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Abstract

Background: Animal studies suggest that exposure to either of the two widely used drugs of 

abuse, heroin or cocaine, causes depletion of the antioxidant, reduced glutathione, a hallmark of 

oxidative stress, in the brain. However, the relevance of the animal findings to the human is 

uncertain and clinical trials with the antioxidant GSH precursor n-acetylcysteine have produced 

mixed results in cocaine dependence.
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Methods: Our major objective was to compare glutathione levels, determined by an HPLC-

coulometric procedure, in autopsied brain of chronic heroin (n=11) and cocaine users (n=9), who 

were positive for the drugs in the brain, to those of matched controls (n=16). Six brain regions 

were examined, including caudate, hippocampus, thalamus and frontal, temporal and insular 

cortices.

Results: In contrast to experimental animal findings, we found no statistically significant 

difference between mean levels of reduced or oxidized glutathione in the drug user vs. control 

groups. Moreover, no correlation was found between levels of drugs in the brain and those of 

glutathione.

Conclusions: Acknowledging the many generic limitations of an autopsied human brain study 

and the preliminary nature of the findings, our data nevertheless suggest that any oxidative stress 

caused by heroin or cocaine in chronic users of the drugs might not be sufficient to cause 

substantial loss of stores of glutathione in the human brain, at least during early withdrawal. These 

findings, requiring replication, might also have some relevance to future clinical trials employing 

glutathione supplement therapy as an anti-oxidative strategy in chronic users of the two abused 

drugs.
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1. Introduction

It is generally assumed that chronic exposure of some recreational drugs of abuse (e.g., 

stimulants, heroin) likely “injuries” the human brain to some extent and that neurotoxic 

injury might be caused at least in part by oxidative stress (Sharma et al., 2007; Cunha-

Oliveira et al., 2008; Yamamoto et al., 2010; Sajja et al., 2016). To date, evidence supporting 

this possibility is largely driven by results of experimental animal investigations. For 

example, animal (rodent) studies show that high doses of the dopaminergic stimulant 

methamphetamine can produce increased brain levels of malondialdehyde or 

malondialdehyde-like lipoperoxidation substances, cause structural damage to (at least) 

brain dopamine nerve endings, and with reduction of the dopamine neuronal markers 

lessened by antioxidant treatment (for review see Kish, 2014).

The relevance of animal model findings to the human condition is always uncertain. Further, 

a practical consideration is that, at present, few tools can or have been used to assess 

oxidative stress or damage in the human brain directly. This is particularly relevant because 

of increasing interests in employing antioxidants such as n-acetylcysteine (Baker et al., 

2003a,b; Ng et al., 2008; Zhou and Kalivas, 2008; Moussawi et al., 2009; Berk et al., 2013; 

McClure et al., 2014; Deepmala et al., 2015; Trivedi and Deth, 2015; Duailibi et al., 2017; 

Nocito Echevarria et al., 2017; Schulte et al., 2017) as a treatment strategy for drug 

dependence partly based on the assumption that there exists oxidative stress in brain of drug 

users. One indirect approach has been a measurement in the brain of the tripeptide 

glutathione (γ-L-glutamyl-L-cysteinylglycine; GSH, the reduced form), a major antioxidant 

defense. GSH is converted to oxidized glutathione (GSSG) as a consequence of oxidation 
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catalyzed by glutathione peroxidase and can be recycled from the oxidized form to the 

reduced form by glutathione reductase (Dringen, 2000). One of the most consistent 

consequences of severe oxidative stress observed in a variety of experimental conditions 

affecting different organ systems is depletion of GSH (Sen and Packer, 2000; Gu et al., 

2015; Won et al., 2015). In this regard, finding of a below normal concentration of GSH can 

be suggestive of the presence of oxidative stress (Di Monte et al., 1992; Jenner and Olanow, 

1996; Won et al., 2015; Ren et al., 2017). Thus, our previous finding, consistent with animal 

data (Moszczynska et al., 1998), of a trend for GSH reduction in postmortem brain of a 

subgroup of human methamphetamine users (Mirecki et al., 2004) who had a marked 

dopamine loss suggests (but does not prove) that some oxidative stress might have occurred 

in methamphetamine-exposed human brain.

Emerging data, although not always consistent, shows that GSH concentration can be below 

normal in brain of experimental animals exposed to two other drugs of abuse, namely the 

heroin metabolite morphine (Goudas et al., 1997; Qiusheng et al., 2005; Guzman et al., 

2006, 2009a,b; Ozmen et al., 2007; Abdel-Zaher et al., 2010, 2013a,b; Sumathi et al., 2011; 

Deng et al., 2012; Hu et al., 2012; Joshi et al., 2014; Motaghinejad et al., 2015a,b; Singh et 

al., 2015; Yun et al., 2015; Famitafreshi and Karimian, 2017) and the dopaminergic 

stimulant cocaine (Muriach et al., 2010; Uys et al., 2011; Lopez-Pedrajas et al., 2015; 

Vitcheva et al., 2015; Hu et al., 2016; Zhang et al., 2016; but see Wiener and Reith, 1990) 

(see Table 1 for a review). Overall, the findings show that chronic systemic and acute intra-

cerebral-spinal morphine exposure consistently deplete brain GSH, with the exception of 

one study in rat pups showing increased GSH after repeated morphine injection (Traudt et 

al., 2012). However, results of acute effects of systemic morphine on brain GSH are mixed 

(increase, Guzman et al., 2009b; Joshi et al., 2014; decrease, Guzman et al., 2006, 2009a,b; 

and no change, Bien et al., 1992; Goudas et al., 1997). For cocaine, most studies (Muriach et 

al., 2010; Uys et al., 2011; Lopez-Pedrajas et al., 2015; Vitcheva et al., 2015; Hu et al., 2016; 

Zhang et al., 2016) except one (no change, Wiener and Reith, 1990; in mice) of chronic 

cocaine exposure in adults show decreased levels of brain GSH or ratio of GSH/GSSG 

although the effects of acute cocaine treatment can also be mixed (Wiener and Reith, 1990; 

Macedo et al., 2010; Uys et al., 2011). Discrepancies in the literature might be explained by 

the species employed, age at drug exposure (e.g., adolescent cocaine exposure did not result 

in GSH abnormality measured in adults; Zhu et al., 2016, 2017), brain regions examined, 

dose regimen and the GSH assay used (Table 1; see also Discussion).

Investigations of GSH in central nervous system of human users of heroin and cocaine 

appear to be limited to a postmortem brain study in heroin users reporting markedly below 

normal GSH throughout the brain (Gutowicz et al., 2011) and a preliminary report of low 

GSH in cerebrospinal fluid of two (of three examined) patients receiving 

intracerebroventricular doses of morphine for intractable cancer pain (Goudas et al., 1999). 

Given the sparse literature on whether the two widely used drugs of abuse might cause 

oxidative stress in human brain, as suggested by animal data, our objective was to establish 

whether levels of GSH (primary outcome measure) are lower than normal (and by inference 

oxidative stress above-normal) in a regionally extensive sampling of well-characterized 

autopsied human brain of chronic cocaine and chronic heroin users (Wilson et al., 1996; 

Kish et al., 1999, 2001; Kalasinsky et al., 2000; McLeman et al., 2000; Worsley et al., 2000; 
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Siegal et al., 2004; Frankel et al., 2008). For comparison, using an HPLC-electrochemical 

procedure, we measured the following compounds as secondary outcome measures which 

also appeared on the chromatogram: GSSG (oxidized GSH), GSH-Cysteine (GSH-CYS; the 

mixed disulfide), uric acid (UA), a xanthine catabolite and potential antioxidant and 

neuroprotective agent, reported to act via GSH (Mirecki et al., 2004; Bakshi et al., 2015), 

and methionine, the latter as an index sensitive to postmortem time (Mirecki et al., 2004). 

Our working hypothesis was that, based on the above-mentioned animal data, GSH levels 

would be below normal throughout the brain of users of either heroin or cocaine.

