. doi:10.1016/j.microc.2012.06.012
- Bergman, A., Heindel, J., Jobling, S., KA, K., Zoeller, R., 2012. State of the science of endocrine disrupting chemicals. Geneva.
- Caporale, A.G., Violante, A., 2016. Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments. Curr. Pollut. Reports 2.
- Chamannejadian, A., Sayyad, G., Moezzi, A., Jahangiri, A., 2013. Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils. Iranian J. Environ. Health Sci. Eng. 10, 28. doi:10.1186/1735-2746-10-28
- Chen, H., Yuan, X., Li, T., Hu, S., Ji, J., Wang, C., 2016. Characteristics of heavy metal transfer and their influencing factors in different soil–crop systems of the industrialization region, China. Ecotoxicol. Environ. Saf. 126, 193–201. doi:10.1016/J.ECOENV.2015.12.042
- Chen, Y., Wu, P., Shao, Y., Ying, Y., 2014. Health risk assessment of heavy metals in vegetables grown around battery production area. Sci. Agric. 71, 126–132.
- Chojnacka, K., Chojnacki, A., Górecka, H., Górecki, H., 2005. Bioavailability of heavy metals from polluted soils to plants. Sci. Total Environ. 337, 175–182. doi:10.1016/j.scitotenv.2004.06.009
- Culbard, E., Thornton, I., Watt, J., Weatley, M., Thompson, M., 1988. Metal contamination in British urban dusts and soils. J. Environ. Qual. 17.

- David Buck, A., Waller, S., Petrokovsky, C., Harrison, D., Rosen, E., Fell, G., Griffiths, A.,Clarke, C., Neild, C., Ogden, P., Garside, R., Maxwell, S., Everington, S., Murray, R., 2016.Gardens and health Implications for policy and practice.
- DEFRA and Environment Agency, 2002. CRL10 SGV 1–10: soil guideline value reports for arsenic, cadmium, chromium, nickel, lead, mercury and selenium.
- Dehghani, S., Moore, F., Keshavarzi, B., Hale, B.A., 2017. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicol. Environ. Saf. 136, 92–103. doi:10.1016/J.ECOENV.2016.10.037
- Dinelli, E., Lombini, A., 1996. Metal distributions in plants growing on copper mine spoils in Northern Apennines, Italy: the evaluation of seasonal variations. Appl. Geochemistry 11, 375–385. doi:10.1016/0883-2927(95)00071-2
- Douay, F., Pelfrêne, A., Planque, J., Fourrier, H., Richard, A., Roussel, H., Girondelot, B., 2013.
 Assessment of potential health risk for inhabitants living near a former lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables. Environ.
 Monit. Assess. 185, 3665–3680. doi:10.1007/s10661-012-2818-3
- EDINA Historic Digimap Service, 1890. Ordnance Survey. British National Grid [Map]. Scale 1:2,500 [WWW Document]. URL http://edina.ac.uk/digimap (accessed 7.1.17).
- Environment Agency, 2009. Soil Guideline Values for inorganic arsenic in soil. Science Report SC050021/ arsenic SGV.
- EPA, 1996. EPA Method 3050B (SW-846): Acid Digestion of Sediments, Sludges, and Soils. Washington D.C.
- FAO/WHO, 2011a. Joint FAO/WHO food standards programme codex committee on contaminants in foods. Working document for information and use in discussions related to

contaminants and toxins in the GSCTFF. The Netherlands.

FAO/WHO, 2011b. Evaluation of certain food additives and contaminants: seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, Switzerland.

FAO/WHO, 1997. Food Consumption and Exposure Assessment of Chemicals. Geneva.

