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Abstract

Gilthead seabream and European sea bass are tthe afost commonly farmed fish
species. Larval development is critical to ensugh survival rates and thus avoid
unacceptable economic losses, while nutrition amahunity are also important factors.
For this reason this paper evaluates the ontogedetielopment of seabream and sea
bass digestive and immune systems from eggs toay8 post-fertilisation (dpf) by
assessing the expression levels of some nutris@vant {ryp, amya, alp and pepxl
and immune-relevanillb, il6, il8, tnfa, cox2caspl, tfnccrpl, ighmandight) genes.
The results point to similar ontogenetic developtrteends for both species as regard

nutrition and differences in some immunity relaggshes.

Keywords ontogeny; teleost; gilthead seabream; Europeam ls@&ss; immunity;

nutrition.
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1. Introduction

Gilthead seabreanSparus auratd..) and European sea bagxdentrarchus labrax..)
are the most commonly farmed fish species in Eur@#e, 2014), where a very
successful productive industry depends on combimmgroved knowledge of their
biology and improved farm management. However, inlitg larvae from eggs and
subsequent larval development is one of the keysstethe productive cycle, as it is for
the culture of other fish species of potential ries¢ for the aquaculture industry.
Successful marine larviculture requires not onlye#factive feeding schedule based on
the nutritional requirements and digestive captdsliof developing larvae, in which an
effective and mature immune system is of prime irtgopwe (Conceicéo et al., 2010;
Parker et al., 2012). Suitable production of lamemuires large facilities, high
maintenance costs and intensive labour to prodioeedéesired amount of life foods
constantly (Kanazawa, 2003). Hence, new advancesuinknowledge of the larval
digestive system and its interaction with live foodeach larvae period constitute a
major challenge.

In teleost fish, the emergence of primary and seaonlymphomyeloid organs, head-
kidney, spleen and thymus, takes place at diffel@awial stages. The wide variability
between species in this respect can be explainedhéydiffering lengths of the
embryonic period and larval development, but algdhe fact that the development of
larvae is strongly affected by culture conditiongts as temperature and/or salinity
(Falk-Petersen, 2005). In both gilthead seabreahEamopean sea bass, the histological
development of the lymphoid organs has been stugliediously (Abelli et al., 1996;
Josefsson and Tatner, 1993). However, little iswknoabout the timing of the
appearance of different immune response gene nsarkarrthermore, autologous

adaptive immunocompetence acquisition in fish larvasually follows the first
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appearance of lymphoid organs (Lam et al., 200&aN&shi, 1986) but is not always
correlated with the same (Mulero et al., 2008). dddition, as occurs in other
vertebrates, some proteins in fish are maternalinsferred from the female to an
immunologically naive offspring (Grindstaff et &2003; Zhang et al., 2013). Moreover,
the maternal transfer of MRNAS to the oocytes afpawning should not be ruled out as
gene expression in larvae will determine the timafignmune system development in
offspring and the subsequent effective immune nespof these offspring (Huttenhuis
et al., 2006; Magnadottir et al., 2005).

Improved knowledge of the development of the digestapability and immunity in
fish larvae could help reduce the high mortalityesain hatcheries and overcome a
recurring production bottleneck in the aquacultmcustry. Thus, the aim of this work
was to know the pattern of expression of some gtragsode relevant molecules for (i)
nutrition, such as the enzyme responsible for Hydnag proteins tfyp), alpha bonds
for polysaccharidesafnyg and phosphate groupalg), and for carrying oligopeptides
in the digestive tubepéptd; for (ii) different innate immune responses, sueh
inflammation (interleukin (il) 1 betal{b), il6, il8, tumor necrosis factor alph&nfa)
and ciclooxygenase-2cox?d, apoptosis (caspase taspl), antimicrobial peptides
(transferringtf) and cytotoxicity (non-specific cytotoxic cell egator protein 1nccrpl)
and for (iii) adptative immune responses such #isrdnt populations of B lymphocyte
markers (immunoglobulin Mghm, and immunoglobulin Tight) during the ontogenetic
development of two of the most relevant commersyacies in the Mediterranean area,

the gilthead seabream and the European sea bass.



