

HHS Public Access

Drug Alcohol Depend. Author manuscript; available in PMC 2019 September 01.

Published in final edited form as:

Author manuscript

Drug Alcohol Depend. 2018 September 01; 190: 20–28. doi:10.1016/j.drugalcdep.2018.05.021.

Normal glutathione levels in autopsied brain of chronic users of heroin and of cocaine*

Junchao Tong^{a,b,c}, Paul S Fitzmaurice^d, Anna Moszczynska^e, Gausiha Rathitharan^{b,c}, Lee-Cyn Ang^f, Jeffrey H Meyer^g, Romina Mizrahi^h, Isabelle Boileau^c, Yoshiaki Furukawaⁱ, Tina McCluskey^b, Napapon Sailasuta^j, and Stephen J. Kish^b

^aPreclinical Imaging Unit, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada ^bHuman Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada ^cAddiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada ^dGribbles Pathology, HealthScope, New Zealand ^eDepartment of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA ^fDivision of Neuropathology, London Health Sciences Centre, University of Western Ontario, London, ON, Canada ^gResearch Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada ^hResearch Imaging Centre, Centre for Addiction and Mental Health; Institute of Medical Science, Department of Psychiatry, University of Toronto, Toronto, ON, Canada ⁱDepartment of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, Faculty of Medicine, University and Post Graduate University of Juntendo, Tokyo, Japan ^jResearch Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada

Abstract

Background: Animal studies suggest that exposure to either of the two widely used drugs of abuse, heroin or cocaine, causes depletion of the antioxidant, reduced glutathione, a hallmark of oxidative stress, in the brain. However, the relevance of the animal findings to the human is uncertain and clinical trials with the antioxidant GSH precursor n-acetylcysteine have produced mixed results in cocaine dependence.

Author Disclosures

Contributors

Conflict of Interest No conflict declared.

Correspondence: Junchao Tong, Preclinical Imaging Unit, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R8., Telephone: 416-535-8501 ext. 36422 Junchao.tong@camh.ca.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

SJK, JT and PSF designed the study; JT, PSF, AM and TM conducted experiments, data collection and analysis; LCA performed neuropathology; JT, PSF and SJK wrote initial drafts; AM, GR, JHM, RM, IB, YF and NS contributed to revisions; all authors approved the final manuscript.

Page 2

Methods: Our major objective was to compare glutathione levels, determined by an HPLCcoulometric procedure, in autopsied brain of chronic heroin (n=11) and cocaine users (n=9), who were positive for the drugs in the brain, to those of matched controls (n=16). Six brain regions were examined, including caudate, hippocampus, thalamus and frontal, temporal and insular cortices.

Results: In contrast to experimental animal findings, we found no statistically significant difference between mean levels of reduced or oxidized glutathione in the drug user vs. control groups. Moreover, no correlation was found between levels of drugs in the brain and those of glutathione.

Conclusions: Acknowledging the many generic limitations of an autopsied human brain study and the preliminary nature of the findings, our data nevertheless suggest that any oxidative stress caused by heroin or cocaine in chronic users of the drugs might not be sufficient to cause substantial loss of stores of glutathione in the human brain, at least during early withdrawal. These findings, requiring replication, might also have some relevance to future clinical trials employing glutathione supplement therapy as an anti-oxidative strategy in chronic users of the two abused drugs.

Keywords

Glutathione; Oxidative stress; Heroin; Cocaine; Human brain; Postmortem

1. Introduction

It is generally assumed that chronic exposure of some recreational drugs of abuse (e.g., stimulants, heroin) likely "injuries" the human brain to some extent and that neurotoxic injury might be caused at least in part by oxidative stress (Sharma et al., 2007; Cunha-Oliveira et al., 2008; Yamamoto et al., 2010; Sajja et al., 2016). To date, evidence supporting this possibility is largely driven by results of experimental animal investigations. For example, animal (rodent) studies show that high doses of the dopaminergic stimulant methamphetamine can produce increased brain levels of malondialdehyde or malondialdehyde-like lipoperoxidation substances, cause structural damage to (at least) brain dopamine nerve endings, and with reduction of the dopamine neuronal markers lessened by antioxidant treatment (for review see Kish, 2014).

The relevance of animal model findings to the human condition is always uncertain. Further, a practical consideration is that, at present, few tools can or have been used to assess oxidative stress or damage in the human brain directly. This is particularly relevant because of increasing interests in employing antioxidants such as n-acetylcysteine (Baker et al., 2003a,b; Ng et al., 2008; Zhou and Kalivas, 2008; Moussawi et al., 2009; Berk et al., 2013; McClure et al., 2014; Deepmala et al., 2015; Trivedi and Deth, 2015; Duailibi et al., 2017; Nocito Echevarria et al., 2017; Schulte et al., 2017) as a treatment strategy for drug dependence partly based on the assumption that there exists oxidative stress in brain of drug users. One indirect approach has been a measurement in the brain of the tripeptide glutathione (γ -L-glutamyl-L-cysteinylglycine; GSH, the reduced form), a major antioxidant defense. GSH is converted to oxidized glutathione (GSSG) as a consequence of oxidation

catalyzed by glutathione peroxidase and can be recycled from the oxidized form to the reduced form by glutathione reductase (Dringen, 2000). One of the most consistent consequences of severe oxidative stress observed in a variety of experimental conditions affecting different organ systems is depletion of GSH (Sen and Packer, 2000; Gu et al., 2015; Won et al., 2015). In this regard, finding of a below normal concentration of GSH can be suggestive of the presence of oxidative stress (Di Monte et al., 1992; Jenner and Olanow, 1996; Won et al., 2015; Ren et al., 2017). Thus, our previous finding, consistent with animal data (Moszczynska et al., 1998), of a trend for GSH reduction in postmortem brain of a subgroup of human methamphetamine users (Mirecki et al., 2004) who had a marked dopamine loss suggests (but does not prove) that some oxidative stress might have occurred in methamphetamine-exposed human brain.

Emerging data, although not always consistent, shows that GSH concentration can be below normal in brain of experimental animals exposed to two other drugs of abuse, namely the heroin metabolite morphine (Goudas et al., 1997; Qiusheng et al., 2005; Guzman et al., 2006, 2009a,b; Ozmen et al., 2007; Abdel-Zaher et al., 2010, 2013a,b; Sumathi et al., 2011; Deng et al., 2012; Hu et al., 2012; Joshi et al., 2014; Motaghinejad et al., 2015a,b; Singh et al., 2015; Yun et al., 2015; Famitafreshi and Karimian, 2017) and the dopaminergic stimulant cocaine (Muriach et al., 2010; Uys et al., 2011; Lopez-Pedrajas et al., 2015; Vitcheva et al., 2015; Hu et al., 2016; Zhang et al., 2016; but see Wiener and Reith, 1990) (see Table 1 for a review). Overall, the findings show that chronic systemic and acute intracerebral-spinal morphine exposure consistently deplete brain GSH, with the exception of one study in rat pups showing increased GSH after repeated morphine injection (Traudt et al., 2012). However, results of acute effects of systemic morphine on brain GSH are mixed (increase, Guzman et al., 2009b; Joshi et al., 2014; decrease, Guzman et al., 2006, 2009a,b; and no change, Bien et al., 1992; Goudas et al., 1997). For cocaine, most studies (Muriach et al., 2010; Uys et al., 2011; Lopez-Pedrajas et al., 2015; Vitcheva et al., 2015; Hu et al., 2016; Zhang et al., 2016) except one (no change, Wiener and Reith, 1990; in mice) of chronic cocaine exposure in adults show decreased levels of brain GSH or ratio of GSH/GSSG although the effects of acute cocaine treatment can also be mixed (Wiener and Reith, 1990; Macedo et al., 2010; Uys et al., 2011). Discrepancies in the literature might be explained by the species employed, age at drug exposure (e.g., adolescent cocaine exposure did not result in GSH abnormality measured in adults; Zhu et al., 2016, 2017), brain regions examined, dose regimen and the GSH assay used (Table 1; see also Discussion).

