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Abstract

Skeletons are notoriously sensitive to contour noise, and an effective filtering
scheme is needed in any practical situation where skeletons are involved. In
this article, we introduce a new discrete framework that allows us to define
and compute families of filtered Euclidean skeletons, in 2D as well as in 3D or
higher dimensions. We prove several properties of our skeletonization scheme, in
particular the preservation of topological characteristics and the stability with
respect to parameter changes.1

Keywords: skeleton, medial axis, pruning, Euclidean distance, topology
preservation, topological map, cubical complex, collapse, stability

Skeleton is one of the most studied and used concepts in pattern recognition
and analysis. Since its introduction by H. Blum in the sixties [10], it has been the
subject of hundreds of publications dealing with both practical and theoretical
aspects. Indeed, despite the simplicity of its most common definition, as the set
of all centers of maximal included balls, its use in real applications often raises
difficult problems.

These difficulties are mainly due to two distinct issues.

First, the nice properties of skeleton that can be proved in the continu-
ous framework (uniqueness, thinness, homotopy equivalence, invariance w.r.t.
isometries) [28, 25] do not all hold in discrete grids which are commonly used
in image processing. Considerable effort has been devoted to design discrete
skeletonization methods that aim at retrieving these properties, at least par-
tially. These methods find their roots in different frameworks: discrete ge-
ometry [11, 23, 27, 32, 24|, digital topology [19, 40, 39, 31|, mathematical
morphology [33, 37], computational geometry [2, 3, 29|, and partial differential
equations [35]. Recent surveys of the state of the art in skeletonization may be
found in [17, 36, 8, 9].

IThis work has been partially supported by the “ANR-BLANO07-2 184378 MicroFiss”
project and the “ANR-2010-BLAN-0205 Kidico” project.
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Second, even in the continuous framework the skeleton suffers from its sensi-
tivity to small contour perturbations, in other words, its lack of stability. A re-
cent survey [1] summarizes selected relevant studies dealing with this topic. This
difficulty can be expressed mathematically: the transformation which associates
a shape to its skeleton is only semi-continuous. This fact, among others, explains
why it is usually necessary to add a filtering step (or pruning step) to any method
that aims at computing the skeleton. Hence, there is a rich literature devoted
to skeleton pruning, in which different criteria were proposed in order to discard
“spurious” skeleton points or branches: see [4, 29, 3, 27, 2, 38, 24, 5, 18, 26], to
cite only a few.
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Figure 1: Four criteria for filtering skeleton points: (a) radius, (b) bisector angle, (c) projection
diameter, (d) border portion length.

Fig. 1 illustrates the four most popular ones among these criteria. Consider
a skeleton point and its corresponding maximal ball (or disc in 2D), the most
obvious criterion is based on the radius of this ball (a): the skeleton point is
filtered out if this radius is beyond a given threshold. For defining the second
criterion (b) and the following ones, we have to consider the projections of the



skeleton point on the object boundary, that is, the contact points between the
corresponding maximal ball and the boundary. The angle formed by these pro-
jections and the skeleton point as vertex, called bisector angle by some authors,
also constitutes an effective filtering criterion [39, 18].

If we consider now the distance between the projected points, when there
are only two of them, or more generally the diameter! of the smallest ball that
contains all these points (see Fig. 1(c)), we obtain the parameter A studied
by F. Chazal and A. Lieutier [14], which has interesting properties in relation
with stability. These authors introduced a particular class of filtered skeletons,
called A-medial axes, and they proved that small perturbations (in the sense of
the Hausdorff' distance) of the shape provoke only small perturbations of the
skeleton, except for some critical values of A\. A discrete version of the A-medial
axis has been introduced and studied in [13], where its robustness to noise and
its low sensitivity to rotations have been shown experimentally.

However, there are applications where the presence of the critical values of A
is prohibitive. It is the case when the needed filtering level is equal to, or close
to a critical value. In such situations, small changes of the filtering parameter
may result in changes of the topological characteristics (e.g. the connectedness),
or in sudden elimination or apparition of skeleton branches.

Let us illustrate this problem with the help of Fig. 2. In Fig. 2(a), we see
that the parameter value A = 2 is not sufficient to filter out spurious branches
of the A-medial axis. However if we set A = 3, we loose a big and meaningful
skeleton branch, whereas some spurious branches are still present.

Figure 2: (a) A shape and its A-medial axis, with A = 2. (b) Idem, with A = 3.

In 2D, this problem may be avoided by using a fourth criterion, which con-
sists of measuring the length of the portion of the object boundary between the
projected points, as illustrated in Fig. 1(d). Based on this idea, several meth-
ods have been proposed: hierarchic skeletons [29], veinerization [30], multiscale
skeletons [21]. The parameter for these methods is a threshold value for the
border portion length criterion. It can be easily seen that small variations of

LEquivalently, one can consider the radius instead of the diameter.



this parameter do not provoke big changes in the obtained result, contrarily to
what happens with the parameter .

Using any of these four criteria, one obtains for any object a family of nested
skeletons, indexed by parameter values. Another way of seeing this family, is
to consider the function that associates, to each object point, the value of the
considered criterion. For example, the function on which is based the A\-medial
axis is called PR (for Projection Radius) in this article. Final skeletons are
obtained as level sets (i.e., thresholds) of this function (see Fig. 6).

The aim of this article is to formalize and generalize, in a discrete framework,
the approaches based on the fourth criterion (border portion length), for they
provide the best stability with respect to variations of the filtering parameter.
The method of R.L. Ogniewicz and O. Kiibler [29] is defined in the framework of
the 2D constinuous plane, more precisely it applies to (sets of) planar polygons,
and the resulting skeletons are made of straight line segments. These skeletons
are proved to be homotopy-equivalent with inital objects, however if one needs
to discretize these skeletons in Z?2, one looses this property. On the other hand,
the methods proposed by M. Pierrot-Deseilligny et al. [30] and A.X. Falcao
et al. [21] are defined in the 2D square grid. However [30] does not provide an
algorithm to compute skeletons in practice, and the algorithm proposed in [21]
does not guarantee topology preservation. To the best of our knowledge, these
methods have not been extended to the 3D space until now.

The discrete objects that we consider in this article are cubical complexes,
that is, they are sets of elements of different dimensions (points, segments,
squares, cubes, etc) that are glued together according to certain rules (see
Sec. 1). We consider here 2D and 3D cubical spaces, however our approach
extends easily to any finite dimension.

The first step of our skeletonization scheme consists of a directional parallel
thinning (Sec. 4), guided by the priority function PR (Sec. 3), and based on the
operation of collapse (Sec. 2). Collapse is an elementary topology-preserving
transformation which is a discrete analog of a continuous deformation (a homo-
topy). From the collapse sequence produced by this step, we derive an acyclic
graph, which we call a flow graph (Sec. 4).

In Sec. 6, we introduce the notion of topological map (based on a flow graph).
A topological map is a function, defined on the elements of a cubical complex,
that is a particular case of a discrete Morse function [22]. We show that any
threshold of a topological map derived from an object X has the same topology
as X (Th. 12).

In Sec. 7 we propose a method for computing topological maps that are
based on different measures of shape characteristics, such that the one of border
portion length. In fact, any conceivable measure may be used at this step, we
indicate several meaningful examples. The validity of this method is established
by Prop. 17.