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

2. Material and methods

2.1. Experimental design

Broodstocks of gilthead seabreanBparus aurata and European sea bass
(Dicentrarchus labrax were bred and kept at thestituto Espafol de Oceanografia
(IEO, Mazarrdn, Murcia), where the fry was bred andmtzaned. Natural seawater (38
%o salinity) was heated to 17 £ 1 °C and filterecbtiyh mechanical and biological
substrates. The temperature increased naturallyr@asched 26 °C by the end of the
experiment. Gilthead seabream larvae were bredyuka “green water” technique in a
5,000-I round tank with an initial density of abd@t eggs/l. During the experiment, the
light intensity was 1,000 lux at the water surfaaed the photoperiod was 16:8 (L:D).
Water renewal was limited to 2 % daily during thestf20 days of culture and was
achieved by the addition of 70 mfmof a microalgae concentrated solution
(Phytobloom, Necton) containing 80 9%lanochloropsis oculata Subsequently,
continuous water renewal (30 %/h) and light aerati@re provided in the tank. Larvae
were successively fed with enriched (Selco, Invawsh Health) rotifers from 6 to 24
days post-fertilisation (dpf)Artemia nauplii(Inve Animal Health) from 20 to 35 dpf,
enriched Instar IArtemiafrom 31 to 58 dpf and a commercial dry pellet ¢&retting)
from 54 dpf onward. The European sea bass larvae kept in dark during the first 40
days after hatching. The light intensity of 1,00Q bkt the water surface and the 16:8
(L:D) photoperiod were maintained. The specimengewsubsequently fed with
enriched Instar IlArtemia and a commercial dry pellet diet (Skretting) fr&s dpf
onwards. Three pools of eggs and larvae at difterere points post fertilization (0, 3,
6, 10, 13, 17, 24, 31, 45, 59 and 73 dpf) were $eanand stored at -80°C in TRIZol
reagent (Life Technologies) for latter RNA isolatid’ he experiments described comply

with the Guidelines of the European Union Coun@010/63/EU), the Bioethical
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Committee of the University of Murcia (Spain) antetlinstituto Espafiol de
OceanografigSpain) for the use of laboratory animals.

2.2. Analysis of gene expression by real-time PCRFCR)

Total RNA was extracted from pooled eggs or larvaimg TRIzof reagent according
to the manufacturer’s instructions. Total RNA (&) was treated with DNase | to
remove genomic DNA and the first strand of was cDBynthesized by reverse
transcription using SuperScript Ill Reverse Tramgase (Life Technologies) with an
oligo-dT;g primer (Life Technologies). To check integrity,| gi each RNA sample was
run in 2% agarose gel.

Real-time PCR was performed as described elsew{t&edero et al., 2015). Four
putative endogen genes were evaluated followingriathod described by Pfaffl et al.
(2004). The stability of the Ct-values for eachdidate in both species is represented in
Supplementary Figure S1. Based on another speatifaty for European sea bass larval
stages (Mitter et al., 2009) and an analysis offtlue endogen gene transcriptions by
the BestKeepé&rsoftware, the gene expression of each target wesecorrected by the
most suitable reference genefl according to the 2*“* method (Livak and
Schmittgen, 2001). Gene names follow the guidelimiethe Zebrafish Nomenclature
Committee (ZNC). The primers used were designedgussie OligoPerfelt! Designer
Tool (Thermo Fisher Scientific) and are shown ibl€al. Before the experiments, the
specificity of each primer pair was studied usingsipve and negative samples.
Amplified products from positive samples were rar2Po agarose gels and sequenced.
After these verifications, all amplifications weperformed in duplicate cDNAs and
repeated once to confirm the results. Negativerotmtvith no template were always
included in the reactions.