Investigations of GSH in central nervous system of human users of heroin and cocaine appear to be limited to a postmortem brain study in heroin users reporting markedly below normal GSH throughout the brain (Gutowicz et al., 2011) and a preliminary report of low GSH in cerebrospinal fluid of two (of three examined) patients receiving intracerebroventricular doses of morphine for intractable cancer pain (Goudas et al., 1999). Given the sparse literature on whether the two widely used drugs of abuse might cause oxidative stress in human brain, as suggested by animal data, our objective was to establish whether levels of GSH (primary outcome measure) are lower than normal (and by inference oxidative stress above-normal) in a regionally extensive sampling of well-characterized autopsied human brain of chronic cocaine and chronic heroin users (Wilson et al., 1996; Kish et al., 1999, 2001; Kalasinsky et al., 2000; McLeman et al., 2000; Worsley et al., 2000;

Page 4

Siegal et al., 2004; Frankel et al., 2008). For comparison, using an HPLC-electrochemical procedure, we measured the following compounds as secondary outcome measures which also appeared on the chromatogram: GSSG (oxidized GSH), GSH-Cysteine (GSH-CYS; the mixed disulfide), uric acid (UA), a xanthine catabolite and potential antioxidant and neuroprotective agent, reported to act via GSH (Mirecki et al., 2004; Bakshi et al., 2015), and methionine, the latter as an index sensitive to postmortem time (Mirecki et al., 2004). Our working hypothesis was that, based on the above-mentioned animal data, GSH levels would be below normal throughout the brain of users of either heroin or cocaine.

2. Subjects and Methods

2.1 Subjects

Postmortem brain from a total of 11 chronic users of heroin (1 female), 9 cocaine (2 females) and 16 controls (2 females) was obtained from medical examiner offices in USA/ Canada using a standardized protocol. The study was approved by the Research Ethics Board of the Centre for Addiction and Mental Health at Toronto. Subject information, drug histories, and brain drug and dopamine levels are summarized in Table 2, with the information previously reported (Wilson et al., 1996; Kish et al., 1999, 2001; Kalasinsky et al., 2000; McLeman et al., 2000; Siegal et al., 2004). There were no statistically significant differences in age (control, 37.0 ± 3.1 years; heroin, 36.2 ± 2.5 years; cocaine, 35.4 ± 4.8 years; mean±SEM), postmortem intervals (PMI, interval between death and freezing of the brain; control, 14.6±1.8 hours; heroin, 13.4±2.0 hours; cocaine, 17.0±2.4 hours), or freezer storage time at the time when the biochemical assays were performed in 2001-2003 (control, 5.4 ± 0.5 years; heroin, 6.5 ± 0.4 years; cocaine, 7.0 ± 0.6 years) between the control and drug users. At autopsy, one half-brain was fixed in formalin fixative for neuropathological analysis, whereas the other half was immediately frozen until dissection for neurochemical analysis. Blood samples were obtained from all of the drug users and controls for drug screening. Sequential scalp hair samples for drug analyses could be obtained from 14 of 16 controls, 10 of 11 heroin users, and five of 9 cocaine users. Levels of drugs of abuse in blood and other bodily fluids were measured by the local medical examiner whereas drug analyses in brain and hair samples were conducted at the Armed Forces Institute of Pathology (Washington, DC, USA). Heroin users met the following criteria: 1) presence of heroin metabolites (6-acetylmorphine, morphine, or morphine glucuronide) on toxicology screens in blood and autopsied brain; 2) absence of other drugs of abuse in bodily fluids with the exception of ethanol (see below) or other opioid drugs (two subjects #H5 and #H7 had blood samples positive for the opioid drug propoxyphene and its metabolite norpropoxyphene; see Table 2); 3) evidence from the case records of primary use of heroin for >1 year prior to death; and 4) absence of evidence of neurological illness or, at autopsy, brain pathology unrelated to use of the drug. Five of the heroin users had recently used alcohol as indicated by the presence of ethanol in blood (Table 2). Available hair analysis of the (10 of 11) heroin users revealed presence of only heroin metabolites in eight of the users. The suspected cause of death was heroin intoxication (seven), mixed drug intoxication (two), and cardiovascular disease with heroin as a contributing factors (two). Cocaine users met the following criteria: 1) presence of cocaine or metabolite benzoylecgonine in blood or (one subject) urine; autopsied brain, and, if available, scalp hair by GC-MS; 2) absence of other drugs of abuse

in bodily fluids, with the exception of ethanol (see below), or in brain; 3) evidence from the case records or interview with next of kin of use of cocaine as the primary drug of abuse for >1 year prior to death; and 4) absence of neurological illness or, at autopsy, brain pathology unrelated to use of the drug. Two of the cocaine users had recently used alcohol as indicated by the presence of ethanol in blood or cocaethylene in brain. Available hair analysis of the (five of nine) cocaine users revealed presence of only cocaine and/or metabolites in four of the users. Known or suspected causes of death of the cocaine users were cocaine intoxication (five), cardiovascular disease with cocaine as a contributing factors (two), carotid artery aneurysm with cocaine as a contributing factor (one) and chest trauma (one).

All control subjects (for which brain GSH levels have been previously reported in (Mirecki et al., 2004)) were neurologically normal and had no evidence of brain pathology on neuropathological examination. All had no history of drug use and tested negative for drugs of abuse in blood, autopsied brain, and in sequential scalp hair samples where available. The cause of death for the controls were electrocution (n=1), morbid obesity (n=1), trauma (n=3), pulmonary embolism (n=2), and cardiovascular disease (n=9).

2.2 GSH, GSSG, GSH-Cys, UA and Methionine Analysis

Brain regions were dissected as previously described (Kish et al., 1988), using the Atlas of Riley (Riley, 1943) for the caudate, hippocampal Ammon's horn and medial pulvinar thalamus and Brodmann classification for frontal (BA9), temporal (BA21) and insular cortices. Levels of GSH, GSSG, GSH-Cys, methionine, and UA in tissue homogenates were measured by a coulometric method using HPLC and electrochemical detection with coulometric cells as previously described (Fitzmaurice et al., 2003; Mirecki et al., 2004; Tong et al., 2016) (see Supplementary Methods for more details). Protein concentration was determined using the Bio-Rad Protein Assay Kit (Bio-Rad, Hercules, CA, USA) with bovine plasma albumin as the standard.

2.3 Statistical Analyses

Statistical analyses were performed using StatSoft STATISTICA 7.1 (Tulsa, Oklahoma, USA). Differences in levels of GSH, GSSG, GSSG-Cys, UA and methionine among controls and drug groups in brain regions examined were conducted using ANCOVA (p<0.05) with age and PMI as the covariates, given influences of age and PMI on some of the outcome measures (Mirecki et al., 2004; Tong et al., 2016), followed by *post-hoc* Bonferroni adjustments (p<0.05). Correlations were examined by Pearson product moment correlation or Spearman ranking order correlation as indicated in the text.

3. Results

A one-way ANCOVA with age and PMI as the covariates disclosed that GSH, GSSG, GSH-Cys, UA and methionine levels (Table 3) were normal in all examined brain regions of the two drug user groups versus the controls (p>0.05), with the exception of significantly lower levels of methionine in the caudate nucleus of users of heroin (-26%) and cocaine (-33%). Scatter plots of GSH levels (Figure 1) and those of GSSG, GSH-Cys, UA, and methionine

(see Supplementary Figures 1-4)¹ showed overlapped data range between drug users and control subjects.

No significant correlation was observed between levels of GSH, GSSG, GSH-Cys, UA or methionine and available drug use parameters of the heroin and cocaine users including duration of use (Pearson) and composite blood and brain drug levels (Spearman). Three cocaine users (#C1, #C4 and #C6 in Table 2) demonstrated a markedly higher level of cocaine and metabolites in brain than other cocaine users (>150 *versus* <50 nmol/g tissue); however, the three cocaine users did not have abnormally low levels of GSH (Figure 1) or out-of-range values of GSSG, GSH-Cys, UA or methionine (see Supplementary Figures 1–4)². Two heroin users (Table 2) had high blood levels of the opioid drug propoxyphene and its metabolite norpropoxyphene (5.76 μ M and 15.21 μ M for #H5 and #H7, respectively); however, the two were not particularly affected with respect to brain levels of GSH (see Figure 1), GSSG, GSH-Cys, UA or methionine (see Supplementary Figures 1–4)³.

Blood tested positive for ethanol in five heroin users (0.05–0.12%; #H2, #H4, #H8, #H9 and #H11 in Table 2) and two cocaine users (0.01% and 0.02% for #C3 and #C4, respectively, in Table 2); however, the presence or absence of ethanol did not differentiate the outcome measures of brain GSH, GSSG, GSH-Cys, UA or methionine. Cocaine users showed a moderate loss of striatal dopamine (Wilson et al., 1996) whereas dopamine levels were normal in heroin users (Kish et al., 2001); however, dopamine levels in the caudate were not significantly correlated (Pearson) with those of GSH, GSSG, GSH-Cys, UA or methionine in the drug users.

In this sample of controls and/or drug users, we found no significant correlation (Pearson) between levels of GSH, GSSG, GSH-Cys, UA or methionine and age or PMI of the subjects (all subjects included or in individual groups).

4. Discussion

The main finding of our study is that levels of GSH are normal in autopsied brain of chronic users of heroin and cocaine. Further, we found no correlation between recent drug exposure (as suggest by brain drug levels) and levels of the tri-peptide antioxidant.