- Fytianos, K., Katsianis, G., Triantafyllou, P., Zachariadis, G., 2001. Accumulation of Heavy Metals in Vegetables Grown in an Industrial Area in Relation to Soil. Corresp. to K.
 Fytianos Bull. Environ. Contam. Toxicol 67, 423–430. doi:10.1007/s00128-001-0141-8
- Gebrekidan, A., Weldegebriel, Y., Hadera, A., Van der Bruggen, B., 2013. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. Ecotoxicol. Environ. Saf. 95, 171–178. doi:10.1016/j.ecoenv.2013.05.035
- Giusti, L., 2011. Heavy metals in urban soils of Bristol (UK). Initial screening for contaminated land. J. Soils Sediments. doi:10.1007/s11368-011-0434-4
- Golia, E.E., Dimirkou, A.A., Mitsios, I.K., 2008. Influence of Some Soil Parameters on Heavy Metals Accumulation by Vegetables Grown in Agricultural Soils of Different Soil Orders.
 Bull. Environ. Contam. Toxicol. 81, 80–84. doi:10.1007/s00128-008-9416-7
- Grandjean, P., Bellinger, D., Bergman, Å., Cordier, S., Davey-Smith, G., Eskenazi, B., Gee, D.,
 Gray, K., Hanson, M., van den Hazel, P., Heindel, J.J., Heinzow, B., Hertz-Picciotto, I., Hu,
 H., Huang, T.T.-K., Jensen, T.K., Landrigan, P.J., McMillen, I.C., Murata, K., Ritz, B.,
 Schoeters, G., Skakkebæk, N.E., Skerfving, S., Weihe, P., 2007. The Faroes Statement:
 Human Health Effects of Developmental Exposure to Chemicals in Our Environment. Basic
 Clin. Pharmacol. Toxicol. 0, 070730044445006–??? doi:10.1111/j.1742-7843.2007.00114.x

Hang, X., Wang, H., Zhou, J., Ma, C., Du, C., Chen, X., 2009. Risk assessment of potentially

toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environ. Pollut. 157, 2542–2549. doi:10.1016/j.envpol.2009.03.002

- Hines, R.N., Sargent, D., Autrup, H., Birnbaum, L.S., Brent, R.L., Doerrer, N.G., Cohen Hubal,
 E.A., Juberg, D.R., Laurent, C., Luebke, R., Olejniczak, K., Portier, C.J., Slikker, W., 2010.
 Approaches for assessing risks to sensitive populations: lessons learned from evaluating
 risks in the pediatric population. Toxicol. Sci. 113, 4–26. doi:10.1093/toxsci/kfp217
- Holmgren, G.G.S., Meyer, M.W., Chaney, R.L., Daniels, R.B., 1993. (1993) Cadmium, Lead,Zinc, Copper, and Nickel in Agricultural Soils of the United States of America. J. Environ.Qual. 22, 335–348.
- Hough, R.L., Breward, N., Young, S.D., Crout, N.M.J., Tye, A.M., Moir, A.M., Thornton, I.,
 2004. Assessing potential risk of heavy metal exposure from consumption of homeproduced vegetables by urban populations. Environ. Health Perspect. doi:10.1289/ehp.5589
- Hough, R.L., Tye, A.M., Crout, M.J., McGrath, S.P., Zhang, H., Young, S.D., 2003. Evaluating a 'Free Ion Activity Model' applied to metal uptake by Lolium perenne L. grown in contaminated soils. Plant Soil 270.
- Hu, W., Huang, B., Shi, X., Chen, W., Zhao, Y., Jiao, W., 2013. Accumulation and health risk of heavy metals in a plot-scale vegetable production system in a peri-urban vegetable farm near Nanjing, China. Ecotoxicol. Environ. Saf. 98, 303–309.
 doi:10.1016/J.ECOENV.2013.09.040
- Intawongse, M., Dean, J.R., 2006. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit. Contam. 23, 36–48. doi:10.1080/02652030500387554

Islam, E. ul, Yang, X., He, Z., Mahmood, Q., 2007. Assessing potential dietary toxicity of heavy

metals in selected vegetables and food crops. J. Zhejiang Univ. Sci. B 8, 1–13. doi:10.1631/jzus.2007.B0001

- Islam, M.S., Ahmed, M.K., Habibullah-Al-Mamun, M., Raknuzzaman, M., 2015. The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh. Ecotoxicol. Environ. Saf. 122, 462–469. doi:10.1016/j.ecoenv.2015.09.022
- Jitendra Kumar, M.S., Kumar, J., Singh, S., Singh, V.P., Prasad, S.M., Singh, M., 2015. Adaptation Strategies of Plants against Heavy Metal Toxicity: A Short Review. Biochem. Pharmacol. Open Access 04. doi:10.4172/2167-0501.1000161
- Jung, M.C., 2008. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine. Sensors (Basel). 8, 2413–2423. doi:10.3390/s8042413
- Kazlauskaitė-Jadzevičė, A., Volungevičius, J., Gregorauskienė, V., Marcinkonis, S., 2014. The role of pH in heavy metal contamination of urban soil. J. Environ. Eng. Landsc. Manag. 22, 311–318. doi:10.3846/16486897.2013.872117
- Knight, P., 2004. Part IIA and the identification and remediation of contamination in residential gardens in Totley, Sheffield, UK. L. Contam. Reclam. 12.
- Laidlaw, M.A.S., Alankarage, D.H., Reichman, S.M., Taylor, M.P., Ball, A.S., 2018.
 Assessment of soil metal concentrations in residential and community vegetable gardens in
 Melbourne, Australia. Chemosphere 199, 303–311. doi:10.1016/j.chemosphere.2018.02.044
- Liu, K., Lv, J., He, W., Zhang, H., Cao, Y., Dai, Y., 2015. Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxicol. Environ. Saf. 113, 207–213. doi:10.1016/J.ECOENV.2014.12.005