2.3. Statistical analysis
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The results are expressed as mean + standardneesor (SEM). Data were statistically
analysed by one-way analysis of variance (ANOVAp&ermine differences between
groups followed by a post hoc Tukey test. Normalify the data was previously
assessed using a Shapiro-Wilk test and homogeoieitgriance was also verified using
the Levene test. Statistical analyses were conduasing SPSS for Windows V19.
Differences were considered statistically significehen P<0.05 and represented with

different letters for each stage.

3. Results

3.1. Digestive and transport component transcriptia increased during the first
days

The transcript profile of the genes that code foresal digestive enzymefyp, amya

and alp) and a transport protein located in the digestiiee pept)d (Fig. 1) was
analysed. The expression oyp, was expressed in eggs of both species, and higher
values were found from 6 dpf onward, with compagalelvels of expression in both
species. On the other harminyawas undetected in eggs, and later gene expression
levels increased from 3 to 17 dpf in both specié® expression dfyp, alp andpeptl
showed very similar profiles in both species, thé @xception being the undetectable
peptlin European sea bass eggs.

3.2. Innate immune-related genes were expressedfdifently in both species during
development

The following transcription of genes involved irflammation, phagocytosis apoptosis
and cytotoxicity innate immune responses were studig. 2): interleukin (il) 1 beta
(il1b), il6, il8, tumor necrosis factor alph#nfa), ciclooxygenase-2cpx?d, caspase 1

(caspl, transferrin {f) and non-specific cytotoxic cell receptor protéinccrpl). The
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MRNA transcripts ofillb, tnfa were not detected in eggs in either of the species
analyzed, whilel6 transcripts were not detected in gilthead seabesgys (Fig. 2). Two
of the pro-inflammatory cytokinesil{b and tnfa) were undetected in eggs, but
expressed in all the larvae stages of both sp€Eigs 2). Transcripts of the rest of the
genes analyzed were observed from eggs onwardsestingly,il6, tnfa, caspland
nccrplshowed higher levels of expression during Euromsnbass development than
in gilthead seabream, whiké showed higher expression levels in gilthead seabre
than in European sea bass larvae.

3.3 Adaptive immune genes are detected at all larlvatages

We have analysed the gene expression profile ofnBohocyte (immunoglobulin M,
ighm, and immunoglobulin Tight) cell markers (Fig. 3). In the case ighm gene
expression was detected at 3 dpf in gilthead saabrédoweverjghm was expressed
also in European sea bass eggs. In both casesxphession had significantly increased
by the end of the larval stages. On the other higdl transcription was found in eggs
from both species. The gene expressionighit remained constant in the case of
European sea bass, and decreased in larval state3ludpf and showed no alteration

at the end of seabream larval stages.

4. Discussion

In the development of the digestive system, theesgion levels of the genes that code
for two key digestive enzymesyp andamya have been described in several teleosts
(Galaviz et al., 2012; Garcia-Gasca et al., 2006raghita et al., 2014, 2013; Pérez et
al., 1998; Ribeiro et al., 1999), although mostdss have only focused on dietary
changes. Our aim was to show the pattern of gepeession in naive gilthead seabream

and European sea bass during the complete ontogerogss. In both species the
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maximum expression levels of both enzyme transcri@re reached around 17-20 dpf,
when a mature digestive system has already dewklgBahlmann et al., 2015).
Previous ontogenetic studies have described togthandamyagene expression peaks
in the European sea bass (Zambonino-Infante and,C4l01). Furthermore, our data
are supported by previous observations in Bluefimaf in whichamyagene expression
was undetected in eggs (Murashita et al., 20149tiAar digestive enzymeaJp, which
carried out the dephosphorylation and is also nesipte for the development of the
brush border enterocytes (Henning et al., 1994ty increased from eggs to 3 dpf. It
has been reported that mouth and anus open atpB-éndgilthead seabream (Elbal et
al., 2004), thus, our data point to a rapid incge@asalp gene expression before larval
feeding starts. Finally, the importancepaptlin the first stages lies in the fact that it is
a strong candidate for major nutrient carriers beeaof its non-selective and high-
capacity transporting function for di- and tri-peles (Daniel, 2004), and it is only
expressed in the intestine (Ahn et al., 2013).greament with our data, in Japanese eel
larvae, the expression of peptl had significantigreased by 6 dpf, after which it
remained constant (Ahn et al., 2013). All theseadagether suggest that first stages
(from hatching to 6-10 dpf) are critical in the é&pment of a suitable digestive system
in teleost, and that highest gene expression igeaeth around 17-20 dpf, coinciding
with the appearance of a mature digestive system.