4.1 Limitations

There are many limitations to postmortem human brain studies. Because, as we have shown previously (Mirecki et al., 2004), levels of both reduced and oxidized glutathione are decreased in autopsied vs. biopsied human brain, postmortem time must have influenced to some degree concentration of our major outcome measures. Nevertheless, we feel it reasonable to expect that qualitative differences or lack thereof, found in the autopsied brain would be generally similar to those occurring in living brain. Further, there were no statistically significant differences amongst mean PMI for the drug and control groups (note: PMI was included as a covariate in the statistical analysis), and mean levels of the amino acid methionine, which increase quite markedly after death (Mirecki et al., 2004), were also

¹⁻³Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi: ...

Drug Alcohol Depend. Author manuscript; available in PMC 2019 September 01.

mostly similar in the three groups. Further, we did not observe any significant negative correlations between levels of GSH and methionine among brain regions and groups; including methionine levels as a covariate did not change any statistical outcomes of the other analytes.

Little information on drug doses, precise duration of chronic use, medication history, or history of alcohol consumption, which is known to be able to deplete brain GSH (Uys et al., 2014), was available for the subjects of our study. In this regard, the possibility cannot be excluded that unknown medications or other drugs used by the subjects of our study might have influenced GSH levels in the brain. However, we can be certain that the users of cocaine and heroin must have used these drugs, at least as recently as 72 hours before death as they all tested positive for the drug in the brain and/or blood.

Arguing against the notion that we might not have been able to detect a small/modest change in postmortem brain GSH concentrations are our previous findings demonstrating a modest GSH reduction (19 to 30%) in autopsied substantia nigra of patients with three different degenerative Parkinsonian conditions (n=10–16 per group; Fitzmaurice et al., 2003) and the observation of slightly decreased (by 17%) GSH levels in striatum of rodents exposed to a binge dose of methamphetamine (Moszczynska et al., 1998). Previously we reported a trend for a modest reduction (by 35%) in autopsied brain of human methamphetamine users, but which was restricted to the subgroup having severe loss of the neurotransmitter dopamine (Mirecki et al., 2004).

4.2 Comparison with Literature (Human)

To our knowledge, there have been no previous studies of glutathione in postmortem or living brain of human cocaine users. However, in autopsied brain of users of heroin, Gutowicz and colleagues (Gutowicz et al., 2011) reported markedly (by about 20–40%) lower GSH in the cerebral cortex, hippocampus, brain stem and white matter. Assuming in their report that brain "heroin level" means total concentration in brain of the major heroin metabolites (6-acetylmorphine, morphine, morphine glucuronide), the brain drug levels in heroin users of the Gutowicz study were generally similar to those in our investigation, suggesting that the extent of recent drug exposure to the heroin users was also similar in both studies. Possibly the discrepancy might be explained by differences in methodologies for glutathione (HPLC with electrochemical detection in our study vs. colorimetric assay; see Tong et al., 2016 for discussions), differences in drug history of the heroin users, or be related to the very long PMI (two-four days) in the Gutowicz study vs. a much shorter mean of 14 hours for both heroin users and controls in our investigation, and uncertainty whether drug and control groups were matched for PMI in the earlier investigation. In this regard, GSH levels reported by Gutowicz study in control brains (2.3–3.4 mM, assuming a protein/ tissue ratio of 0.05 (Tong et al., 2016) and a brain unit weight of 1 g/mL) were higher than those reported in the literature for autopsied human brain (generally < 2 mM) (Perry et al., 1982; Slivka et al., 1987; Sofic et al., 1992; Sian et al., 1994) including our studies (Fitzmaurice et al., 2003; Mirecki et al., 2004; Tong et al., 2016) despite much longer PMI (>48 hrs. vs 26 hrs.). It is also possible that the autopsied brains in the Gutowicz study had suffered from more severe pathology (not reported), e.g., hypoxic/ischaemic lesions

(Andersen and Skullerud, 1999; Buttner et al., 2000), than those in our study as some animal data suggest that prolonged ischemia might cause glutathione depletion in brain (Rehncrona et al., 1980; Slivka and Cohen, 1993). In this respect, qualitative brain neuropathological examination in our cases did not reveal obvious abnormalities (cell loss or gliosis) in the drug users with the exception of some hypoxic/ischaemic neuronal changes in CA1 of hippocampus (#C3), mild diffuse gliosis in midbrain (#C4) and acute subarachnoid hemorrhage (#C9) in three cocaine users, respectively, and mild ventricular dilatation (#H5) and mild diffuse gliosis in diencephalon and lower brainstem (#H11) in two heroin users, respectively.

4.3 Why Did Animal GSH Findings on Morphine/Cocaine Not Translate into The Human?

Although, as mentioned above, the experimental animal literature is generally consistent (below normal GSH following chronic heroin or cocaine exposure; Table 1), we found no significant change in GSH levels in brain of humans chronically exposed to either of the drugs. Possibly the difference could be explained by different extent of drug exposure in the animal studies vs. that in our human investigation and by different redox response in animals vs humans as exemplified by reported GSH depletion in animal ischemia (Slivka and Cohen, 1993) versus compensatory GSH elevation in human brain stroke (An et al. 2012). The possibility has to be considered that acute/sub-chronic exposure to the drugs, e.g., as suggested by experimental reports of GSH depletion by morphine and cocaine (Table 1) and by a report of depletion of cerebrospinal fluid GSH levels in the human after acute intracerebroventricular morphine for cancer pain (Goudas et al., 1999), might have resulted in excessive GSH utilization and depletion, but that tolerance (compensatory increase in GSH synthesis) occurred in the users of our investigation who likely had been exposed to the drugs for years. Most animal studies employed passive drug administration, and it is conceivable that this might have produced a different profile of brain redox response and disturbance as compared to that of drug self-administration (e.g., see Pomierny-Chamiolo et al., 2013), more relevant to the human condition. The study by Uys et al. (2011) shows that rats repeatedly exposed to cocaine had decreased levels of GSH in brain (nucleus accumbens) at three weeks withdrawal versus saline-treated animals whereas an acute challenging dose of cocaine restored brain GSH levels to that of the controls, suggesting a possible effect of abstinence although some of the studies examined GSH within hours of final drug administration (Abdel-Zaher et al., 2010, 2013a,b). The age of initial drug exposure could be another variable as cocaine exposure during adolescence, which is common in many human users, was not associated with GSH loss in rats later in adults (Zhu et al., 2016, 2017). Interestingly, a recent study (Joshi et al., 2014) showed that morphine could counteract chronic restraint stress-induced GSH depletion in rat brain, suggesting some interactions between drugs of abuse and stress-induced redox disturbance (Madrigal et al., 2001; Ahmad et al., 2010; Kumar et al., 2011; Moretti et al., 2012; Filho et al., 2015; Bouvier et al., 2017; Famitafreshi and Karimian, 2017). Perhaps some of the above factors might help to explain why available preclinical animal data demonstrating a brain GSH reduction following morphine or cocaine exposure do not translate to the human.

4.4 Glutathione and Oxidative Stress in Heroin and Cocaine Users

We emphasize that the "negative" results of our investigation do not imply that chronic use of the abused drugs cocaine and heroin do not cause oxidative stress in human brain, but rather that exposure to the drugs at the doses used by the subjects of our study, which are probably within the dose regimen employed in experimental animal studies (e.g., see Nayak et al., 1976; Djurendic-Brenesel et al., 2010), might not cause oxidative stress of a magnitude that produces some brain depletion of the antioxidant glutathione. Here we caution also that the extent of oxidative stress necessary to cause GSH depletion in human brain is not known and that mild to moderate oxidative stress could induce compensatory increase in GSH synthesis (cf. Tong et al., 2016). Recently, clinical trials of the antioxidant n-acetylcysteine, a prodrug to the rate-limiting GSH precursor cysteine, were performed in a variety of human addiction conditions including cocaine with mixed outcomes (see Berk et al., 2013; McClure et al., 2014; Deepmala et al., 2015; Trivedi and Deth, 2015; Duailibi et al., 2017; Nocito Echevarria et al., 2017; Schulte et al., 2017 for reviews). However, Nacetylcysteine was employed primarily as a modulator of glutamate neurotransmission, with its antioxidant property as a possible secondary mechanism (LaRowe et al., 2013; McClure et al., 2014). In retrospect, our findings of normal brain GSH in heroin and cocaine users provide no support to use of this GSH prodrug to address a GSH deficiency in brain, at least during early withdrawal when the drugs of abuse were tested positive. Future trials of Nacetylcysteine in opiate and cocaine dependence, aiming at redox homeostasis (Trivedi and Deth, 2015), might take our autopsied brain finding of normal brain GSH levels into consideration.