2. Subjects and Methods

2.1 Subjects

Postmortem brain from a total of 11 chronic users of heroin (1 female), 9 cocaine (2 

females) and 16 controls (2 females) was obtained from medical examiner offices in USA/

Canada using a standardized protocol. The study was approved by the Research Ethics 

Board of the Centre for Addiction and Mental Health at Toronto. Subject information, drug 

histories, and brain drug and dopamine levels are summarized in Table 2, with the 

information previously reported (Wilson et al., 1996; Kish et al., 1999, 2001; Kalasinsky et 

al., 2000; McLeman et al., 2000; Siegal et al., 2004). There were no statistically significant 

differences in age (control, 37.0±3.1 years; heroin, 36.2±2.5 years; cocaine, 35.4±4.8 years; 

mean±SEM), postmortem intervals (PMI, interval between death and freezing of the brain; 

control, 14.6±1.8 hours; heroin, 13.4±2.0 hours; cocaine, 17.0±2.4 hours), or freezer storage 

time at the time when the biochemical assays were performed in 2001–2003 (control, 

5.4±0.5 years; heroin, 6.5±0.4 years; cocaine, 7.0±0.6 years) between the control and drug 

users. At autopsy, one half-brain was fixed in formalin fixative for neuropathological 

analysis, whereas the other half was immediately frozen until dissection for neurochemical 

analysis. Blood samples were obtained from all of the drug users and controls for drug 

screening. Sequential scalp hair samples for drug analyses could be obtained from 14 of 16 

controls, 10 of 11 heroin users, and five of 9 cocaine users. Levels of drugs of abuse in blood 

and other bodily fluids were measured by the local medical examiner whereas drug analyses 

in brain and hair samples were conducted at the Armed Forces Institute of Pathology 

(Washington, DC, USA). Heroin users met the following criteria: 1) presence of heroin 

metabolites (6-acetylmorphine, morphine, or morphine glucuronide) on toxicology screens 

in blood and autopsied brain; 2) absence of other drugs of abuse in bodily fluids with the 

exception of ethanol (see below) or other opioid drugs (two subjects #H5 and #H7 had blood 

samples positive for the opioid drug propoxyphene and its metabolite norpropoxyphene; see 

Table 2); 3) evidence from the case records of primary use of heroin for >1 year prior to 

death; and 4) absence of evidence of neurological illness or, at autopsy, brain pathology 

unrelated to use of the drug. Five of the heroin users had recently used alcohol as indicated 

by the presence of ethanol in blood (Table 2). Available hair analysis of the (10 of 11) heroin 

users revealed presence of only heroin metabolites in eight of the users. The suspected cause 

of death was heroin intoxication (seven), mixed drug intoxication (two), and cardiovascular 

disease with heroin as a contributing factors (two). Cocaine users met the following criteria: 

1) presence of cocaine or metabolite benzoylecgonine in blood or (one subject) urine; 

autopsied brain, and, if available, scalp hair by GC-MS; 2) absence of other drugs of abuse 
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in bodily fluids, with the exception of ethanol (see below), or in brain; 3) evidence from the 

case records or interview with next of kin of use of cocaine as the primary drug of abuse for 

>1 year prior to death; and 4) absence of neurological illness or, at autopsy, brain pathology 

unrelated to use of the drug. Two of the cocaine users had recently used alcohol as indicated 

by the presence of ethanol in blood or cocaethylene in brain. Available hair analysis of the 

(five of nine) cocaine users revealed presence of only cocaine and/or metabolites in four of 

the users. Known or suspected causes of death of the cocaine users were cocaine 

intoxication (five), cardiovascular disease with cocaine as a contributing factors (two), 

carotid artery aneurysm with cocaine as a contributing factor (one) and chest trauma (one).

All control subjects (for which brain GSH levels have been previously reported in (Mirecki 

et al., 2004)) were neurologically normal and had no evidence of brain pathology on 

neuropathological examination. All had no history of drug use and tested negative for drugs 

of abuse in blood, autopsied brain, and in sequential scalp hair samples where available. The 

cause of death for the controls were electrocution (n=1), morbid obesity (n=1), trauma 

(n=3), pulmonary embolism (n=2), and cardiovascular disease (n=9).

2.2 GSH, GSSG, GSH-Cys, UA and Methionine Analysis

Brain regions were dissected as previously described (Kish et al., 1988), using the Atlas of 

Riley (Riley, 1943) for the caudate, hippocampal Ammon’s horn and medial pulvinar 

thalamus and Brodmann classification for frontal (BA9), temporal (BA21) and insular 

cortices. Levels of GSH, GSSG, GSH-Cys, methionine, and UA in tissue homogenates were 

measured by a coulometric method using HPLC and electrochemical detection with 

coulometric cells as previously described (Fitzmaurice et al., 2003; Mirecki et al., 2004; 

Tong et al., 2016) (see Supplementary Methods for more details). Protein concentration was 

determined using the Bio-Rad Protein Assay Kit (Bio-Rad, Hercules, CA, USA) with bovine 

plasma albumin as the standard.

2.3 Statistical Analyses

Statistical analyses were performed using StatSoft STATISTICA 7.1 (Tulsa, Oklahoma, 

USA). Differences in levels of GSH, GSSG, GSSG-Cys, UA and methionine among controls 

and drug groups in brain regions examined were conducted using ANCOVA (p<0.05) with 

age and PMI as the covariates, given influences of age and PMI on some of the outcome 

measures (Mirecki et al., 2004; Tong et al., 2016), followed by post-hoc Bonferroni 

adjustments (p<0.05). Correlations were examined by Pearson product moment correlation 

or Spearman ranking order correlation as indicated in the text.

3. Results

A one-way ANCOVA with age and PMI as the covariates disclosed that GSH, GSSG, GSH-

Cys, UA and methionine levels (Table 3) were normal in all examined brain regions of the 

two drug user groups versus the controls (p>0.05), with the exception of significantly lower 

levels of methionine in the caudate nucleus of users of heroin (−26%) and cocaine (−33%). 

Scatter plots of GSH levels (Figure 1) and those of GSSG, GSH-Cys, UA, and methionine 
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(see Supplementary Figures 1–4)1 showed overlapped data range between drug users and 

control subjects.

No significant correlation was observed between levels of GSH, GSSG, GSH-Cys, UA or 

methionine and available drug use parameters of the heroin and cocaine users including 

duration of use (Pearson) and composite blood and brain drug levels (Spearman). Three 

cocaine users (#C1, #C4 and #C6 in Table 2) demonstrated a markedly higher level of 

cocaine and metabolites in brain than other cocaine users (>150 versus <50 nmol/g tissue); 

however, the three cocaine users did not have abnormally low levels of GSH (Figure 1) or 

out-of-range values of GSSG, GSH-Cys, UA or methionine (see Supplementary Figures 1–

4)2. Two heroin users (Table 2) had high blood levels of the opioid drug propoxyphene and 

its metabolite norpropoxyphene (5.76 µM and 15.21 µM for #H5 and #H7, respectively); 

however, the two were not particularly affected with respect to brain levels of GSH (see 

Figure 1), GSSG, GSH-Cys, UA or methionine (see Supplementary Figures 1–4)3.

Blood tested positive for ethanol in five heroin users (0.05–0.12%; #H2, #H4, #H8, #H9 and 

#H11 in Table 2) and two cocaine users (0.01% and 0.02% for #C3 and #C4, respectively, in 

Table 2); however, the presence or absence of ethanol did not differentiate the outcome 

measures of brain GSH, GSSG, GSH-Cys, UA or methionine. Cocaine users showed a 

moderate loss of striatal dopamine (Wilson et al., 1996) whereas dopamine levels were 

normal in heroin users (Kish et al., 2001); however, dopamine levels in the caudate were not 

significantly correlated (Pearson) with those of GSH, GSSG, GSH-Cys, UA or methionine 

in the drug users.

In this sample of controls and/or drug users, we found no significant correlation (Pearson) 

between levels of GSH, GSSG, GSH-Cys, UA or methionine and age or PMI of the subjects 

(all subjects included or in individual groups).

4. Discussion

The main finding of our study is that levels of GSH are normal in autopsied brain of chronic 

users of heroin and cocaine. Further, we found no correlation between recent drug exposure 

(as suggest by brain drug levels) and levels of the tri-peptide antioxidant.

4.1 Limitations

There are many limitations to postmortem human brain studies. Because, as we have shown 

previously (Mirecki et al., 2004), levels of both reduced and oxidized glutathione are 

decreased in autopsied vs. biopsied human brain, postmortem time must have influenced to 

some degree concentration of our major outcome measures. Nevertheless, we feel it 

reasonable to expect that qualitative differences or lack thereof, found in the autopsied brain 

would be generally similar to those occurring in living brain. Further, there were no 

statistically significant differences amongst mean PMI for the drug and control groups (note: 

PMI was included as a covariate in the statistical analysis), and mean levels of the amino 

acid methionine, which increase quite markedly after death (Mirecki et al., 2004), were also 

1–3Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi: …
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mostly similar in the three groups. Further, we did not observe any significant negative 

correlations between levels of GSH and methionine among brain regions and groups; 

including methionine levels as a covariate did not change any statistical outcomes of the 

other analytes.