Malik, K., Kugler, M., Kovacevic, M., Statistician, C., Bhattacharjee, S., Bonini, A., Calderón, C., Fuchs, A., Gaye, A., Konova, I., Minsat, A., Nayyar, S., Pineda, J., Waglé, S., Orme, W., Abdreyeva, B., Aiello, C., Fournier-Tombs, E., Hamel, J.-Y., Lewis, S., Wauchope, S., Jespersen, E., Hackmann, C., Hall, J., Mwangi, M.A., Pagliani, P., Mend, S., Berman, E., Bouopda, D., Gebretsadik, M., Juarez-Shanahan, F., 2013. Human Development Report 2013. doi:ISBN: 978-92-1-126340-4

- Michalak, E., Wierzbicka, M., 1998. Differences in lead tolerance between Allium cepa plants developing from seeds and bulbs. Plant Soil 199, 251–260.
- Ming, H., Naidu, R., Sarkar, B., Lamb, D.T., Liu, Y., Megharaj, M., Sparks, D., 2016.
 Competitive sorption of cadmium and zinc in contrasting soils. Geoderma 268, 60–68.
 doi:10.1016/j.geoderma.2016.01.021
- Ministry of the Environment, F., 2007. Government Decree on the Assessment of Soil Contamination and Remediation Needs.
- Mitchell, R.G., Spliethoff, H.M., Ribaudo, L.N., Lopp, D.M., Shayler, H.A., Marquez-Bravo,
 L.G., Lambert, V.T., Ferenz, G.S., Russell-Anelli, J.M., Stone, E.B., McBride, M.B., 2014.
 Lead (Pb) and other metals in New York City community garden soils: Factors influencing contaminant distributions. Environ. Pollut. 187, 162–169.
 doi:10.1016/J.ENVPOL.2014.01.007
- Moir, A., Thornton, I., 1989. Lead and cadmium in urban soils and vegetables in the UK. Proc. Int. Conf. Heavy Met. Environ., Geneva. ed. Vernet, J.-P.
- Ngumbi, E., 2017. Growing Urban Agriculture [WWW Document]. Standford Soc. Innov. Rev. URL https://ssir.org/articles/entry/growing_urban_agriculture (accessed 4.13.18).

Noli, F., Tsamos, P., 2016. Concentration of heavy metals and trace elements in soils, waters and

vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Sci. Total Environ. 563–564, 377–385. doi:10.1016/j.scitotenv.2016.04.098

- Office for National Statistics, 2010. 'Average' Briton highlighted on UN World Statistics Day. Econ. Labour Mark. Rev. 4, 6.
- Palmer, L., 2018. Urban agriculture growth in US cities. Nat. Sustain. 1, 5–7. doi:10.1038/s41893-017-0014-8
- Pelfrêne, A., Douay, F., Richard, A., Roussel, H., Girondelot, B., 2013. Assessment of potential health risk for inhabitants living near a former lead smelter. Part 2: site-specific human health risk assessment of Cd and Pb contamination in kitchen gardens. Environ. Monit. Assess. 185, 2999–3012. doi:10.1007/s10661-012-2767-x
- Perez-Vazquez, A., Anderson, S., Rogers, A., 2005. Assessing benefits from allotments as a component of urban agriculture in England, in: Mougeot, L. (Ed.), Agropolis: The Social, Political and Environmental Dimensions of Urban Agriculture. Earthscan Books, London, pp. 239–266.
- Prasad, L.R., Nazareth, B., 2000. Contamination of allotment soil with lead: managing potential risks to health. Pbulic Heal. Med. 22, 525–530.
- Puga, A.P., Abreu, C.A., Melo, L.C.A., Paz-Ferreiro, J., Beesley, L., 2015. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar.
 Environ. Sci. Pollut. Res. 22, 17606–17614. doi:10.1007/s11356-015-4977-6
- Qing, X., Yutong, Z., Shenggao, L., 2015. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 120, 377–385. doi:10.1016/J.ECOENV.2015.06.019

