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aDept. of Informatics, Technische Universität München, Boltzmannstrae 3, Garching bei
Munich, Germany

bDept. of Neurology, Ludwig-Maximilians-University (LMU), Klinikum Grosshadern,
Marchioninistr. 15, Munich, Germany

cInstitute for Clinical Radiology, Ludwig-Maximilians-University (LMU), Klinikum
Grosshadern, Marchioninistr. 15, Munich, Germany

Abstract

In this work we propose a novel approach to perform segmentation by leverag-

ing the abstraction capabilities of convolutional neural networks (CNNs). Our

method is based on Hough voting, a strategy that allows for fully automatic

localisation and segmentation of the anatomies of interest. This approach does

not only use the CNN classification outcomes, but it also implements voting by

exploiting the features produced by the deepest portion of the network. We show

that this learning-based segmentation method is robust, multi-region, flexible

and can be easily adapted to different modalities. In the attempt to show the

capabilities and the behaviour of CNNs when they are applied to medical image

analysis, we perform a systematic study of the performances of six different net-

work architectures, conceived according to state-of-the-art criteria, in various

situations. We evaluate the impact of both different amount of training data

and different data dimensionality (2D, 2.5D and 3D) on the final results. We

show results on both MRI and transcranial US volumes depicting respectively

26 regions of the basal ganglia and the midbrain.
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1. Introduction

Recent research has shown the ability of convolutional neural networks (CNN)

to deal with complex machine vision problems: unprecedented results were

achieved in tasks such as classification [1, 2], segmentation, and object detection

[3, 4], often outperforming human accuracy [5]. CNNs have the ability of learn-

ing a hierarchical representation of the input data without requiring any effort

to design handcrafted features [6]. Different layers of the network are capable

of different levels of abstraction and capture different amount of structure from

the patterns present in the image [7]. Due to the complexity of the tasks and the

very large number of network parameters that need to be learned during train-

ing, CNNs require a massive amount of annotated training images in order to

deliver competitive results. As a consequence, significant performance increase

can be achieved as soon as faster hardware and higher amount of training data

become available [1].

In this work we investigate the applicability of convolutional neural networks

to medical image analysis. Our goal is to perform segmentation of single and

multiple anatomic regions in volumetric clinical images from various modalities.

To this end, we perform a large study on parameter variations and network

architectures, while proposing a novel segmentation framework based on Hough

voting and patch-wise back-projection of a multi-atlas. We demonstrate the

performance of our approach on brain MRI scans and 3D freehand ultrasound

(US) volumes of the deep brain regions.

The paradigm-shifting results delivered by CNNs in computer vision were

in part accomplished with the help of extremely large training datasets and

significant computational resources. Both of which may be often unrealistic

in clinical environments, due to the absence of large annotated dataset and

to data protection policies which often do not allow computation outsourcing.
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Figure 1: Example of MRI and ultrasound slices (left) and their respective segmentations

(right) as estimated by Hough-CNN. Anatomies shown include midbrain in US (red) and in

MRI (yellow). Further, in upper half of MRI slice: hippocampus (pink), thalamus (green),

red nucleus (red), substantia nigra (green/red stripes within midbrain) and amygdala (cyan)

Therefore, in this study, we perform all training and testing of CNN networks

on clinically realistic dataset sizes, using a high-performance, but stand-alone

PC workstation.

Segmentation of brain structures in US and MRI has widespread clinical

relevance, but it is challenging in both modalities.

In MRI, the segmentation of basal ganglia is a relevant task for diagnosis,

treatment and clinical research. A concrete application is pre-operative planning

of Deep Brain Stimulation (DBS) neurosurgery in which basal ganglia, like the

sub-thalamic nucleus (STN) and globus pallidus internal (GPi), are targeted for

treatment of symptoms of Parkinson’s disease (PD) and dystonia, respectively
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[8]. Accurate localisation and outlining of these nuclei can be challenging, even

when performed manually, due to their weak contrast in MRI data. Moreover,

fully manual labelling of individual MRIs into multiple regions in 3D is extremely

time-consuming and therefore prohibitive. For this reason, both in research

[8, 9] and in clinical practice [10], segmentation through atlas-based approaches

is widely used.

Transcranial ultrasound (TCUS) can be used to scan deep brain regions non-

invasively through the temporal bone window. Using TCUS, hyper-echogenicities

of the Substantia Nigra (SN) can be analysed, gaining valuable information to

perform differential [11] and early [12] diagnosis of Parkinson’s Disease (PD). A

crucial step towards computer assisted diagnosis of PD is midbrain segmenta-

tion [13, 14]. This task is reportedly challenging even for human observers [15].

In order to penetrate the skull, low frequencies need to be applied resulting in

an overall reduction of the resolution and in the presence of large incoherent

speckle patterns. Scanning through the bone, moreover, attenuates a large part

of the ultrasound energy, leading to overall reduction of the signal-to-noise ra-

tio, as well as low contrast and largely missing contours at anatomic boundaries.

Additionally, the higher speed of sound in the bone leads to phase aberration

[16] and de-focussing of the ultrasound beam which causes further lowering of

the image quality. A variety of image TCUS quality, anatomical visibility and

3D ultrasound fan geometry can be seen in Figure 3. Registration methods,

in particular non-linear registration, are very difficult under these conditions.

Therefore, atlas-building and atlas-based segmentation methods tend to fail in

ultrasound.

In this work we evaluate the performance of our approach using an ultra-

sound dataset of manually annotated TCUS volumes depicting the midbrain,

and an MRI dataset, depicting 26 regions including basal ganglia, annotated in

a computer-assisted manner. Our method is fully automatic, registration-free

and highly robust towards the presence of artefacts. Through our patch-based

voting strategy, our approach can localise and segment structures that are only

partially visible or whose appearances are corrupted by artefacts. To the best
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of our knowledge, this is the first work employing CNNs to perform ultrasound

segmentation.

Our work features several contributions:

• We propose Hough-CNN, a novel segmentation approach based on a vot-

ing strategy similar to [14]. We show that the method is multi-modal,

multi-region, robust and implicitly encoding priors on anatomical shape

and appearance. Hough-CNN delivers results comparable or superior to

other state-of-the-art approaches while being entirely registration-free. In

particular, it outperforms methods based on voxel-wise classification.

• We propose and evaluate several different CNN architectures, with vary-

ing numbers of layers and convolutional kernels per layer. In this way

we acquire insights on how different network architectures cope with the

amount of variability present in medical volumes and image modalities.

• Each network is trained with different amounts of data in order to evaluate

the impact of the number of annotated training examples on the final

segmentation result. In particular, we show how complex networks with

higher parameter number cope with relatively small training datasets.

• We adapted the Caffe framework [17] to perform convolutions of volu-

metric data, preserving its third dimension across the whole network. We

compare CNN performance using 3D convolution to the more common 2D

convolution, as well as to a recent 2.5D approach [18].

2. Related Works

In this section we give an overview of existing approaches that employ CNNs

to solve problems from both computer vision and medical imaging domain.

In the last few years CNNs became very popular tools among the computer

vision community. Classification problems such as image categorisation [1, 2],

object detection [19] and face recognition [20] as well as regression problems

such as human pose estimation [21], and depth prediction from RGB data [22]
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have been addressed using CNNs and unprecedented results have been reported.

In order to cope with the challenges present in natural images, such as scale

changes, occlusions, deformations different illumination settings and viewpoint

changes, these methods needed to be trained on very large annotated datasets

and required several weeks to be built even when powerful GPUs were employed.

In medical imaging, however, it is difficult to obtain even a fraction of this

amount of resources, both in terms of computational means and amount of

annotated training data.

Many works applying deep learning to medical problems relayed only on a

few dozen of training images (e.g. [23, 24, 25, 26, 27, 28]). Most networks were

applied to tasks that could be solved by interpreting the images patch-wise in

a sliding window fashion. In this case, several thousands of annotated train-

ing examples could be obtained from just a few images. Dataset augmentation

techniques, such as random patch rotation and mirroring, were also applied if

the objects of interest were invariant to these transformations [18, 23, 24, 25].

This is the case for cell nuclei, lymph nodes and tumor regions, but not for

anatomic structures with regular size and local context, such as regions of the

brain or abdomen. Another way to deal with little training data is to embed

CNNs as core components into previously successful methods from the commu-

nity. A deep variational model is proposed in [29]. Their CNN is embedded

into a global inference model, i.e. the CNN outputs are treated as unary po-

tentials on a graph and the segmentation is solved via minimum s-t cuts on the

predicted graph. In [30] the CNN performs 3D regression to predict an affin-

ity graph, which can be solved via graph partitioning techniques or connected

components in order to segment neuron boundaries. Active shape models are

realised with CNNs in [31] via regression of multi-template contributions and

object location. Variational Deep Learning was realised in [26] by combining

shape-regularised levelset methods with Deep Belief Networks (DBN) for left

ventricle segmentation in cardiac MRI.

In this work, we propose a novel Hough-CNN detection and segmentation

approach. Our method utilises CNNs at its core to efficiently process medical
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volumes in a patch-wise fashion. It obtains voxel-wise classifications along with

high level features – used to retrieve votes – that are descriptive of the object

of interest. Generalised Hough voting has been proposed in the past to address

problems related with object detection and tracking. Recent works such as

[32, 33] performed Hough voting using a CNN. Their respective aim is to obtain

head poses and cell locations in 2D by using the network to perform simultaneous

classification and vote regression. In this work we propose a more flexible voting

mechanism based on neighborhood relationships in feature space. On the one

hand, this allows us to cast a variable amount of votes for each patch, which

can be associated with information such as segmentation patches. Additionally,

therapeutic indications or diagnostic information can be added or modified at

any time without requiring re-training. On the other hand, instead of relying

on regression, our method uses votes collected from annotated training images.

Thus, it does not experience unpredictable behaviour of the votes when the

network is presented with unusual data that produces unexpected feature values

and mis-classifications.

Compared to computer vision which performs Deep Learning mostly on 2D

images, medical images often deal with volumes acquired through scanners such

as MRI or CT. In our literature review, most approaches have continued working

in 2D by approaching 3D scans in a slice-by-slice fashion (e.g. [23, 24, 25, 26,

27, 28, 34, 35, 36]). The advantage is high speed, low memory consumption

and the ability to utilise pre-trained nets such as AlexNet [1], either directly or

via transfer learning. The obvious disadvantage is that anatomic context in the

directions orthogonal to the image plane are entirely discarded. Some groups

who employed 3D convolutions found that computational tractability was an

issue, and classification was either impossible [18] or suffered in accuracy since

compromises on patch-size had to be made [27]. Other groups have applied 3D

convolution successfully for Alzheimer’s disease detection from whole-MRI [37]

or regression of affinity graphs from 3D convolution [30]. A different approach

that was applied to full-brain segmentation from MRI in [28] combined small

3D patches with larger 2.5D ones that include more context. The 2.5D patches,
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Name Network Architecture
Act.

function
Init. Remarks

3-3-3-3-3
I31 · C64

3 · P2
3 · C64

3 · C64
3 · C64

3 · C64
3 · F128 · F128 ·

F#regions

PReLU MSRA

F use

drop-out

(ratio 0.5)

3-3-3-3-3-3-3-3
I31 · C64

3 · C64
3 · C64

3 · C64
3 · C64

3 · C64
3 · C64

3 · C64
3 ·

F128 · F128 · F#regions

5-5-5-5-5
I31 · C64

5 · C64
5 · C64

5 · C64
5 · C64

5 · F128 · F128 ·

F#regions

7-5-3 I31 · C64
7 · P2

3 · C64
5 · C64

3 · F128 · F#regions

9-7-5-3-3
I31 · C64

9 · C64
7 · C64

5 · C64
3 · C64

3 · F128 · F128 ·

F#regions

Small Alex
I31 · C64

11 · P1
2 · C64

5 · P1
2 · C64

3 · C64
3 · C64

3 · F128 ·

F128 · F#regions

Table 1: Six CNNs were designed and employed to process squared or cubic patches having

size 31 pixels. Notation for architecture and CNN layers given in section 3.1. Activation

functions follow all layers.

in particular, consisted of a stack of three 2D patches extracted respectively

from the sagittal, coronal and transversal planes. All patches were assembled

into eight parallel CNN pathways in order to achieve high-quality segmentation

of 134 brain regions from whole brain MRI.

In this work, we evaluate the performance of our network when 2D, 2.5D

and 3D patches are employed. In particular, we supply rather long-range 3D

patches which retain a large amount of anatomical context.

Another important issue in CNN-related research is the search for optimal

CNN network architecture: we have found very little literature that addresses

this issue systematically. Although several networks architectures were analysed

in [23, 24], we have found only one study on “very deep CNN” [38], in which the

number of convolutional layers was varied systematically (8-16) while keeping

kernel sizes fixed. The study concluded that small kernel sizes in combination

with deep architectures can outperform CNNs with few layers and large kernel

sizes.

In this work we propose and benchmark six network architectures, including

one very deep network having 8 convolutional layers as shown in Table 1.
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3. Method

We propose six different convolutional neural network architectures trained

with patches extracted from annotated medical volumes. We optimise our mod-

els to correctly categorise data-points into different classes. The volumes were

acquired in two different modalities, US and MRI, and depict deep structures

of the human brain. Accurate segmentation of the desired regions has been

achieved through a Hough voting strategy, inspired by [14], which was employed

to simultaneously localise and segment the structures of interest.

3.1. Convolutional neural networks

A CNN consists of a succession of layers which perform operations on the

input data. Convolutional layers (symbol Ck
s ) convolve the images Isize pre-

sented to their inputs with a predefined number (k) of kernels, having a certain

size s, and are usually followed by activation units which rescale the results

of the convolution in a non linear manner. Pooling layers (symbol P stride
size )

reduce the dimensionality of the responses produced by the convolutional lay-

ers through downsampling, using different strategies such as average-pooling or

max-pooling. Finally, fully connected layers (symbol F#neurons) extract com-

pact, high level features from the data. The kernels belonging to convolutional

layers as well as the weights of the neural connections of the fully connected

layers are optimised during training through back-propagation. The network

architecture is specified by the user, by defining the number of layers, their

kind, and the type of activation unit. Other relevant parameters are: the num-

ber and size of the kernels employed during convolution, the amount of neurons

in the fully connected part and the downsampling ratio applied by the pooling

layers. We propose six network architectures that are described in Table 1.

CNNs perform machine learning tasks without requiring any handcrafted

feature to be engineered and supplied by the user. That is, discovering optimal

features describing the data at hand is part of the learning process. During

training the network parameters are first initialised and then the data is pro-

cessed through the layers in a feed-forward manner. The output of the network
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is compared with the ground-truth through a loss function and the error is back-

propagated [6] in order to update the filters and weights of all the layers, up

to the inputs. This process is repeated until it converges. Once the network

is trained, predictions can be made by using it in a feed-forward manner and

reading out the outputs of the last layer.

In our approach we made use of parametric rectified linear units [5] (PReLU)

as our activation functions.

PReLU(x) =

x if x ≥ 0

αx if x < 0

(1)

The parameter α in the PReLU activation function is learnt during training,

along with other network weights. In this context we initialise the network pa-

rameters using MSRA [5] as it is an appropriate choice when employing PReLU

activation units.

Many authors [1, 39] reported that the tendency of the network to overfit

can be decreased by using a technique called “drop-out” during training which

inhibits the outputs of a random fraction of the neurons of the fully connected

layers in each iteration. In this way it is possible to limit their excessive spe-

cialisation to specific tasks, which is believed to be at the origin of overfitting

in CNNs.

Finally, we employ max-pooling layers to reduce the dimensionality of the

data as it traverses the network. The input of the pooling layer is exhaustively

subdivided into sub-patches having fixed size and overlapping by an amount

controlled by the “stride” parameter. Only the maximal value in each sub-patch

is forwarded to the next layer. This procedure is known to incorporate a spatial

invariance to the network which contradicts the desired localisation accuracy

required for segmentation. For this reason we limit the usage of pooling layers

to the minimum amount required to meet the existing hardware constraints.

3.2. Voxel-wise classification

A set T = {p1, ...,pN} of square (or cubic) patches having size p pixels is

extracted from J annotated volumes Vj with j ∈ {1...J} along with the corre-

10



b)

d) f)e)

a) c)c)

e) f)

a)

d)

Figure 2: Schematic representation in 2D of the Hough-CNN segmentation approach. a) The

volume is interpreted patch-wise and classified using the CNN. b) Every pixel of the foreground

(red) casts one or multiple votes in order to localise the anatomy centroid. c) The votes

accumulate in a vote-map, represented here in jet colormap, and the object centroid is found

at the location of maximum vote accumulation. d) All the votes that accumulated close to the

detected anatomy centroid contribute to the final contour by projecting a binary segmentation

patch (here shown in red and white to indicate foreground and background respectively) at

the location they were cast from. e) A contour confidence map is constructed by accumulating

all the contributions associated to the votes. f) The resulting contour, depicted in purple, is

retrieved by thresholding the confidence map.

sponding ground truth labels Y = {y1, ..., yN} ∈ R. Based on this training set

CNNs are optimised to categorise the patches correctly. The resulting trained

networks are capable of performing voxel-wise classification, also called semantic

segmentation, of volumes by interpreting them in a patch-wise fashion. How-

ever, due to the lack of regularisation and enforcement of statistical priors this

approach delivers sub-optimal results (Figure 7). For this reason we introduce

a novel segmentation method that is based on simultaneous localisation of the

anatomy of interest and robust contour extraction (Figure 2).
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3.3. Hough voting with CNN

We introduce a robust segmentation approach that is scalable to multiple re-

gions and implicitly encodes shape priors. This method employs a Hough-voting

strategy to perform anatomy localisation and a database containing segmenta-

tion patches to retrieve the contour of the anatomy. Instead of relying only

on categorical predictions produced by the CNNs we also make use of features

extracted from their intermediate layers, in particular from the second-last fully

connected one. Several authors [1, 19, 20] have reported that these features

(sometimes also called descriptors) can be used for tasks such as image retrieval

by mapping images to the feature space and identifying their neighbours. These

findings are employed at the core of our voting strategy.

To keep our notation as simple and understandable as possible we describe

our approach for single region segmentation in the following.

During training, we make use of the dataset of training volumes Vj with

j ∈ {1...J}, and respective binary segmentation volumes Sj with j ∈ {1...J}.

We collect patches from both foreground and background and train a CNN. As

a result, we obtain the parameters θ̂ that define the network. The CNN not

only differentiates patches belonging to foreground and background through

classification, but also associates each input to a feature vector obtained from

its second-last fully connected layer. The macroscopic effect of the network can

be summarised using two functions

f1(pi, θ̂) = li ∈ {0, 1} and f2(pi, θ̂) = fi ∈ Rd

respectively mapping each input patch pi to its label li and to the feature fi,

which has as many dimensions d as there are neurons in the fully connected

layer it is collected from.

We exhaustively collect a dataset T = {p1...pN} of either 2D, 2.5D or 3D

patches from the locations X = {x1...xN} of the foreground region of each of the

training volumes Vj , and we use the CNN to obtain the features fi introduced

before. Our goal is to create a database storing triples consisting of a feature

vector fi, a vote vi and a segmentation patch si.
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The vote vi is a displacement vector joining the voxel xi, where the i-th

patch was collected from, and the position anatomy centroid cj in the training

volume Vj :

vi = xi − cj ; cj =
1

|Fg|
∑

xi∈Fg

xi

where Fg is the set of all the voxels belonging to foreground. The binary

segmentation patches assume values 1 or 0 respectively for foreground and back-

ground area since they are collected from the positions xi of the binary anno-

tation volumes Sj .

During testing, in order to segment a previously unseen volume I, we make

use of both the trained CNN and the database established before. We first

obtain the classification label for each voxel xi by processing the relative patch

pi through the CNN, which delivers also the features fi for all the patches being

classified as foreground. Each of such features is compared to those contained in

the database in order to retrieve theK closest entries using Euclidean distance as

criterion. This K-nearest neighbour search (K-nn) [40] is performed computing

Euclidean distances di1...K between features, as previously done in [1] for image

retrieval.

Once the neighbours are identified, their votes vi
1...K and associated segmen-

tation patches si1...K from the database, are employed to respectively perform

localisation and segmentation. The votes are weighted by the reciprocal of the

Euclidean distance computed during K-nn search w1...K = 1
di
1...K

and contribute

to a vote-map at positions

v̂i
k = xi + vi

k; ∀k ∈ {1...K}

We repeat the steps described above for each of the patches that were classified

as foreground (Figure 2b). Since the region of interest occurs only once in each

volume, we smooth the final vote map and retrieve the region centroid by finding

the location c where the maximal value of the vote map is reached (Figure 2c).

Smoothing reduces the possibility of small localisation mistakes due to “noise”

in the vote map around the position where its maximum occurs.
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The region of interest can now be segmented by re-projecting the votes vi
k

to the locations xi where they have been originated from. However, not all the

votes should be re-projected, since a relevant portion of them is erroneous, i.e.

did not contribute to the vote-map anywhere close to the estimated anatomy

location. Thus, only those that contributed to the vote-map within a certain

range r from the predicted centroid are taken into consideration and are ac-

tually allowed to contribute to the final segmentation contour with their own

segmentation patch sik. The segmentation patches sik are centred at the location

xi, weighted by wi
k and accumulated in the segmentation map S (Figure 2d).

Assuming that the segmentation patches sik have been extended to an infinite

spatial extent by zero-padding, we can write:

Ŝ(x) =
∑
xi

K∑
k=1

Ind(v̂i
k, ĉ) wi

k s
i
k(x− xi)

Ind(a,b) =

1 ‖a− b‖ < r

0 ‖a− b‖ ≥ r

In this sense, the segmentation patches sik can be seen as basis functions sik(x),

which take binary values, that need to be scaled and re-centered at appropriate

locations in order to produce the desired effect in the segmentation map. Once

the segmentation map S is normalised to take only values comprised between 0

and 1, it is thresholded and the final contour is obtained.

The approach is summarised schematically in Figure 2. Extending this

method to multiple regions requires little effort. In our implementation, we

treated each region independently by creating region-specific databases as well

as dedicated vote-maps and segmentations. The memory requirements of this

approach can be decreased by retrieving the segmentation patches directly from

the volumes S1...J instead of storing them in the database. In this case, the

database contains coordinates that are used to fetch contour portions from the

S1...J .
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Figure 3: Visual comparison of semantic segmentation results (top) and Hough-CNN results

(bottom) on the same ultrasound data using the best-performing CNN. Red areas represent

ground truth annotation. Red contours represent segmentation outputs. Best viewed in digital

format.

3.4. Efficient patch-wise evaluation through CNN

When dealing with images or volumes, patches are extracted in a sliding-

window fashion and processed through a CNN. This approach is inefficient due

to the high amount of redundant computations that need to be performed for

neighbouring patches. In case no padding is used within the convolutional layers,

the whole volume can be convolved with the respective kernels in one pass,

instead of treating each patch separately, while achieving the same result. The

same holds true for pooling layers whose pooling windows can be arranged to

process the whole volume at once. However, as soon as fully connected layers

are employed, the volume can no longer be processed in one pass due to the fact

that the connections of this layer are limited to the size of the input patch.

To solve this issue we modify the network structure as proposed by Sermanet

et al. in [41] in order to be able to process the whole volume at once, yet

retrieving the same results that we would obtain if the data would be processed

patch-wise.
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4. Experiments and Results

In this section we show that CNNs not only can be used to robustly segment

medical volumes (Figure 3, Figure 4), but they also posses the ability of learning

extremely effective features (outputs of upper layers) from the data. Even in

ultrasound, where the structures of interest are often not clearly visible or the

images are affected by artefacts, CNNs are able to focus on salient information

and therefore recognise patterns. We demonstrate the superior performances

of our Hough-voting-based segmentation algorithm by evaluating our method

on two datasets of US and MRI volumes depicting the human brain. The two

modalities provide complementary information, but are inherently different both

from the point of view of the challenges they offer and the range of anatomy

they can image.

4.1. Datasets and ground-truth definition

Our MRI dataset is composed of MRI volumes of 55 subjects, which were ac-

quired using 3D gradient-echo imaging (magnitude and phase) with an isotropic

spatial resolution of 1x1x1 mm. The sequence [42] is designed for quantitative

susceptibility mapping (QSM) and sensitivity towards iron deposits. These are

biomarkers for movement disorders like Parkinson’s Disease and create visible

contrast in relevant basal ganglia like SN and STN. For our study, basal gan-

glia and other deep-brain structures were annotated in an atlas volume in two

ways. One set of bi-lateral atlas labels (brainstem, n. accumbens, amygdala,

caudate, thalamus, hippocampus, pallidum, putamen) were annotated semi-

automatically via a shape- and appearance-model segmentation (FSL FIRST

[43]) plus manual correction of generated labels (one neuroimage technician,

verified by one expert neurologist). Another set of bi-lateral labels (separation

of of pallidus into GPi and GPe, midbrain, red nucleus, substantia nigra pars

compacta and substantia nigra pars reticulata) was annotated in a fully manual

manner (neuroimage technician, verified by expert neurologist) based on vis-

ible contrast. The atlas labels were transferred using a state-of-the-art atlas
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Figure 4: Visual comparison of semantic segmentation results (top two rows) and Hough-CNN

results (bottom two rows) on same MRI volumes using the same trained CNN. Coloured areas

represent ground truth annotation. Coloured contours represent segmentation outputs. Best

viewed in digital format.
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approach [44]. As a summary, the list of structures of interest is also visible in

Figure 6.

The US dataset was acquired transcranially on 34 subjects, with several free-

hand 3D sweeps recorded through the left and right temporal bone window each.

Altogether, 162 volumes were acquired with slight variations in bone window

positioning, and reconstructed at 1mm isotropic resolution. For all 162 TCUS

volumes, midbrain outlines were annotated in 3D by a single human expert.

Inter-rater agreement of the midbrain annotations, in terms of Dice coefficient,

has been reported in [15] to be 0.85. CNN training was performed on data from

8 subjects (40 sweeps), and testing on data from 24 previously unseen subjects

(114 sweeps), while validation data was performed on 8 sweeps from 2 subjects.

Performing segmentation on more than 100 test volumes is a good indicator of

actual clinical applicability of (Hough-)CNN-based segmentation. The experi-

ments show that the method generalises very well on previously unseen data,

which is a highly desirable property in clinical settings.

In order to test our approach and to benchmark the capabilities of the pro-

posed CNNs when they are trained with a variable amount of data, we establish,

for each dimensionality (2D, 2.5D and 3D) two differently sized training sets in

US and three in MRI respectively. For each of the 40 training volumes in US

we collect either 2K or 10K patches per volume such that half of the training

set depicts the background and the other half the foreground. The resulting

training sets have respective sizes of 80K and 400K patches. A validation set

containing 5K patches has been established for US using images of subjects

that have not been used for training or testing and employed to assess the gen-

eralisation capabilities of the models. From the 45 MRI training volumes, we

extract either circa 100, 1K or 10K patches per volume per region (including

background). The resulting training sets have respective sizes of 135K, 1.35M

and 13.5M patches.
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4.2. CNN parameters

We analyse six different network architectures, presented in Table 1, by

training each of them for 15 epochs using Stochastic Gradient Descent (SGD)

with mini-batches of 64 or 124 samples, learning rate varying between 10−2 and

5 · 10−3 depending on the individual network architecture, momentum 0.9 and

weight decay 5 · 10−4. All our models converged after a few epochs, and often

before the seventh epoch.

Each network is analysed three times, with patches capturing the same

amount of context from the neighbourhood, but having different dimension-

ality. That is, our networks process 2D data, 2.5D data and 3D data in order

to investigate how the networks respond to the higher amount of information

carried by patches in 2.5D and 3D patches compared to 2D. During training,

we randomly sample patches from annotated volumes and we feed them to the

networks along with their ground truth labels. The patches of the 2D dataset

are all square and have a size of 31× 31 pixels; the 2.5D dataset is composed of

patches having the same size and three channels consisting of 2D patches from

the sagittal, coronal and transversal plane centred at the same location; the 3D

dataset contains cubic patches having size 31× 31× 31 voxels.

Some of the parameters supplied to our Hough-CNN algorithm are empir-

ically chosen. Parameters names and respective values are reported in Table

2. These parameters remained constant throughout all experiments, both in

ultrasound and MRI. All the trainings were performed on Intel i7 quad-core

workstations with 32 gigabytes of ram and graphic cards from Nvidia, specifi-

cally ”Tesla k40” or ”Titan X” (12GB VRAM). All tests were made on a similar

workstation equipped with a Nvidia GTX 980 (4 GB VRAM).

4.3. Experiments and results in ultrasound

We train our CNNs with different amount of data having different dimen-

sionality, as explained in Section 4.1. Each of the six proposed architectures is

trained six times (five for 3D) in order to cover all the possible combinations

of dimensionalities (2D, 2.5D, 3D patches) and amount of data (training set

19



Parameter Name Value

Tolerance radius r for reprojection r = 3 voxels

Amount of smoothing for vote-maps σ = 1

Maximum number of neighbours K-NN K = 20

Maximal distance of K-NN neighbours (US) 2.5

Maximal distance of K-NN neighbours (MRI) 6.0

Size of segmentation patch 9× 9× 9

Table 2: Parameters of the model utilised during the experiments.

sizes 80K, 400K). We test each CNN on 114 ultrasound volumes acquired from

subjects whose scans have never been used during training or validation.

Table 4.2 shows the average performance in terms of Dice coefficients, mean

distances of the estimated contours to the ground truth annotations and fail-

ure rates of the proposed Hough-CNN segmentation approach when different

CNNs are employed. Since we segment one region per volume, the failure rate

represents the percentage of volumes where the region of interest could not be

segmented due to wrong localisation (Dice 0). In Figure 5 we provide summary

of the performances of each network, when various amounts of training data

are used and patches of different dimensionality are supplied. Better networks

produce Dice histograms whose higher values are occurring far away from the

origin.

Visual examples of ultrasound segmentation results are visible in Figure 3.

It is notable that the Hough-CNN segmentation is able to localise and segment

the midbrain accurately, regardless of whether the scan was acquired through

the left or right bone window. It is also robust to bone window quality and

overall visibility of structures, as well as signal-drop regions and blurring.

4.4. Experiments and results in MRI

We train each of our networks nine times (eight for 3D) in order to explore all

the possible combination of different data dimensionality and size of the training

set as explained in Section 4.1. We test each of the models on 10 volumes, using
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Figure 5: The midbrain segmentation performance of each network on 114 TCUS test volumes,

under different training conditions, is summarised through histograms. The horizontal axis is

subdivided in Dice bins having a width of 0.05 Dice. The vertical axis represents the number

of volumes falling in each Dice bin. Each CNN architecture is depicted with its own colour.22



their respective atlas-based annotations for evaluation. We verified, through

visual inspection performed by a technician and an expert neurologist, that the

annotation appropriately delineate the regions of interest.

Table 4 reports the average performance in terms of Dice coefficients, mean

distances of the estimated contours to the ground truth annotations and failure

rates of the proposed Hough-CNN segmentation approach when different CNNs

are employed at its core. The failure rate, in particular, refers to the percentage

of regions of the whole training set (total number: 26 × 10 regions), that were

not segmented correctly by Hough-CNN due to the fact that they could not

be correctly localised. The results are clustered by the size of the training set

employed to train the model to improve readability and the possibility of mak-

ing comparisons between CNNs employing data having different dimensionality

(2D, 2.5D and 3D). From these results we observe that the best performing

architecture is “7-5-3”.

In Figure 6 we compare the results achieved by the architecture “7-5-3”, on

each of the 26 brain region of interest separately, when different data dimen-

sionalities are used. The bar plot shows the results in terms of Dice coefficient,

while the dashed line plot conveys the results in terms of average distance of the

estimated contour to ground-truth delineation. We observe that Hough-CNN

yields better Dice coefficients when bigger regions and high contrast area are

segmented. Small and low contrast regions could be correctly localised but they

were in general harder to segment.

Visual examples of MRI segmentation results are visible in Figure. 4. It

is notable that the Hough-CNN segmentation is able to correctly localise and

segment multiple structures, despite large anatomical variability, such as cortical

atrophy and enlarged lateral ventricles.

5. Discussion

Training of CNNs requires a large amount of data in order to achieve satisfac-

tory voxel-wise classification results and perform semantic segmentation. How-
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Figure 7: Comparison of mean Dice coefficients obtained in 2D, 2.5D and 3D on US and MRI

data using Hough-CNN and semantic segmentation.

ever, as described in the introduction, obtaining such large annotated datasets

is rarely possible in clinical settings. By using a voting-based strategy, it is pos-

sible to localise the anatomy of interest with high precision, even when the rate

of mis-classified voxels is very high. Additionally, our Hough-CNN approach

implicitly enforces shape priors which facilitate segmentations in images where

the anatomy of interest is poorly visible. Furthermore, when using 3D patches,

only 1.35M training patches were required to surpass the performance obtained

with datasets of 13.5 millions 2D and 2.5D patches. This marks a 90% reduc-

tion of required training data. In all three dimensionalities, 2D, 2.5D and 3D,

Hough-CNN outperforms voxel-wise segmentation (cf. Figure 7). Similar to

related works [26, 29, 30, 31], we thus demonstrate that it may be beneficial

to embed CNNs as powerful classifiers into higher-level methods which encode

anatomic shape- and appearance priors.

The experiments performed on MRI highlight important aspects of both our

CNNs and the modality itself. Most of the brain regions considered in this

study (e.g. midbrain, STN, caudate) can be recognised by a human rater by

clearly visible contrasts, while the position and boundaries of difficult regions
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with less contrast (e.g. GPi, GPe, SNpc, SNpr) can be inferred through anatom-

ical knowledge and neighborhood context. Ultrasound volumes are much more

challenging from this point of view. Human midbrain in TCUS can be difficult

to discern and human observers can be mislead by artefacts and signal-loss areas

having similar shape. The CNNs employed in this study had various architec-

tures and therefore different pattern recognition capabilities. In MRI, where

the most part of regions of interest have good contrast while the position of the

others can be inferred by the context, the best performing network was “7-5-3”.

Although this architecture is the simplest, it delivered best results in all the

MRI experiments. In US, which is a challenging modality, the networks that

delivered best results were among the most complex. “SmallAlex” and “3-3-3-

3-3-3-3-3” are deeper and therefore recognise more complex visual content than

“7-5-3”.

While we observed a strong performance advantage when segmenting MRI

volumes considering 3D data (Table 4), we observed the opposite effect when

segmenting ultrasound as shown in the bottom left of Table 4.2. In MRI, pro-

cessing data in 3D brings additional useful information which improves the

performance of both automated methods and human raters, who refer simulta-

neously to sagittal, coronal and axial views when establishing the ground truth.

In US, we observed that experts segmenting the ground truth used only the

axial plane, since it is the only plane in which the characteristic shape of the

midbrain can be recognised. Similarly, CNNs produce best results when they

are not supplied with misleading information from sagittal and coronal planes.

Altogether, using Hough-CNNs, we segmented 10 previously unseen MRI

volumes achieving very high Dice coefficients for large and high-contrasted re-

gions, while some of the smallest and most challenging regions were almost al-

ways localised accurately and segmented with sub-voxel mean surface distance.

Additionally, we achieved very robust midbrain segmentation in 3D-TCUS, in

a test dataset of more than 20 subjects and 114 volumes, with a large variation

of 3D sweep geometry, bone window qualities, midbrain appearance, location

and orientation. Given the size and variety of the 3D-TCUS test set, we are
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confident to say that the method generalises well to unseen patients.

Compared to atlas-segmentation, Hough-CNN is faster (30 seconds in US,

and 3-4 minutes in MRI on the machine employed for testing) and entirely

registration-free. This makes our approach applicable to TCUS data, in which

registration-dependent methods like atlas-based segmentation would be extremely

difficult, if not impossible, due to largely missing anatomical and structural con-

text. Our approach is flexible since both votes and segmentation patches can

be substituted without any need for re-training or augmented to include in-

formation from multiple experts. As a future work, we plan to investigate the

extendability of the trained CNN classifier to other modalities via transfer learn-

ing, e.g. from our QSM sequences to T1 or T2. It is also noteworthy that in

this work, we have only used the CNN method for segmentation. However, as

other works have demonstrated [37], the learned data representations in the last

layers of the CNN can be directly used for classification or regression of disease

parameters. This can be interleaved with segmentation, which goes far beyond

the capabilities of purely atlas-based methods.

6. Conclusion

In this work, we applied CNNs to medical image segmentation, under the

constraints of limited training data and computational resources. We performed

a large study of several CNN parameters, including architectures, patch dimen-

sionality and training set size, highlighting CNN performance given challenges

from different modalities. We proposed Hough-CNN, a patch-wise multi-atlas

method which implicitly encodes priors on anatomic shape and context. The

method outperformed voxel-wise semantic segmentation of CNNs in all param-

eter settings, while using less training data and delivering smooth segmenta-

tion contours without the need for post-processing. The method is modality-

independent and scalable to multiple regions and harnesses the impressive clas-

sification power of CNNs and Deep Learning for application in clinical settings.
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