Little information on drug doses, precise duration of chronic use, medication history, or 

history of alcohol consumption, which is known to be able to deplete brain GSH (Uys et al., 

2014), was available for the subjects of our study. In this regard, the possibility cannot be 

excluded that unknown medications or other drugs used by the subjects of our study might 

have influenced GSH levels in the brain. However, we can be certain that the users of 

cocaine and heroin must have used these drugs, at least as recently as 72 hours before death 

as they all tested positive for the drug in the brain and/or blood.

Arguing against the notion that we might not have been able to detect a small/modest change 

in postmortem brain GSH concentrations are our previous findings demonstrating a modest 

GSH reduction (19 to 30%) in autopsied substantia nigra of patients with three different 

degenerative Parkinsonian conditions (n=10–16 per group; Fitzmaurice et al., 2003) and the 

observation of slightly decreased (by 17%) GSH levels in striatum of rodents exposed to a 

binge dose of methamphetamine (Moszczynska et al., 1998). Previously we reported a trend 

for a modest reduction (by 35%) in autopsied brain of human methamphetamine users, but 

which was restricted to the subgroup having severe loss of the neurotransmitter dopamine 

(Mirecki et al., 2004).

4.2 Comparison with Literature (Human)

To our knowledge, there have been no previous studies of glutathione in postmortem or 

living brain of human cocaine users. However, in autopsied brain of users of heroin, 

Gutowicz and colleagues (Gutowicz et al., 2011) reported markedly (by about 20–40%) 

lower GSH in the cerebral cortex, hippocampus, brain stem and white matter. Assuming in 

their report that brain “heroin level” means total concentration in brain of the major heroin 

metabolites (6-acetylmorphine, morphine, morphine glucuronide), the brain drug levels in 

heroin users of the Gutowicz study were generally similar to those in our investigation, 

suggesting that the extent of recent drug exposure to the heroin users was also similar in 

both studies. Possibly the discrepancy might be explained by differences in methodologies 

for glutathione (HPLC with electrochemical detection in our study vs. colorimetric assay; 

see Tong et al., 2016 for discussions), differences in drug history of the heroin users, or be 

related to the very long PMI (two-four days) in the Gutowicz study vs. a much shorter mean 

of 14 hours for both heroin users and controls in our investigation, and uncertainty whether 

drug and control groups were matched for PMI in the earlier investigation. In this regard, 

GSH levels reported by Gutowicz study in control brains (2.3–3.4 mM, assuming a protein/

tissue ratio of 0.05 (Tong et al., 2016) and a brain unit weight of 1 g/mL) were higher than 

those reported in the literature for autopsied human brain (generally < 2 mM) (Perry et al., 

1982; Slivka et al., 1987; Sofic et al., 1992; Sian et al., 1994) including our studies 

(Fitzmaurice et al., 2003; Mirecki et al., 2004; Tong et al., 2016) despite much longer PMI 

(>48 hrs. vs ≤26 hrs.). It is also possible that the autopsied brains in the Gutowicz study had 

suffered from more severe pathology (not reported), e.g., hypoxic/ischaemic lesions 
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(Andersen and Skullerud, 1999; Buttner et al., 2000), than those in our study as some animal 

data suggest that prolonged ischemia might cause glutathione depletion in brain (Rehncrona 

et al., 1980; Slivka and Cohen, 1993). In this respect, qualitative brain neuropathological 

examination in our cases did not reveal obvious abnormalities (cell loss or gliosis) in the 

drug users with the exception of some hypoxic/ischaemic neuronal changes in CA1 of 

hippocampus (#C3), mild diffuse gliosis in midbrain (#C4) and acute subarachnoid 

hemorrhage (#C9) in three cocaine users, respectively, and mild ventricular dilatation (#H5) 

and mild diffuse gliosis in diencephalon and lower brainstem (#H11) in two heroin users, 

respectively.

4.3 Why Did Animal GSH Findings on Morphine/Cocaine Not Translate into The Human?

Although, as mentioned above, the experimental animal literature is generally consistent 

(below normal GSH following chronic heroin or cocaine exposure; Table 1), we found no 

significant change in GSH levels in brain of humans chronically exposed to either of the 

drugs. Possibly the difference could be explained by different extent of drug exposure in the 

animal studies vs. that in our human investigation and by different redox response in animals 

vs humans as exemplified by reported GSH depletion in animal ischemia (Slivka and Cohen, 

1993) versus compensatory GSH elevation in human brain stroke (An et al. 2012). The 

possibility has to be considered that acute/sub-chronic exposure to the drugs, e.g., as 

suggested by experimental reports of GSH depletion by morphine and cocaine (Table 1) and 

by a report of depletion of cerebrospinal fluid GSH levels in the human after acute 

intracerebroventricular morphine for cancer pain (Goudas et al., 1999), might have resulted 

in excessive GSH utilization and depletion, but that tolerance (compensatory increase in 

GSH synthesis) occurred in the users of our investigation who likely had been exposed to the 

drugs for years. Most animal studies employed passive drug administration, and it is 

conceivable that this might have produced a different profile of brain redox response and 

disturbance as compared to that of drug self-administration (e.g., see Pomierny-Chamiolo et 

al., 2013), more relevant to the human condition. The study by Uys et al. (2011) shows that 

rats repeatedly exposed to cocaine had decreased levels of GSH in brain (nucleus 

accumbens) at three weeks withdrawal versus saline-treated animals whereas an acute 

challenging dose of cocaine restored brain GSH levels to that of the controls, suggesting a 

possible effect of abstinence although some of the studies examined GSH within hours of 

final drug administration (Abdel-Zaher et al., 2010, 2013a,b). The age of initial drug 

exposure could be another variable as cocaine exposure during adolescence, which is 

common in many human users, was not associated with GSH loss in rats later in adults (Zhu 

et al., 2016, 2017). Interestingly, a recent study (Joshi et al., 2014) showed that morphine 

could counteract chronic restraint stress-induced GSH depletion in rat brain, suggesting 

some interactions between drugs of abuse and stress-induced redox disturbance (Madrigal et 

al., 2001; Ahmad et al., 2010; Kumar et al., 2011; Moretti et al., 2012; Filho et al., 2015; 

Bouvier et al., 2017; Famitafreshi and Karimian, 2017). Perhaps some of the above factors 

might help to explain why available preclinical animal data demonstrating a brain GSH 

reduction following morphine or cocaine exposure do not translate to the human.
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4.4 Glutathione and Oxidative Stress in Heroin and Cocaine Users

We emphasize that the “negative” results of our investigation do not imply that chronic use 

of the abused drugs cocaine and heroin do not cause oxidative stress in human brain, but 

rather that exposure to the drugs at the doses used by the subjects of our study, which are 

probably within the dose regimen employed in experimental animal studies (e.g., see Nayak 

et al., 1976; Djurendic-Brenesel et al., 2010), might not cause oxidative stress of a 

magnitude that produces some brain depletion of the antioxidant glutathione. Here we 

caution also that the extent of oxidative stress necessary to cause GSH depletion in human 

brain is not known and that mild to moderate oxidative stress could induce compensatory 

increase in GSH synthesis (cf. Tong et al., 2016). Recently, clinical trials of the antioxidant 

n-acetylcysteine, a prodrug to the rate-limiting GSH precursor cysteine, were performed in a 

variety of human addiction conditions including cocaine with mixed outcomes (see Berk et 

al., 2013; McClure et al., 2014; Deepmala et al., 2015; Trivedi and Deth, 2015; Duailibi et 

al., 2017; Nocito Echevarria et al., 2017; Schulte et al., 2017 for reviews). However, N-

acetylcysteine was employed primarily as a modulator of glutamate neurotransmission, with 

its antioxidant property as a possible secondary mechanism (LaRowe et al., 2013; McClure 

et al., 2014). In retrospect, our findings of normal brain GSH in heroin and cocaine users 

provide no support to use of this GSH prodrug to address a GSH deficiency in brain, at least 

during early withdrawal when the drugs of abuse were tested positive. Future trials of N-

acetylcysteine in opiate and cocaine dependence, aiming at redox homeostasis (Trivedi and 

Deth, 2015), might take our autopsied brain finding of normal brain GSH levels into 

consideration.