The role of nutrition and its impact on immunitydagiisease resistance in fish have also
been established (Blazer, 1992). Inadequate rastrind/ or the improper balance of
nutrients within the diet can have a major impant tbe proper development of
lymphoid organs and several immune functions. Begtfis in mind, we next analysed
several-related innate and adaptive immune respayeees, focusing on the

immunocompetence acquisition process from eggs tpf. Several studies in gilthead
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seabream and European sea bass have describedvidepmnent of lymphomyeloid
organs using histological techniques (Abelli et 4996; Dos Santos et al., 2000;
Josefsson and Tatner, 1993; Schrgder et al., H38B)he appearance, during ontogeny,
of immune molecules through PCR sequencing or rarcags, although most of these
studies do not refer to eggs (Darias et al., 2808ero et al., 2008; Yufera et al., 2012).
In vertebrates, inflammatory events will resultarcytokine cascade, wherebya is
released, followed byilb and thenil6 andil8 (Secombes et al., 2001). In addition,
prostaglandins (especially the inducilolex? induced by these cytokines and, in turn,
by nitric oxide, also play a critical role in infranation (Hirata and Narumiya, 2012;
Salvemini et al., 1993; Secombes et al., 2001)allinthe inflammatorycasplis the
gene encodes the protein responsible for activaliig(Franchi et al., 2009; Lépez-
Castejon et al., 2008; Reis et al., 2012). Ourltesiow thail8, cox 2andcasplare
expressed in eggs and early stages of larva, hutitb, tnfaandil6 are not expressed
in eggs, as supported to some extend by previaubest on gilthead seabream using
conventional PCR (Mulero et al., 2008). There aey\few previous reports about the
expression of these molecules in fish eggs, althaing mMRNA of other important
innate immune components have been reported attithe of hatching in carp
(Huttenhuis et al., 2006). Furthermore, our datggsst for the first time a conserved
development of these pro-inflammatory moleculesictvtshow similar patterns in the
ontogeny of both fish species. Some peaks in the g&pression levels have previously
been reported around 17-20 dph (Varela et al., Rddzagreement with our data in the
case ofillb in both species andasplin gilthead seabream. As regards the gene
expression of other innate immune factors, it isvin that transferrin is able to create a
bacteriostatic environment by limiting the availapiof iron to replicating pathogens

(Stafford and Miodrag, 2003) as well as to actr@asary activator of fish macrophages
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(Stafford et al., 2001). It has been found tthas constitutively expressed in adult sea
bass specimens (Neves et al., 2009). In larvakstag previous short report on Indian
carp detectedf mMRNA expression 6 dph and onwards by PCR (Nayadl.e2011).
Transferrin plays vital roles in iron homeostasibjch is essential for cellular growth,
while it also has a clear role in immunity as amtmobial peptide (Grayfer et al., 2014,
Gbomez and Balcazar, 2008). In the present stuae ggpression was observed in eggs,
later increasing, as expected, due to cellular groand because hatching larvae are
exposed to many bacteria in the aquatic environmientigreement with our data,
changes intf transcripts have also been reported during eadyeldpment in
Megalobrama amblycephaléDing et al., 2015). Lastly, to our knowledge,stlis the
first time that the expression otcrplhas been evaluated in eggs and larval stages of
teleost. Thenccrpldecays in transcription from eggs (especially ificgmt in sea bass)
and peaks around 17 dpf, after which it remainsoatnconstant during the rest of the
developmental process. As regards adaptive immuniyobserved the expression of
ighm and ight genes from eggs and from 3 dpf onwards in giltheedbream and
European sea bass, respectively. Although, segardles using conventional PCR did
not detect mRNA levels of immunoglobulins in eglyiilero et al., 2008; Parker et al.,
2012), others, including the present one, usingCRPdid (Seppola et al., 2009).
Interestinglyighm andight were detected in eggs of gilthead seabream amahtfticod
(Seppola et al., 2009) long before the onset ofifhmhomyeloid organ development.
However, our data also showed that both gene lestddsequently increased from 45
dpf onward in both species, matching the developroka mature spleen in fish (Falk-
Petersen, 2005). The differences observed betweetwb species studied might be due
to evolutionary divergence although further studresuding more fish species will be

