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Abstract  21 

Toxic trace element (TTE) contamination in urban soils may pose potential health risks, 22 

especially in cities with previous industrial activities. This study aimed to investigate soil 23 

contamination in urban allotments in Sheffield, the uptake of TTEs in autumn and spring sown 24 

onions (Allium cepa), and their potential risks on human health via consumption of the crops. 25 

Paired soil and plant samples were taken in triplicates from four private allotments to assess 26 

potentially elevated levels of lead (Pb), zinc (Zn), copper (Cu), arsenic (As), and chromium (Cr). 27 

These elements in soils exceeded the ambient background levels for England. Both Pb and As 28 

exceeded some UK and EU soil tolerable limits. Concentration factors (CF) were calculated as 29 

the ratio of trace element in the plant as compared to that in the soil, and uptake rates were in the 30 

order Zn>Cu>Cr>Pb>As. Concentrations were higher for most TTEs in spring sown onions 31 

(SSO), and had significantly higher CF (p<0.05) for Pb and Cr than autumn sown onions (ASO), 32 

whereas the opposite was true for As. Toxic elements in plants did not exceed FAO/WHO intake 33 

limits when considering TTE content per plant and consumption rates. Human health risk 34 

assessment calculations using target hazard quotients (THQ) and hazard indexes (HI) indicated 35 

that consuming onions alone did not pose an immediate health risk.  36 

Keywords 37 

Urban agriculture; Allotment soils; Toxic trace elements; Plant uptake; Health risk assessment 38 

 39 
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1. Introduction 45 

 Nearly 50% of the global population now live in cities, and it is expected to rise to 70% 46 

by 2050 (Malik et al., 2013; United Nations, 2008). At the same time, it is estimated that 47 

approximately 800 million people across the world are engaged in some sort of agricultural 48 

activity, contributing to 15-20% of the world’s food production (Lorenz et al. 2015). Recently 49 

urban agriculture is receiving significant momentum around major cities in the world as such 50 

practices are closely associated with human health and wellbeing (Perez-Vazquez et al., 2005; 51 

Sustainable Development Commission, 2008). This is a common technique to revamp unused 52 

plots of land in urban areas for both the aesthetic appeal and to build neighbourhood cohesion 53 

(Palmer, 2018). Some of these plots of land, however, may have been left unused for reasons 54 

such as previous soil contamination. 55 

 One of the major problems facing urban food production is toxic trace elements (TTEs) 56 

found in soil and produce (Alfaro et al., 2017; Antisari et al., 2015; Hu et al., 2013; Laidlaw et 57 

al., 2018; Mitchell et al., 2014). Although there are various pathways for the intake of trace 58 

elements, the transfer of elevated amounts of these TTEs into the food chain may adversely 59 

affect the health conditions of local population where the crops are consumed (Dehghani et al., 60 

2017; Islam et al., 2007; Qing et al., 2015; Tchounwou et al., 2012). Exposure assessments of 61 

these potentially harmful heavy metals through vegetable consumption is well documented, 62 

especially in areas with a history of smelting and mining activity (Augustsson et al., 2015; 63 

Beccaloni et al., 2013; Chen et al., 2014; Intawongse and Dean, 2006; Pelfrêne et al., 2013; 64 

Wang et al., 2012). Given many health and well-being benefits achieved through urban 65 

agriculture, it is absolutely vital to adopt appropriate management of these urban soils and 66 

monitor produce grown thereon for the presence of contaminants including TTEs. Public health 67 

risk must be assessed to better understand exposure to TTEs via urban agricultural activities, 68 
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especially due to the growing trend of own-grown food consumption by urban dwellers 69 

(Ngumbi, 2017; Palmer, 2018). 70 

 In the UK, there are an estimated 300,000 allotments, and 87 percent of households have 71 

their own garden (Buck et al., 2016). Increased urbanisation and a history of industrial activities 72 

and environmental pollution, however, have led to many UK cities reporting high levels of heavy 73 

metals in gardens and allotments (Giusti, 2011; Knight, 2004; Moir and Thornton, 1989). In 74 

many cases the sites were remediated, and allotment holders were advised not to consume crops 75 

from the previously contaminated lands. No allotment holders demonstrated signs of toxic metal 76 

poisoning, and blood level concentrations were within the normal range (Hough et al., 2004; 77 

Knight, 2004; Prasad and Nazareth, 2000). However, there is a serious lack of information about 78 

the risk of TTE exposure in populations who consume foods, especially vegetable crops, grown 79 

in allotment soils. In addition, some allotments might be located on a previously declared 80 

contaminated site but did not receive any real remediation treatment and now host agricultural 81 

activity without any risk assessment for TTEs. 82 

 TTEs may also accumulate at higher than ambient background levels due to 83 

anthropogenic activities. This may occur due to atmospheric deposition throughout urban areas 84 

from fossil fuel combustion and dust from contaminated sites. The most significant source of 85 

lead contamination in vegetables derives from the aerial deposition of particulates (Giusti, 2011; 86 

Hough et al., 2004). Other areas especially vulnerable to contamination are those with a history 87 

of waste and sewage sludge dumping, metalliferous mining and smelting, and metallurgical 88 

industries (Alloway, 2004, 1995; Culbard et al., 1988; Douay et al., 2013). Thus, many previous 89 

industrial sites now used for gardening purposes may pose a significant risk to human health.  90 