5. Conclusions

The main finding of our study is that, in contrast to results of animal studies, levels of 

glutathione were found to be normal in autopsied brain of chronic users of heroin and of 

cocaine, suggesting that any oxidative stress caused by the drugs might not be sufficient to 

deplete substantially tissue stores of the antioxidant. Our findings, although suggestive, must 

be considered preliminary especially given the limitations associated with autopsied brain 

investigations including large variability of GSH levels and a small sample size. Future 

studies might also consider measurement of GSH in living human brain using a magnetic 

resonance imaging approach in which the influence of heroin and cocaine (and also opiates 

for therapeutic purposes) can more easily, e.g., longitudinally, be examined.
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Highlights

• Effects of morphine and cocaine on brain GSH in animal studies are 

reviewed.

• Exposure to morphine or cocaine can deplete brain GSH in animals.

• GSH was measured in autopsied brains of chronic heroin and cocaine users.

• Extensive toxicology confirmed chronic use of heroin or cocaine.

• Human chronic heroin and cocaine users have normal levels of brain GSH.
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Figure 1. 
Scatter plots of levels of reduced glutathione (GSH) in brain of users of heroin and cocaine 

and control subjects. Circled up-triangles identify two heroin users with high blood levels of 

propoxyphene and metabolite norpropoxyphene; circled down-triangles identify three 

cocaine users with high levels of cocaine and metabolites in brain.

Tong et al. Page 16

Drug Alcohol Depend. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tong et al. Page 17

Ta
b

le
 1

.

R
ev

ie
w

 o
f 

an
im

al
 li

te
ra

tu
re

 o
n 

m
or

ph
in

e-
 o

r 
co

ca
in

e-
in

du
ce

d 
ch

an
ge

s 
in

 b
ra

in
 le

ve
ls

 o
f 

gl
ut

at
hi

on
e 

(G
SH

)

R
ef

er
en

ce
M

et
ho

ds
a

Sp
ec

ie
sb

T
re

at
m

en
tc

M
ai

n 
fi

nd
in

gs
 o

f 
G

SH
 c

ha
ng

es
 a

nd
 c

om
m

en
ts

d

C
hr

on
ic

ity
D

os
e 

re
gi

m
en

M
or

ph
in

e:

B
ie

n 
et

 a
l. 

19
92

D
T

N
B

R
at

s 
♂

,
W

is
ta

r
A

cu
te

10
0 

m
g/

kg
 I

P,
 i3

 h
G

SH
 ↔

 W
B

 (
[G

SH
] C

 ≈
 1

.5
 m

M
)

G
ou

da
s 

et
 a

l. 
19

97
H

PL
C

-E
C

D
R

at
s 
♂

,
SD

A
cu

te
80

 m
g/

kg
 S

C
 i1

–4
 h

10
0 

µg
 I

C
V

 i1
–5

 h
G

SH
 ↔

 c
n/

ct
x/

ce
re

b/
po

ns
;

G
SH

 ↓
30

%
 c

n/
ct

x 
at

 3
 h

; ↔
 c

er
eb

/p
on

s 
([

G
SH

] C
 =

 1
.1

 –
 2

.7
m

M
)

Q
iu

sh
en

g 
et

 a
l. 

20
05

O
PT

M
ic

e♀
♂

,
K

un
m

in
g

C
hr

on
ic

5–
35

 m
g/

kg
 x

 4
0d

IP
, e

sc
al

at
in

g 
do

se
G

SH
/G

SS
G

 ↓
40

%
 W

B
 (

th
e 

ra
tio

 d
ec

re
as

ed
 a

lo
ng

 w
ith

tr
ea

tm
en

t d
ur

at
io

n;
 G

SH
 le

ve
ls

 n
ot

 r
ep

or
te

d;
 th

e 
O

PT
fl

uo
re

sc
en

ce
 m

et
ho

d 
m

ig
ht

 o
ve

r-
es

tim
at

e 
G

SS
G

 le
ve

ls
(H

is
si

n 
an

d 
H

ilf
, 1

97
6)

)

G
uz

m
an

 e
t a

l. 
20

06
,

20
09

a,
b

H
PL

C
 o

r
O

PT
R

at
s 
♀♂

,
SD

,
W

is
ta

r

A
cu

te
3–

12
 m

g/
kg

, I
P 

i1
 h

G
SH

 ↓
31

–3
6%

 W
B

 in
 a

du
lt 

ra
ts

 (
[G

SH
] C

 =
 4

.7
 m

M
 o

r 
0.

27
m

M
 in

 4
8h

 f
as

te
d 

ra
ts

);
 ↓

42
–8

8%
 W

B
 in

 w
ea

ne
d 

W
is

ta
r 

ra
ts

([
G

SH
] C

 =
 2

.0
 m

M
);

 ↓
24

%
 W

B
 a

t 3
 m

g/
kg

 b
ut

 ↑
10

%
 a

t 6
-

12
 m

g/
kg

 in
 y

ou
ng

 m
al

no
ur

is
he

d 
ra

ts
 a

t P
60

 (
[G

SH
] C

 =
 0

.4
1

m
M

)

O
zm

an
 e

t a
l. 

20
07

D
T

N
B

R
ab

bi
ts

 ♂
A

cu
te

20
0 

µg
 I

T
 i8

 d
G

SH
 ↓

48
%

 c
tx

 (
[G

SH
] C

 =
 1

.9
 m

M
)

A
bd

el
-Z

ah
er

 e
t a

l.
20

10
, 2

01
3a

,b
D

T
N

B
M

ic
e 
♂

,
Sw

is
s-

W
eb

st
er

C
hr

on
ic

2×
5 

m
g/

kg
 x

 1
–7

d
SC

, i
2 

h 
±

 N
A

L
 5

m
g/

kg

G
SH

 ↓
20

–4
0%

 W
B

 w
ith

 3
–7

 d
 m

or
ph

in
e 

tr
ea

tm
en

t; 
G

SH
↓4

5%
 W

B
 in

 n
al

ox
on

e 
(N

A
L

) 
ch

al
le

ng
ed

 (
[G

SH
] C

 =
 2

.8
m

M
)

Su
m

at
hi

 e
t a

l. 
20

11
D

T
N

B
R

at
s♂

,
W

is
ta

r
C

hr
on

ic
10

–1
60

 m
g/

kg
 x

 2
1d

IP
G

SH
 ↓

46
%

 W
B

 (
[G

SH
] C

 =
 1

.0
 m

M
)

H
u 

et
 a

l. 
20

12
N

M
R

 in
 v

itr
o

R
at

s 
♂

,
SD

C
hr

on
ic

5–
40

 m
g/

kg
 x

 1
4d

IP
, e

sc
al

at
in

g 
do

se
,

i4
8 

h

G
SH

 ↓
pr

ef
ro

nt
al

 c
tx

; ↔
 c

n/
na

c/
hi

pp
oc

am
pu

s 
(t

he
m

et
ab

on
om

ic
 s

tu
dy

 d
id

 n
ot

 r
ep

or
t G

SH
 le

ve
ls

 o
r 

pe
rc

en
ta

ge
of

 c
ha

ng
es

)

D
en

g 
et

 a
l. 

20
12

N
M

R
 in

vi
tr

o
M

on
ke

ys
♀♂

,
rh

es
us

C
hr

on
ic

3×
3–

15
 m

g/
kg

 x
 9

0d
SC

, e
sc

al
at

in
g 

do
se

,
i8

d

G
SH

 ↓
hi

pp
oc

am
pu

s;
 ↔

 p
re

fr
on

ta
l c

tx
 (

th
e 

m
et

ab
on

om
ic

st
ud

y 
di

d 
no

t r
ep

or
t G

SH
 le

ve
ls

 o
r 

pe
rc

en
ta

ge
 o

f 
ch

an
ge

s)

Jo
sh

i e
t a

l. 
20

14
D

T
N

B
R

at
s 
♂

,
W

is
ta

r
A

cu
te

C
hr

on
ic

1 
an

d 
5 

m
g/

kg
 I

P
1 

an
d 

5 
m

g/
kg

 x
15

d

G
SH

 ↑
57

%
 a

nd
 1

05
%

 W
B

 b
y 

ac
ut

e 
m

or
ph

in
e,

 r
es

pe
ct

iv
el

y;
G

SH
 ↔

 a
nd

 ↓
51

%
 W

B
 b

y 
ch

ro
ni

c 
m

or
ph

in
e,

 r
es

pe
ct

iv
el

y
(N

ot
e:

 m
or

ph
in

e 
re

ve
rs

ed
 G

SH
 d

ep
le

tio
n 

in
du

ce
d 

by
re

st
ra

in
t s

tr
es

s)
.

Si
ng

h 
et

 a
l. 

