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Abstract 

The abundance of digital video forms a potential piece of evidence in courtrooms. Augmenting 

subjective assessment of digital video evidence by an automated objective assessment helps increase 

the accuracy of deciding whether or not to admit the digital video as legal evidence. This paper 

examines the authenticity of digital video evidence and in particular it proposes a machine learning 

approach to detecting frame deletion. A number of discriminative features are extracted from the video 

bit stream and its reconstructed images. The features are based on prediction residuals, percentage of 

intra-coded macroblocks, quantization scales and reconstruction quality. The importance of these 

features is verified by using stepwise regression. Consequently, the dimensionality of the feature vectors 

is reduced using spectral regression where it is shown that the projected features of unaltered and 

forged videos are nearly separable. Machine learning techniques are used to report the true positive 

and false negative rates of the proposed solution. It is shown that the proposed solution works for 

detecting forged videos regardless of the number of deleted frames, as long as it is not a multiple of the 

length of a group of pictures. It is also shown that the proposed solution is applicable for the two modes 

of video compression, variable and constant bitrate coding. 
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1. Introduction 

Digital video evidence is captured through cameras that are deployed in streets, subways, train and 

underground stations, public schools, malls and the like.  Digital video evidence can also be captured by 

users of cell phones who are acquainted with digital cameras and digital video recording.  In all cases, 

the video is stored in a compressed lossy format that contains digital artifacts such as quantization and 

sampling.  

Such abundance of compressed video material forms a potential piece of evidence in courtrooms. 

Because of inherent visual artifacts and possible fraud, courts usually call upon the testimony of 

forensics experts to subjectively assess the quality and authenticity of the digital video evidence.  

Augmenting or replacing this subjective assessment by an automated objective assessment helps 

increase the accuracy of deciding whether or not to admit the digital video as legal evidence. The 

automated objective assessment also speeds up the process of decision making. 

There are a number of factors for the admissibility of compressed video as legal evidence in a 

courtroom. Factors of interest include video quality and video authenticity. 

Assessing the quality of the compressed video in the absence of the reference can be performed on the 

whole video as one unit thus quantifying its quality [1]. The assessment can also be performed on image 

basis [2]. However in courtrooms, it makes more sense to quantify the quality of compressed video at a 

finer scale such as macroblock level assessment as reported in [3] and [4]. 

Likewise the authenticity of compressed video is examined. This is needed because compressed video 

can be manipulated through video editing, transcoding and translating. Prior to the admissibility of the 

compressed video to a courtroom it is of prime importance to examine the authenticity of the 

compressed video. 

Research work on identifying tampering with compressed digital is reported in the literature. For 

instance, detecting double compression of MPEG-4 video is proposed in [5] using Markov-based features 

in the detection process. A double compression detection solution was also proposed in [6]. In their 

work, the length of the GoP used in the first encoding process is also estimated. Double compression of 

MPEG-2 video can also be detected by examining the distribution of quantized DCT coefficients as 

proposed in [7]. Additionally, periodic artifacts in the frequency spectrum of the distribution of 

reconstructed DCT coefficients can be used for detecting video transcoding as reported in [8]. 

Moreover, detecting forgery in digital video can be classified into spatial and temporal domains. 

Detection in the spatial domain refers to the existence of forgery fingerprints in a video frame. While 

detection in the temporal domain refers to the existence of such fingerprints across video frames. 
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Examples of forgery detection in the spatial domain include inspecting pixel authenticity to detect 

suspicious regions in a video of a static scene using noise characteristics [9]. The authors in [10] 

proposed detecting tampered regions in I-frames using a DCT-based watermark. Location of forged 

regions in a video can also be estimated using correlation of noise residuals. The correlation is modeled 

using a Gaussian Mixture Model followed by a Bayesian classifier [11]. 

On the other hand, detecting video forgery in the temporal domain mainly revolves around detecting 

frame deletion or insertion. For instance, motion-compensated edge artifacts can be used for detecting 

frame-based tampering such as deletion or addition of frames as reported in [12] and [13].  

Noteworthy in the field of digital video forensics is the work carried out by Farid et. al. It has been 

shown that MPEG video sequences with double encoding introduce detectable static and temporal 

artifacts [14].  These artifacts are used to detect tampering of MPEG video sequences. Static artifacts are 

present when I-frames of an MPEG sequence are recompressed. And temporal artifacts are present as a 

result of frame deletion or insertion when frames move from one GOP to another. 

More recently, a theoretical model of the forgery fingerprints that result from frame deletion or 

addition was developed [15]. This model was used to improve the video forensic techniques proposed 

techniques proposed by [14]. Additionally, game theory was used to analyze the interplay between a 

forensic investigator and a digital video forger. The analysis was used to identify the optimal actions of 

both the forensic investigator and the digital video forger. 

The work presented in this paper proposes a machine learning approach for detecting frame deletion in 

forged videos. Briefly, feature vectors are extracted from video bit streams and decoded videos. The 

suitability of the selected features is verified by using stepwise regression. Consequently, the 

dimensionality of the features is reduced by means of spectral regression. Machine learning techniques 

are then used for detecting forged videos. The proposed solution can be used for initial inspection of 

videos under examination. It can also be used to complement other approaches such as visual 

inspection. 