needed to clarify this issue.
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In fish, maternal immunity refers to the immunitgrisferred via the eggs from mother
to offspring, a process in which both innate andptidte immune-relevant factors are
transferred at protein level (Swain and Nayak, 20@®ang et al.,, 2013). However,
transcript levels of innate and adaptive factoughsas C3p2-macrogloblulin, serum
amyloid A, C1/MASP2, the antimicrobial peptidesthedecidin and lysozyme, and the
immunoglobulins, IgM and IgD (Huttenhuis et al. 0B) Seppola et al., 2009) have also
been reported in previous studies. In the pregdediswe report the presence of several
cytokines, includingl6 andil8, but notillb andtnfa, as well as the presenceaunix? tf,
caspl nccrpl andighm andight in eggs, suggesting maternal transfer of innaté an
adaptive factors at transcript level since thegepaesent in the larvae earlier than the
onset of the development of lymphomyeloid orgartss Tssue highlights the need to
revise the immune system ontogeny of fish at tnapisanal level, using the highly
sensitive techniques that are available nowadaysdar to improve our knowledge of
such an important biological process as passiveenmat immunity. In summary, we
have studied the expression profile of nutritiod ammune genes in gilthead seabream
and European sea bass from eggs to 73 dpf lanvand that they are essential for the

suitable development of the larvae of both species.
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442  Table 1.Information of primers used for gPCR.