20
15

D
T

N
B

M
ic

e 
♀♂

,
Sw

is
s-

al
bi

no

C
hr

on
ic

2×
5 

m
g/

kg
 x

 6
d 

IP
,

i2
h 

±
 N

A
L

 8
 m

g/
kg

G
SH

 ↔
 W

B
 b

y 
m

or
ph

in
e 

al
on

e 
(N

ot
e:

 n
on

-s
ig

ni
fi

ca
nt

 4
1%

lo
ss

) 
G

SH
 ↓

65
%

 w
ith

 n
al

ox
on

e 
(N

A
L

) 
ch

al
le

ng
e 

([
G

SH
] C

 =
3.

4 
m

M
)

Y
un

 e
t a

l. 
20

15
D

T
N

B
M

ic
e 
♂

,
C

57
B

L
/6

C
hr

on
ic

10
 m

g/
kg

 x
 7

d 
IP

,
i6

h 
+

 N
A

L
 5

 m
g/

kg
G

SH
 ↓

36
%

 f
ro

nt
al

 c
tx

 (
[G

SH
] C

 =
 8

 m
M

) 
(n

on
-n

al
ox

on
e-

ch
al

le
ng

ed
 c

on
di

tio
n 

w
as

 n
ot

 a
ss

es
se

d)

Drug Alcohol Depend. Author manuscript; available in PMC 2019 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tong et al. Page 18

R
ef

er
en

ce
M

et
ho

ds
a

Sp
ec

ie
sb

T
re

at
m

en
tc

M
ai

n 
fi

nd
in

gs
 o

f 
G

SH
 c

ha
ng

es
 a

nd
 c

om
m

en
ts

d

M
ot

ag
hi

ne
ja

d 
et

 a
l. 

20
15

a,
b

O
xi

sR
es

ea
rc

h 
ki

t (
?)

R
at

s 
♂

,
W

is
ta

r
C

hr
on

ic
15

–4
5 

m
g/

kg
 x

 2
1d

,
i2

4h
 +

 N
A

L
3m

g/
kg

 [
a]

; 4
5

m
g/

kg
 x

 2
8d

 S
C

 [
b]

G
SH

 ↓
61

–6
5%

 h
ip

po
ca

m
pa

l m
ito

ch
on

dr
ia

 p
re

pa
ra

tio
n

(N
ot

e:
 th

e 
m

et
ho

d 
of

 G
SH

 a
ss

ay
 e

m
pl

oy
ed

 w
as

 n
ot

 c
le

ar
;

hi
gh

 G
SS

G
 le

ve
ls

 w
er

e 
al

so
 r

ep
or

te
d)

.

Fa
m

ita
fr

es
hi

 e
t a

l. 
20

17
D

T
N

B
R

at
s 
♂

,
SD

C
hr

on
ic

5 
m

g/
kg

 x
 1

4d
 I

P
G

SH
 ↓

30
%

 h
ip

po
ca

m
pu

s 
(n

s)
 ↓

22
%

 p
re

fr
on

ta
l c

tx
 (

ns
)

(i
so

la
tio

n 
st

re
ss

 e
xa

ce
rb

at
ed

 G
SH

 lo
ss

 to
 −

54
–7

6%
; [

G
SH

] C
=

 2
.1

–3
.2

 m
M

)

T
ra

ud
t e

t a
l. 

20
12

M
R

S 
in

 v
iv

o
R

at
 p

up
s

♀♂
, S

D
C

hr
on

ic
2×

2 
m

g/
kg

 x
 5

d 
IP

,
i2

4h
G

SH
 ↑

43
%

 h
ip

po
ca

m
pu

s 
on

 P
8 

fo
llo

w
in

g 
m

or
ph

in
e 

on
 P

3-
P7

 (
L

C
M

od
el

 f
or

 s
pe

ct
ra

 a
na

ly
si

s;
 a

 v
ol

um
e 

of
 in

te
re

st
 o

f 
5

µl
)

C
oc

ai
ne

:

W
ie

ne
r 

et
 a

l. 
19

90
H

PL
C

M
ic

e 
♂

,
C

57
B

L
/6

B
yJ

A
cu

te
 C

hr
on

ic
25

 m
g/

kg
 x

 1
4d

 I
P,

i2
4h

 ±
 5

0 
m

g/
kg

G
SH

 ↔
 c

n/
ct

x 
by

 e
ith

er
 a

cu
te

 o
r 

ch
ro

ni
c 

co
ca

in
e,

 w
ith

 o
r

w
ith

ou
t c

ha
lle

ng
e 

([
G

SH
] C

 =
 1

.5
 m

M
)

M
ac

ed
o 

et
 a

l. 
20

10
D

T
N

B
M

ic
e 
♂

,
Sw

is
s

A
cu

te
90

 m
g/

kg
 I

P,
 i1

 h
[S

E
] 

or
 5

–1
5 

m
in

[d
ea

th
]

G
SH

 ↔
 a

ft
er

 s
ta

tu
s 

ep
ile

pt
ic

us
 [

SE
] 

or
 ↑

28
–5

0%
 p

re
fr

on
ta

l
ct

x/
cn

 a
ft

er
 d

ea
th

 (
[G

SH
] C

 =
 0

.0
02

5 
m

M
; n

ot
e 

po
ss

ib
le

er
ro

r 
in

 u
ni

t)

M
ur

ia
ch

 e
t a

l. 
20

10
FD

N
P-

H
PL

C
R

at
s 
♂

,
W

is
ta

r
C

hr
on

ic
15

 m
g/

kg
 x

 2
0d

 I
P,

i2
4h

G
SH

 ↓
22

%
 h

ip
po

ca
m

pu
s;

 ↔
 f

ro
nt

al
 c

tx
 (

[G
SH

] C
 =

 2
–2

.2
m

M
)

U
ys

 e
t a

l. 
20

11
U

PL
C

-M
S

R
at

s 
♂

A
cu

te
 C

hr
on

ic
15

–3
0 

m
g/

kg
 x

 7
d

IP
, i

21
d 

±
 1

5 
m

g/
kg

G
SH

 ↓
23

%
 b

y 
7d

 c
oc

ai
ne

; ↑
62

%
 b

y 
ac

ut
e 

co
ca

in
e 

in
 n

ac
;

bu
t ↔

 i
n 

co
ca

in
e 

ch
al

le
ng

ed
 r

at
s 

([
G

SH
] C

 =
 0

.5
5 

m
M

)

L
óp

ez
-P

ed
ra

ja
s 

et
 a

l. 
20

15
FD

N
P-

H
PL

C
R

at
s 
♂

,
W

is
ta

r
C

hr
on

ic
15

 m
g/

kg
 x

 1
8d

 I
P

G
SH

 ↔
 c

er
eb

el
lu

m
 a

lth
ou

gh
 G

SS
G

 ↑
56

%
 s

o 
th

e 
ra

tio
 o

f
G

SH
 v

s 
G

SS
G

 d
ec

re
as

ed
.

V
itc

he
va

 e
t a

l. 
20

15
D

T
N

B
R

at
s 
♂

,
W

is
ta

r
C

hr
on

ic
15

 m
g/

kg
 x

 7
d 

IP
,

i2
4h

G
SH

 ↓
44

%
 W

B
; a

ls
o 

G
SH

 ↓
55

%
 in

 m
ito

ch
on

dr
ia

pr
ep

ar
at

io
ns

 (
[G

SH
] C

 =
 0

.0
01

7 
m

M
; n

ot
e 

po
ss

ib
le

 e
rr

or
 in

un
it)

Z
ha

ng
 e

t a
l. 

20
16

H
PL

C
-

IM
M

S
R

at
s 
♂

,
SD

C
hr

on
ic

SA
D

 F
R

1 
×

 3
d 

+
FR

3 
×

 7
d,

 i2
4h

 a
nd

i2
1d

G
SH

 ↓
45

%
 a

nd
 ↓

57
%

 c
n 

at
 i2

4h
 a

nd
 i2

1d
, r

es
pe

ct
iv

el
y;

G
SH

 ↔
 p

re
fr

on
ta

l c
tx

 (
th

e 
m

et
ab

on
om

ic
 s

tu
dy

 d
id

 n
ot

re
po

rt
 G

SH
 le

ve
ls

 o
r 

th
e 

cu
m

ul
at

iv
e 

ex
te

nt
 o

f 
co

ca
in

e
ex

po
su

re
)

H
u 

et
 a

l. 
20

16
D

T
N

B
R

at
s 
♂

,
SD

C
hr

on
ic

10
 m

g/
kg

 x
 6

d 
IP

,
i1

5d
G

SH
 ↓

47
%

 h
ip

po
ca

m
pu

s;
 ↔

 p
re

fr
on

ta
l c

tx
 (

[G
SH

] C
 u

ni
t

un
cl

ea
r)

Z
hu

 e
t a

l. 
20

16
, 2

01
7

D
T

N
B

R
at

s 
♂

,
SD

 P
28

C
hr

on
ic

15
 m

g/
kg

 x
 1

5d
 I

P,
i3

5–
38

d
G

SH
 ↔

 h
ip

po
ca

m
pu

s,
 m

ed
ia

l p
re

fr
on

ta
l c

tx
 (

ad
ol

es
ce

nt
co

ca
in

e 
ex

po
su

re
; G

SH
 m

ea
su

re
d 

in
 a

du
lts

; [
G

SH
] C

 u
ni

t
un

cl
ea

r)

a D
T

N
B

, r
ef

er
ri

ng
 to

 a
 v

ar
ie

ty
 o

f 
G

SH
 a

ss
ay

 u
si

ng
 E

llm
an

’s
 r

ea
ge

nt
 5

,5
′-

di
th

io
bi

s(
2-

ni
tr

ob
en

zo
ic

 a
ci

d)
; O

PT
 =

 o
-p

ht
ha

ld
eh

yd
e;

 E
C

D
 =

 e
le

ct
ro

ch
em

ic
al

 d
et

ec
tio

n;
 F

D
N

P 
=

 S
an

ge
r 

re
ac

ta
nt

 1
-f

lu
or

o-
2,

4-
di

ni
tr

ob
en

ce
ne

; I
M

M
S 

=
 io

n 
m

ob
ili

ty
 m

as
s 

sp
ec

tr
om

et
ry

;

b SD
 =

 S
pr

ag
ue

-D
aw

le
y.

 A
du

lt 
an

im
al

s 
w

er
e 

us
ed

 u
nl

es
s 

ot
he

rw
is

e 
in

di
ca

te
d;

c T
he

 d
os

e 
re

gi
m

en
 s

ho
w

s 
da

ily
 s

in
gl

e 
or

 m
ul

tip
le

 d
os

es
 b

y 
to

ta
l d

ay
s,

 a
dm

in
is

tr
at

io
n 

ro
ut

e 
(I

P 
=

 in
tr

a-
pe

ri
to

ne
al

; S
C

 =
 s

ub
cu

ta
ne

ou
s;

 I
C

V
 =

 in
tr

ac
er

eb
ro

ve
nt

ri
cl

e;
 I

T
 =

 in
tr

at
he

ca
l; 

SA
D

 =
 in

tr
av

en
ou

s 
se

lf
-

ad
m

in
is

tr
at

io
n;

 F
R

 =
 f

ix
ed

 r
at

io
),

 th
e 

in
te

rv
al

 (
i)

 b
et

w
ee

n 
fi

na
l d

ru
g 

ad
m

in
is

tr
at

io
n 

an
d 

sa
cr

if
ic

e 
or

 d
ru

g 
ch

al
le

ng
e,

 if
 r

ep
or

te
d 

(s
ee

 th
e 

ci
te

d 
re

fe
re

nc
es

 f
or

 m
or

e 
de

ta
ils

);

Drug Alcohol Depend. Author manuscript; available in PMC 2019 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tong et al. Page 19
d B

ra
in

 r
eg

io
ns

 a
re

 c
au

da
te

 n
uc

le
us

 o
r 

st
ri

at
um

 (
cn

),
 n

uc
le

us
 a

cc
um

be
ns

 (
na

c)
, c

or
te

x 
(c

tx
),

 c
er

eb
el

lu
m

 (
ce

re
b)

, o
r 

w
ho

le
 b

ra
in

 (
W

B
);

 n
s 

=
 n

on
-s

ig
ni

fi
ca

nt
; [

G
SH

] C
 d

en
ot

es
 r

ep
or

te
d 

co
nc

en
tr

at
io

ns
 o

f 
G

SH
 

in
 th

e 
co

nt
ro

l g
ro

up
, w

ith
 1

 m
M

 =
 1

 µ
m

ol
/g

 w
et

 ti
ss

ue
 o

r 
30

7 
µg

/g
 w

et
 ti

ss
ue

 o
r 

20
 n

m
ol

/m
g 

pr
ot

ei
n 

or
 6

.1
 µ

g/
m

g 
pr

ot
ei

n 
by

 a
ss

um
in

g 
a 

pr
ot

ei
n/

tis
su

e 
ra

tio
 o

f 
0.

05
 (

To
ng

 e
t a

l.,
 2

01
6)

 a
nd

 a
 b

ra
in

 u
ni

t 
w

ei
gh

t o
f 

1 
g/

m
L

.

Drug Alcohol Depend. Author manuscript; available in PMC 2019 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tong et al. Page 20

Ta
b

le
 2

.

C
ha

ra
ct

er
is

tic
s 

an
d 

dr
ug

 u
se

 h
is

to
ri

es
 o

f 
th

e 
11

 h
er

oi
n 

(H
1-

H
11

) 
an

d 
9 

co
ca

in
e 

(C
1-

C
9)

 u
se

rs
a .

A
ge

D
ur

at
io

n
To

xi
co

lo
gy

(y
rs

),
PM

I
of

 u
se

R
ec

en
t d

ru
g 

us
e 

pa
tte

rn
R

ou
te

 o
f 

dr
ug

Su
sp

ec
te

d/
kn

ow
n

B
lo

od
 d

ru
g

B
ra

in
 d

ru
g

C
au

da
te

C
as

e
Se

x
(h

)
(y

rs
)

ad
m

in
is

tr
at

io
n

ca
us

e 
of

 d
ea

th
H

ai
r

le
ve

lb
le

ve
lc

D
A

le
ve

ld

H
1

36
,M

8
10

$2
00

 p
er

 m
on

th
In

tr
av

en
ou

s
C

V
D

/N
ar

co
tic

in
to

xi
ca

tio
n

—
1.

93
1.

79
+

0.
1%

H
2*

43
,M

13
27

U
nk

no
w

n
In

tr
av

en
ou

s
N

ar
co

tic
 in

to
xi

ca
tio

n
+

0.
60

1.
79

-1
1%

H
3

34
,M

23
>

1
U

nk
no

w
n

In
tr

av
en

ou
s

N
ar

co
tic

 in
to

xi
ca

tio
n

+
0.

67
1.

19
-3

0%

H
4*

34
,M

10
.5

>
1

U
nk

no
w

n
In

tr
av

en
ou

s
N

ar
co

tic
 in

to
xi

ca
tio

n
+

0.
42

0.
80

-2
1%

H
5

40
,M

5
20

D
ai

ly
In

tr
av

en
ou

s
M

ix
ed

 d
ru

g 
in

to
xi

ca
tio

n
+

0.
32

0.
61

+
34

%

H
6

44
,F

18
.5

23
D

ai
ly

, s
om

et
im

es
 1

 g
 p

er
da

y
In

tr
av

en
ou

s
C

V
D

/N
ar

co
tic

in
to

xi
ca

tio
n

+
0.

11
0.

10
-1

6%

H
7

43
,M

21
>

1
D

ai
ly

In
tr

av
en

ou
s

M
ix

ed
 d

ru
g 

in
to

xi
ca

tio
n

+
1.

47
1.

79
-5

%

H
8*

35
,M

19
.5

>
1

U
nk

no
w

n
U

nk
no

w
n

N
ar

co
tic

 in
to

xi
ca

tio
n

N
D

1.
09

1.
80

-4
7%

H
9*

28
,M

8
4

D
ai

ly
In

tr
av

en
ou

s
N

ar
co

tic
 in

to
xi

ca
tio

n
+

0.
39

0.
46

-0
.4

%

H
10

19
,M

9.
5

>
1

U
nk

no
w

n
U

nk
no

w
n

N
ar

co
tic

 in
to

xi
ca

tio
n

N
D

0.
39

0.
37

+
69

%

H
11

*
42

,M
11

10
U

nk
no

w
n

In
tr

av
en

ou
s

N
ar

co
tic

 in
to

xi
ca

tio
n

+
0.

70
0.

76
+

10
%

C
1

26
,M

18
1–

2
U

nk
no

w
n

O
ra

l; 
sm

ok
ed

C
oc

ai
ne

 in
to

xi
ca

tio
n

—
42

4.
0

17
9.