5. Conclusions

The main finding of our study is that, in contrast to results of animal studies, levels of glutathione were found to be normal in autopsied brain of chronic users of heroin and of cocaine, suggesting that any oxidative stress caused by the drugs might not be sufficient to deplete substantially tissue stores of the antioxidant. Our findings, although suggestive, must be considered preliminary especially given the limitations associated with autopsied brain investigations including large variability of GSH levels and a small sample size. Future studies might also consider measurement of GSH in living human brain using a magnetic resonance imaging approach in which the influence of heroin and cocaine (and also opiates for therapeutic purposes) can more easily, e.g., longitudinally, be examined.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Role of Funding Source

This study was supported in part by the US NIDA/NIH DA07182 (SK), the New Zealand Institute of Environmental Science and Research, Ltd. (PF, SK), and the Centre for Addiction and Mental Health Foundation.

References

- Abdel-Zaher AO, Abdel-Rahman MS, FM EL, 2010 Blockade of nitric oxide overproduction and oxidative stress by Nigella sativa oil attenuates morphine-induced tolerance and dependence in mice. Neurochem. Res 35, 1557–1565.20552271
- Abdel-Zaher AO, Mostafa MG, Farghaly HS, Hamdy MM, Abdel-Hady RH, 2013a Role of oxidative stress and inducible nitric oxide synthase in morphine-induced tolerance and dependence in mice. Effect of alpha-lipoic acid. Behav. Brain Res 247, 17–26.23470902
- Abdel-Zaher AO, Mostafa MG, Farghly HM, Hamdy MM, Omran GA, Al-Shaibani NK, 2013b Inhibition of brain oxidative stress and inducible nitric oxide synthase expression by thymoquinone attenuates the development of morphine tolerance and dependence in mice. Eur. J. Pharmacol 702, 62–70.23376567
- Ahmad A, Rasheed N, Banu N, Palit G, 2010 Alterations in monoamine levels and oxidative systems in the frontal cortex, striatum, and hippocampus of the rat brain during chronic unpredictable stress. Stress 13, 355–364.20536337
- An L , Dani KA , Shen J , Warach S ; Natural History of Stroke Investigators, 2012 Pilot results of in vivo brain glutathione measurements in stroke patients. J. Cereb. Blood Flow Metab 32, 2118–2121.23010948
- Andersen SN, Skullerud K, 1999 Hypoxic/ischaemic brain damage, especially pallidal lesions, in heroin addicts. Forensic Sci. Int102, 51–59.10423852
- Baker DA , McFarland K , Lake RW , Shen H , Tang XC , Toda S , Kalivas PW , 2003a Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat. Neuroscience 6, 743–749.12778052
- Baker DA, McFarland K, Lake RW, Shen H, Toda S, Kalivas PW, 2003b N-acetyl cysteineinduced blockade of cocaine-induced reinstatement. Ann. N.Y. Acad. Sci 1003, 349–351.14684458
- Bakshi R , Zhang H , Logan R , Joshi I , Xu Y , Chen X , Schwarzschild MA , 2015 Neuroprotective effects of urate are mediated by augmenting astrocytic glutathione synthesis and release. Neurobiol. Dis 82, 574–579.26341543
- Berk M , Malhi GS , Gray LJ , Dean OM , 2013 The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol. Sci 34, 167–177.23369637
- Bien E , Vick K , Skorka G , 1992 Effects of exogenous factors on the cerebral glutathione in rodents. Arch.Toxicol 66, 279–285.1514927
- Bouvier E , Brouillard F , Molet J , Claverie D , Cabungcal JH , Cresto N , Doligez N , Rivat C , Do KQ , Bernard C , Benoliel JJ , Becker C , 2017 Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Mol. Psychiatry 22, 1795.27801891
- Buttner A , Mall G , Penning R , Weis S , 2000 The neuropathology of heroin abuse. For ensic Sci. Int 113,435-442.10978659
- Cunha-Oliveira T, Rego AC, Oliveira CR, 2008 Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res. Rev 58, 192–208.18440072
- Deepmala , Slattery J , Kumar N , Delhey L , Berk M , Dean O , Spielholz C , Frye R , 2015 Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci. Biobehav. Rev 55, 294–321.25957927
- Deng Y, Bu Q, Hu Z, Deng P, Yan G, Duan J, Hu C, Zhou J, Shao X, Zhao J, Li Y, Zhu R, Zhao Y, Cen X, 2012 (1) H-nuclear magnetic resonance-based metabonomic analysis of brain in rhesus monkeys with morphine treatment and withdrawal intervention. J. Neurosci. Res 90, 2154– 2162.22847893
- Di Monte DA, Chan P, Sandy MS, 1992 Glutathione in Parkinson's disease: A link between oxidative stress and mitochondrial damage? Ann. Neurol 32, S111–115.1510368
- Djurendic-Brenesel M , Mimica-Dukic N , Pilija V , Tasic M , 2010 Gender-related differences in the pharmacokinetics of opiates. Forensic Sci. Int 194, 28–33.19913374
- Dringen R , 2000 Metabolism and functions of glutathione in brain. Prog. Neurobiol 62, 649–671.10880854

- Duailibi MS, Cordeiro Q, Brietzke E, Ribeiro M, LaRowe S, Berk M, Trevizol AP, 2017 Nacetylcysteine in the treatment of craving in substance use disorders: Systematic review and metaanalysis. Am. J. Addict 26, 660–666.28898494
- Famitafreshi H , Karimian M , 2017 Socialization alleviates burden of oxidative-stress in hippocampus and prefrontal cortex in morphine addiction period in male rats. Curr. Mol. Pharmacol [Epub ahead of print]
- Filho CB , Jesse CR , Donato F , Giacomeli R , Del Fabbro L , da Silva Antunes M , de Gomes MG , Goes AT , Boeira SP , Prigol M , Souza LC , 2015 Chronic unpredictable mild stress decreases BDNF and NGF levels and Na(+), K(+)-ATPase activity in the hippocampus and prefrontal cortex of mice: Antidepressant effect of chrysin. Neuroscience 289, 367–380.25592430
- Fitzmaurice PS, Ang L, Guttman M, Rajput AH, Furukawa Y, Kish SJ, 2003 Nigral glutathione deficiency is not specific for idiopathic Parkinson's disease. Mov. Disord 18, 969–976.14502663
- Frankel PS, Alburges ME, Bush L, Hanson GR, Kish SJ, 2008 Striatal and ventral pallidum dynorphin concentrations are markedly increased in human chronic cocaine users. Neuropharmacology 55, 41–46.18538358
- Goudas LC, Carr DB, Maszczynska I, Marchand JE, Wurm WH, Greenblatt DJ, Kream RM, 1997 Differential effect of central versus parenteral administration of morphine sulfate on regional concentrations of reduced glutathione in rat brain. Pharmacology 54, 92–97.9088042
- Goudas LC , Langlade A , Serrie A , Matson W , Milbury P , Thurel C , Sandouk P , Carr DB , 1999 Acute decreases in cerebrospinal fluid glutathione levels after intracerebroventricular morphine for cancer pain. Anesth. Analg 89, 1209–1215.10553836
- Gu F , Chauhan V , Chauhan A , 2015 Glutathione redox imbalance in brain disorders. Curr. Opin. Clin. Nutr. Metab. Care 18, 89–95.25405315
- Gutowicz M , Kazmierczak B , Baranczyk-Kuzma A , 2011 The influence of heroin abuse on glutathione-dependent enzymes in human brain. Drug Alcohol Depend 113, 8–12.20709470
- Guzman DC , Brizuela NO , Alvarez RG , Garcia EH , Mejia GB , Olguin HJ , 2009a Cerebrolysin and morphine decrease glutathione and 5-hydroxyindole acetic acid levels in fasted rat brain. Biomed. Pharmacother 63, 517–521.18993027
- Guzman DC, Osnaya-Brizuela N, Garcia-Alvarez R, Hernandez-Garcia E, Juarez-Olguin H, 2009b Oxidative stress induced by morphine in brain of rats fed with a protein deficient diet. Hum. Exp. Toxicol 28, 577–582.19744972
- Guzman DC , Vazquez IE , Brizuela NO , Alvarez RG , Mejia GB , Garcia EH , Santamaria D , de Apreza M , Olguin HJ , 2006 Assessment of oxidative damage induced by acute doses of morphine sulfate in postnatal and adult rat brain. Neurochem. Res 31, 549–554.16758364
- Haycock JW, Becker L, Ang L, Furukawa Y, Hornykiewicz O, Kish SJ, 2003 Marked disparity between age-related changes in dopamine and other presynaptic dopaminergic markers in human striatum. J. Neurochem 87, 574–585.14535941
- Hissin PJ, Hilf R, 1976 A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem 74, 214–226.962076
- Hu P, Zhu W, Zhu C, Jin L, Guan Y, Guan X, 2016 Resveratrol fails to affect cocaine conditioned place preference behavior, but alleviates anxiety-like behaviors in cocaine withdrawn rats. Psychopharmacology 233, 1279–1287.26790673
- Hu Z, Deng Y, Hu C, Deng P, Bu Q, Yan G, Zhou J, Shao X, Zhao J, Li Y, Zhu R, Xu Y, Zhao Y, Cen X, 2012 (1)H NMR-based metabonomic analysis of brain in rats of morphine dependence and withdrawal intervention. Behav. Brain Res 231, 11–19.22391120
- Jenner P , Olanow CW , 1996 Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 47, \$161–170.8959985
- Joshi JC, Ray A, Gulati K, 2014 Differential modulatory effects of morphine on acute and chronic stress induced neurobehavioral and cellular markers in rats. Eur. J. Pharmacol 729, 17– 21.24508522
- Kalasinsky KS, Bosy TZ, Schmunk GA, Ang L, Adams V, Gore SB, Smialek J, Furukawa Y, Guttman M, Kish SJ, 2000 Regional distribution of cocaine in postmortem brain of chronic human cocaine users. J. Forensic Sci 45, 1041–1048.11005179