Our new skeletonizon scheme consists of computing a topological map M,
using the tools described above, and thesholding it at any desired level. We prove
the property that, for threshold values that are close to each other, the resulting



filtered skeletons are also close to each other?, with respect to the Hausdorff
distance (Th. 14). This property establishes the stability of our method w.r.t.
the parameter value.

In Sec. 9, we give some experimental results and comparisons with other
methods of the same class. Unlike former approaches to define and compute
hierarchic or multiscale skeletons, our method also applies to 3D objects for
obtaining curvilinear skeletons (Sec. 10).

1. Cubical complexes

In this section, we recall briefly some basic definitions on cubical complexes,
see also [7, 6] for more details. We consider here n-dimensional complexes,
mainly with 0 < n < 3.

Let S be a set. If T is a subset of S, we write T'C S. We denote by |S| the
number of elements of S.

Let Z be the set of integers. We consider the families of sets F§, F1, such
that F} = {{a} | a € Z}, F} = {{a,a+ 1} | a € Z}. A subset f of Z", n > 2,
which is the Cartesian product of exactly m elements of F} and (n—m) elements
of F} is called a face or an m-face in Z", m is the dimension of f, we write
dim(f) = m.

Observe that any non-empty intersection of faces is a face. For example, the
intersection of two 2-faces A and B may be either a 2-face (if A = B), a 1-face,
a 0-face, or the empty set.

We denote by F™ the set composed of all faces in Z™. An m-face is called a
point if m = 0, a (unit) edge if m =1, a (unit) square if m = 2, a (unit) cube
if m=3.

Let f be a face in F”. Weset f ={geF"| g C f} and f* = f\ {f}.

Any g € f is called a face of f-
We call star of f the set f = {g € F" | f C g}, and we write f* = f\ {f}: any
element of f is a coface of f. It is plain that g € f iff f e g.

A finite set X of faces in F" is a complex (in F™) if for each face f € X,
we have f C X. See in Fig. 3(d) an example of a complex, and in Fig. 3(b,c)
examples of sets of faces that are not complexes.

2. Collapse

The collapse operation is an elementary topology-preserving transformation
which has been introduced by J.H.C. Whitehead [41] and plays an important role
in combinatorial topology. It can be seen as a discrete analogue of a continuous
deformation (a strong deformation retract). Collapse is known to preserve the
homotopy type.

2in the sense of Lipschitz continuity
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Figure 3: (a) Four points in Z2: = = (0,1); y = (1,1); z = (0,0); ¢t = (1,0). (b) A
graphical representation of the set of faces { fo, f1, f2}, where fo = {z} = {0} x {0} (a 0-face),
f1 =A{=z,y} = {0,1} x {1} (a 1-face), and f2 = {z,y, 2,t} = {0,1} x {0,1} (a 2-face). (c) A
set of faces that is not a complex. (d) A set of faces that is a complex.

Let X be a complex in F" and let (f,g) € X2. If f is the only face of X
that strictly includes g, then ¢ is said to be free for X and the pair (f,g) is
said to be a free pair for X. In other terms, (f, g) is a free pair for X whenever
g* N X = {f}. Notice that, if (f,g) is a free pair, then we have necessarily
dim(g) = dim(f) — 1.

Let X be a complex, and let (f,g) be a free pair for X. Let m = dim(f).

The complex X \ {f, g} is an elementary collapse of X, or an elementary m-
collapse of X.
Let X, Y be two complexes. We say that X collapses onto Y, and we write
X N\ Y,if Y = X or if there exists a collapse sequence from X to Y, i.e.,
a sequence of complexes (Xo,..., X¢) such that Xo = X, X, = Y, and X;
is an elementary collapse of X;_1, for each i € {1,...,¢}. See Fig. 4 for an
illustration. Let J = ((f;,9i))¢_; be the sequence of pairs of faces of X such
that X; = X;-1 \ {fi, 9}, for any i € {1,...,¢}. We also call the sequence J a
collapse sequence (from X to Y ).

X X1 Xo

Figure 4: X: a 2-dimensional complex. X7i: a complex such that X collapses onto X1; a
free pair composed of a square and an edge has been removed. X32: a complex such that X;
collapses onto X2; (a free pair composed of an edge and a vertex has been removed), hence
X collapses onto Xo.

Let us now state an elementary property of collapse, which gives a necessary
and sufficient condition under which two collapse operations may be performed
in parallel (or in any order) while preserving topology.

Proposition 1. Let X be a complex, and let (f,g) and (k,0) be two distinct
free pairs for X. The complex X collapses onto X \ {f,g,k,¢} if and only if
| # k. In this case, ((f,9),(k,0)) and ((k,?),(f,g)) are both collapse sequences
from X.



Proof. If f =k, then it is plain that (k,¢) is not a free pair for Y = X \ {f, g}
as k= f ¢ Y. Also, (f,g) is not free for X \ {k,¢}. If f # k, then we have
g# 0, * N X ={f} (gis free for X) and /* N X = {k} (£ is free for X). Thus,
we have £* NY = {k} as £ # g and k # f. Therefore, (k, /) is a free pair for V.
The same reasonning shows that (f,g) is a free pair for Y’ = X \ {k,¢}. O

From Prop. 1, the following corollary is immediate.

Corollary 2. Let X be a complex, and let (f1,91)--.(fm,gm) be m distinct
free pairs for X such that, for all a,b € {1,...,m} (with a #b), fo # fo. The
complex X collapses onto X \ {f1,91--. fmsGm}-

The corollary (Cor. 4) of the following property will be useful in the sequel.

Proposition 3. Let J = ((fi,9i)){_, be a collapse sequence from a complex X
to a complexY . Let j € {2,...,0} such that (f;,g;) is free for X. Let J' denote
the sequence obtained from J by swapping pairs j — 1 and j, more precisely,
I = ((f,90))iey with i = fi—1,9; = gj—1, fi_y = fi.9j—1 = gj, and for all
ie{l,....03\{y, 7 — 1}, fl = fi and g; = g;. Then, the sequence J' is also a
collapse sequence from X to Y.

Proof. We set X! = X/_\{f/,¢;} and X; = X;_1\{fi,9:}, foralli € {1,...,¢},
and X} = Xy = X. Obviously, we have X/ = X, for all i € {0,..., ¢} \ {j — 1},
thus we only have to prove X,;_o \, Xj';1 N X;. We know that (fj_1,g;-1) is
free for X,;_» (since J is a collapse sequence), and that (f;, g;) is free for X,
(since it free for X'), hence X;_o \, X;_l. Furthermore, f;_1 # f; because both
pairs are in the collapse sequence J. By Prop. 1, we deduce that (f;—1,g;-1) is
free for X; 2\ {fj,9;} = Xj_, hence X}, \, X;. O

Corollary 4. Let J = ((fi,9:))¢_, be a collapse sequence from a compler X to
a complex Y. Let j1,...,5, € {1,...,£} be distinct indices such that (f;,,g;,)
is free for X for any i € {1,...,k}. Let J' denote the sequence obtained from
J by shifting pairs j; to the beginning of the sequence, more precisely, J =
(fl,g0))e_y with fl = f,,g; = gj, for all i € {1,...,k}, and the other pairs of
J' are the remaining pairs of J left in the same order. Then, the sequence J' is
also a collapse sequence from X to Y.

3. The discrete A-medial axis and the projection radius map

The original definition of the A\-medial axis (see [14]) holds and makes sense
in the (continuous) Euclidean n-dimensional space. The definition of a discrete
A-medial axis (DLMA) in Z™ is given in [13], together with an experimental
evaluation of its stability and rotation invariance.

Notice that the DLMA applies on a digital image (i.e., a subset of Z™), not
on a complex. However, the bijective correspondance between elements of Z"
and n-faces in F™ allows us to use the DLMA and related notions in the context
of cubical complexes.



Let x = (z1,...,20),y = (Y1,---,yn) € R, we denote by d(z,y) the Eu-
clidean distance between z and y, in other words, d(z,y) = (31—, (yx — z)2)2.
Let S C R", we set d(y, S) = minges{d(y,x)}.

Let # € R",r € RT, we denote by B, (z) the ball of radius r centered on x,
defined by B, (z) = {y € R™ | d(z,y) < r}.

Let S be a nonempty subset of R™, and let x € R™. The projection of x
on S, denoted by IIg(z), is the set of points y of S which are at minimal
distance from x ; more precisely,

Ms(x) ={y e S|Vze S, dy,z) <d(z,x)}.

Let X be an open bounded subset of R”, and let A € RT. We denote by X
the complement set of X, i.e., X = R™\ X. The \-medial azis of X is the set
of points @ in X such that the radius of the smallest ball that includes IT(z)
is not less than A (see Fig. 5).

’

Figure 5: Illustration of the A-medial axis. Left: Points x,z’ and z’ and their respective
closest boundary points. Top right: A-medial axis with A = ¢, a very small positive real
number. Bottom right: A-medial axis with A = d(a’,?’) + €.

For each point « € Z", we define the direct neighborhood of x as N(z) =
{yez" |d(z,y) <1}

Transposing directly the definition of the A-medial axis to the discrete grid
Z" would yield unsatisfactory results (see [13]), this is why we need the following
notion. Let S C Z", and let # € S. The extended projection of x on S (where
S =127"\S), denoted by 115 (), is the union of the sets IIg(y), for all y in N(x)
such that d(y, S) < d(z, S).

Let S be a finite subset of Z", and let A € RT. We define the function PRg
which associates, to each point x of S, the value PRg(x) that is the radius of
the smallest ball enclosing all the points of the extended projection of  on S.
In other terms, PRg(z) = min{r € R* | 3y € R", B,(y) 2 [&(x)}, and we
call PRg(x) the projection radius of x (for S). The discrete \-medial axis of S,
denoted by DLM A(S, \), is the set of points x in S such that PRg(x) > .

In Fig. 6, we show the function PRg and three examples of DLMAs of a
shape S. Note that the function PRg can be computed once and stored as
a grayscale image, and that any DLMA of S is a level set of this function at
a particular value A. Notice also that DLMA has not, in general, the same
topology as the original shape. For more details, illustrations and performance
analysis, see [13].



(a)

Figure 6: (a) The function PRg superimposed to the shape S. Darkest colors represent
highest values of PRg(xz). Any DLMA of S is a level set of this function at a particular
value \. (b,c,d) Discrete lambda-medial axis with XA = 10, 30, 45 respectively.

4. Guided collapse and flow graph

In this section we introduce a thinning scheme that produces a collapse
sequence, based on an arbitrary priority map (e.g., a distance map or a projec-
tion radius map). The general idea of guided thinning is not new: it has been
used by several authors to produce skeletons based on the Euclidean distance
[19, 40, 39, 31], and consists of using the priority function in order to specify
which elements must be considered at each step of the thinning. Here, we com-
bine this general idea with a parallel directional collapse algorithm introduced
in [12], in order to minimize the number of arbitrary decisions. When several
elements share the same priority, which may occur quite often, we remove in par-
allel all such elements that satisfy a condition based on direction and dimension.
All directions and dimensions are successively explored.

First, we need to define the direction of a free face. Let X be a complex in
F™ let (f,g) be a free pair for X. Since (f,g) is free, we know that dim(g) =
dim(f)—1, and it can be easily seen that f = gUg’ where ¢’ is the translate of g
by one of the 2n vectors of Z" with all coordinates equal to 0 except one, which
is either +1 or —1. Let v denote this vector, and c its non-null coordinate. We
define Dir(f,g) as the index of ¢ in v, it is the direction of the free pair (f,g).
Its orientation is defined as Orient(f,g) =1 if ¢ = +1, and as Orient(f,g) =0
otherwise.

Considering two distinct free pairs (f,g) and (¢, ) for a complex X in F"
such that Dir(f,g) = Dir(i,j) and Orient(f,g) = Orient(i,j), we have f # i.
From this observation and Cor. 2, we deduce the following property.

Corollary 5. Let X be a complex in F", and let (f1,91),...,(fm,9m) be m
distinct free pairs for X having all the same direction and the same orientation.
The complex X collapses onto X \ {f1,91,- - fm>Gm}-



Now, we are ready to introduce algorithm 1. The symbol + is used to denote
the action of appending an element at the end of a sequence.

Algorithm 1: GuidedCollapse(X, P)

Data: A cubical complex X in F", and a map P from X to R (priority
map)

LT = (s R={(p, /,9) | () is free for X, p = max(P(f), P(9))};
2 while R # () do
3 | m=min{p|(p,.,.) € R Q@={(m,.,.) € R}; R=R\Q;
1 | L={(f,9)1(.f,9)€Q}
5 fort=1—n // direction do
6 for s=0—1 // orientation do
7 ford=n—1 // decreasing dimension do
8 T={(f,9) € L|(f,g)is free for X,
Dir(f,g) = t, Orient(f, g) = 5, dim(f) = d};
0 X = X\T;
10 foreach (f,g) € T do
11 J=J+(f9);
12 foreach pair (i,j) with j € f* that is free for X do
1 p = max(P(i), P(j));
14 if p<mthen L =LU{(i,j)};
15 R=RU{(pi, )}

16 return J;

Based on Cor. 5, the following property is straightforward.

Proposition 6. Whatever the complexr X and the map P from X to R, X
collapses onto GuidedCollapse(X, P).

Algorithm GuidedCollapse may be implemented to run in O(N log N) time
complexity, where N denotes the cardinality of X, using a balanced binary tree
data structure (see [16]) for representing the set R. For this evaluation, we con-
sider the dimension of the complex as a constant (usually 2 or 3). Consequently,
all local operations (such as the selection of neighboring pairs at line 12, and
the test that determines whether a pair is free or not) may be done in constant
time. The management of R (lines 1, 2, 3, 15) has a cost in O(log N) for each
operation. Remark that the contents of 1" at different iterations form disjoint
sets, thus the cumulated cost of lines 8-15, during the whole execution of the
algorithm, is not greater than O(N log N). The same can be said for the set L
and lines 4-15.

To conclude this section, we introduce the notion of a flow graph associated
to a given collapse sequence.

A (finite directed) graph is a pair (V, E) where V is a finite set and E is a
subset of V' x V. An element of V is called a vertex, an element of F is called

10



an arc. A path in (V,E) is a sequence (v;)¢_, of vertices such that ¢ > 0 and
for all i € {1,...,¢}, we have (v;_1,v;) € E. The number ¢ is the length of the
path. If £ = 0 the path is said trivial. If vy = v, the path is a cycle. The graph
is acyclic if it does not contain any non-trivial cycle.

Definition 7. Let X be a complex and J = ((fi,9:))¢_, be a collapse sequence
from X. For any k € {1,....0}, £ >0, we set Xp = X \ {fi,q:}F_,. We set

¢ N

By = {(gi, fi)}iey and B2 = Uy {(fr.9) | 9 € fr N Xy}

The flow graph associated to J is the (directed) graph whose vertex set is X
and whose edge set is £ = FEy U FEs.

This definition is illustrated in Fig. 7. It can be easily seen that, whatever
the complex X and the collapse sequence J from X, the flow graph associated
to J is acyclic.

et 440, A%, AL,
e 36 ?57 v{755 ?55 v{754 ‘{7122 89 | 10210646, |
e A0 Lo 60 . 121 ‘*‘ ,}«1054 84,
Lo 39 o 59 . a19f12327 19 | 66 73
oAl o 61 120 86 ‘{3 ,}«594‘
Lo 37 Lo 58 . l1afi2a83 | 16|
2 B2, A2 96, 85

53 50 ?uegg_ 20

L 38 e 67 74
ot b Ll d [l
Le10 [ 30 ?127_3;_ as,|

-} ce3l 63, 48,

65 ?75 v{'zz 2 ?m 51 52

80, BL.
Lo 649817, 5 7 6 _'}__113?1302%_ v{724 ?25 v{722 T8 ?92 82,]

eedl . o 720 93 e 118 ie104) 97, 94 88|

e 8 211 L7790 2 4 3 ,,}__112?131%91 ,,}__103?107_;;_

NPT I DY N I N e e

P

(b)

Figure 7: (a) A collapse sequence J. Each pair (f;, g;) of J is depicted by an arrow from g;
to f;. The numbers indicate the indices of the pairs in J. (b) The flow graph associated to J.

In Fig. 8 we illustrate flow graphs associated with collapse sequences that
were obtained by the above algorithm using two different priority maps. For the

11



sake of readability, we only display a spanning directed forest (which is a tree,
in this case) extracted from the flow graph. For Fig. 8(d), the priority map is
the Euclidean distance map displayed in Fig. 8(b), and for Fig. 8(e), the priority
map is the projection radius map displayed in Fig. 8(c). We observe that each
branch of a A-medial axis (level set of Fig. 8(c)) corresponds, roughly speaking,
to a path in the flow graph Fig. 8(e), but this is not true if we consider the flow
graph Fig. 8(d).
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Figure 8: (a) Original object X (complex). Superimposed: centers of maximal included Eu-
clidean balls. (b) Euclidean distance map of X (named ED). (c) Projection radius map of X
(named PR). (d) Spanning forest extracted from the flow graph associated to the sequence
GuidedCollapse(X, ED). (e) Spanning forest extracted from the flow graph associated to the
sequence GuidedCollapse(X, PR).

5. Upstream of a vertex and its valuation

From now, we consider a collapse sequence J = {(f;, g:)){_, from a complex
X, and its associated flow graph (X,E = E; U Es). Using the notations of
Def. 7, any pair (f, gx) of J is free for Xj_1, and we have X = X \, ...\, X.
We define F' = {fi}!_,, G = {g;}{_; and X; = FUG.

Let € X, we denote by I'(x) the set of successors of = in the acyclic graph
(X,E), that is, I'(z) = {y € X | (x,y) € E}, and we denote by I'"!(x) the set
of predecessors of x in this graph, that is, [ ~(z) = {y € X | (y,x) € E}. We
denote by d¥(x) the outer degree of the vertex x in the graph (X, E), that is,
the number of successors of x.
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We call upstream of x the set of all vertices that are ancestors of x in the flow
graph, that is, the set U(z) = {y € X | there is a path from y to z in (X, E)}.

In a collapse sequence, certain pairs can be swapped or eliminated, yielding
another collapse sequence (see e.g. Cor. 4). Intuitively, the elements of the
upstream of a face z of X are those that must indeed be collapsed before x
can itself collapse. In Fig. 9 we show several examples of vertices and their
upstream.

4 4

Figure 9: Four vertices (white discs) and their respective upstreams (black discs), for the same
flow graph as in Fig. 7.

Let L be a map from X to RU{+4oc0}. Roughly speaking, the map L defined
below cumulates, for each vertex x, the values of L on all vertices of the upstream
of x.

Definition 8. Let L be a map from X to R U {+oc}. We define the map L
such that, for any x € X:

L) =L@+ Y  Lly)/d*(y)

yel'~1(z)

Notice that this definition is recursive, and that it makes sense since the
graph (X, E) is acyclic. Intuitively, the division by d (y) is motivated by the fact
that a value must not be taken in account several times in the sum. The values
L(z) can be computed thanks to the following recursive program (algorithm 3).

13



Algorithm 2: IntegrateRec(X,T,T~! L, R, 1)

1 if R(z) # —oo then return R(x);

2 S = L(x);

3 foreach y € I'"(z) do

4 | S=S+ (IntegrateRec(X,T,T~1, L, R,y)/IT(y)]);
R(z) = S;

6 return R(z);

S

Algorithm 3: Integrate(X,I', 7! L)

Data: X: a cubical complex; I', "~ !: the successor and the predecessor
function of a directed acyclic graph on X; L: a map from X to R;
Result: R: a map from X to R
1 foreach = € X do R(z) = —oc;
2 foreach x € X do IntegrateRec(X,I',T~!, L, R, x);
3 return R;

Observe that lines 1 and 5 of Alg. (2) ensure that at most |I'~*(z)| recursive
calls will occur for each element x, thus the overall time complexity of Alg. (3)
is in O(N + |E|), where N = |X|. Again, if we consider the dimension of the
complex as a constant (n =2 or n = 3), Alg. (3) is in O(N) since |E| < 3"N.

Two particularly simple functions L yield meaningful indicators associated
to the elements of X. Let us first consider the function L; such that Lq(z) = 1 if
dim(z) = n, and L (z) = 0 otherwise. The map L, associates, to each element
of X, the “area of U(x)” (or its volume in 3D). Now, let us consider Ly = 1p(x),
where B(X) is the set of all faces that are free for X. We call B(X) the border
of X. In other words, Ly(z) = 1 if x € B(X), and Lo(z) = 0 otherwise. The
map L, associates, to each element x of X, a measure (length in 2D, surface
area in 3D) of U(x) N B(X).

Fig. 10(a1,a2) show the maps L; and Lo respectively, for the same object
Y. The maps Ly and Ly are displayed in Fig. 10(by, bs).

6. Topological maps

In this section, we introduce the notion of topological map. A topological
map based on a collapse sequence J is a map on the elements of X that satisfies
certain conditions relative to J and its associated flow graph. Then, we prove
an important property of such maps: if M is a topological map, then any level
set of M is homotopy-equivalent to X. In Sec. 7, we will show how to build
such a map, based on any given function on X.

Definition 9. Let M be a map from X to RU {4+o00}. We say that M is a
topological map on X (based on J) if:

14



00 00 00 00 00 00 10 00 10 00

sz il sz A oo 108 oo o

00 00 Yo Yoo lo.o 00 10 o 0.0~lo.0

O'VZ'VO',Z', 'NZ'NO'O 1008 0308 o0l 10

00 00 Yo Jorlog” Jod 00 00 10 lo o 10N 0.0
o ,(’,Z, NZNO'O 100 oo dodi o 1o
oo o6 Joonlot” Jodn oo 6 Jinof oo Vi oo

(a1) (a2)

01 03 06 08 80 01 13 14 25 140

ool ombid by 1 0 1.5

01 03 of o ed Jeoloo o1 13 4 ieod2 iosdios

oo ombd Wb oo 1 0 5 1.0

01 03 i olsd oro1 o1 13 i s 101
0 ombd b oo 1 0 A 1.0
o Yo Yo o1 od 101

(b1) (b2)

L1 12 12 80 13 13 25 25 140

1717 171757.1 10 1 b s

L1 i Toonlr.a 1313 | 3 0315

1717 LZ,S“NZNM’ 173717 4 hrbd 1o

L1 i 1 JONE 13 13 i 6 1N 13
1 'VI'VZ'VI'NZ'NIO L ',l'wx',s“'w L, Lo
g A i £ i3 0f habd s

(c1) (c2)

Figure 10: (a1,a2) Maps L1 and Lo on the same complex Y. (b1, b2) Maps Zl and Zg. For
the sake of readability, only one digit after the decimal point is displayed. (c1,c2) Results S1
and S2 of the AlphaTM operator on Ly and Lg, respectively, with a = 0.1.

i) for all (g, f) in E1, M(g) = M(f); and
it) for all (f,g) in Ea, M(g) > M(f); and
iii) for all g in X \ X, M(g) = +o0.
Let « be a positive real number. If we replace ii) with the stronger require-
ment:
ii’) for all (f,g) in B2, M(g) > M(f) +«a,
then we say that M is an a-topological map on X (based on J).

The notion of topological map is inspired from the one of discrete Morse
function (see [22]). A topological map can be seen (apart from the infinite
values) as a particular case of discrete Morse function, and Th. 12 could also be
proved using results of [22]. However as the proof is short we include it for the
sake of self-containedness.

15



Figure 11: A 1-complex X, a flow graph on X (black arrows for arcs of E1, red arrows for
arcs of F2), and a (1-)topological map M on X (numbers).

Let A € RU {+oo}, we define My = {z € X | M(z) > A}, the (upper)
level set of M at level A\. The main property of a topological map M is that any
level set of M is homotopy-equivalent to X, as implied by the following theorem
(Th. 12, see Fig. 12 for an illustration). The two next propositions will be used
for proving it.

Proposition 10. Let (gx, fx) € E1. For all ¢ in fk* such that ¢ # g, we
have (fx,q") € Es.

Proof. We know that (fx, gx) is free for Xj_1, implying that Xj;_; is a complex

and that f € Xj_1, hence f, € Xj_1. Since X = X1 \{fr, 9r} and ¢’ # gx,
by definition of F2 we have (fx,g’) € Eo. O

Proposition 11. Let M be a topological map on X, based on J. Let s =
min{M(z) |z € X}. If s < +oo, let t = min{M(z) | z € X and M(z) > s},
otherwise let t = +oco. Then, X collapses onto M;. Moreover, M (restricted to
the elements of M;) is a topological map on M;.

Proof. If s = +00 then the property trivially holds, let us assume s < +o00. Let
S = {(zi,y:)}¥_, be the set of all pairs of E; such that M(z;) = M(y;) = s.
By definition of ¢, all elements of X \ M; are in these pairs. Let (z,y) be any of
these pairs, and let (f;, g;) denote the pair of J such that f; = y and g; = =.
We know that = C y.

We claim that (y,x) is free for X. To prove this, suppose that y’ is a face of
X such that ¢ #y and x C y'. As (y,z) = (f;,9;) is free for X;_;, we deduce
that there exists a pair (f¢, g¢) in J such that £ < j and fy = y/. Let 2/ = g,.
Thus (2/,y') € E1, and by Prop. 10 we have (y',z) € Es, hence M (z) > M(y'),
in contradiction with the definition of s and S.

This proves that all pairs (y;,2;) in S are free for X. As all these pairs
appear in the collapse sequence J, we know that all y; are distinct faces of X,
and by Cor. 2 we conclude that X collapses onto M;.

The fact that M is a topological map on M, is a consequence of Cor. 4. [

Th. 12 is a straightforward consequence of Prop. 11.

Theorem 12. Let M be a topological map on X. Whatever the number A €
R U {400}, the complex X collapses onto M.
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Figure 12: Level sets of the topological map M of Fig. 11 at levels 1, 3, 7 and 9.

The next theorem (Th. 14) expresses the stability of our skeletonization
scheme, with respect to the variations of the filtering parameter.

Let S, T be two subsets of R”. We set

H(S|T) = max{min{d(s,t)}},
and dy(S,T) = max{H(S|T), H(T|S)} is the Hausdorff distance between S
and T.

Let X be a complex in F", we denote by S(X) the union of all faces of X,
called the support of X. For comparing two complexes X and Y, we consider
the Hausdorff distance between their supports S(X) and S(Y').

The following property follows easily from the definitions.

Proposition 13. Let Y be a complex, let S be a set of pairs that are free forY,
and let Z be the set of all faces that are in the pairs of Y. Then, dy(S(Y),S(Y'\
7)) < 1.

The proof of Th. 14 is quite similar to the one of Prop. 11.

Theorem 14. Let a, A € R, a > 0, A > 0. Let k € N. Let M be an a-
topological map on X. Then, dg(S(My),S(Mxtka)) < k.

Proof. Clearly if the property holds for £ = 1, it also holds for any k. We
assume now that £ = 1. If A = +oo then the property trivially holds, let us
assume A < +oo. Let S = {(z;,v:)}F_, be the set of all pairs of F; such that
A< M(z;) = M(y;) < A+ a. Let (z,y) be any of these pairs, and let (f;,g;)
denote the pair of J such that f; = y and g; = . We know that = C y.

Suppose that y’ is a face of M) such that ¢y’ # y and « C 3. As (y,x) =
(fj,9;) is free for X;_1, we deduce that there exists a pair (fr,g¢) in J such
that ¢ < j and fy = ¢'. Let 2’ = go. Thus (2/,y’) € Eq, and by Prop. 10 we
have (y',z) € Ea, thus M(x) > M(y') + «, hence M(y') < M(z) —a < A, in
contradiction with the fact that 3’ belongs to M.

This proves that all pairs (y;,z;) in S are free for M), and by Prop. 13, we
deduce the result. [J
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7. Topological map induced by an arbitrary map

In this section, we show that given any map L on X, we can define and
compute a topological map that is “close to” L, more precisely it is the lowest
map above L that is a topological map.

Definition 15. Let L be any map from X to RU{+o0}, and let a be a positive
real number. We consider a map M such that:
a) M is an a-topological map; and
b) for all f in Xy, M(f) > L(f); and
¢) M is minimal for conditions a) and b), that is, any map M’ verifying both
a) and b) is such that M' > M.

As stated by the following property, M is uniquely defined. We say that the
map M is the a-topological map induced by L.

Proposition 16. Let M and M’ be two maps that verify conditions a), b) and
¢) of Def. 15. Then, we have M = M’.

Proof. Since for any couple (x,y) of E1 we have M(z) = M(y) and M'(z) =
M'(y), we observe that either M and M’ are equal, or they differ on a certain
number of couples of E;. Suppose that (x,y) is a couple of E; such that M’(x) #
M (z). Without loss of generality, we assume that (1) M'(z) > M(z) (hence
also M'(y) > M(y)), and (2) no face z of X verifies both M'(z) # M(z) and
M'(z) < M'(z).

Consider the map M" such that M"(z) = M"(y) = M(z) = M(y), and
Vz € X \ {z,y}, M"(z) = M'(z). Obviously M" verifies condition b) above.
We claim that M" is an a-topological map, contradicting the minimality of M’;
proving this claim will achieve the proof.

Conditions i) and iii) of Def. 9 are easily verified. Condition ii) must only
be checked for arcs adjacent to x and y, since for all other arcs, M and M’
coincide.

If (z,2) is an arc of E then necessarily (z,2) € Ey. We have M'(x) >
M'(2) + «, hence M'(z) < M'(z) and by (2), M'(z) = M(z). We also have
M(z) > M(z) 4+ «, and by definition of M"” we deduce M" (x) > M"(z) + a.

If (y, z) is an arc of E then necessarily (y, z) € E2. We have M'(z) > M'(y)+
«. By definition of M"”, we know that M'(z) = M"(z) and M (y) = M"(y); and
by (1), M'(y) > M"(y). From all this we conclude that M"(z) > M"(y) + «
]

This notion is illustrated in Fig. 13. Below, we give an algorithm that
computes the a-topological map induced by any given map on X. Before this,
let us recall briefly the notions of rank and topological sort (an introduction to
topological sort, including definition, properties and algorithm, can be found,
e.g., in [16]). Let G = (V, E) be an acyclic graph and let = € V, the rank of
in G is the length of the longest path in G that ends in x. The topological sort
of G is an operation that results in a partition {V"}"=F of V such that each V"
is the subset of V' containing all vertices of rank 7.
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Figure 13: (a) A map L on the complex X of Fig. 11. (b) The 1-topological map induced by
L.

Algorithm 4: AlphaTM(X, Ey, Es, L, @)
Data: A complex X, the arc sets Fy, Es of a flow graph on X, a map L
from X to R, a real number a > 0
1 foreach x € X do
if x does not appear in Fq U E5 then

| M(z) = 4o0;
else
| M(z) = L(z);

[

Let {X"}"=k be the result of the topological sort of the acyclic graph
(X, E1 U Ey);

3 forr=0—Fk do
4 foreach x € X" do
5 foreach y such that (y,z) € E; do
L M(y) = M(z) = max{ M (z), M(y)};
6 foreach y such that (y,z) € E2 do

L M(z) = max{M(z), M(y) + a};

7 return M,

Proposition 17. Let M be a map from X to R, and let « be real number, o > 0.
The result of Alpha TM(X, Ey, Eo, M, &) is the a-topological map induced by M.

Proof. Condition iii) of Def. 9 is ensured by line 1. In lines 3-6, each vertex of the
flow graph is examined exactly once, and, due to the order of scanning (lines 3,4)
and by definition of topological sort, the final values M (y) of all predecessors y
of the current vertex x have been computed before it is examined. For vertices
that have no predecessor, the output value of M is equal to the input value.
Otherwise, lines 5 and 6 ensure that conditions i) and ii’) of Def. 9 hold. By
construction, the minimality of M is guaranteed. [J

Let N = |X| and M = |E; U E3|. The time complexity of the topological
sort is in O(N + M) (see [16]). Since the sets X" form a partition of X, the
overall time complexity of Alg. (4) is also in O(N + M), and in O(N) if the
dimension of the complex is considered as a constant (n = 2 or n = 3).
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8. Computing hierarchic skeletons

Let us now summarize our method to produce families of filtered homotopic
skeletons (see algorithm 5). It is assumed here that X is a pure n-complex in
F™, that is, a complex in which each face is included in an n-face.

Algorithm 5: TopoMap(X, L, )
Data: A complex X, a map L on X, a real number «

1 Let P be the projection radius map of X (see Sec. 3);

2 Let J = GuidedCollapse(X, P) (see Sec. 4);

3 Let (X, E = E; U F») be the flow graph associated to .J, and let I, ~*
be the successor and predecessor functions of this graph (see Sec. 4);

4 Let L = Integrate(X,T,T~1 L) (see Sec. 5);

5 Let M = AlphaTM(X, Ey, Es, L, o) (see Sec. 7);

6 return M,

First, we compute the projection radius map (Sec. 3) on the n-faces of X,
and extend it to the other elements of X (if y € X is not an n-face, then we set
P(y) to the max of P(x;) where the z;’s are all n-faces that include y).

Using algorithm 1 (Sec. 4) we build a collapse sequence and a flow graph
on X.

By construction, the upstream (Sec. 5) of any vertex x of this flow graph
is composed by elements of X that, in any family of filtered skeletons, should
disappear before x does.

Integrating information given by map L (Sec. 5) allows us to associate, to
each element x of X, a value Z(x) that represents a measure of the upstream of
2. The lower this value, the sooner the point x may disappear.

Then, thanks to algorithm 4 (Sec. 7), we produce a topological map M
based on this measure. Thanks to Th. 12, we know that any level set of M
is homotopy-equivalent to X. Therefore, filtered (i.e., pruned) skeletons are
obtained by thresholding the map M ; lowest levels of threshold correspond to
highest levels of detail. Some results are shown in Fig. 14 and Fig. 15, using
map Lo.

Another interesting map is L3, which associates to each point x of X the
bisector angle of z, that is, the maximal angle arb with a,b any two points in
the extended projection of z on X (see [18]). In the next section, we will see
that L3 yields particularly good results.

According to the time complexity evaluation of previous algorithms, the
overall time complexity of Alg. (5) is in O(N log N), where N = | X]|.

9. Quality assessment and comparisons

In order to assess the quality of the produced skeletons, and to compare
them to those obtained by other methods, we use stability w.r.t. rotations as
our quality criterion, following a methodology introduced in [13].
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Figure 14: Two renderings of the result of the TopoMap operator, on the same object X as in
Fig. 6 and the map Lo.

(a) (b) ()

Figure 15: (a,b,c) Three level sets of TopoMap(X, L2), at values 25, 48 and 72, respectively.

Rotation invariance is an important property of skeleton that holds in the
continuous framework. If Ry denotes the rotation of angle 6 and center 0, and
S denotes the skeleton transform, the rotation invariance property states that
S(Re(X)) = Re(S(X)), whatever X and 6.

In a discrete framework, this property can only hold for particular cases (e.g.,
when 6 is a multiple of 90 degrees). Nevertheless, we can experimentally measure
the dissimilarity between S(Rg(X)) and Ry(S(X)) for different instances of X
and #, and different definitions of skeleton. The lower this dissimilarity, the
more stable under rotation the method is.

Let us now describe more precisely the methodology that we used for this
experimental evaluation.

Let X be a finite subset of Z™. Notice that a cubical complex has a natural
embedding in Z™ and can thus be treated as a point set. Let Y C X, we set
RDTx(Y) = U,y B;(y,Y) (y), where B(z) = {y € Z" | d(z,y) < r}. The
transformation RDTx is sometimes called reverse distance transform [15].

It is well known that any object can be fully reconstructed from its medial
axis, more precisely, we have X = RDTx(Y) whenever Y is the the set of all
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centers of maximal balls of X. However, this is no longer true if we consider
filtered skeletons.

Then, it is interesting to measure how much information about the original
object is lost when we raise the filtering parameter. Considering a skeletoniza-
tion procedure Sy where A is the only parameter, we set

_ X\ RDTx(S\(X))|

In words, px(\) is the area of the difference between X and the set recon-
structed from its filtered skeleton, divided by the area of X. We call px(\) the
(normalized) residual (of X, corresponding to filtering value ).

Obviously, for different skeletonization methods the filtering parameter does
not play the same role. To ensure a fair evaluation we will compare the results
of different methods for approximately equal values of their residuals, rather
than for equal values of their parameters.

For comparing shapes or skeletons, we use the Hausdorff distance (see Sec. 6),
and also a dissimilarity measure proposed by M.P. Dubuisson and A.K. Jain [20]
as an alternative to the Hausdoff distance. The drawback of Hausdorff distance
for measuring shape dissimilarity is its extreme sensibility to outliers, the latter
measure avoids this drawback.

Let X,Y be two subsets of R"™. We set

D(X|Y) = |71| > min{d(z, y)},
rzeX

and dp(X,Y) = max{D(X|Y),D(Y|X)} is the Dubuisson and Jain’s dissimi-
larity measure between X and Y (called dissimilarity in the sequel for the sake
of brevity).

We conducted our experiments on a database of 216 shapes provided by
B.B. Kimia [34]. The 216 images are divided into 18 classes (birds, cars, etc.),

Fig. 16 shows one (reduced) image of each class.

Figure 16: A sample of the 216 shapes of Kimia’s database.

A

killl..

In those experiments, we compare three variants of our method, and two
other methods which are, to the best of our knowledge, among the best ones in
regard to the stability criterion which is our main concern in this work. More
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precisely, we compare:

a) Our method, using the map L, as described in section 5 (area indicator);
b) Our method, using the map Lo as described in section 5 (border indicator);
¢) Our method, using the map Lg as described in section 5 (bisector angle);

d) A homotopic thinning procedure by iterative simple point removal, guided
by a priority function which is the PR map, and constrained to preserve the
points belonging to the A-medial axis;

e) The skeletonization method proposed by R. Ogniewicz, using the implemen-
tation that can be found in the Stony Brook Algorithm Repository?.

1% 2% 3% 4% 5% 6% all

a | 1.22 | 158 | 1.69 | 1.63 | 1.53 | 1.46 | 1.52
b | 1.67 | 1.87 | 1.48 | 1.23 | 1.24 | 1.29 | 1.46
c| 156 | 1.69 | 1.44 | 1.20 | 1.10 | 1.09 | 1.35
d| 223 |1.57 | 1.32 | 1.24 | 1.28 | 1.34 | 1.50

e| 1.78 | 1.78 | 1.45 | 1.16 | 1.09 | 1.05 | 1.39

Table 1: Dissimilarity

1% 2% 3% 4% 5% 6% all

a | 7.80 | 11.7 | 13.7 | 14.4 | 14.0 | 13.4 | 12.5
b | 14.0 | 17.6 | 14.7 | 11.0 | 9.83 | 9.83 | 12.8
c| 126 | 154 | 14.0 | 109 | 859 | 7.99 | 11.6
d| 16.6 | 15.9 | 13.7 | 12.8 | 12.7 | 12.6 | 14.1

e| 146 | 15.1 | 13.2 | 9.48 | 7.95 | 7.19 | 11.3

Table 2: Hausdorff distance

Tables 1 and 2 show respectively average dissimilarity and Hausdorff distance
between S(Rp(.)) and Ry(S(.)), on all shapes of the database, for angles 6
varying between 0 and 89 degrees by steps of one degree, and for applications
of the five methods yielding residuals varying between 1% and 6%. Best results
(lowest values) are highlighted in boldface, worst ones in italic. Fig. 17 illustrate
the level of filtering obtained on a shape for these residual values.

It can be observed that variant (a) of our method performs very well with
moderate filtering, while for higher residual amounts Ogniewicz’ method (e) is
better. In the average, variant (c) of our method performs as well as (e) on this
test set.

Shttp://www.cs.sunysb.edu/~algorith/implement/skeleton/implement .shtml
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Figure 17: Filtered skeletons (method b) yielding 1% to 6% residuals.

10. The 3D case

Unlike former approaches to define and compute hierarchic or multiscale
skeletons, our method also applies to 3D objects for computing curvilinear skele-
tons. All definitions and algorithms that we gave previously are indeed valid
whatever the dimension of the complex. We illustrate this by showing a few
results in 3D: see Fig. 18 and Fig. 19.

Fig. 18 shows an original 3D shape X (a), and the topological map M
of X induced by Lo(X) (b). In this 2D projection, the map M governs the
transparency. Then, (¢) and (d) show two examples of filtered skeletons of X
obtained by thresholding M at levels 100 and 1200, respectively.

Fig. 19 illustrates the effectiveness of our method in the presence of contour
noise. In (a), (b) and (c), we have three versions of a 3D object with various
amounts of random noise (obtained by randomly adding or suppressing simple
points around the border, 1000 points for (b), 2000 points for (c)), and their
respective filtered skeletons, using the same parameter value. Notice that, even
if the skeletons of the noisy objects are a bit sinuous (which is not abnormal,
since they are medial representations of shaky objects), they are free of spurious
branches.

11. Conclusion

The method that we propose is guaranteed to preserve topology and is stable
with respect to variations of the filtering parameter, as stated by Th. 12 and
Th. 14 respectively. We compared it (in 2D) with the method of [29] and with a
topology-preserving method directly based on the DLMA | regarding the stability
w.r.t. rotations. This comparison is in favour of our method, as reported in
Sec. 9. We also illustrate in Sec. 10 its application in 3D for obtaining curvilinear
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Figure 18: (a) Original shape X. (b) Topological map M induced by L2(X). (c) The level
set M0, a skeleton of X. (d) The level set Mi200, another skeleton of X.

skeletons. Furthermore, our method is highly flexible: many variants can be
imagined, in particular by choosing alternative valuations of the upstream. In
further works, we will investigate the case of 3D surface skeletons, and the
possibility to obtain skeletons only composed of voxels.

References

[1] D. Attali, J.D. Boissonnat, and H. Edelsbrunner. Stability and computation
of the medial axis — a state-of-the-art report. In T. Moller, B. Hamann, and
B. Russell, editors, Mathematical Foundations of Scientific Visualization,
Computer Graphics, and Massive Data Exploration, pages 1-19. Springer-
Verlag, 2009. to appear.

[2] D. Attali and J.O. Lachaud. Delaunay conforming iso-surface, skeleton
extraction and noise removal. Computational Geometry: Theory and Ap-
plications, 19:175-189, 2001.

[3] D. Attali and A. Montanvert. Modelling noise for a better simplification of
skeletons. In Procs. International Conference on Image Processing (ICIP),
volume 3, pages 13-16, 1996.

25



Figure 19: (a) Original shape X and its filtered skeleton obtained by thresholding its topo-
logical map induced by Lo(X) at level 1000. (b) Same operation, after addition of random
noise to the contour of X. (c¢) Same operation, after addition of a stronger random noise to
the contour of X.

[4]

[5]

[6]

7]

18]

[9]

[10]

D. Attali, G. Sanniti di Baja, and E. Thiel. Pruning discrete and semicon-
tinuous skeletons. In Procs. Conf. Image Analysis and Processing, volume
974 of Lecture Notes in Computer Science, pages 488—493. Springer, 1995.

X. Bai, L.J. Latecki, and W.Y. Liu. Skeleton pruning by contour partition-
ing with discrete curve evolution. Transactions on Pattern Analysis and
Machine Intelligence, 29(3):449-462, 2007.

G. Bertrand and M. Couprie. A new 3D parallel thinning scheme based on
critical kernels. In Discrete Geometry for Computer Imagery, volume 4245
of Lecture Notes in Computer Science, pages 580-591. Springer, 2006.

G. Bertrand and M. Couprie. Two-dimensional parallel thinning algorithms
based on critical kernels. Journal of Mathematical Imaging and Vision,
31(1):35-56, 2008.

S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi,
L. Papaleo, and M. Spagnuolo. Describing shapes by geometrical-
topological properties of real functions. ACM Comput. Surv., 40(4):12:1—
12:87, October 2008.

Silvia Biasotti, Dominique Attali, Jean-Daniel Boissonnat, Herbert Edels-
brunner, Gershon Elber, Michela Mortara, Gabriella Sanniti Baja, Michela
Spagnuolo, Mirela Tanase, and Remco Veltkamp. Skeletal structures. In
Leila Floriani and Michela Spagnuolo, editors, Shape Analysis and Struc-
turing, Mathematics and Visualization, pages 145-183. Springer, 2008.

H. Blum. A transformation for extracting new descriptors of shape. In
W Wathendunn, editor, Models for the Perception of Speech and Visual
Form, pages 362—-380. MIT Press, 1967.

26



[11] G. Borgefors, I. Ragnemalm, and G. Sanniti di Baja. The Euclidean dis-
tance transform: finding the local maxima and reconstructing the shape.
In Procs. of the 7th Scandinavian Conference on Image Analysis, volume 2,
pages 974-981, 1991.

[12] John Chaussard and Michel Couprie. Surface thinning in 3D cubical com-
plexes. In International Workshop on Combinatorial Image Analysis, vol-
ume 5852 of Lecture Notes in Computer Science, pages 135-148. Springer,
2009.

[13] John Chaussard, Michel Couprie, and Hugues Talbot. Robust skeletoniza-
tion using the discrete lambda-medial axis. Pattern Recognition Letters,
32(9):1384-1394, 2011.

[14] F. Chazal and A. Lieutier. The lambda medial axis. Graphical Models,
67(4):304-331, 2005.

[15] D. Coeurjolly. d-dimensional reverse Euclidean distance transformation and
Euclidean medial axis extraction in optimal time. In Discrete Geometry for
Computer Imagery, volume 2886 of Lecture Notes in Computer Science,
pages 327-337. Springer, 2003.

[16] T.H. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms. MIT
Press, 1990.

[17] Nicu D. Cornea and Deborah Silver. Curve-skeleton properties, applica-
tions, and algorithms. 13:530-548, 2007.

[18] M. Couprie, D. Coeurjolly, and R. Zrour. Discrete bisector function and Eu-
clidean skeleton in 2D and 3D. Image and Vision Computing, 25(10):1543—
1556, 2007.

[19] E.R. Davies and A.P.N. Plummer. Thinning algorithms: a critique and a
new methodology. Pattern Recognition, 14:53-63, 1981.

[20] M.P. Dubuisson and A.K. Jain. A modified Hausdorff distance for object
matching. In Proceedings of the 12th IAPR International Conference on
Pattern Recognition, volume 1, pages 566-568, 1994.

[21] A.X. Falcao, L. da Fontoura Costa, and B.S. da Cunha. Multiscale skeletons
by image foresting transform and its application to neuromorphometry.
Pattern Recognition, 35(7):1571-1582, 2002.

[22] R. Forman. Morse theory for cell complexes. Advances in mathematics,
134(1):90-145, 1998.

[23] Y. Ge and J.M. Fitzpatrick. On the generation of skeletons from discrete
Euclidean distance maps. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 18(11):1055-1066, 1996.

27



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

W.H. Hesselink and J.B.T.M. Roerdink. Euclidean skeletons of digital
image and volume data in linear time by the integer medial axis trans-
form. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(12):2204-2217, 2008.

A. Lieutier. Any open bounded subset of R™ has the same homotopy
type as its medial axis. In Proc. 8th ACM Symposium on Solid Modeling
Applications, pages 65-75. Academic Press, 2003.

L. Liu, E. Chambers, D. Letscher, and T. Ju. A simple and robust thin-
ning algorithm on cell complexes. In Proceedings of Pacific Graphics 2010,
Computer Graphics Forum, pages 1-8, 2010. to appear.

G. Malandain and S. Fernandez-Vidal. Euclidean skeletons. Image and
Vision Computing, 16:317-327, 1998.

G. Matheron. FEzamples of topological properties of skeletons, volume 2,
pages 217-238. Academic Press, 1988.

R.L. Ogniewicz and O. Kiibler. Hierarchic Voronoi skeletons. Pattern
Recognition, 28(33):343-359, 1995.

M. Pierrot-Deseilligny, G. Stamon, and C.Y. Suen. Veinerization: a new
shape description for flexible skeletonization. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 20(5):505-521, 1998.

C. Pudney. Distance-ordered homotopic thinning: a skeletonization algo-
rithm for 3D digital images. Computer Vision and Image Understanding,
72(3):404-413, 1998.

E. Rémy and E. Thiel. Exact medial axis with Euclidean distance. Image
and Vision Computing, 23(2):167-175, 2005.

J. Serra. Image analysis and mathematical morphology. Academic Press,
1982.

D. Sharvit, J. Chan, H. Tek, and B.B. Kimia. Symmetry-based indexing
of image databases. Journal of Visual Communication and Image Repre-
sentation, 9(4):366-380, 1998.

K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker. The Hamilton-Jacobi
skeleton. In International Conference on Computer Vision (ICCV), pages
828-834, 1999.

Kaleem Siddiqi and Stephen Pizer. Medial Representations: Mathematics,
Algorithms and Applications. Springer, 1st edition, 2008.

P. Soille. Morphological image analysis. Springer-Verlag, 1999.

S. Svensson and G. Sanniti di Baja. Simplifying curve skeletons in volume
images. Computer Vision and Image Understanding, 90(3):242-257, 2003.

28



[39] H. Talbot and L. Vincent. Euclidean skeletons and conditional bisectors.
In Procs. VCIP’92, SPIE, volume 1818, pages 862-876, 1992.

[40] L. Vincent. Efficient computation of various types of skeletons. In Procs.
Medical Imaging V, SPIE, volume 1445, pages 297-311, 1991.

[41] J.H.C. Whitehead. Simplicial spaces, nuclei and m-groups. Proceedings of
the London Mathematical Society, 45(2):243-327, 1939.

29