Rawlins, B.G., Lark, R.M., O'donnell, K.E., Tye, A.M., Lister, T.R., 2005. The assessment of

point and diffuse metal pollution of soils from an urban geochemical survey of Sheffield, England. Soil Use Manag. 21, 353–362. doi:10.1079/SUM2005335

- Sauvé, S., Hendershot, W., Allen, H., 2000. Solid-Solution Partitioning of Metals in
 Contaminated Soils: Dependence on pH, Total Metal Burden, and Organic Matter. Environ.
 Sci. Technol. 34, 1125–1131. doi:10.1021/es9907764
- Sharma, P., Dubey, R.S., 2005. Lead toxicity in plants. Brazilian J. Plant Physiol. 17, 35–52. doi:10.1590/S1677-04202005000100004
- Sheffield City Council, 2017. About allotments [WWW Document]. URL https://www.sheffield.gov.uk/home/parks-sport-recreation/allotments (accessed 8.18.17).
- Stasinos, S., Kostakis, M., Thomaidis, N., Zabetakis, I., 2014a. Irrigating Onions and Potatoes with Chromium and Nickel: Its Effects on Catalase and Peroxidase Activities and the Cross-Contamination of Plants. Water, Air, Soil Pollut. 225, 2142. doi:10.1007/s11270-014-2142-3
- Stasinos, S., Nasopoulou, C., Tsikrika, C., Zabetakis, I., 2014b. The Bioaccumulation and Physiological Effects of Heavy Metals in Carrots, Onions, and Potatoes and Dietary Implications for Cr and Ni: A Review. J. Food Sci. 79, R765–R780. doi:10.1111/1750-3841.12433
- Sustainable Development Commission, 2008. Health, place and nature How outdoor environments influence health and well-being: a knowledge base.
- Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy metal toxicity and the environment. EXS 101, 133–64. doi:10.1007/978-3-7643-8340-4_6

UNEP/FAO/WHO, 1992. Assessment of Dietary Intake of Chemical Contaminants. Nairobi.

- United Nations, 2008. World Urbanization Prospects 2007 Revision. Prospects. doi:10.2307/2808041
- US EPA, 1997. Exposure Factors Handbook. Washington D.C.
- US EPA IRIS, 2018. Integrated Risk Information System [WWW Document]. URL https://www.epa.gov/iris (accessed 3.15.18).
- USEPA, 2001. Baseline human health risk assessment. Vasquez boulevard and I-70 superfund site Denver, CO.
- van der Voet, E., Salminen, R., Eckelman, M., Mudd, G., Norgate, T., Hischier, R., 2013. Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles. A Report of the Working Group on the Global Metal Flows to the International Resource Panel.
- Viehweger, K., 2014. How plants cope with heavy metals. Bot. Stud. 55, 35. doi:10.1186/1999-3110-55-35
- Wang, Y., Qiao, M., Liu, Y., Zhu, Y., 2012. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. J. Environ. Sci. 24, 690–698. doi:10.1016/S1001-0742(11)60833-4
- Wierzbicka, M., 1987. Lead translocation and localization in Allium cepa roots. Can. J. Bot. 65, 1851–1860.
- Woodruff, T.J., Carlson, A., Schwartz, J.M., Giudice, L.C., 2008. Proceedings of the Summit on Environmental Challenges to Reproductive Health and Fertility: executive summary. Fertil. Steril. 89, e1–e20. doi:10.1016/J.FERTNSTERT.2008.01.065
- Xian, X., 1989. Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant Soil 113, 257–264.

- Zandsalimi, S., Karimi, N., Kohandel, A., 2011. Arsenic in soil, vegetation and water of a contaminated region. Int. J. Environ. Sci. Technol. 8.
- Zheng, N., Wang, Q., Zhang, X., Zheng, D., Zhang, Z., Zhang, S., 2007. Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Sci.
 Total Environ. 387, 96–104. doi:10.1016/j.scitotenv.2007.07.044