- Kish SJ, 2014 Chapter 08: The pathology of methamphetamine use in the human brain, in Madras BK, Kuhar M (Eds.), The effects of drug abuse on the human nervous system Elsevier Inc., Amsterdam, pp. 203–297.
- Kish SJ, Kalasinsky KS, Derkach P, Schmunk GA, Guttman M, Ang L, Adams V, Furukawa Y, Haycock JW, 2001 Striatal dopaminergic and serotonergic markers in human heroin users. Neuropsychopharmacology 24, 561–567.11282256
- Kish SJ, Kalasinsky KS, Furukawa Y, Guttman M, Ang L, Li L, Adams V, Reiber G, Anthony RA, Anderson W, Smialek J, DiStefano L, 1999 Brain choline acetyltransferase activity in chronic, human users of cocaine, methamphetamine, and heroin. Mol. Psychiatry 4, 26– 32.10089005
- Kish SJ, Shannak K, Hornykiewicz O, 1988 Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N. Engl. J. Med 318, 876–880.3352672
- Kumar B , Kuhad A , Chopra K , 2011 Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: Behavioral and biochemical evidences. Psychopharmacology 214, 819–828.21103863
- LaRowe SD , Kalivas PW , Nicholas JS , Randall PK , Mardikian PN , Malcolm RJ , 2013 A doubleblind placebo-controlled trial of N-acetylcysteine in the treatment of cocaine dependence. Am. J. Addict 22, 443–452.23952889
- Lopez-Pedrajas R, Ramirez-Lamelas DT, Muriach B, Sanchez-Villarejo MV, Almansa I, Vidal-Gil L, Romero FJ, Barcia JM, Muriach M, 2015 Cocaine promotes oxidative stress and microglialmacrophage activation in rat cerebellum. Front. Cell. Neurosci 9, 279.26283916
- Macedo DS, Vasconcelos SM, Andrade-Neto M, Belchior LD, Honorio Junior JE, Goncalves DO, Fonteles MM, Silva MI, Aguiar LM, Viana GS, de Sousa FC, 2010 Cocaine-induced status epilepticus and death generate oxidative stress in prefrontal cortex and striatum of mice. Neurochem. Int 56, 183–187.19822180
- Madrigal JL, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, Leza JC, 2001 Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24, 420–429.11182537
- McClure EA, Gipson CD, Malcolm RJ, Kalivas PW, Gray KM, 2014 Potential role of Nacetylcysteine in the management of substance use disorders. CNS Drugs 28, 95–106.24442756
- McLeman ER, Warsh JJ, Ang L, Li PP, Kalasinsky KS, Ross BM, Tong J, Schmunk G, Adams V, Kish SJ, 2000 The human nucleus accumbens is highly susceptible to G protein down-regulation by methamphetamine and heroin. J. Neurochem 74, 2120–2126.10800957
- Mirecki A , Fitzmaurice P , Ang L , Kalasinsky KS , Peretti FJ , Aiken SS , Wickham DJ , Sherwin A , Nobrega JN , Forman HJ , Kish SJ , 2004 Brain antioxidant systems in human methamphetamine users. J. Neurochem 89, 1396–1408.15189342
- Moretti M, Colla A, de Oliveira Balen G, dos Santos DB, Budni J, de Freitas AE, Farina M, Severo Rodrigues AL, 2012 Ascorbic acid treatment, similarly to fluoxetine, reverses depressivelike behavior and brain oxidative damage induced by chronic unpredictable stress. J. Psychiatr. Res 46, 331–340.22154133
- Moszczynska A, Turenne S, Kish SJ, 1998 Rat striatal levels of the antioxidant glutathione are decreased following binge administration of methamphetamine. Neurosci. Lett 255, 49– 52.9839724
- Motaghinejad M, Karimian M, Motaghinejad O, Shabab B, Yazdani I, Fatima S, 2015a Protective effects of various dosage of Curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacol. Rep 67, 230–235.25712644
- Motaghinejad M, Karimian SM, Motaghinejad O, Shabab B, Asadighaleni M, Fatima S, 2015b The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats. Fundam. Clin. Pharmacol 29, 299–309.25846801
- Moussawi K, Pacchioni A, Moran M, Olive MF, Gass JT, Lavin A, Kalivas PW, 2009 N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat. Neurosci 12, 182–189.19136971

- Muriach M, Lopez-Pedrajas R, Barcia JM, Sanchez-Villarejo MV, Almansa I, Romero FJ, 2010 Cocaine causes memory and learning impairments in rats: involvement of nuclear factor kappa B and oxidative stress, and prevention by topiramate. J. Neurochem 114, 675–684.20477932
- Nayak PK, Misra AL, Mule SJ, 1976 Physiological disposition and biotransformation of (3H) cocaine in acutely and chronically treated rats. J. Pharmacol. Exp. Ther 196, 556–569.1263111
- Ng F, Berk M, Dean O, Bush AI, 2008 Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int. J. Neuropsychopharmacol 11, 851–876.18205981
- Nocito Echevarria MA, Andrade Reis T, Ruffo Capatti G, Siciliano Soares V, da Silveira DX, Fidalgo TM, 2017 N-acetylcysteine for treating cocaine addiction -A systematic review. Psychiatry Res 251, 197–203.28213190
- Ozmen I , Naziroglu M , Alici HA , Sahin F , Cengiz M , Eren I , 2007 Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress. Neurochem. Res 32, 19–25.17151918
- Perry TL , Godin DV , Hansen S , 1982 Parkinson's disease: a disorder due to nigral glutathione deficiency? Neurosci. Lett 33, 305–310.7162692
- Pomierny-Chamiolo L , Moniczewski A , Wydra K , Suder A , Filip M , 2013 Oxidative stress biomarkers in some rat brain structures and peripheral organs underwent cocaine. Neurotox. Res 23, 92–102.22791409
- Qiusheng Z , Yuntao Z , Rongliang Z , Dean G , Changling L , 2005 Effects of verbascoside and luteolin on oxidative damage in brain of heroin treated mice. Pharmazie 60, 539–543.16076083
- Rehncrona S , Folbergrova J , Smith DS , Siesjo BK , 1980 Influence of complete and pronounced incomplete cerebral ischemia and subsequent recirculation on cortical concentrations of oxidized and reduced glutathione in the rat. J. Neurochem 34, 477–486.7354324
- Ren X , Zou L , Zhang X , Branco V , Wang J , Carvalho C , Holmgren A , Lu J , 2017 Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system. Antioxid. Redox Signa 27, 989–1010.
- Riley RA, 1943 An atlas of the basal ganglia, brain stem and spinal cord The Williams and Wilkins Company, Baltimore, MD.
- Sajja RK , Rahman S , Cucullo L , 2016 Drugs of abuse and blood-brain barrier endothelial dysfunction: A focus on the role of oxidative stress. J. Cereb. Blood Flow Metab 36, 539– 554.26661236
- Schulte MHJ, Wiers RW, Boendermaker WJ, Goudriaan AE, van den Brink W, van Deursen DS, Friese M, Brede E, Waters AJ, 2017 The effect of N-acetylcysteine and working memory training on cocaine use, craving and inhibition in regular cocaine users: Correspondence of lab assessments and Ecological Momentary Assessment. Addict. Behav 79, 24–31.29241082
- Sen CK, Packer L, 2000 Thiol homeostasis and supplements in physical exercise. Am. J. Clin. Nutr 72, 653S–669S.10919972
- Sharma HS, Sjoquist PO, Ali SF, 2007 Drugs of abuse-induced hyperthermia, blood-brain barrier dysfunction and neurotoxicity: Neuroprotective effects of a new antioxidant compound H-290/51. Curr. Pharm. Des13, 1903–1923.17584116
- Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD, 1994 Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol 36, 348–355.8080242
- Siegal D , Erickson J , Varoqui H , Ang L , Kalasinsky KS , Peretti FJ , Aiken SS , Wickham DJ , Kish SJ , 2004 Brain vesicular acetylcholine transporter in human users of drugs of abuse. Synapse 52, 223–232.15103689
- Singh P, Sharma B, Gupta S, Sharma BM, 2015 In vivo and in vitro attenuation of naloxoneprecipitated experimental opioid withdrawal syndrome by insulin and selective KATP channel modulator. Psychopharmacology 232, 465–475.25059539
- Slivka A , Cohen G , 1993 Brain ischemia markedly elevates levels of the neurotoxic amino acid, cysteine. Brain Res 608, 33–37.8495346
- Slivka A , Spina MB , Cohen G , 1987 Reduced and oxidized glutathione in human and monkey brain. Neurosci. Lett 74, 112–118.3561870