Gene Symbol GenBank ID Organism Primer sequence (5-3") GO: Biological process
elongation facto efla AF184170 S. aurata F: CTGTCAAGGAAATCCGTCGT Translational elongation
1-alpha
. R: TGACCTGAGCGTTGAAGTTG G0:0006414
FM019753 D. labrax F: CGTTGGCTTCAACATCAAGA
R: GAAGTTGTCTGCTCCCTTGG
beta-actin actb X89920 S. aurata F: GGCACCACACCTTCTACAATG Protein folding
R: GTGGTGGTGAAGCTGTAGCC G0:0006457
AJ537421  D. labrax F: TCCCTGGAGAAGAGCTACGA
R: AGGAAGGAAGGCTGGAAAAG
alpha-tubulin tuba AY326430 S. aurata F: AAGATGTGAACTCCGCCATC Microtubule-based process
R: CTGGTAGTTGATGCCCACCT G0:0007017
AY326429 D. labrax F: ACGAGGCCATCTACGACATC
R: GGCCGTTATGGACGAGACTA
vimentin vim FM155527 S. aurata F: CGCTTACCTGTGAGGTGGAT Intermediate filament-based process
R: GTGTCTTGGTAACCGCCTGT G0:0045103
EMO18579  D.labrax  p \GCGCCAGATTAGAGAGCTG
R: GCCATCTCGTCCTTCATGTT
trypsin tryp AF316852 S. aurata F: GGTCTGCATCTTCACCGACT Digestion
R: AAAGGCAGCAGAGTGATGGT G0:0007586
AJ006882 D. labrax F: GCACCATGTGCACAGTCTCT
R: ACAGGATGGGGATGTTCAAG
alpha-amylase amya AF316854 S. aurata F: TGGTGGGACAATCAGAGTCA Digestion
R: GTCCAGGTTCCAGTCGTCAT G0O:0007586
AJ310653 D. labrax F: GATCACCAGATGCAACAACG
R: CTGAACCAGCTTCCACATGA
alkaline alp AY266359 S. aurata F: TTACTGGGCCTGTTTGAACC Metabolic process
phosphatas R: ATCCTTGATGGCCACTTCCAC G0:0008152
FJ860000  D. labrax F: TTACCTCTGTGGGGTCAAGG
R: TAGCCCATTTGAGGATGGAG
peptide peptl GU733710 S. aurata F: TTGAACATAACGTCGGGTGA Transport
transporter 1 R: AATTTTGCATTTCCCTGTGG G0:0006810
FJ237043 D. labrax F: TGAGATCGACACACACAGCA
R: AAACGCTCGCAGAACTCATT
interleukin 1- illb AJ277166 S. aurata F: GGGCTGAACAACAGCACTCTC Inflammatory response
beta R: TTAACACTCTCCACCCTCCA G0:0006954
AJ269472  D. labrax F: CAGGACTCCGGTTTGAACAT
R: TTGTCCCCTTTTGAATGGAC
interleukin 6 i16 AM749958 S. aurata F: AGGCAGGAGTTTGAAGCTGA Inflammatory response
R: ATGCTGAAGTTGGTGGAAGG G0:0006954
AM490062 D. labrax F: ACTTCCAAAACATGCCCTGA
R: CTCCTTAGACTGACCAGCGG
interleukin 8 i18 AM765841 S. aurata F: GCCACTCTGAAGAGGACAGG Inflammatory response
R: TTTGGTTGTCTTTGGTCGAA G0:0006954
AM490063 D. labrax F: GTCTGAGAAGCCTGGGAGTG

R: GCAATGGGAGTTAGCAGGAA
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tumor necrosis
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caspase 1
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: CTGTGGAGGGAAGAATCGAG
: TCCACTCCACCTGGTCTTTC

:AGCCACAGGATCTGGAGCTA
: GGACAGCTACAGAAGCGGAC

: GAGTACTGGAAGCCGAGCAC
: GATATCACTGCCGCCTGAGT

: AGCACTTCACCCACCAGTTC
:AAGCTTGCCATCCTTGAAGA

: ACGAGGTGGTGAAACACACA
: GTCCGTCTCTTCGAGTTTGC

: CCAGATCGTGGGTGTTTTCT
: TCTTCAAAGCGTTGCATGAC

: CAGGACCAGCAGACCAAGTT
: TGGTGGAGTCCTTGAAGAGG

: TGCCAAAAACCTGATGTTCA
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Figure legends:

Figure 1. Expression of some nutrition-related genes in gdthseabream (black) and
European sea bass (grey) larvae. Results are sepres mean £ SEM (n=3 pools).
Differences are expressed with different capitatl dower case letters for gilthead
seabream and European sea bass, respectively, emedcansidered significant when

p<0.05.

Figure 2. Expression of genes involved in innate immunitgilthead seabream (black)
and European sea bass (grey) larvae. Results pressed as mean £ SEM (n=3 pools).
Differences are expressed with different capitall dower case letters for gilthead
seabream and European sea bass, respectively, emedcansidered significant when

p<0.05.

Figure 3. Expression of genes involved in adaptive immumtyoth gilthead seabream
(black) and European sea bass (grey) larvae. Remdtexpressed as mean + SEM (n=3
pools). Differences were expressed with differeapital and lower case letters for
gilthead seabream and European sea bass, respedive were considered significant

when p<0.05.
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Highlights

-The knowledge of nutrition and immunity is essentia to the survival of fish larvae.
-Comparative ontogenetic profile was studied in two farmed fish species by gPCR.
-The digestive enzymes encode by tryp, amya, alp, peptl showed similar patterns.

-The immune-related genes were the most variable between both stages and species.