The paper is organized as follows. Section 2 reviews the most relevant existing solutions proposed by 

[14] and [15] whilst highlighting their advantages and limitations. Accordingly, the proposed work of this 

paper enhances upon the existing solutions. Section 3 illustrates an overview of the proposed solution. 

Section 4, presents the proposed features that will be used for detecting frame deletion. Section 5, 

presents the use of spectral regression with the proposed solution. The experimental results are 

presented in Section 6. Lastly, the paper is concluded in Section 7. 
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2. Existing work 

One of the most significant solutions on frame deletion detection was originally proposed in [14]. 

Recently, [15] expanded the aforementioned work as mentioned in the introduction. Of interest is the 

proposal of an automatic approach to detecting frame deletion. Common to the work reported in [14] 

and [15], is that one feature was used to detect the existence of frame deletion. The feature is simply 

the energy of the prediction error or P-frames. The energy can be approximated by computing the 

absolute sum of prediction errors for all non-intra MBs within P-frames using the following equation: 

𝑒(𝑛) = 1
𝑁𝑖

⁄ ∑ |𝑃𝑖(𝑛)|𝑖   (1) 

Where Ni is the number of non-intra coded MBs in each P-frame and Pi(n) is the sum of absolute 

prediction error values for the nth P-frame at MB index i.  

The work reported in [14] made an important observation that due to frame deletion, periodic peaks are 

observed in the e(n) sequence. It was proposed to manually inspect the sequence for such periodicity. 

Likewise, the discrete Fourier transformation of the sequence E(k) = DFT{e(n)} can be inspected for 

peaks as well. It was reported that such peaks are more apparent if the number of frames deleted are a 

multiple of the sub-GoP length. For instance if a GoP structure of IBBPBBPBBPBB is used, the GoP length 

is 12 and the subgroup length is 3 (IBB or PBB). The peaks are most apparent when 3,6 or 9 frames are 

deleted. However, if a whole GoP is deleted or a multiple of GoPs are deleted then the peaks will not 

show in the e(n) sequence. 

The work reported in [15] formalized the aforementioned problem and proposed an automatic solution 

for the detection of peaks in the e(n) sequence. It was also proposed to use a varying GoP length as an 

additional challenge in detecting frame deletion. In a nutshell, the e(n) sequence is filtered by a median 

filter and compared against the non-filtered version. Let d(n) denote the difference between the filtered 

and non-filtered sequences which is defined by: 

d(n) = max( e(n) – median{e(n-1),e(n),e(n+1)} ,  0)  (2) 

If a variable GoP length is used then this difference can then be thresholded to perform hypothesis 

testing where the null hypothesis, H0, states that the video is not forged. The thresholding is expressed 

as follows: 

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  {
𝐻0 𝑖𝑓 𝜇|𝑑(𝑛)| < 𝑇ℎ

𝐻1𝑖𝑓 𝜇|𝑑(𝑛)| ≥ 𝑇ℎ
  (3) 

Where Th is a decision threshold which can be used to generate a Receiver Operation Curve (ROC). 
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In a similar fashion, if a fixed GoP length is used, then frame deletion is detected by measuring the 

strengths of the periodic peaks in |𝐷𝐹𝑇{𝑑(𝑛)}|. It was reported that these peaks occur at N/T where N 

is the length of the e(n) sequence and T is the number of P-frames in a GoP. 

 

3. System overview  

Existing video forensics detection solutions have their own limitations. Both of the reviewed solutions 

are considered landmarks in frame deletion detection, nonetheless they have a number of limitations. 

Namely, the work in [15] reported detection results for the case when the number of deleted frames is a 

multiple of sub-GoP length. Additionally, there is an assumption that frame deletion starts with either an 

I or a P frame. And the feature used of detecting the forgery is based on the prediction error of P-frames 

only. Lastly, both solutions made an implicit assumption that the forged videos are coded using Variable 

Bit Rate (VBR) coding not Constant Bit Rate (CBR) coding. Both solutions will not work with CBR coding. 

This is so because in CBR coding, the inefficiency in re-encoding the P-frames after forgery will not 

manifest itself in terms of higher prediction error only. Rather, it will more significantly be manifested in 

terms of higher percentage of intra coded MBs, lower PSNR quality and higher quantization scales. 

Hence in this work, we expand upon the reviewed solutions by considering a new set of distinctive 

features. The proposed work is also suitable for both CBR and VBR coding. It can also detect frame 

deletion regardless of whether or not the number of deleted frames is a multiple of a sub-GoP length. 

We propose a machine learning approach for detecting videos with deleted frames. Typically in machine 

learning, a detection system is trained with samples of unaltered and forged videos. A detection model 

is thereafter computed. The model can be applied to a video under examination to determine whether 

or not it is post-processed by means of frame deletion. More specifically, the detection system is trained 

with feature vectors extracted from various video bit streams. The feature extraction is elaborated upon 

in Section 4. Since the values stored in these feature vectors will vary in range, it is a good idea to 

normalize them. In this work we use z-scores for normalization. The mean and standard deviation 

vectors of the training feature vector set are stored and used for normalizing a feature vector for a video 

under examination. Additionally, in this work we propose the use of Spectral Regression (SR) for 

reducing the dimensionality of the feature vectors [17]. The integration of SR with the proposed solution 

is introduced in Section 5. The projection vectors that result from the SR are stored and reused for 

reducing the dimensionality of a feature vector representing a video under examination. The proposed 

frame deletion detection system is further illustrated in Figure 1.  
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Figure 1. Block diagram of proposed frame deletion detection 

In this work we use three machine learning techniques and compare the detection accuracy against 

existing work. The machine learning techniques used are the K Nearest Neighbor (KNN), logistic 

regression and Support Vector Machines (SVM). 

 

4. Feature selection 

This section proposes a new set of video features that will be used for detecting frame deletion. These 

features are extracted from the compressed video streams and decoded videos. The section will also 

introduce the use of stepwise regression for verifying the importance of the proposed features.  

4.1 Proposed features 

In this work, we propose to use eight features instead of one as reported in the reviewed work [15]. 

These features will be computed from both P and B frames. Each feature is computed over the whole 

video sequence for a particular frame type i.e. P or B frames. The list of features is summarized in Table 

1. 

 

 

 

 

Spectral 

Regression 

Projection vectors 

Dim. 

reduction 

Set of training  
FVs 

(Extracted from a set 
of train videos) 

Class labels 

Z-score 

normalization 

Model 
parameters 

Model 

generation 

Classification 

or detection 

One test  
FV 

(Extracted from a video 
under examination) 

Dim. 

reduction 

 vector 

 vector 

Frame 

deletion 

detection 

result 

Z-score 

normalization 



7 
 

Feature 

ID 

Description 

1, 2 The mean prediction residual energy of non-Intra coded MBs, 𝜇𝐸  
The standard deviation of the prediction residual energy of non-Intra 
coded, 𝜎𝐸  

3, 4 The mean percentage of intra-coded MBs,  𝜇𝐼𝑛𝑡𝑟𝑎 
The standard deviation of intra-coded MBs, 𝜎𝐼𝑛𝑡𝑟𝑎 

5, 6  The mean of estimated PSNR values, 𝜇𝑃𝑆𝑁𝑅 
The standard deviation of estimated PSNR values, 𝜎𝑃𝑆𝑁𝑅  

7, 8  The mean of quantization scale values, 𝜇𝑞   

The standard deviation of quantization scale values, 𝜎𝑞 

Table 1. List of features computed from P and B frames 

The proposed features contain the mean and the standard deviation of the prediction residuals. It also 

contains an important feature which is based on the percentage of intra MBs.  

The mean prediction residual energy of non-Intra coded MBs is computed using Equation 4: 

𝜇𝐸 = 1
𝑁⁄ ∑ ∑ 𝑃𝑖(𝑗),𝑖𝑗  𝑖 ∈ {𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑜𝑓 𝑛𝑜𝑛 𝑖𝑛𝑡𝑟𝑎 𝑀𝐵𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑓𝑟𝑎𝑚𝑒} (4) 

Where N is the total number of predicted MBs in the video sequence for a P or a B frame. Pi(j) is the sum 

of absolute residual values for the ith MB at the jth frame.  The standard deviation of this feature is 

computed using Equation (5): 

𝜎𝐸 = √𝐸[(𝑃𝑖(𝑗) − 𝜇𝐸)2] (5) 

Where the operator E denotes the expected value. The mean percentage of intra-coded MBs is 

computed using Equation (6): 

𝜇𝑖𝑛𝑡𝑟𝑎 = 1
𝑁⁄ ∑ 𝐼(𝑗)𝑗  (6) 

Where N is the total number of predicted P or B frames in a video sequence and I(j) is the percentage of 

intra coded MBs in the jth frame. The standard deviation of this feature is computed using Equation (7): 

𝜎𝑖𝑛𝑡𝑟𝑎 = √𝐸[(𝐼(𝑗) − 𝜇𝑖𝑛𝑡𝑟𝑎)2]  (7) 

The mean of estimated PSNR values is computed using Equation (8): 

𝜇𝑃𝑆𝑁𝑅 = 1
𝑁⁄ ∑ 𝑃̂(𝑗)𝑗  (8) 

Where N is the total number of predicted P or B frames in a video sequence and 𝑃̂(𝑗) is the estimate of 

the PSNR of the jth frame. The standard deviation of this feature is computed using Equation (9): 
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𝜎𝑝𝑠𝑛𝑟 = √𝐸[(𝑃̂(𝑗) − 𝜇𝑝𝑠𝑛𝑟)2] (9) 

The mean of quantization scale values is computed using Equation (10): 

𝜇𝑞 = 1
𝑁⁄ ∑ ∑ 𝑄𝑖(𝑗)𝑖𝑗  (10) 

Where N is the total number of MBs in the video sequence for a P or a B frame. Qi(j) is the quantization 

scale of the ith MB at the jth frame. The standard deviation of this feature is computed using Equation 

(11): 

𝜎𝑞 = √𝐸[(𝑄𝑖(𝑗) − 𝜇𝑞)2] (11) 

It was observed that frame deletion does not affect the energy of prediction residuals only. Rather, it 

also affects the percentage of intra MBs. It also affects the variation of the percentage of intra MBs 

across frames. Additionally, frame deletion affects the quality of the decoded frames, hence the PSNR 

can be used as a feature as well. If CBR coding is used then frame deletion will also manifest itself in 

terms of the quantization scale. To accommodate higher prediction residuals in CBR coding, the coder 

tends to increase the quantization scale. Hence the average and the standard deviations of the 

quantization scale are needed as features. 

In a real life scenario, only the bit streams and the reconstructed videos are available. There is no access 

to the original raw video. Therefore, the PSNR of the decoded video streams can only be estimated. 

Such estimation is permissible and it is referred to ‘no reference quality assessment’. To use the PSNR as 

a feature in this work we estimate it using the work proposed by the author in [3]. 

Figure 2 shows an example of the features extracted from unaltered and forged videos. In this example, 

the first 8 frames are deleted from the Coastguard sequence which was coded using VBR coding with a 

GoP structure of IBBPBBPBBPBB. The experimental setup and configuration is elaborated upon in the 

experimental results section. The figure shows the plots for both P and B frames for a number of 

features. For instance, part (a) and (b) of the figure show that the magnitude of the prediction residuals 

of the forged videos is generally less than that of the unaltered video. Note that the prediction error is 

restricted to non-intra MBs in P and B frames. Parts (c) and (d) of the figure show that the percentage of 

Intra MBs has increased in forged video. In some cases, it is also evident that the variation in this 

percentage is also higher for forged videos. Lastly, the PSNR plots are shown to follow a different 

pattern in the case of forged videos. Clearly, if CBR coding is used then the profile of the average 

quantization scale per frame will also play an important role in detecting frame deletion.  
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To further examine the choice of the features listed in Table 1, we propose the use of stepwise 
regression as introduced next.  

 
(a) B-frame’s prediction energy profile  

 
(b) P-frame’s prediction energy profile 

 
(c) B-frame’s percentage of intra MBs profile 

 
(d) P-frame’s percentage of intra MBs profile 

 
(e) B-frame’s PSNR profile (using [3]) 

 
(f) B-frame’s PSNR profile (using [3]) 

 
Figure 2. Example plots of discriminating features used for detecting frame deletion. The curves 

labeled with ‘o’ and ‘x’ represent unaltered and forged videos respectively. 
4.2 Stepwise regression 

Stepwise regression is an objective method of selecting important features. To apply stepwise 

regression to our problem, we treat the feature variables 𝑥1, 𝑥2, … , 𝑥𝑘  as predictors where the k is the 
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number of features in each feature vector. Likewise, the class labels are treated as a response variable,  

𝑦. In [16], the stepwise regression procedure is described using the following steps. In the first step, the 

procedure tests all possible one-predictor regression models in an attempt to find the predictor that has 

the highest correlation with the response variable. The model is of the form: 

𝑦̂ = 𝛽0 + 𝛽1𝑥𝑖   (12) 

A hypothesis test is conducted for each model where 𝐻0: 𝛽1 = 0 and 𝐻1: 𝛽1 ≠ 0.  The test is conducted 

using the well-known T test at a specific level of significance, say  = 0.1.  The predictor that generates 

the largest absolute T value is selected. Refer to this predictor as 𝑥1. 

In the second step, the remaining k-1 predictors are scanned for the best two-predictor regression 

model of the form:  

 

𝑦̂ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥𝑖   (13) 

This is achieved by testing all two-predictor models containing 𝑥1 which was selected from the first step. 

The T value of the k-1 models are computed for 𝐻0: 𝛽2 = 0.  The predictor that generates the highest  

absolute T value is retained, Refer to this predictor as 𝑥2. 

Now that  𝛽2𝑥2 is added to the model, the procedure goes back and reexamines the suitability of 

including 𝛽1 in the model. If the corresponding T value becomes insignificant (i.e. the alternative 

hypothesis 𝐻1  is rejected.), 𝑥1 is removed and the predictors are searched for a variable that generates 

the highest T value in the presence of 𝛽2𝑥2. In the third step, remaining k-2 predictors are scanned for 

the best three-predictor regression model of the form: 

𝑦̂ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+𝛽3𝑥𝑖   (14) 

And the procedure repeats until no further predictors are added or removed from the model. 

Because stepwise regression is based on sample estimates, Type I and Type II errors are probable in 

which unimportant predictors are included in the model and important predictors are eliminated.  

The stepwise regression procedure is applied to 36 video sequences. Two sets of videos are created. In 

one set the videos are compressed and remain unaltered. While in the other set, the videos are 

compressed, decompressed, forged in terms of frame deletion and compressed again. 

The number of deleted frames range from 1 to 11. The details of the video sequences used and 

experimental set up are given in the experimental results section (Section 6). The features retained by 

stepwise regression for P and B frames are reported in Table 2. 
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No. 
Deleted 
frames 

P-frames B-frames 

1 
𝜇𝐸  𝜇𝑃𝑆𝑁𝑅 𝜎𝐼𝑛𝑡𝑟𝑎 
 

𝜎𝐸   𝜇𝐸  

2 
𝜎𝐸   𝜇𝐸  𝜎𝑃𝑆𝑁𝑅 𝜇𝑃𝑆𝑁𝑅 𝜎𝐼𝑛𝑡𝑟𝑎  
 

𝜎𝐸  𝜇𝐸  𝜎𝐼𝑛𝑡𝑟𝑎 

3 
𝜇𝐸  𝜎𝐼𝑛𝑡𝑟𝑎 
 

𝜇𝐸  𝜎𝐸  𝜇𝑃𝑆𝑁𝑅  

4 
𝜎𝐸  𝜇𝑃𝑆𝑁𝑅  𝜎𝐼𝑛𝑡𝑟𝑎 
 

𝜎𝐸  𝜇𝐸  

5 
𝜎𝐸   𝜇𝐸  𝜎𝐼𝑛𝑡𝑟𝑎  
 

𝜎𝐸   𝜇𝐸  𝜇𝑃𝑆𝑁𝑅 𝜎𝐼𝑛𝑡𝑟𝑎  

6 
𝜇𝐸  𝜎𝐼𝑛𝑡𝑟𝑎 
 

𝜎𝐸  𝜇𝐸  𝜇𝑃𝑆𝑁𝑅  

7 
𝜇𝐸  𝜇𝐸  𝜎𝐼𝑛𝑡𝑟𝑎 
 

𝜎𝐸   𝜇𝐸  𝜇𝑃𝑆𝑁𝑅 

8 
𝜎𝐼𝑛𝑡𝑟𝑎  𝜇𝐸  𝜎𝐼𝑛𝑡𝑟𝑎  
 

𝜎𝐸  𝜇𝐸   𝜇𝑃𝑆𝑁𝑅 𝜎𝐼𝑛𝑡𝑟𝑎  

9 
𝜇𝐸  𝜇𝑃𝑆𝑁𝑅 𝜎𝐼𝑛𝑡𝑟𝑎  
 

𝜎𝐸   𝜇𝐸  

10 
𝜇𝐸  𝜇𝑃𝑆𝑁𝑅 𝜎𝐼𝑛𝑡𝑟𝑎  
 

𝜎𝐸  𝜇𝐸  

11 
𝜎𝐸  𝜇𝐸  𝜎𝑃𝑆𝑁𝑅   𝜇𝑃𝑆𝑁𝑅 𝜎𝐼𝑛𝑡𝑟𝑎  
 

𝜎𝐸   𝜇𝐸  𝜎𝐼𝑛𝑡𝑟𝑎  

Table 2. Features retained after applying stepwise regression for P and B frames 

It is shown from the table that various combinations of features are retained for the detection of 

different numbers of deleted frames. It is interesting to see that in few cases, the stepwise regression 

procedure retained the features pertaining to the energy of the prediction residual on its own. This is 

consistent with what is reported in [14] and [15]. However, for many other cases apart from deleting 

1,4,9 or 10 frames, the features based on the percentage of Intra MBs and PSNR are also retained by the 

stepwise regression procedure. 

 

5. Dimensionality reduction 

As mentioned in the system’s overview, in this work we reduce the dimensionality of the feature vectors 

prior to classification using Spectral Regression. One of the attractive features of spectral regression is 

that it reduces the dimensionality to the total number of classification classes minus 1. This section 

starts be reviewing spectral regression. We then apply it to one of the video test sequences and show 

that the resultant features are reasonably separable. 
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Spectral Regression Discriminant Analysis (SRDA) has significant computational advantage over Linear 

Discriminant Analysis (LDA). It is shown that by linking LDA and classical regression, a LDA solution can 

be computed by solving a set of linear equations as originally proposed by [17]. It was proposed to 

combine spectral graph analysis and regression to provide an effective approach for discriminant 

analysis. For completeness, the algorithm is summarized in this subsection. 

For a set of m feature vectors x1, x2, · · · , xm, belonging to c classes, the objective function of LDA is as 

follows: 

𝑎∗ = arga max 
a𝑇𝑆𝑏a

a𝑇𝑆𝑤a
   (15) 

where Sw is the within-class scatter matrix and Sb is the between-class scatter matrix. 

In order to solve the LDA eigen-problem in Equation 7 efficiently, the following theorem is used. 

Let  y̅ be the eigenvector of eigen-problem, Wy̅ = y̅ with eigenvalue . If X̅Ta=y̅ then ‘a’ is the 

eigenvector of eigen-problem in Equation 7 with the same eigenvalue . Where 𝑋̅ is the centered data 

matrix, W(k) is a mk x mk matrix with all elements equal to (1/mk), mk is the number of data points in kth 

class, m  is the number of total training data points, n is the number of features, c is the number of 

classes. The LDA basis functions can be obtained by solving the eigen-problem to get y̅ then finding ‘a’ 

which satisfies X̅Ta=y̅. A possible way is to find ‘a’ is: 

 

𝑎 = arga min ∑ (a𝑇x̅𝑖 − y̅𝑖)2𝑚
𝑖=1 +∝ ‖a‖2    (16) 

Where y̅i is the ith element of y̅. 

In [17] it is shown that for a large number of features, this technique produces more stable and 

meaningful solutions in comparison to Linear Discriminant Analysis (LDA) and its extensions like 

regularized LDA, uncorrelated LDA and LDA with QR decomposition. The name spectral regression 

Discriminant Analysis follows from the fact that a two-step approach is followed in which spectral 

analysis of the graph matrix W and regression are combined. 

Having normalized the feature vectors and applied spectral regression, the number of features per class 

will be reduced to one. That is, the number of feature variables for the unaltered and the forged videos 

after applying spectral regression will be reduced from 8 (as listed in Table 1) to one feature variable 

only.  Hence the histograms of the feature vectors of both classes can be visualized as shown in Figure 3. 
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In each histogram, the non-shaded bins represent the projected feature vectors of the original unaltered 

videos and the shaded bins represent the projected feature vectors of the forged video.  

 
(a) 1 deleted frame 

 
(b) 2 deleted frames 

 
(c) 3 deleted frames 

 
(d) 4 deleted frames 

 
(e) 5 deleted frames 

 
(f) 6 deleted frames 

 
(g) 7 deleted frames 

 
(h) 8 deleted frames 
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(i) 9 deleted frames 

 
(j) 10 deleted frames 

 
(k) 11 deleted frames 

 
 

Figure 3. Histogram of projected features using spectral regression. 

The figure plots the histograms for 1 to 11 deleted frames. The x-axis represents the value of the 

projected feature vectors using spectral regression and the y-axis represents the count/frequency of 

these values. It is shown that spectral regression resulted in nearly separable classes. It is shown in the 

experimental results section that combining spectral regression with a classification technique like 

Support Vector Machines, results in very accurate forgery detection. The histograms are generated for 

36 test sequences. The test sequences and the coding configurations are listed in the experimental 

results section. 

6. Experimental results 

This section evaluates the performance of the proposed frame deletion detection technique. For a fair 

comparison with existing solutions, we use a similar experimental setup to that reported in [15]. The 

compression parameters are typical and are reused from the work reported in [15]. An MPEG-2 codec 

which is an implementation of the ISO/IEC DIS 13818-2 international standard [18] is used to compress 

36 standard QCIF test sequences using VBR and CBR coding. The quantizer triplet for the VBR coder is 

{20, 16 and 12} for I, P and B frames respectively. The CBR coding on the other hand, used a constant 

bitrate of 250 kbit/s. The GoP structure is N=12 and M=3, that is IBBPBBPBBPBB. For variable GoP 

structure coding, and following the experimental setup of [15], the length of each GoP was randomly 
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assigned to either N=12 or N=15. The test sequences are: Akiyo, Bowing, Bridge-Close, Bridge-Far, 

Carphone, City, Claire, Coastguard, Container, Crew, Deadline, Flower Garden, Football, Foreman, 

Galleon, Grandma, Hall, Harbour, Highway, Husky, Intros, Pamphlet, Mobile, Mother and Daughter, 

News, Paris, Salesman, Sign-Irene, Silent, Soccer, stefan, Students, Table, Tempete, Vtc1nw and 

WashDC. 

Four unaltered sets of videos are compressed using VBR and CBR coding each with fixed and varying GoP 

lengths. Following the work reported in [14] and [15], the forged videos are created by decoding the 

mentioned set, deleting the first one or more frames up to a GoP length and re-encoding using the same 

compression parameters of the original videos. 

In the following experiments, the true positive (TP) rates and the false alarm rates (FA) are reported 

using KNN (with K set to 1 with an Euclidean distance similarity measure), logistic regression and SVM 

with a quadratic kernel. In each run of the experiment, 35 test sequences are used for training and one 

sequence is used for testing. Thus, 36 results are obtained. Note that the test video sequence is not part 

of the training data, hence, the model is sequence independent. For readability purposes, the average 

true positive and false negative rates of the 36 results are reported for detecting the deletion of 1 or 

more frames up to a GoP length. 

The results in Table 3 show the TP and FA rates for detecting the deletion of video frames. The results 

are reported for both VBR and CBR videos using a fixed GoP length of 12.  

  
CBR coding 

 
VBR coding 

  
KNN L. Reg. SVM 

 
KNN L. Reg. SVM 

No. 
frames  

TP FA TP FA TP FA 
 

TP FA TP FA TP FA 

1 
 

91 3 94 6 94 3 
 

94 9 100 6 100 9 

2 
 

94 3 94 0 91 0 
 

97 3 97 3 97 0 

3 
 

91 3 94 9 94 9 
 

94 12 97 6 94 6 

4 
 

100 0 100 0 97 0 
 

88 15 91 9 91 9 

5 
 

100 3 91 6 94 6 
 

94 3 91 9 91 9 

6 
 

97 6 94 6 94 12 
 

91 15 88 12 94 12 

7 
 

97 6 97 0 97 0 
 

82 12 91 9 97 15 

8 
 

94 3 97 3 97 3 
 

88 12 88 12 88 12 

9 
 

97 9 91 3 88 3 
 

82 15 94 12 97 12 

10 
 

91 12 91 3 91 3 
 

79 12 91 9 91 12 

11 
 

100 0 100 6 100 6 
 

94 0 91 6 91 6 

Avg 
 

95.6 4.4 94.8 3.8 94.3 4.1 
 

89.4 9.8 92.6 8.5 93.7 9.3 

Table 3. True positive and false alarm rates (%) for frame deletion using a fixed GoP length. 
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The first column in the table indicates the number of deleted frames. The first set of results pertains to 

CBR coding and the second set pertains to VBR coding. It is shown that frame deletion detection using 

the proposed technique works regardless of the number of deleted frames. For instance, if 4,6 or 8 

frames are deleted then the true positive and false negative rates are similar. Hence the restriction of 

detecting forged videos with a number of deleted frames being a multiple of sub-GoP lengths (i.e. 3, 6 

and 9) is eliminated. It is also observed that the proposed technique does not necessarily perform better 

at detecting forged videos with a number of deleted frames equal to multiples of sub-GoP lengths. For 

example, the true positive and false negatives for detecting 7 deleted frames are more accurate than 

detecting 6 deleted frames. As mentioned previously, this is one of the restrictions in the existing 

solutions reported in [14] and [15]. The set of reported results in Table 3 also indicate that the proposed 

solution works for detecting deleted frames of videos using both VBR and CBR coding. This is evident by 

examining the average true positive and average false negative rates for both approaches as reported in 

the last row of the table. Thus, the restriction of detecting frame deletion using VBR coding only is also 

eliminated. Again, this was another restriction in the reported solutions of [14] and [15]. Lastly, the 

average results show that the three classifiers performed well in terms of average true positive and false 

alarm rates.  

For a comparison with the reviewed work reported in [15], the averages of true positive and false alarm 

rates for detecting the deletion of 3,6 and 9 frames are reported in Table 4. Again the first column 

reports the number of deleted frames. 

 
VBR coding 

 
KNN L. Reg. SVM Reviewed 

No. 
frames 

TP FA TP FA TP FA TP FA 

3 94 12 97 6 94 6 84 10 

6 91 15 88 12 94 12 90 10 

9 82 15 94 12 97 12 97 10 

Avg 89.0 14.0 93.0 10.0 95.0 10.0 90.3 10.0 

Table 4. True positive and false alarm rates (%)  for frame deletion using a fixed GoP length. Comparison 
with existing work for deletion detection of 3, 6 and 9 frames. 

It is shown from the table that on average the true positive rates using the proposed solution with SMV 

classification are higher than the reviewed work by around 5%. Namely, the average true positive rate 

using the proposed SVM solution is 95% and that of the reviewed work is 90.3%. The false alarm rates 

on the other hand are at par in both cases. Again, the proposed solution has the advantage of detecting 
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forged videos regardless of the number of deleted frames and regardless of the coding mode (VBR 

versus CBR).  

The same set of experiments reported in Table 3 are repeated using a varying GoP length. The results 

are reported in Table 5. 

  
CBR coding 

 
VBR coding 

  
KNN L. Reg. SVM 

 
KNN L. Reg. SVM 

No. 
frames  

TP FA TP FA TP FA 
 

TP FA TP FA TP FA 

1 
 

91 9 94 6 91 6 
 

82 12 94 9 97 12 

2 
 

94 6 97 3 97 3 
 

100 0 100 3 100 3 

3 
 

88 15 94 6 91 3 
 

91 12 85 12 91 12 

4 
 

94 6 91 3 91 3 
 

91 9 91 9 94 15 

5 
 

97 6 97 3 97 6 
 

97 0 97 0 97 0 

6 
 

94 6 94 3 94 3 
 

88 15 91 9 94 12 

7 
 

97 6 97 3 97 3 
 

82 9 91 9 97 9 

8 
 

94 12 94 9 94 9 
 

100 3 94 3 94 3 

9 
 

88 6 88 12 94 12 
 

85 12 91 12 94 15 

10 
 

91 12 94 9 94 9 
 

94 9 94 9 94 9 

11 
 

94 3 94 3 94 3 
 

97 0 97 0 97 0 

Avg 
 

92.9 7.9 94.0 5.5 94.0 5.5 
 

91.5 7.4 93.2 6.8 95.4 8.2 

Table 5. True positive and false alarm rates (%) for frame deletion using a varying GoP length. 

Comparing the results of Table 5 to Table 3, it is shown that proposed technique is robust to change in 

the GoP length. On average, the results are more or less the same. In [15], this experiment was reported 

for deleting 6 frames only. Hence, in Table 6 we show a comparison between the proposed technique 

and the reviewed one for deleting 6 frames using a varying GoP length. 

 

VBR coding 

 
KNN L. Reg. SVM Reviewed 

No. 
frames 

TP FA TP FA TP FA TP FA 

6 88 15 91 9 94 12 78 9 

Table 6. True positive and false alarm rates for frame deletion using a varying GoP length. Comparison 
with existing work for deletion detection of 6 frames. 

The results in the table indicate that using logistic regression or SVM as a classification tool in the 

proposed technique outperforms the reviewed work. For instance, using logistic regression, the true 

positive rate is 91% and the false alarm rate it 9%. Whereas in the reviewed work, the rates are 78% and 

9% respectively. 
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To quantify the proposed solution in terms of accuracy and consistency, the averages and standard 

deviations of the classification rates are reported in Table 7. As the case with Tables 3 and 5, the 

experiment is repeated with a varying number of deleted frames ranging from 1 to 11. 

 
KNN LR SVM 

No. 
frames 

Classification 
rate  

standard 
deviation 

Classification 
rate % 

standard 
deviation 

Classification 
rate  

standard 
deviation 

1 0.94 0.2 0.94 0.16 0.96 0.14 

2 0.96 0.14 0.97 0.12 0.96 0.14 

3 0.94 0.16 0.93 0.18 0.94 0.16 

4 1.00 0 1.00 0 0.96 0.14 

5 0.99 0.09 0.93 0.18 0.97 0.12 

6 0.96 0.14 0.94 0.16 0.93 0.18 

7 0.96 0.14 0.99 0.09 0.99 0.09 

8 0.96 0.14 0.97 0.12 0.99 0.09 

9 0.94 0.16 0.94 0.16 0.93 0.18 

10 0.90 0.21 0.94 0.16 0.94 0.16 

11 1.00 0 0.97 0.12 0.97 0.12 

Avg 0.96 0.13 0.96 0.13 0.96 0.14 

Table 7. Average and standard deviation of classification rates of the proposed solution, CBR coding 
used. 

 

It is shown that the standard deviation ranges from 0 to 0.18 using the classification techniques of 

logistic regression and SVM. The average classification rate ranges from 0.94 to 1.0. This gives a good 

indication that the proposed solution is both accurate and reasonably consistent. 

Lastly, it is worth mentioning that the original video might be re-encoded without frame deletion. It is 

important to be able to distinguish between re-encoded videos with or without frame deletion. In Table 

8, we show that the proposed solution can distinguish between re-encoding videos with and without 

frame deletion.  

 

 

 

 

 

 

 

 



19 
 

  
CBR coding 

 
VBR coding 

  
KNN L. Reg. SVM 

 
KNN L. Reg. SVM 

Frame 
 num.  

TP FA TP FA TP FA 
 

TP FA TP FA TP FA 

1 
 

94 6 94 6 94 6 
 

74 21 79 15 79 15 

2 
 

94 3 97 3 97 3 
 

76 18 82 15 79 12 

3 
 

94 9 94 6 94 6 
 

76 18 71 21 68 12 

4 
 

94 6 97 3 97 3 
 

85 15 91 9 91 9 

5 
 

88 9 94 6 100 9 
 

68 24 82 18 85 18 

6 
 

91 9 97 9 100 9 
 

65 32 82 15 76 15 

7 
 

94 3 97 6 97 6 
 

91 6 91 6 91 6 

8 
 

88 6 91 9 95 9 
 

76 12 82 12 79 12 

9 
 

94 6 94 3 94 0 
 

68 29 76 26 74 12 

10 
 

94 3 97 3 94 0 
 

88 21 85 9 85 9 

11 
 

96 8 94 2 94 1 
 

90 18 86 8 88 6 

Avg   92.8 6.2 95.1 5.1 96.0 4.7   77.9 19.5 82.5 14.0 81.4 11.5 

Table 8. True positive and false alarm rates for frame deletion using a fixed GoP length. Both the forged 
and non-forged videos are encoded. 

 

The results in the table can be compared against the results of Table 3. It is shown that the former 

results are less accurate. This is understood as distinguishing between re-encoded videos with and 

without frame deletion is more challenging than distinguishing between and original video and a re-

encoded video with frame deletion. 

 

7. Conclusion 

A machine learning approach is proposed for detecting frame deletion in digital video. Features are 

extracted from the bit stream and the reconstructed images of videos under examination. The feature 

set is based on the prediction residuals, percentage of intra-coded macroblocks, quantization scales and 

an estimate of the PSNR values. Stepwise regression was used to verify the importance of the 

aforementioned features. The selection of features was shown to be suitable for both VBR and CBR 

modes of coding. Additionally, in the proposed classification system, the dimensionality of the features 

is reduced using spectral regression. A number of machine learning techniques were then used to detect 

frame deletion. The used techniques are KNN, logistic regression and SVMs. The detection accuracy was 

assessed by reporting the true positive and false negative rates. The experimental results showed that 

the proposed system is capable of detecting forged videos with various numbers of deleted frames. The 

system is also as accurate when a varying length GoP is employed. On average, a true positive rate of 

around 95% and a false negative rate of 4% were reported. The proposed system had a clear advantage 
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over existing solutions in terms of accuracy and flexibility.   In future work, the proposed solution can be 

modified and extended in order to determine the exact location of the deleted frames and not just 

detect the existence of frame deletion. 
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