- Sofic E , Lange KW , Jellinger K , Riederer P , 1992 Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease. Neurosci. Lett 142, 128–130.1454205
- Sumathi T, Nathiya VC, Sakthikumar M, 2011 Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats. Indian J. Pharm. Sci 73, 409–415.22707825
- Tong J , Fitzmaurice PS , Moszczynska A , Mattina K , Ang LC , Boileau I , Furukawa Y , Sailasuta N , Kish SJ , 2016 Do glutathione levels decline in aging human brain? Free Rad. Biol. Med 93, 110–117.26845616
- Traudt CM , Tkac I , Ennis KM , Sutton LM , Mammel DM , Rao R , 2012 Postnatal morphine administration alters hippocampal development in rats. J. Neurosci. Res 90, 307–314.21971612
- Trivedi MS, Deth R, 2015 Redox-based epigenetic status in drug addiction: a potential contributor to gene priming and a mechanistic rationale for metabolic intervention. Front. Neurosci 8, 444.25657617
- Uys JD, Knackstedt L, Hurt P, Tew KD, Manevich Y, Hutchens S, Townsend DM, Kalivas PW, 2011 Cocaine-induced adaptations in cellular redox balance contributes to enduring behavioral plasticity. Neuropsychopharmacology 36, 2551–2560.21796101
- Uys JD, Mulholland PJ, Townsend DM, 2014 Glutathione and redox signaling in substance abuse. Biomed. Pharm 68, 799–807.
- Vitcheva V, Simeonova R, Kondeva-Burdina M, Mitcheva M, 2015 Selective nitric oxide synthase inhibitor 7-nitroindazole protects against cocaine-induced oxidative stress in rat brain. Oxid. Med. Cell. Longev 2015, 157876.26576217
- Wiener HL, Reith ME, 1990 Differential effects of daily administration of cocaine on hepatic and cerebral glutathione in mice. Biochem. Pharmacol 40, 1763–1768.2242012
- Wilson JM, Levey AI, Bergeron C, Kalasinsky K, Ang L, Peretti F, Adams VI, Smialek J, Anderson WR, Shannak K, Deck J, Niznik HB, Kish SJ, 1996 Striatal dopamine, dopamine transporter, and vesicular monoamine transporter in chronic cocaine users. Ann. Neurol 40, 428– 439.8797532
- Won SJ, Kim JE, Cittolin-Santos GF, Swanson RA, 2015 Assessment at the single-cell level identifies neuronal glutathione depletion as both a cause and effect of ischemia-reperfusion oxidative stress. J. Neurosci 35, 7143–7152.25948264
- Worsley JN, Moszczynska A, Falardeau P, Kalasinsky KS, Schmunk G, Guttman M, Furukawa Y, Ang L, Adams V, Reiber G, Anthony RA, Wickham D, Kish SJ, 2000 Dopamine D1 receptor protein is elevated in nucleus accumbens of human, chronic methamphetamine users. Mol. Psychiatry 5, 664–672.11126397
- Yamamoto BK, Moszczynska A, Gudelsky GA, 2010 Amphetamine toxicities: Classical and emerging mechanisms. Ann. N.Y. Acad. Sci 1187, 101–121.20201848
- Yun J , Lee Y , Yun K , Oh S , 2015 Bergenin decreases the morphine-induced physical dependence via antioxidative activity in mice. Arch. Pharmacal. Res 38, 1248–1254.
- Zhang X , Chiu VM , Todd RP , Sorg BA , Hill HH , 2016 Neuronal metabolomics by ion mobility mass spectrometry in cocaine self-administering rats after early and late withdrawal. Anal. Bioanal. Chem 408, 4233–4245.27108279
- Zhou W, Kalivas PW, 2008 N-acetylcysteine reduces extinction responding and induces enduring reductions in cue-and heroin-induced drug-seeking. Biol. Psychiatry 63, 338–340.17719565
- Zhu W, Ge X, Gao P, Li M, Guan Y, Guan X, 2017 Adolescent cocaine exposure induces prolonged synaptic modifications in medial prefrontal cortex of adult rats. Brain Struct. Funct 223, 1829–1838.29247260
- Zhu W, Mao Z, Zhu C, Li M, Cao C, Guan Y, Yuan J, Xie G, Guan X, 2016 Adolescent exposure to cocaine increases anxiety-like behavior and induces morphologic and neurochemical changes in the hippocampus of adult rats. Neuroscience 313, 174–183.26621120

Highlights

- Effects of morphine and cocaine on brain GSH in animal studies are reviewed.
- Exposure to morphine or cocaine can deplete brain GSH in animals.
- GSH was measured in autopsied brains of chronic heroin and cocaine users.
- Extensive toxicology confirmed chronic use of heroin or cocaine.
- Human chronic heroin and cocaine users have normal levels of brain GSH.

Tong et al.

Figure 1.

Scatter plots of levels of reduced glutathione (GSH) in brain of users of heroin and cocaine and control subjects. Circled up-triangles identify two heroin users with high blood levels of propoxyphene and metabolite norpropoxyphene; circled down-triangles identify three cocaine users with high levels of cocaine and metabolites in brain.

Author Manuscript

Table 1.

Review of animal literature on morphine- or cocaine-induced changes in brain levels of glutathione (GSH)

Reference	Methods ^a	Species ^b	Treatment ^c		Main findings of GSH changes and comments ^d
			Chronic ity	Dose regimen	
Morphine:					
Bien et al. 1992	DTNB	Rats ơ', Wistar	Acute	100 mg/kg IP, i3 h	$\text{GSH} \leftrightarrow \text{WB} \; ([\text{GSH}]_{\text{C}} \approx 1.5 \; \text{mM})$
Goudas et al. 1997	HPLC-ECD	Rats ơ', SD	Acute	80 mg/kg SC i1-4 h 100 µg ICV i1-5 h	$\begin{array}{l} GSH \leftrightarrow cn/ctx/cereb/pons;\\ GSH \downarrow 30\% \ cn/ctx \ at \ 3 \ h; \leftrightarrow \ cereb/pons \ ([GSH]_C = 1.1 - 2.7 \\ mM) \end{array}$
Qiusheng et al. 2005	OPT	Mice9ơ', Kunming	Chronic	5–35 mg/kg x 40d IP, escalating dose	GSH/GSSG 440% WB (the ratio decreased along with treatment duration; GSH levels not reported; the OPT fluorescence method might over-estimate GSSG levels (Hissin and Hilf, 1976))
Guzman et al. 2006, 2009a.b	HPLC or OPT	Rats 9ơ', SD, Wistar	Acute	3-12 mg/kg, IP i1 h	GSH \downarrow 31–36% WB in adult rats ([GSH] _C = 4.7 mM or 0.27 mM in 48h fasted rats); \downarrow 42–88% WB in weaned Wistar rats ([GSH] _C = 2.0 mM); \downarrow 24% WB at 3 mg/kg but \uparrow 10% at 6-12 mg/kg in young malnourished rats at P60 ([GSH] _C = 0.41 mM)
Ozman et al. 2007	DTNB	Rabbits of	Acute	200 µg IT i8 d	$GSH \downarrow 48\% \text{ ctx} ([GSH]_C = 1.9 \text{ mM})$
Abdel-Zaher et al. 2010, 2013a,b	DTNB	Mice ơ, Swiss- Webster	Chronic	2×5 mg/kg x 1–7d SC, i2 h ± NAL 5 mg/kg	GSH \20-40% WB with 3-7 d morphine treatment; GSH \45% WB in naloxone (NAL) challenged ([GSH] _C = 2.8 mM)
Sumathi et al. 2011	DTNB	Ratsď, Wistar	Chronic	10–160 mg/kg x 21d IP	GSH \downarrow 46% WB ([GSH] _C = 1.0 mM)
Hu et al. 2012	NMR in vitro	Rats ơ', SD	Chronic	5–40 mg/kg x 14d IP, escalating dose, i48 h	GSH ¹ /prefrontal ctx; ↔ cn/nac/hippocampus (the metabonomic study did not report GSH levels or percentage of changes)
Deng et al. 2012	NMR in vitro	Monkeys 9ď, rhesus	Chronic	3×3–15 mg/kg x 90d SC, escalating dose, i8d	GSH Unippocampus: \leftrightarrow prefrontal ctx (the metabonomic study did not report GSH levels or percentage of changes)
Joshi et al. 2014	DTNB	Rats ơ, Wistar	Acute Chronic	1 and 5 mg/kg IP 1 and 5 mg/kg x 15d	GSH ↑57% and 105% WB by acute morphine, respectively; GSH ↔ and ↓51% WB by chronic morphine, respectively (Note: morphine reversed GSH depletion induced by restraint stress).
Singh et al. 2015	DTNB	Mice 9ơ', Swiss- albino	Chronic	2×5 mg/kg x 6d IP, i2h ± NAL 8 mg/kg	GSH ↔ WB by morphine alone (Note: non-significant 41% loss) GSH ↓65% with naloxone (NAL) challenge ([GSH] _C = 3.4 mM)
Yun et al. 2015	DTNB	Mice ơ, C57BL/6	Chronic	10 mg/kg x 7d IP, i6h + NAL 5 mg/kg	GSH \downarrow 36% frontal ctx ([GSH] _C = 8 mM) (non-naloxone-challenged condition was not assessed)