 Human exposure to potentially toxic metals by ingestion depends largely on their 91 

concentrations in consumed crops. The amount of metal taken up by plants in relation to the 92 

amount of that present in the soil can be represented by the concentration factor (CF), defined as 93 
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the ratio of the plant concentration of a metal (as dry weight) to its concentration in the soil (Noli 94 

and Tsamos, 2016). Many factors regulate this ratio as not all metal ions in the soil are 95 

bioavailable to plants. Metal concentrations in plants are influenced by physicochemical 96 

properties of the soil and levels of metal concentrations in the soil. Soil pH is an especially 97 

important physicochemical characteristic in assessing the mobility of metal cations. Generally, 98 

TTE cations are most mobile under acidic soil conditions, and decrease in bioavailability with 99 

increasing pH (Gebrekidan et al., 2013; Jung, 2008; Malik et al., 2013; Sauvé et al., 2000). 100 

However, it is important to note that this relationship can be confounded as the effect of 101 

changing metal ion reactivity is highly variable (Caporale and Violante, 2016; Hough et al., 102 

2003). Some plants have also demonstrated metal tolerance mechanisms due to various traits 103 

such as selective uptake of ions, the decreased permeability of membranes and localisation of 104 

metals in certain areas of the plant (Jitendra Kumar et al., 2015; Viehweger, 2014). Typically, the 105 

highest concentrations of pollutants are found in plant roots and the lowest in plant seeds 106 

(Sharma and Dubey, 2005). Such defence mechanisms also depend on the type of metal, as the 107 

same plant may take up different quantities depending on the element itself (Fytianos et al., 108 

2001; Stasinos et al., 2014a, 2014b). 109 

Both soil and plant factors as discussed above could potentially alter the TTE chemistry 110 

and mobility in the soil plant system. As a result, a contaminated allotment which was declared 111 

safe several years ago for growing crops might become unsafe soil today. Therefore, the 112 

overarching aim of this investigation is to evaluate the potential risks to human health through 113 

consumption of allotment-grown vegetables, which will directly feed into urban soil ecosystem 114 

services including food security, health and well-being of urban population.  This investigation 115 

focuses on onions, which are one of the most widely grown and consumed vegetables in the UK. 116 

Specifically, this study aims to: determine the concentrations and spatial variation of Pb, Zn, Cu, 117 

As, and Cr in allotment soils in Sheffield, UK, assess the uptake of above metals by spring and 118 
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autumn sown onions (A. cepa), and estimate the risk to humans based on the onion consumption 119 

rates.  120 

 121 

2. Materials and methods 122 

2.1. Study area  123 

 This investigation was carried out in the city of Sheffield in South Yorkshire, England, 124 

UK, which is home to centuries of industrial activities with an international reputation in the 125 

steel industry. High levels of Pb were previously reported in Sheffield, where levels of Pb over 126 

11,000 mg kg-1 in the top 50 cm of soil were discovered in domestic gardens, while the Soil 127 

Guideline Value for residential land use with plant uptake is 450 mg Pb kg-1 (DEFRA and 128 

Environment Agency, 2002; Knight, 2004). Investigation into the area’s history revealed there 129 

had been a Pb rolling mill and smelter in operation until the late 19th century in the location 130 

where homes now stand. As the homes were built before any contamination assessment 131 

development controls, residents were not aware of the high levels of Pb in the area. Since 132 

concentrations of Pb in these domestic gardens were well above the UK trigger levels, 133 

remediation was later undertaken. Such findings raise the concern of other possible contaminated 134 

sites in Sheffield, especially where there is the potential for ingestion of elevated TTEs via own-135 

grown foods. In a geochemical survey of Sheffield to identify metal pollution across the city, 136 

where gardens were tested, all TTE concentrations exceeded their Soil Guideline Value (SGVs) 137 

for residential land use with plant uptake (Rawlins et al., 2005). In Sheffield alone, there are 138 

more than 70 allotment sites with over 3,000 plots (Sheffield City Council, 2017). 139 

 140 

2.2. Allotment site selection 141 

 Initially the project was designed to sample the allotments owned by Sheffield City 142 

Council, however, access to these sites was denied. Privately owned allotment sites were then 143 
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contacted for testing, which were only six in number, as compared to the 70 sites owned by the 144 

city council. Out of these six site managers contacted, only four agreed to participate in the study 145 

and provided access to their plots. The locations of these allotments is depicted in the 146 

Supplementary Information (SI: Figure 1). Allotments identified were: Well Community 147 

Allotments (WCA), Brightside Gardens (BSG), Oughtibridge Allotments (OBA), and 148 

Handsworth & Richmond Allotments (HRA). All allotments were within ~5 miles from the 149 

Sheffield city centre. An investigation into the previous land use patterns of these allotment sites 150 

was performed using Digimaps (EDINA Historic Digimap Service, 1890). Archived maps dating 151 

back to the year 1890 indicated no sign of previous industrial activity on these allotment sites. 152 

WCA, OBA, and HRA were documented allotments dating back at least 100 years. BSG also has 153 

a long history of allotment use, though some major Sheffield industrial works neighboured the 154 

site. In a questionnaire about plot maintenance, all participants answered that they watered their 155 

plots exclusively with rainwater collected at allotment sites. Questionnaires about fertiliser and 156 

compost use also were completed by each participant to identify possible confounding factors. 157 

 158 

2.3. Soil sampling and analysis 159 

 A total of 10 plots were tested, with soil and onion samples taken in triplicate from each 160 

plot (total soil samples n=30, total onion samples n=30). One plot was tested at WCA, and three 161 

plots were tested at BSG, OBA, and HRA. All soil and plant samples were taken between June 162 

and July 2017.  163 

 Core samples were collected from each plot, from a depth of 0 to 20 cm using a small 164 

hand auger, avoiding the edges of individual plots. Soil samples were prepared and analysed 165 

using standard procedures for soil bulk density, soil texture, pH (deionized H2O and CaCl2 166 

extracts), electrical conductivity (EC), and total C and N. Total C and N were measured by an 167 

elemental analyser (Vario El CubeCN, Elementar, Germany). A Delta-50 X-ray fluorescence 168 
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spectrometer (XRF) was used in the benchtop workstation to provide a rapid simultaneous 169 

measurement of TTE concentrations in soil samples. Each sample was analysed using three 170 

beams (50 kV, 40 kV, and 15 kV); each beam was run for 60 seconds. XRF was performed in 171 

triplicate, with a total of 9-minute run per sample, and the average metal concentration values of 172 

each beam were used for the analysis.  173 

 174 

2.4. Plant sampling and analysis 175 

 Onions (Allium cepa) were chosen for this study as they represent a common own-grown 176 

vegetable and were cultivated by all participants. As selection was based on plot holder 177 

participation, rather than requiring all participants to cultivate under the same conditions, 178 

different types of onions were likely obtained. This was considered appropriate as the emphasis 179 

of this study was on the variability of metal uptake in onions and its relation to soil 180 

concentrations. The onions were divided into two categories according to their planting time, as 181 

their edible parts differed:   182 

 “Autumn sown onions (ASO)” (n=6) were planted in October/November 2016, and were 183 

collected from two plots at HRA. Being fully grown onions, the inner bulb (outer skin 184 

removed) was considered edible.  185 

 “Spring sown onions (SSO)” (n=24) were planted in March/April 2017, and were 186 

collected from WCA, BSG, OBA, and one plot at HRA. Having the maturity of a spring 187 

onion, the entire bulb and 10 cm of the stem were considered edible. 188 

 189 

Onions selected for analysis were chosen away from the borders of the plot to avoid 190 

samples with potential contamination from factors outside the plot. The entire plant was removed 191 

carefully with a hand trowel. Each onion sample was washed with tap water as to simulate 192 
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household cleaning practices. Any visible soil particles were washed away. Samples were first 193 

air dried, and then at 70 °C in a hot-air oven for at least one week. Once dried, non-edible parts 194 

of the plants were removed according to their classification as mentioned above (ASO or SSO), 195 

and the remaining edible parts of each sample was milled using a ball mill, creating a 196 

homogenous mixture. Acid digestion was performed using EPA Method 3050B (SW-846) (EPA, 197 

1996), and the extracts were analysed for TTEs using inductively coupled plasma mass 198 

spectrometry (ICP-MS, Model DRC 11, Pelkin Elmer, USA). 199 

All ICP-MS concentrations of TTEs in plants were generated as dry weight (dw) basis. 200 

To assess soil-plant relationships and TTE uptake by plants, concentration factors (CF) were 201 

determined. This was calculated as the ratio of TTE concentrations detected in the plants (dry 202 

weight basis) over its concentration in the corresponding soil (dry weight basis). 203 

 204 

 205 

2.5. Human health risk assessment 206 

 To evaluate the impact of onion consumption with potentially elevated levels of TTEs on 207 

human health, a risk assessment was performed. Exposure to TTE depends on the concentration 208 

of the element in the food and the daily food consumption rate. Estimated daily intake (EDI) can 209 

therefore be calculated using Eq. 1 (Chamannejadian et al., 2013; Hang et al., 2009; Zheng et al., 210 

2007):  211 継経荊 噺 寵抜寵墜津喋栂         (Eq. 1) 212 

Where, EDI (µg kg-1 Bw-1 day-1) is the amount of TTE consumed; C (µg g-1) is the 213 

concentration of TTE in onion; Con (g person-1 day-1) is the average daily consumption of 214 

vegetables in the UK, assuming worst case scenario that all vegetables consumed were raw 215 

onions (20 g person-1 day-1 for males, 38 g person-1 day-1 for females (Bates et al., 2014); Bw is 216 
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the average body weight (83.6 kg for males and 70.2 kg for females, Office for National 217 

Statistics, 2010).  218 

The standard EPA method for risk assessment states that the risk of non-carcinogenic 219 

effects is determined as the ratio of the dose from exposure to site media as compared to a dose 220 

that is thought to be of no risk (USEPA, 2001). This is the target hazard quotient (THQ). A 221 

quotient value less than one indicates no significant risk of non-carcinogenic effects. THQ can be 222 

determined by Eq. 2 (Zheng et al., 2007): 223 THQ 噺 帳帖彫眺捗帖        (Eq. 2) 224 

Where, RfD is the reference oral dose (µg kg-1 day-1). RfD values used for Pd, Zn, Cu, Cr, 225 

As were 3.5, 300, 40, 1500, 50 µg kg-1 day-1 (FAO/WHO, 1997; UNEP/FAO/WHO, 1992; US 226 

EPA IRIS, 2018). In many cases, however, exposure may result from two or more pollutants, 227 

creating an additive effect. To calculate the additive effect, hazard index (HI) is generated as the 228 

sum of a mixture of toxic elements (Eq. 3) (Hang et al., 2009; Zheng et al., 2007):  229 茎荊 噺  デ 劇茎芸津沈津退怠        (Eq. 3) 230 

 231 

 232 

2.6. Data analysis 233 

 All statistical analyses were performed using Excel 2016 and SPSS Statistics 23 software 234 

packages, and plots were made using GraphPad Prism (7.03) software. 235 

 236 

3. Results  237 

3.1. Soil physiochemical properties 238 

 The bulk density, pH, EC and C:N ratio are presented in Table 1. Soil textures were 239 

either silty loam or sandy loam. Bulk densities were generally low as crops were grown with 240 
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soil-garden compost mixture. All soils were between the pH ranges of 5.6-6.9 (pH with CaCl2), 241 

the lowest mean pH was found in OBA (mean pH=5.6). The soil with the highest EC was in plot 242 

1 in BSG (808.3 µS cm-1), and the lowest in plot 1 in OBA (419.3 µS cm -1). The average percent 243 

C contents was 11.04 %, but varied from 6.18 to 11.88 %. The C:N ratio varied from 14.85 to 244 

22.25.  245 

 246 

3.2. TTE concentrations in soils 247 

 Three soil samples from each plot were averaged to determine mean TTE concentrations. 248 

The soil Pb, Zn, Cu, Cr and As concentrations are represented in Figure 1 (a-e) for comparative 249 

purposes and to identify outliers, as the data was not symmetrically distributed. The data from 250 

each plot are also presented as Supplementary Information (SI: Table 1), which includes 251 

background pH and TTE concentrations in England, the UK Soil Guidelines Values (SGV), and 252 

the EU tolerable limits.253 
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Table 1. Soil characteristics, means and standard deviations of three samples from each plot and allotment means where more than one plot was sampled.  

Allotment Plot 
Bulk Density 

(g/cm3) 
pH (H20) pH (CaCl2) 

Conductivity 

(µS/cm) 
      % N      % C C:N 

Well Community Allotments (WCA) 1 0.69 ± 0.07 6.2 ± 0.20 5.9 ± 0.20 442.7 ± 47.7 0.35 ± 0.01 6.18 ± 0.40 17.60 ± 1.0 

Brightside Gardens (BSG) 1 0.88 ± 0.13 7.0 ± 0.20 6.8 ± 0.10 808.3 ± 237.0 0.33 ± 0.01 6.91 ± 0.40 21.13 ± 1.3 

 2 0.74 ± 0.08 7.0 ± 0.40 6.8 ± 0.20 508.3 ± 51.1 0.39 ± 0.03 7.63 ± 1.0 19.25 ± 1.0 

 3 0.64 ± 0.03 7.1 ± 0.10 6.8 ± 0.10 505.0 ± 66.2 0.41 ± 0 8.98 ± 0.10 21.77 ± 0.50 

Mean 0.75 ± 0.08 7.0 ± 0.20 6.8 ± 0.10 607.2 ± 118.1 0.38 ± 0.02 7.84 ± 0.5 20.71 ± 0.90 

Oughtibridge Allotments (OBA) 1 0.46 ± 0.03 5.8 ± 0.10 5.6 ± 0.10 419.3 ± 73.9 0.56 ± 0.06 9.23 ± 1.2 16.33 ± 0.40 

 2 0.46 ± 0.05 6.0 ± 0.30 5.7 ± 0.30 421.3 ± 99.0 0.41 ± 0.04 6.73 ± 0.7 16.21 ± 0.30 

 3 0.48 ± 0.02 5.8 ± 0.10 5.6 ± 0.10 660.3 ± 138.1 0.52 ± 0.05 7.71 ± 0.8 14.85 ± 0.60 

Mean 0.46 ± 0.03 5.9 ± 0.20 5.6 ± 0.20 500.3 ± 103.7 0.50 ± 0.05 7.89 ± 0.9 15.80 ± 0.40 

Handsworth & Richmond Allotments 

(HRA) 
1 0.51 ± 0.07 6.4 ± 0.10 6.2 ± 0.10 641.3 ± 128.0 0.53 ± 0.04 11.88 ± 1.2 22.25 ± 0.60 

 2 0.55 ± 0.10 7.2 ± 0.10 6.9 ± 0.10 732.0 ± 136.5 0.59 ± 0.02 10.94 ± 0.7 18.65 ± 0.60 

 3 0.58 ± 0.07 6.1 ± 0.10 5.8 ± 0.10 525.0 ± 56.0 0.60 ± 0.02 10.83 ± 0.8 17.99 ± 0.39 

Mean 0.54 ± 0.08 6.6 ± 0.10 6.3 ± 0.10 632.8 ± 106.9 0.57 ± 0.03 11.21 ± 0.9 19.63 ± 1.87 
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Figure 1a-e. Boxplots showing median, 25th and 75th percentiles of TTE in soil (mg kg-1). Allotments are WCA Well 
Community Allotments, BSG Brightside Gardens, OBA Oughtibridge Allotments, HRA Handsworth & Richmond 
Allotments. Note the Y-axis scale differs between graphs. Significant differences (p<0.05) between the different groups 
are shown using lower case letters. 

 254 

  255 
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The SGVs are set by the UK to assess the risk to human health from contaminated soil exposure. SGVs differ 256 

based on land usage, with the SGVs for allotments used here for comparison. The previous SGV for As has 257 

been modified from 20 mg kg-1 to 43 mg kg-1  in the current guidelines (DEFRA and Environment Agency, 258 

2002; Environment Agency, 2009). Only plot 2 in HRA had As concentration above the current SGV (43 mg 259 

kg-1). All allotments had concentrations above the previous As SGV (20 mg kg-1). The previous Pb SGV was 260 

450 mg kg-1, of which plot 1 at WCA had concentrations above this limit. Plot 2 at HRA, and plots 2 and 3 at 261 

BSG exceeded the previous SGV for Cr (130 mg kg-1). No new guidelines were issued, and these previous 262 

SGVs have now been withdrawn (DEFRA and Environment Agency, 2002). 263 

 European countries have a variety of methods to determine human/environmental risk levels 264 

associated with TTE concentrations in soil. Most recently, Finnish legislation has been applied 265 

internationally as it provides an appropriate representation of mean values used by different national systems 266 

within Europe (Ministry of the Environment, 2007; van der Voet et al., 2013), and are referred hereto as the 267 

‘EU tolerable limits’. The EU tolerable limit values presented in SI: Table 1 are guideline values, where if 268 

they are exceeded, the area poses health/ecological risks. These EU tolerable limits are higher than the UK’s 269 

SGVs for all metals except for Pb. Almost all plots sampled in this study had concentrations higher than this 270 

EU tolerable level of Pb (200 mg kg-1). Most plots also had Zn levels higher than the EU tolerable limit (250 271 

mg kg-1), with plot 2 at HRA almost tripled the limit (727.33 mg kg-1). Soil concentrations of Cu, As, and Cr 272 

did not exceed the EU tolerable limits.   273 

All data sets were confirmed to be normally distributed. Differences in mean metal concentrations 274 

between the four allotments were analysed using SPSS one-way ANOVA. Concentrations of Pb between 275 

allotments were significantly different (p<0.05), the same was true for Zn, Cu, and Cr between allotments. 276 

However, there was no significant difference in As levels between allotments (p>0.05).   277 

The data showed a positive relationship between soil pH (in H2O) and concentrations of Zn, Cu and 278 

Cr. This is illustrated in Figure 2a-c, regression coefficients are statistically significant (p<0.05). Multiple 279 

regression  280 
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Figure 2a-c. Statistically significant relationships (p<0.05) between the soil concentration of Zn (a), Cu (b) and Cr (c) 
and soil pH (in H2O) (n=30).   
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analysis was employed to identify any relationship between soil physicochemical properties and 281 

concentrations of TTE in soils. Significant regression (p<0.05) were found between Zn vs pH (R2=0.4593), 282 

Cu vs pH (R2=0.234), and Cr vs pH (R2=0.5671) 283 

 284 

3.3. TTE concentrations in plants 285 

 The Joint Food and Agriculture Organisation/World Health Organisation (FAO/WHO) Expert 286 

Committee on Food Additives (JECFA) identify maximum levels for contaminants and toxins in foods for Pb 287 

and As (FAO/WHO, 2011a), and are presented for comparison in SI: Table 2. Figure 3 depicts TTE 288 

concentrations in plants. Assessment of WCA TTE concentrations in relation to the other allotments is 289 

limited as only one plot at this allotment was tested. HRA plots 1 and 3 are ASO, while all others are SSO. 290 

All metals, except As, were lower in ASO than SSO. BSG had the highest mean concentrations of Pb in 291 

plants (0.23 mg kg-1). Mean Zn concentrations in plants were similar between allotments and ranged from 292 

3.17 mg kg-1 to 8.55 mg kg-1. Cu concentration ranged from 0.35 mg kg-1 to 0.85 mg kg-1. No As was 293 

detected in WCA nor in plot 2 at OBA and mean As concentration was the highest in plants at HRA. 294 

Concentrations of Cr ranged from 0.02 mg kg-1 to 0.34 mg kg-1 with concentrations 15 times higher in SSO 295 

than ASO. Six plots had plants with Pb levels higher than the FAO/WHO guidelines of 0.10 mg kg-1. No 296 

plants had levels higher than the FAO/WHO guidelines for As (0.10 mg kg-1).  297 

 298 

3.4. Concentration Factor (CF)  299 

 A higher CF indicates more mobile/bioavailable metal ions in the soil. The order of metal 300 

uptake/transfer from soil to plant was Zn>Cu>Cr>Pb>As. These were calculated using means of all onions. 301 

The order of metal uptake from soil to plant was calculated as an average CF of each metal. No levels of As 302 

were detected in WCA nor in plot 2 at OBA, and thus CF could not be calculated for these two plots. Results 303 

are presented in Table 2.  304 
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 TTE uptake between ASO and SSO was also compared (Figure 4a-c). This was done to interpret 305 

metal uptake in relation to time spent in the ground, as well as to examine localisation of metals in the plant, 306 

as ASO and SSO differed in edible parts. ASO and SSO were grouped into CFAutumn and CFSpring, 307 
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Table 2. Concentration factor (CF), ratio of metal in plant (mg kg-1, dry weight) to metal in soil (mg kg-1, dry weight).  

Allotment Plot Pb Zn Cu Cr As 

Well Community Allotments (WCA) 1 1.88E-03  1.43E-01 7.06E-02  2.67E-02 NDa 

Brightside Gardens (BSG) 1 6.20E-03 1.84E-01 7.89E-02 2.17E-02  1.06E-03  

 2 9.90E-03 2.19E-01 1.04E-01 2.42E-02  1.08E-03  

 3 6.18E-03 9.09E-02 1.72E-02 8.16E-03  1.18E-03  

Oughtibridge Allotments (OBA) 1 7.29E-03 4.64E-01 7.31E-02 1.91E-02  8.63E-04  

 2 9.37E-03 3.09E-01 1.70E-01 1.47E-02  NDa 

 3 4.52E-03 3.56E-01 1.24E-01 2.93E-01  1.03E-02  

Handsworth & Richmond Allotments (HRA)  1* 1.97E-03 1.61E-01 4.83E-02 3.03E-03  8.58E-03  

 2 6.62E-03 9.06E-02 5.71E-02 2.14E-02 1.57E-02  

  3* 3.41E-03 1.05E-01 3.62E-02 1.36E-03 1.03E-02  

                             aND, None Detected 

             *Denotes Autumn sown onions (ASO), all others are Spring sown onions (SSO). 
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Figure 3a-e. Boxplots showing median, 25th and 75th percentiles of TTE concentrations in plants (mg kg-1, fw). 
Allotments are WCA Well Community Allotments, BSG Brightside Gardens, OBA Oughtibridge Allotments, HRA 
Handsworth & Richmond Allotments. HRA values include ASO and SSO data grouped together. Note the Y-axis scale 
differs between graphs. No As was detected in WCA.   

  308 



20 
 

A S O S S O
0 .0 0 0

0 .0 0 2

0 .0 0 4

0 .0 0 6
C

F
a )

C r

* *

 

A S O S S O
0 .0 0 0

0 .0 0 2

0 .0 0 4

0 .0 0 6

C
F

b)

P b

 

 

A S O S S O
0 .0 0 0

0 .0 0 2

0 .0 0 4

0 .0 0 6

C
F

a )

A s

*

 

 

Figure 4a-c. Boxplots showing median, 25th and 75th percentiles of significant different CF for Pb, As, and Cr, in ASO 
compared to SSO. Pb and Cr were significantly higher in SSO (p<0.05), while As was significantly higher in ASO 
(p<0.05). Significant differences are indicated using symbols (* p<0.05 and ** p<0.01). Note the Y-axis scale differs 
between graphs.   
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respectively, to compare uptakes. Mean CFs were determined for CFAutumn and CFSpring for each metal. 309 

Uptakes of metals between ASO and SSO were compared using non-parametric Mann-Whitney U tests due 310 

to the small ASO sample size (n=6), and because the data were not normally distributed. CFSpring had 311 

significantly higher Pb (p=0.021) and Cr (p=0.00) than CFAutumn. CFAutumn, however, had significantly higher 312 

As (p=0.029) than CFSpring.  313 

 314 

3.5. Potential health risk 315 

 The THQs of each TTE through onion consumption are listed in Table 3. All of the calculated THQ 316 

values were < 1, indicating health risks associated with TTE exposure for men and women are insignificant if 317 

residents only ingest one type of TTE from foodstuff. The potential health risk of the TTEs examined in the 318 

study combined or HI also was < 1 for both men and women. This suggests that there is no significant 319 

potential health risk for men or women consuming onions from these allotments when considering the 320 

collective effect of the levels of the five TTEs analysed in this study.  321 

 322 

4. Discussion 323 

4.1. Soil metal contamination in allotments 324 

 All allotment TTE concentrations were well above the ambient background levels for England, 325 

however, they were similar to ambient pH for England (Barraclough, 2007). This demonstrates that there are 326 

other external factors that have led to these increased levels of contaminants. A few plots exceeded the SGVs 327 

for Pb, As, and Cr. These SGVs indicate levels of metals in allotments below which there are minimal long-328 

term health risks, concentrations above these limits should be further assessed to determine if remediation is 329 

necessary.  330 

 The EU tolerable limits set regulations on concentration levels allowed for TTEs depending on land 331 

usage and states the need for action if surpassed. The EU tolerable limits for all non-industrial land use are 332 

higher as compared to the UK’s SGVs for all metals except for Pb. Such variation highlights the dependency333 
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Table 3. Estimated daily intake by male and females and potential health risk due to onion consumption.  

Individuals Element RfDa EDIb THQc HId 

Males Pb 3.5 0.034 0.010 0.018 

 Zn 300 1.513 0.005   

 Cu 40 0.125 0.003   

 Cr 1500 0.036 0.000   

 As 50 0.005 0.000   

Females Pb 3.5 0.076 0.022 0.041 

 Zn 300 3.423 0.011   

 Cu 40 0.283 0.007   

 Cr 1500 0.081 0.000   

 As 50 0.011 0.000   

                             aReference oral dose (µg kg-1 day-1) 

              bEstimated daily intake (µg kg-1 day-1) 

              cTarget Hazard Quotient (EDI/RfD) 

              dHazard Index when multiple metals are present (況THQn ; n = 1 to i) 
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 of risk assessment on toxicological references employed. Most metal concentrations in allotment soils were 334 

below the EU limits, except for Pb and some Zn concentrations.  335 

 Other UK allotment TTE concentrations are inconsistent and vary depending on location. A study of 336 

Pb in allotment soils in a London borough revealed concentrations that ranged from 513 to 2,910 mg kg-1 
337 

(Prasad and Nazareth, 2000), whereas in Bristol the median Pb concentration was 210 mg kg -1 (Giusti, 338 

2011). Other metal median values in Bristol were 272.6 mg kg -1 Zn, 60.1 mg kg -1 Cu, 21.7 mg kg -1 As, and 339 

23.1 mg kg -1 Cr (Giusti, 2011). Such results are consistent with concentrations found in this Sheffield study, 340 

however Cr concentrations in the Sheffield allotments were more than three times greater than those found in 341 

Bristol.  342 

The largest survey of garden soils carried out by Culbard et al. (1988) analysed 4,650 garden soils 343 

around Great Britain. Results indicated levels of Pb, Cu and Zn were elevated, with a mean Pb concentration 344 

in garden soils of 298 mg kg-1. Levels of Pb as high as 1,870 mg kg-1 were found in areas with previous 345 

mining history. A soil geochemical survey of Sheffield determined median Pb levels to be 161 mg kg-1, and 346 

where samples were from the domestic garden, all Pb concentrations were above the SGV of 450 mg kg-1 
347 

(Rawlins et al., 2005). As previously discussed, concerning levels of Pb, as high as 14,863 mg kg-1,  were 348 

found in domestic gardens in a Sheffield neighbourhood that was previously a Pb rolling mill (Knight, 2004). 349 

Such findings indicate the need for site specific risk assessment.    350 

As found in this study, similar correlations between soil physiochemical properties and TTE 351 

concentrations were seen in the UK Soil and Herbage pollutant Survey (UKSHS), where significant positive 352 

correlations were found between Zn and pH (p=0.01) in the overall UK soil dataset (Barraclough, 2007). 353 

Consistent with results from this Sheffield study, Sauvé et al. (2000) also found a low correlation coefficient 354 

between Pb and pH, as compared to the correlation coefficient for Zn and pH.   355 

 356 

 357 

 358 
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4.2. Plant uptake and CF 359 

 Relatively neutral soil pH could explain low bioavailability of metals in soils (Ming et al., 2016). 360 

There was a positive correlation seen when comparing Pb in plants vs soil pH (R2=0.2905); however, no 361 

correlation was significant for the other soil physiochemical characteristics (e.g., total C) and plant metal 362 

concentrations. One of the most predictive factors in metal uptake by plants is pH, with low soil pH known to 363 

increase metal mobilisation and bioavailable concentrations (Golia et al., 2008; Puga et al., 2015). All soils 364 

tested had relatively neutral pH, indicating TTEs may be less mobile in these soil conditions as compared to 365 

soil with lower pH values. This could explain the lack of correlation between soil-plant metal concentrations. 366 

Though soil mixtures were homogenous upon the use of XRF, some metal distribution within allotments may 367 

not have been uniformly distributed and may have produced a seemingly high level of metal in comparison to 368 

what onion fibrous roots were exposed to. This could also give a reason for the lack of correlation between 369 

soil-plant concentrations of metals.  370 

 Though it was not shown here, a significant correlation was detected in As in soil to As in plant 371 

(R2=0.4143). This is similar to other results especially those found in the derivation of SGVs for arsenic in 372 

relation to root vegetables (Environment Agency, 2009; Zandsalimi et al., 2011). No other soil-plant 373 

concentration correlations were significant. Lack of linearity between plant and soil concentrations of the 374 

other metals can be explained by many factors influencing metal uptake by plants and complexity of ion 375 

transfer. Variables such as soil physicochemical properties, applied fertilisers, the type of plant species, etc., 376 

can influence these uptake rates (Chen et al., 2016; Chojnacka et al., 2005; Liu et al., 2015). Furthermore, 377 

uptake of metals may result from sources other than soil, such as polluted air and water. Air contaminants are 378 

less likely to affect root vegetables such as the ASO but may contribute to SSO contamination as the stems 379 

are part of the edible vegetable. Contaminated particulates in the air have been documented to increase levels 380 

of TTEs in plants (Antisari et al., 2015). This is especially important when examining Pb contamination as 381 

combustion of leaded petrol in vehicles and coal combustion has led to increased atmospheric deposition and 382 

remains the most significant source of Pb contamination in vegetables (Barraclough, 2007; Hough et al., 383 
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2004). Hand washing of vegetables also does not remove all soil particles and may contribute TTE 384 

concentrations of the onions. The maturity levels of the vegetable and different consumed parts also may 385 

explain the different observed concentrations of TTEs between the two groups. A noted limitation was also 386 

the lack of certainty on the onion cultivars used in the study and the small sample size of ASO. The soil TTE 387 

concentrations could have been different in these two plots as compared to the other SSO plots and could 388 

have had an influence on the results.  389 

Additionally, defence mechanisms by plants may localise TTEs in different regions of the plant. 390 

Selection of tissue analysed may greatly vary results of apparent metal concentrations in plants (Prasad and 391 

Nazareth, 2000). In onions, Pb has been found to localise in the fibrous root tips, while the root base, closest 392 

to the bulb of the onion, has been found to have the lowest concentrations of Pb (Wierzbicka, 1987). Other 393 

studies examining the uptake of Pb by onions, have reported Pb concentrations in leaf and shoots to be more 394 

than double than that found in the bulb, with the largest amount of Pb found in the basal part of leaves. This 395 

above-below soil pattern of metal distribution was seen in multiple varieties of onions, and demonstrated a 396 

great capacity to translocate Pb in its tissues in the presence of highly contaminated soils (Michalak and 397 

Wierzbicka, 1998). It was seen in this study that SSO was higher in concentrations of almost all metals. This 398 

could be explained by the localisation of TTEs in the basal portion of the leaves which were included for 399 

sample analysis in SSO (as they were spring onions), but was removed in the ASO (as they were mature 400 

onions). Though concentrations of As were higher in ASO than SSO, this could be due to the relatively high 401 

levels of As in the soil at HRA (where the ASO were grown), as the SSO at HRA had even higher levels of 402 

As.  403 

The TTE concentrations in plants in this study are consistent with other reports of metal transfer 404 

capabilities by plants in contaminated soils (Augustsson et al., 2015; Chojnacka et al., 2005; Dinelli and 405 

Lombini, 1996). The CF order of metal uptake from soil to plant was Zn>Cu>Cr>Pb>As, which is well 406 

documented (Alexander et al., 2006; Chen et al., 2014; Intawongse and Dean, 2006; Islam et al., 2015; Wang 407 

et al., 2012; Xian, 1989). Fytianos et al. (2001) found much greater CFs, for example, CF in onions grown in 408 
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contaminated soils were 0.35, 0.31, and 0.21 for Zn, Cu and Pb, respectively. However, this is still consistent 409 

with previous results that Pb is especially known to not be readily taken up by plants, due in part to its 410 

stronger adhesion to the soil matrix (Barraclough, 2007; Gebrekidan et al., 2013; Holmgren et al., 1993). 411 

Such relationships were seen in this study where the WCA, which had the highest levels of Pb in the soil, had 412 

some of the lowest concentrations of Pb in the plants. Augustsson et al. (2015) similarly found that root 413 

vegetable metal concentrations were only moderately elevated, despite high concentrations in the soil where 414 

they were grown, and most vegetables were below food contaminant legislation levels.  415 

 416 

4.3. Consumption and health risk assessment 417 

 TTE concentrations, dry weight, in plants were converted to fresh weight (fw) basis using recorded 418 

moisture contents (US EPA, 1997) for better comparison to FAO/WHO food standards (FAO/WHO, 2011a). 419 

Six plots had onions that exceeded the FAO/WHO maximum level of Pb in root vegetables of 0.10 mg Pb kg-
420 

1 fw (FAO/WHO, 2011a). FAO/WHO also previously suggested a provisional tolerable weekly intake 421 

(PTWI) for adults of 0.025 mg Pb kg-1 body weight (FAO/WHO, 2011b). In considering the amount of Pb 422 

per plant and consumption rates, an unreasonable quantity of onions would need to be consumed per week to 423 

reach this PTWI. This PTWI has now been withdrawn as recent dose-response analysis does not indicate any 424 

threshold to be health protective for effects of Pb, and FAO/WHO have not established a new PTWI. Levels 425 

of As concentrations in plants were well below the FAO/WHO maximum level for contaminants in foods of 426 

0.10 mg As kg-1 (FAO/WHO, 2011a). The highest concentration of As was the SSO at HRA (0.069 mg kg-1). 427 

This is consistent with other studies in which contaminated sites, even with significant soil pollution, did not 428 

yield vegetables with intakes above tolerable daily intakes (Augustsson et al., 2015; Beccaloni et al., 2013; 429 

Chen et al., 2014; Fytianos et al., 2001; Pelfrêne et al., 2013; Wang et al., 2012).  430 

Bioavailability and human exposure are often hard to assess as metals may be present in forms not 431 

harmful to the environmental or to human health. It is difficult to assess total exposure as the pathways of 432 

TTE intake may also include contaminated drinking water, oral soil ingestion, and consumption of other 433 
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contaminated food source. Within the body, many factors such as absorption in the gastrointestinal tract and 434 

stomach acidity also affect exposure. Uptake from the gastrointestinal tract may differ according to element 435 

species and to plant type (Augustsson et al., 2015; Intawongse and Dean, 2006). The actual harm posed to 436 

allotment holders growing crops in soils with elevated levels of TTEs is likely to be minimal. Allotment 437 

holders typically do not solely consume food grown in their allotments, which makes risk assessment more 438 

difficult. Other variables may likewise affect contamination and metal exposure, for instance, vegetable 439 

preparation and type of vegetable consumed vary in washing and peeling procedures to remove soil particles, 440 

and absorb different amounts of metals (Alexander et al., 2006; Intawongse and Dean, 2006).  441 

It is also important to note that though toxic exposure is ubiquitous among populations, some 442 

subpopulations will be disproportionately affected. Especially vulnerable groups such as children, elderly 443 

adults, pregnant women or those with lowered immune systems due to chronic illness may experience more 444 

serious effects from TTE exposure. For example, an adolescent that consumes that same quantity of 445 

contaminated foodstuffs, but with half the bodyweight of an adult, is more at risk for exposure. Furthermore, 446 

prenatal exposure to certain TTEs has been documented to increase risk of cancer in childhood and interfere 447 

with crucial developmental stages that can lead to adverse birth outcomes and increased risks of disease 448 

(Balk et al., 2011; Bergman et al., 2012; Grandjean et al., 2007; Hines et al., 2010; Woodruff et al., 2008).   449 

 450 

5. Conclusions 451 

 Evaluation of allotments in Sheffield revealed that concentrations of Pb, Zn, As, and Cr exceeded 452 

some UK and EU soil limit guidelines. Such findings do not necessarily lead to high levels of metals in 453 

plants grown in these soils, as little correlation was evident between soil and plant metal contents. This is due 454 

to a variety of factors governing the bioavailability and uptake of metals by plants. Because of this, onions 455 

grown in these soils did not exceed foodstuff regulations.   456 

Following this initial screening, further detailed assessment of these areas can be completed in the 457 

future, especially in those soils that exceeded limit guidelines. Also, as soil metal concentrations vary greatly 458 
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according to previous land use, site-specific risk assessments should be conducted, especially in zones with 459 

past industrial history that are now used for gardening purposes.  460 
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