7
-5

3%

C
2

21
,M

6
2–

3
$1

50
/m

o,
 w

ee
ke

nd
 b

in
ge

s
N

as
al

C
V

D
/c

oc
ai

ne
 in

to
xi

ca
tio

n
+

N
D

20
.7

-3
8%

C
3*

26
,F

18
8

B
in

ge
/li

m
ite

d 
on

ly
 b

y
fu

nd
s

O
ra

l; 
sm

ok
ed

C
oc

ai
ne

 in
to

xi
ca

tio
n

N
D

0.
26

12
.4

-1
9%

C
4*

36
,M

24
3

B
in

ge
/li

m
ite

d 
on

ly
 b

y
fu

nd
s

N
as

al
C

oc
ai

ne
 in

to
xi

ca
tio

n
—

27
.0

15
7.

6
-7

9%

C
5

39
,M

26
8

C
on

si
de

re
d 

he
av

y 
us

er
In

tr
av

en
ou

s;
na

sa
l

C
oc

ai
ne

 in
to

xi
ca

tio
n

+
0.

43
11

.0
+

9%

C
6

31
,M

22
>

2
L

im
ite

d 
on

ly
 b

y 
fu

nd
s

N
as

al
; s

m
ok

ed
C

oc
ai

ne
 in

to
xi

ca
tio

n
—

39
.2

16
4.

4
-3

1%

C
7

40
,M

9
>

10
B

in
ge

 e
ve

ry
 2

–3
 w

k
N

as
al

; s
m

ok
ed

G
un

sh
ot

 w
ou

nd
 to

 c
he

st
+

12
.3

4
40

.4
-5

4%

C
8

70
,M

10
55

$6
0/

m
o,

 1
st
 w

k 
of

 a
 m

on
th

Sm
ok

ed
C

V
D

—
19

.4
4

15
.7

+
50

%

C
9

30
,F

20
>

1
U

nk
no

w
n

Sm
ok

ed
C

V
D

/c
oc

ai
ne

 in
to

xi
ca

tio
n

+
17

.1
6

19
.4

+
5%

Drug Alcohol Depend. Author manuscript; available in PMC 2019 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tong et al. Page 21
M

 =
 m

al
e;

 F
 =

 f
em

al
e;

 P
M

I 
=

 p
os

tm
or

te
m

 in
te

rv
al

; D
A

 =
 d

op
am

in
e;

 C
V

D
 =

 c
ar

di
ov

as
cu

la
r 

di
so

rd
er

.

* C
as

es
 w

ith
 e

th
an

ol
 d

et
ec

te
d 

in
 b

lo
od

. +
 D

ru
g 

ha
ir

 a
na

ly
se

s 
co

nf
ir

m
ed

. N
D

 =
 n

ot
 d

et
ec

te
d.

 F
or

 c
as

es
 H

1,
 H

6,
 C

2 
an

d 
C

9,
 h

er
oi

n 
or

 c
oc

ai
ne

 to
xi

ci
ty

 w
as

 c
on

si
de

re
d 

to
 b

e 
a 

po
ss

ib
le

 c
on

tr
ib

ut
in

g 
fa

ct
or

 to
 th

e 
ca

us
e 

of
 d

ea
th

; h
ig

h 
le

ve
ls

 o
f 

pr
op

ox
yp

he
ne

 (
0.

63
 a

nd
 1

.2
 m

g/
L

, r
es

pe
ct

iv
el

y)
 a

nd
 n

or
pr

op
ox

yp
he

ne
 (

1.
26

 a
nd

 3
.8

 m
g/

L
, r

es
pe

ct
iv

el
y)

 w
er

e 
al

so
 d

et
ec

te
d 

in
 b

lo
od

 o
f 

ca
se

s 
H

5 
an

d 
H

7 
an

d 
co

ul
d 

ha
ve

 
co

nt
ri

bu
te

d 
to

 th
e 

de
at

h.

a In
fo

rm
at

io
n 

on
 th

e 
ca

se
s 

in
cl

ud
in

g 
br

ai
n 

dr
ug

 le
ve

ls
 h

as
 b

ee
n 

pu
bl

is
he

d 
pr

ev
io

us
ly

 in
 (

W
ils

on
 e

t a
l.,

 1
99

6;
 K

is
h 

et
 a

l.,
 1

99
9;

 K
al

as
in

sk
y 

et
 a

l.,
 2

00
0;

 M
cL

em
an

 e
t a

l.,
 2

00
0;

 K
is

h 
et

 a
l.,

 2
00

1;
 S

ie
ga

l e
t a

l.,
 

20
04

);

b M
ea

su
re

d 
in

 µ
M

 o
f 

le
ve

ls
 o

f 
th

e 
he

ro
in

 m
et

ab
ol

ite
 m

or
ph

in
e 

or
 c

oc
ai

ne
 p

lu
s 

m
et

ab
ol

ite
 b

en
zo

yl
ec

go
ni

ne
;

c M
ea

su
re

d 
in

 n
m

ol
/g

 ti
ss

ue
 o

f 
to

ta
l l

ev
el

s 
of

 h
er

oi
n 

(m
or

ph
in

e 
pl

us
 6

-a
ce

ty
lm

or
ph

in
e 

pl
us

 m
or

ph
in

e 
gl

uc
ur

on
id

e)
 in

 o
cc

ip
ita

l c
or

te
x 

or
 c

oc
ai

ne
 (

co
ca

in
e 

pl
us

 m
et

ab
ol

ite
s 

be
nz

oy
le

cg
on

in
e,

 e
cg

on
in

e 
m

et
hy

l 
es

te
r, 

no
rc

oc
ai

ne
, c

oc
ae

th
yl

en
e)

 in
 c

au
da

te
;

d M
ea

su
re

d 
as

 p
er

ce
nt

ag
e 

de
cr

ea
se

 o
f 

th
e 

co
nt

ro
l m

ea
n 

(6
.6

2 
ng

/m
g 

w
et

 ti
ss

ue
; s

ee
 (

W
ils

on
 e

t a
l.,

 1
99

6)
) 

w
ith

 th
e 

ex
ce

pt
io

n 
of

 c
as

e#
C

8,
 f

or
 w

hi
ch

 a
 c

on
tr

ol
 m

ea
n 

of
 4

.2
0 

ng
/m

g 
w

et
 ti

ss
ue

 f
or

 a
ge

d 
su

bj
ec

ts
 

(m
ea

n 
69

 y
; s

ee
 (

H
ay

co
ck

 e
t a

l.,
 2

00
3)

) 
w

as
 u

se
d.

Drug Alcohol Depend. Author manuscript; available in PMC 2019 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tong et al. Page 22

Ta
b

le
 3

.

L
ev

el
s 

of
 g

lu
ta

th
io

ne
 (

re
du

ce
d 

[G
SH

],
 o

xi
di

ze
d 

[G
SS

G
],

 a
nd

 c
ys

te
in

e-
bo

un
d 

[G
SH

-c
ys

te
in

e]
),

 u
ri

c 
ac

id
, a

nd
 m

et
hi

on
in

e 
in

 b
ra

in
 o

f 
us

er
s 

of
 h

er
oi

n 
an

d 

co
ca

in
e 

an
d 

co
nt

ro
l s

ub
je

ct
s.

R
eg

io
n/

G
ro

up
G

SH
G

SS
G

G
SH

-c
ys

te
in

e
U

ri
c 

ac
id

M
et

hi
on

in
e

C
au

da
te

 n
uc

le
us

C
on

tr
ol

s
7.

46
 ±

 1
.3

2 
(1

6)
0.

38
 ±

 0
.0

4 
(1

6)
0.

67
 ±

 0
.0

8 
(1

6)
0.

47
 ±

 0
.0

6 
(1

6)
1.

37
 ±

 0
.0

8 
(1

6)

H
er

oi
n

6.
86

 ±
 1

.0
4 

(1
1)

0.
26

 ±
 0

.0
4 

(1
1)

0.
63

 ±
 0

.0
7 

(1
1)

0.
42

 ±
 0

.0
7 

(1
1)

1.
01

 ±
 0

.0
9*

 (
11

)

C
oc

ai
ne

6.
60

 ±
 0

.5
7 

(9
)

0.
24

 ±
 0

.0
6 

(9
)

0.
85

 ±
 0

.0
6 

(9
)

0.
59

 ±
 0

.1
1 

(9
)

0.
92

 ±
 0

.0
6*

 (
9)

F
0.

17
 (2

, 3
1)

3.
06

 (2
, 3

1)
3.

01
 (2

, 3
1)

0.
76

 (2
, 3

1)
9.

13
 (2

, 3
1)

p
0.

85
0.

06
0.

06
0.

48
0.

00
1

H
ip

po
ca

m
pu

s,
 a

m
m

on
’s

 h
or

n

C
on

tr
ol

s
6.

60
 ±

 0
.8

0 
(1

6)
0.

06
 ±

 0
.0

1 
(1

6)
0.

30
 ±

 0
.0

4 
(1

6)
0.

44
 ±

 0
.0

7 
(1

6)
2.

03
 ±

 0
.2

7 
(1

6)

H
er

oi
n

4.
58

 ±
 0

.4
4 

(1
1)

0.
05

 ±
 0

.0
2 

(1
1)

0.
48

 ±
 0

.1
3 

(1
1)

0.
44

 ±
 0

.0
7 

(1
1)

1.
70

 ±
 0

.2
1 

(1
1)

C
oc

ai
ne

4.
61

 ±
 0

.9
9 

(9
)

0.
03

 ±
 0

.0
1 

(9
)

0.
34

 ±
 0

.1
2 

(9
)

0.
41

 ±
 0

.1
3 

(8
)

1.
33

 ±
 0

.2
4 

(9
)

F
2.

32
 (2

, 3
1)

0.
94

 (2
, 3

1)
1.

40
 (2

, 3
1)

0.
03

 (2
, 3

0)
1.

85
 (2

, 3
1)

p
0.

12
0.

40
0.

26
0.

97
0.

17

T
ha

la
m

us
, m

ed
ia

l p
ul

vi
na

r
nu

cl
eu

s

C
on

tr
ol

s
6.

44
 ±

 1
.6

4 
(1

6)
0.

24
 ±

 0
.0

8 
(1

6)
1.

78
 ±

 0
.2

8 
(1

6)
0.

74
 ±

 0
.1

1 
(1

6)
3.

24
 ±

 0
.4

0 
(1

6)

H
er

oi
n

5.
71

 ±
 2

.0
3 

(1
1)

0.
18

 ±
 0

.0
7 

(9
)

1.
27

 ±
 0

.4
8 

(1
1)

1.
05

 ±
 0

.2
9 

(1
1)

3.
53

 ±
 0

.7
0 

(1
1)

C
oc

ai
ne

4.
89

 ±
 0

.8
0 

(9
)

0.
09

 ±
 0

.0
5 

(8
)

0.
97

 ±
 0

.2
1 

(9
)

0.
72

 ±
 0

.1
2 

(9
)

2.
79

 ±
 0

.2
7 

(9
)

F
0.

19
 (2

, 3
1)

1.
27

 (2
, 2

8)
1.

28
 (2

, 3
1)

0.
84

 (2
, 3

1)
0.

37
 (2

, 3
1)

p
0.

83
0.

30
0.

29
0.

44
0.

69

Fr
on

ta
l c

or
te

x

C
on

tr
ol

s
7.

24
 ±

 1
.0

7 
(1

5)
0.

25
 ±

 0
.0

6 
(1

5)
0.

59
 ±

 0
.0

7 
(1

4)
0.

61
 ±

 0
.1

4 
(1

5)
1.

56
 ±

 0
.1

6 
(1

5)

H
er

oi
n

6.
85

 ±
 0

.6
2 

(1
1)

0.
11

 ±
 0

.0
5 

(9
)

0.
66

 ±
 0

.1
2 

(1
1)

0.
32

 ±
 0

.0
5 

(1
1)

1.
46

 ±
 0

.2
3 

(1
1)

C
oc

ai
ne

6.
94

 ±
 0

.9
3 

(9
)

0.
15

 ±
 0

.0
4 

(9
)

0.
62

 ±
 0

.1
1 

(9
)

0.
31

 ±
 0

.0
6 

(9
)

1.
19

 ±
 0

.1
5 

(9
)

F
0.

05
 (2

, 3
0)

1.
56

 (2
, 2

8)
0.

47
 (2

, 2
9)

2.
36

 (2
, 3

0)
0.

69
 (2

, 3
0)

p
0.

95
0.

23
0.

63
0.

11
0.

51

Te
m

po
ra

l c
or

te
x

C
on

tr
ol

s
5.

60
 ±

 0
.9

1 
(1

6)
0.

25
 ±

 0
.0

8 
(1

6)
0.

23
 ±

 0
.0

5 
(1

6)
0.

60
 ±

 0
.1

4 
(1

5)
0.

94
 ±

 0
.1

6 
(1

5)

Drug Alcohol Depend. Author manuscript; available in PMC 2019 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tong et al. Page 23

R
eg

io
n/

G
ro

up
G

SH
G

SS
G

G
SH

-c
ys

te
in

e
U

ri
c 

ac
id

M
et

hi
on

in
e

H
er

oi
n

7.
45

 ±
 1

.6
0 

(1
1)

0.
42

 ±
 0

.1
5 

(1
1)

0.
21

 ±
 0

.0
5 

(1
1)

1.
00

 ±
 0

.2
9 

(1
1)

1.
65

 ±
 0

.4
2 

(1
1)

C
oc

ai
ne

4.
62

 ±
 0

.4
3 

(9
)

0.
17

 ±
 0

.0
3 

(9
)

0.
15

 ±
 0

.0
2 

(9
)

0.
43

 ±
 0

.0
5 

(9
)

0.
77

 ±
 0

.1
0 

(9
)

F
1.

04
 (2

, 3
1)

1.
54

 (2
, 3

1)
0.

52
 (2

, 3
1)

1.
98

 (2
, 3

0)
3.

02
 (2

, 3
0)

p
0.

36
0.

23
0.

60
0.

16
0.

06

In
su

la
r 

co
rt

ex

C
on

tr
ol

s
6.

14
 ±

 1
.2

5 
(1

6)
0.

36
 ±

 0
.0

9 
(1

5)
0.

37
 ±

 0
.0

6 
(1

6)
0.

78
 ±

 0
.1

3 
(1

6)
1.

76
 ±

 0
.2

9 
(1

6)

H
er

oi
n

4.
38

 ±
 0

.6
8 

(1
1)

0.
40

 ±
 0

.0
4 

(1
1)

0.
31

 ±
 0

.0
3 

(1
1)

0.
80

 ±
 0

.0
9 

(1
1)

1.
87

 ±
 0

.1
0 

(1
1)

C
oc

ai
ne

5.
08

 ±
 0

.8
1 

(8
)

0.
31

 ±
 0

.0
5 

(8
)

0.
30

 ±
 0

.0
5 

(8
)

0.
68

 ±
 0

.1
0 

(8
)

1.
48

 ±
 0

.1
5 

(8
)

F
0.

69
 (2

, 3
0)

0.
48

 (2
, 2

9)
0.

59
 (2

, 3
0)

0.
17

 (2
, 3

0)
0.

46
 (2

, 3
0)

p
0.

51
0.

62
0.

56
0.

84
0.

63

D
at

a 
(m

ea
n 

±
 S

E
M

) 
ar

e 
in

 µ
g/

m
g 

pr
ot

ei
n 

w
ith

 th
e 

nu
m

be
r 

of
 c

as
es

 in
 p

ar
en

th
es

es
. O

ne
-w

ay
 a

na
ly

si
s 

of
 c

o-
va

ri
an

ce
 [

A
N

C
O

V
A

, F
 (d

f)
] 

w
ith

 a
ge

 a
nd

 p
os

tm
or

te
m

 in
te

rv
al

 a
s 

th
e 

co
va

ri
at

es
 d

id
 n

ot
 r

ev
ea

l a
ny

 
si

gn
if

ic
an

t d
if

fe
re

nc
e 

(p
 >

 0
.0

5)
 a

m
on

g 
he

ro
in

, c
oc

ai
ne

 u
se

rs
 a

nd
 c

on
tr

ol
 s

ub
je

ct
s 

ex
ce

pt
 th

at
 o

f 
m

et
hi

on
in

e 
in

 th
e 

ca
ud

at
e 

(*
p 

<
 0

.0
5,

 h
er

oi
n 

or
 c

oc
ai

ne
 u

se
rs

 v
s.

 c
on

tr
ol

s,
 f

ol
lo

w
in

g 
po

st
 h

oc
 B

on
fe

rr
on

i 
ad

ju
st

m
en

t)
.

Drug Alcohol Depend. Author manuscript; available in PMC 2019 September 01.


	Abstract
	1. Introduction
	2. Subjects and Methods
	2.1 Subjects
	2.2 GSH, GSSG, GSH-Cys, UA and Methionine Analysis
	2.3 Statistical Analyses

	3. Results
	4. Discussion
	4.1 Limitations
	4.2 Comparison with Literature (Human)
	4.3 Why Did Animal GSH Findings on Morphine/Cocaine Not Translate into The Human?
	4.4 Glutathione and Oxidative Stress in Heroin and Cocaine Users

	5. Conclusions
	References
	Figure 1.
	Table 1.
	Table 2.
	Table 3.