Reference	Methods ^a	$\operatorname{Species}^{b}$	Treatment ^c		Main findings of GSH changes and comments d
Motaghinejad et al. 2015a,b	OxisResearc h kit (?)	Rats ơ', Wistar	Chronic	15–45 mg/kg x 21d, i24h + NAL 3mg/kg [a]; 45 mg/kg x 28d SC [b]	GSH 461–65% hippocampal mitochondria preparation (Note: the method of GSH assay employed was not clear; high GSSG levels were also reported).
Famitafreshi et al. 2017	DTNB	Rats ơ', SD	Chronic	5 mg/kg x 14d IP	GSH ↓30% hippocampus (ns) ↓22% prefrontal ctx (ns) (isolation stress exacerbated GSH loss to −54−76%; [GSH] _C = 2.1–3.2 mM)
Traudt et al. 2012	MRS in vivo	Rat pups 9ď, SD	Chronic	2×2 mg/kg x 5d IP, i24h	GSH f43% hippocampus on P8 following morphine on P3- P7 (LCModel for spectra analysis; a volume of interest of 5 µl)
Cocaine:					
Wiener et al. 1990	HPLC	Mice ơ', C57BL/6 ByJ	Acute Chronic	25 mg/kg x 14d IP, i24h ± 50 mg/kg	$GSH \leftrightarrow cn/ctx$ by either acute or chronic cocaine, with or without challenge ([GSH] _C = 1.5 mM)
Macedo et al. 2010	DTNB	Mice ơ', Swiss	Acute	90 mg/kg IP, i1 h [SE] or 5–15 min [death]	$GSH \leftrightarrow after status epilepticus [SE] or 728-50% prefrontal ctx/cn after death ([GSH]_C = 0.0025 mM; note possible error in unit)$
Muriach et al. 2010	FDNP- HPLC	Rats ơ, Wistar	Chronic	15 mg/kg x 20d IP, i24h	GSH \downarrow 22% hippocampus; \leftrightarrow frontal ctx ([GSH] _C = 2–2.2 mM)
Uys et al. 2011	UPLC-MS	Rats of	Acute Chronic	15–30 mg/kg x 7d IP, i21d ± 15 mg/kg	GSH \downarrow 23% by 7d cocaine; \uparrow 62% by acute cocaine in nac; but \leftrightarrow in cocaine challenged rats ([GSH] _C = 0.55 mM)
López-Pedrajas et al. 2015	FDNP- HPLC	Rats ơ', Wistar	Chronic	15 mg/kg x 18d IP	$GSH \leftrightarrow$ cerebellum although $GSSG \uparrow 56\%$ so the ratio of GSH vs $GSSG$ decreased.
Vitcheva et al. 2015	DTNB	Rats ơ', Wistar	Chronic	15 mg/kg x 7d IP, i24h	GSH \downarrow 44% WB; also GSH \downarrow 55% in mitochondria preparations ([GSH] _C = 0.0017 mM; note possible error in unit)
Zhang et al. 2016	HPLC- IMMS	Rats ơ', SD	Chronic	SAD FR1 × 3d + FR3 × 7d, i24h and i21d	GSH ↓45% and ↓57% cn at i24h and i21d, respectively; GSH ↔ prefrontal crx (the metabonomic study did not report GSH levels or the cumulative extent of cocaine exposure)
Hu et al. 2016	DTNB	Rats ơ', SD	Chronic	10 mg/kg x 6d IP, i15d	GSH \downarrow 47% hippocampus; \leftrightarrow prefrontal ctx ([GSH] _C unit unclear)
Zhu et al. 2016, 2017	DTNB	Rats ơ', SD P28	Chronic	15 mg/kg x 15d IP, i35–38d	GSH ↔ hippocampus, medial prefrontal crx (adolescent cocaine exposure; GSH measured in adults; [GSH] _C unit

Drug Alcohol Depend. Author manuscript; available in PMC 2019 September 01.

^aDTNB, referring to a variety of GSH assay using Ellman's reagent 5,5'-dithiobis(2-nitrobenzoic acid); OPT = o-phthaldehyde; ECD = electrochemical detection; FDNP = Sanger reactant 1-fluoro-2,4dinitrobencene; IMMS = ion mobility mass spectrometry;

unclear)

 $b_{\rm SD} = {\rm Sprague-Dawley}.$ Adult animals were used unless otherwise indicated;

^CThe dose regimen shows daily single or multiple doses by total days, administration route (IP = intra-peritoneal; SC = subcutaneous; ICV = intracerebroventricle; IT = intrathecal; SAD = intravenous selfadministration; FR = fixed ratio), the interval (i) between final drug administration and sacrifice or drug challenge, if reported (see the cited references for more details);

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

d Brain regions are caudate nucleus or striatum (cn), nucleus accumbens (nac), cortex (ctx), cerebellum (cereb), or whole brain (WB); ns = non-significant; [GSH]C denotes reported concentrations of GSH in the control group, with 1 mM = 1 µmol/g wet tissue or 307 µg/g wet tissue or 20 nmol/mg protein or 6.1 µg/mg protein by assuming a protein/tissue ratio of 0.05 (Tong et al., 2016) and a brain unit weight of 1 g/mL. Author Manuscript

Table 2.

Characteristics and drug use histories of the 11 heroin (H1-H11) and 9 cocaine (C1-C9) users^a.

	Age		Duratio n				Toxico	logy		
	(yrs),	IMI	of use	Recent drug use pattern	Route of drug	Suspected/known		Blood drug	Brain drug	Caudate
Case	Sex	(h)	(yrs)		administration	cause of death	Hair	levelb	level ^c	DA level ^d
H1	36,M	×	10	\$200 per month	Intravenous	CVD/Narcotic intoxication		1.93	1.79	+0.1%
$^{*}_{H2}$	43,M	13	27	Unknown	Intravenous	Narcotic intoxication	+	0.60	1.79	-11%
H3	34,M	23	$^{>1}$	Unknown	Intravenous	Narcotic intoxication	+	0.67	1.19	-30%
$^{*}_{\rm H4}$	34,M	10.5	~	Unknown	Intravenous	Narcotic intoxication	+	0.42	0.80	-21%
H5	40,M	5	20	Daily	Intravenous	Mixed drug intoxication	+	0.32	0.61	+34%
H6	44,F	18.5	23	Daily, sometimes 1 g per day	Intravenous	CVD/Narcotic intoxication	+	0.11	0.10	-16%
H7	43,M	21	\sim	Daily	Intravenous	Mixed drug intoxication	+	1.47	1.79	-5%
$^{*}_{\rm H8}$	35,M	19.5	$\overline{}$	Unknown	Unknown	Narcotic intoxication	ŊŊ	1.09	1.80	-47%
* 6H	28,M	8	4	Daily	Intravenous	Narcotic intoxication	+	0.39	0.46	-0.4%
H10	19,M	9.5	$\scriptstyle \scriptstyle \!$	Unknown	Unknown	Narcotic intoxication	ND	0.39	0.37	+69%
H11 *	42,M	Ξ	10	Unknown	Intravenous	Narcotic intoxication	+	0.70	0.76	+10%
C1	26,M	18	1–2	Unknown	Oral; smoked	Cocaine intoxication		424.0	179.7	-53%
C2	21,M	9	2–3	\$150/mo, weekend binges	Nasal	CVD/cocaine intoxication	+	ND	20.7	-38%
c3 *	26,F	18	×	Binge/limited only by funds	Oral; smoked	Cocaine intoxication	ND	0.26	12.4	-19%
C4	36,M	24	ŝ	Binge/limited only by funds	Nasal	Cocaine intoxication		27.0	157.6	-79%
C5	39,M	26	8	Considered heavy user	Intravenous; nasal	Cocaine intoxication	+	0.43	11.0	+9%
C6	31,M	22	>2	Limited only by funds	Nasal; smoked	Cocaine intoxication		39.2	164.4	-31%
C7	40,M	6	>10	Binge every 2–3 wk	Nasal; smoked	Gunshot wound to chest	+	12.34	40.4	-54%
C8	70,M	10	55	\$60/mo, 1 st wk of a month	Smoked	CVD		19.44	15.7	+50%
C9	30,F	20	>1	Unknown	Smoked	CVD/cocaine intoxication	+	17.16	19.4	+5%

M = male; F = female; PMI = postmortem interval; DA = dopamine; CVD = cardiovascular disorder.

Cases with ethanol detected in blood. + Drug hair analyses confirmed. ND = not detected. For cases H1, H6, C2 and C9, heroin or cocaine toxicity was considered to be a possible contributing factor to the cause of death; high levels of propoxyphene (0.63 and 1.2 mg/L, respectively) and norpropoxyphene (1.26 and 3.8 mg/L, respectively) were also detected in blood of cases H5 and H7 and could have contributed to the death.

^aInformation on the cases including brain drug levels has been published previously in (Wilson et al., 1996; Kish et al., 1999; Kalasinsky et al., 2000; McLeman et al., 2000; Kish et al., 2001; Siegal et al., 2004);

Tong et al.

 $b_{
m M}$ Measured in μ M of levels of the heroin metabolite morphine or cocaine plus metabolite benzoylecgonine;

^CMeasured in nmol/g tissue of total levels of heroin (morphine plus 6-acetylmorphine plus morphine glucuronide) in occipital cortex or cocaine (cocaine plus metabolites benzoylecgonine, ecgonine methyl ester, norcocaine, cocaethylene) in caudate; $d^{\rm d}$ Measured as percentage decrease of the control mean (6.62 ng/mg wet tissue; see (Wilson et al., 1996)) with the exception of case#C8, for which a control mean of 4.20 ng/mg wet tissue for aged subjects (mean 69 y; see (Haycock et al., 2003)) was used.

Table 3.

Levels of glutathione (reduced [GSH], oxidized [GSSG], and cysteine-bound [GSH-cysteine]), uric acid, and methionine in brain of users of heroin and cocaine and control subjects.

Tong et al.

Region/Group	GSH	GSSG	GSH-cysteine	Uric acid	Methionine
Caudate nucleus					
Controls	7.46 ± 1.32 (16)	$0.38\pm 0.04\ (16)$	$0.67\pm0.08~(16)$	$0.47\pm 0.06\ (16)$	$1.37\pm 0.08~(16)$
Heroin	$6.86\pm1.04\ (11)$	$0.26\pm 0.04~(11)$	$0.63\pm0.07~(11)$	$0.42\pm 0.07~(11)$	$1.01 \pm 0.09^{*}(11)$
Cocaine	6.60 ± 0.57 (9)	0.24 ± 0.06 (9)	0.85 ± 0.06 (9)	0.59 ± 0.11 (9)	$0.92 \pm 0.06^{*}(9)$
F	0.17 (2, 31)	$3.06_{(2, 31)}$	3.01 _(2, 31)	0.76 (2, 31)	9.13 (2, 31)
d	0.85	0.06	0.06	0.48	0.001
Hippocampus, ammon's horn					
Controls	$6.60 \pm 0.80 \ (16)$	$0.06 \pm 0.01 \ (16)$	$0.30\pm0.04\ (16)$	$0.44 \pm 0.07 \ (16)$	$2.03 \pm 0.27 \ (16)$
Heroin	$4.58\pm 0.44\;(11)$	$0.05 \pm 0.02 \ (11)$	$0.48\pm 0.13\ (11)$	$0.44 \pm 0.07 \ (11)$	$1.70 \pm 0.21 \ (11)$
Cocaine	4.61 ± 0.99 (9)	0.03 ± 0.01 (9)	0.34 ± 0.12 (9)	0.41 ± 0.13 (8)	1.33 ± 0.24 (9)
F	2.32 (2, 31)	$0.94_{(2,31)}$	$1.40_{(2,31)}$	$0.03_{(2, 30)}$	<i>1.85</i> _(2, 31)
d	0.12	0.40	0.26	0.97	0.17
Thalamus, medial pulvinar nucleus					
Controls	$6.44 \pm 1.64 \ (16)$	$0.24\pm0.08\ (16)$	$1.78\pm0.28\ (16)$	$0.74 \pm 0.11 \ (16)$	$3.24 \pm 0.40 \ (16)$
Heroin	5.71 ± 2.03 (11)	$0.18\pm 0.07~(9)$	$1.27\pm 0.48~(11)$	$1.05\pm 0.29~(11)$	$3.53 \pm 0.70 \ (11)$
Cocaine	$4.89\pm0.80~(9)$	0.09 ± 0.05 (8)	0.97 ± 0.21 (9)	0.72 ± 0.12 (9)	2.79 ± 0.27 (9)
F	0.19 (2, 31)	$1.27_{(2,\ 28)}$	1.28 (2, 31)	$0.84_{\ (2,\ 31)}$	0.37 (2, 31)
d	0.83	0.30	0.29	0.44	0.69
Frontal cortex					
Controls	7.24 ± 1.07 (15)	$0.25\pm 0.06~(15)$	$0.59 \pm 0.07 \ (14)$	$0.61\pm 0.14~(15)$	$1.56\pm 0.16(15)$
Heroin	$6.85 \pm 0.62 \ (11)$	0.11 ± 0.05 (9)	$0.66\pm 0.12\ (11)$	$0.32\pm 0.05~(11)$	$1.46\pm 0.23~(11)$
Cocaine	6.94 ± 0.93 (9)	$0.15\pm 0.04~(9)$	0.62 ± 0.11 (9)	$0.31 \pm 0.06~(9)$	1.19 ± 0.15 (9)
F	$0.05_{(2, 30)}$	$1.56_{(2, 28)}$	$0.47_{(2, 29)}$	2.36 (2, 30)	$0.69_{(2, 30)}$
d	0.95	0.23	0.63	0.11	0.51
Temporal cortex					
Controls	$5.60 \pm 0.91 \ (16)$	$0.25\pm 0.08~(16)$	$0.23\pm0.05\ (16)$	$0.60\pm 0.14~(15)$	$0.94\pm 0.16(15)$

Region/Group	GSH	GSSG	GSH-cysteine	Uric acid	Methionine
Heroin	7.45 ± 1.60 (11)	$0.42\pm 0.15\ (11)$	$0.21\pm 0.05\;(11)$	$1.00 \pm 0.29 \ (11)$	$1.65 \pm 0.42 \ (11)$
Cocaine	4.62 ± 0.43 (9)	0.17 ± 0.03 (9)	0.15 ± 0.02 (9)	0.43 ± 0.05 (9)	0.77 ± 0.10 (9)
ſŦ	1.04 (2, 31)	<i>1.54</i> (2, 31)	0.52 _(2, 31)	1.98 (2, 30)	$3.02_{(2, 30)}$
0	0.36	0.23	0.60	0.16	0.06
Insular cortex					
Controls	6.14 ± 1.25 (16)	$0.36\pm 0.09~(15)$	$0.37\pm 0.06~(16)$	$0.78\pm0.13\ (16)$	$1.76 \pm 0.29 \ (16)$
Heroin	$4.38\pm0.68\ (11)$	0.40 ± 0.04 (11)	$0.31\pm0.03~(11)$	$0.80\pm0.09\;(11)$	$1.87\pm 0.10\ (11)$
Cocaine	5.08 ± 0.81 (8)	0.31 ± 0.05 (8)	0.30 ± 0.05 (8)	0.68 ± 0.10 (8)	1.48 ± 0.15 (8)
F	0.69 (2, 30)	$0.48_{\ (2,\ 29)}$	$0.59_{(2,\ 30)}$	$0.17_{(2, 30)}$	$0.46_{(2, 30)}$
6	0.51	0.62	0.56	0.84	0.63

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript