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Abstra
tSkeletons are notoriously sensitive to 
ontour noise, and an e�e
tive �lterings
heme is needed in any pra
ti
al situation where skeletons are involved. Inthis arti
le, we introdu
e a new dis
rete framework that allows us to de�neand 
ompute families of �ltered Eu
lidean skeletons, in 2D as well as in 3D orhigher dimensions. We prove several properties of our skeletonization s
heme, inparti
ular the preservation of topologi
al 
hara
teristi
s and the stability withrespe
t to parameter 
hanges.1Keywords: skeleton, medial axis, pruning, Eu
lidean distan
e, topologypreservation, topologi
al map, 
ubi
al 
omplex, 
ollapse, stabilitySkeleton is one of the most studied and used 
on
epts in pattern re
ognitionand analysis. Sin
e its introdu
tion by H. Blum in the sixties [10℄, it has been thesubje
t of hundreds of publi
ations dealing with both pra
ti
al and theoreti
alaspe
ts. Indeed, despite the simpli
ity of its most 
ommon de�nition, as the setof all 
enters of maximal in
luded balls, its use in real appli
ations often raisesdi�
ult problems.These di�
ulties are mainly due to two distin
t issues.First, the ni
e properties of skeleton that 
an be proved in the 
ontinu-ous framework (uniqueness, thinness, homotopy equivalen
e, invarian
e w.r.t.isometries) [28, 25℄ do not all hold in dis
rete grids whi
h are 
ommonly usedin image pro
essing. Considerable e�ort has been devoted to design dis
reteskeletonization methods that aim at retrieving these properties, at least par-tially. These methods �nd their roots in di�erent frameworks: dis
rete ge-ometry [11, 23, 27, 32, 24℄, digital topology [19, 40, 39, 31℄, mathemati
almorphology [33, 37℄, 
omputational geometry [2, 3, 29℄, and partial di�erentialequations [35℄. Re
ent surveys of the state of the art in skeletonization may befound in [17, 36, 8, 9℄.1This work has been partially supported by the �ANR-BLAN07-2_184378 Mi
roFiss�proje
t and the �ANR-2010-BLAN-0205 Kidi
o� proje
t.Preprint submitted to Elsevier November 27, 2012



Se
ond, even in the 
ontinuous framework the skeleton su�ers from its sensi-tivity to small 
ontour perturbations, in other words, its la
k of stability. A re-
ent survey [1℄ summarizes sele
ted relevant studies dealing with this topi
. Thisdi�
ulty 
an be expressed mathemati
ally: the transformation whi
h asso
iatesa shape to its skeleton is only semi-
ontinuous. This fa
t, among others, explainswhy it is usually ne
essary to add a �ltering step (or pruning step) to any methodthat aims at 
omputing the skeleton. Hen
e, there is a ri
h literature devotedto skeleton pruning, in whi
h di�erent 
riteria were proposed in order to dis
ard�spurious� skeleton points or bran
hes: see [4, 29, 3, 27, 2, 38, 24, 5, 18, 26℄, to
ite only a few.

(a) (b)

(
) (d)Figure 1: Four 
riteria for �ltering skeleton points: (a) radius, (b) bise
tor angle, (
) proje
tiondiameter, (d) border portion length.Fig. 1 illustrates the four most popular ones among these 
riteria. Considera skeleton point and its 
orresponding maximal ball (or dis
 in 2D), the mostobvious 
riterion is based on the radius of this ball (a): the skeleton point is�ltered out if this radius is beyond a given threshold. For de�ning the se
ond
riterion (b) and the following ones, we have to 
onsider the proje
tions of the2



skeleton point on the obje
t boundary, that is, the 
onta
t points between the
orresponding maximal ball and the boundary. The angle formed by these pro-je
tions and the skeleton point as vertex, 
alled bise
tor angle by some authors,also 
onstitutes an e�e
tive �ltering 
riterion [39, 18℄.If we 
onsider now the distan
e between the proje
ted points, when thereare only two of them, or more generally the diameter1 of the smallest ball that
ontains all these points (see Fig. 1(
)), we obtain the parameter λ studiedby F. Chazal and A. Lieutier [14℄, whi
h has interesting properties in relationwith stability. These authors introdu
ed a parti
ular 
lass of �ltered skeletons,
alled λ-medial axes, and they proved that small perturbations (in the sense ofthe Hausdor� distan
e) of the shape provoke only small perturbations of theskeleton, ex
ept for some 
riti
al values of λ. A dis
rete version of the λ-medialaxis has been introdu
ed and studied in [13℄, where its robustness to noise andits low sensitivity to rotations have been shown experimentally.However, there are appli
ations where the presen
e of the 
riti
al values of λis prohibitive. It is the 
ase when the needed �ltering level is equal to, or 
loseto a 
riti
al value. In su
h situations, small 
hanges of the �ltering parametermay result in 
hanges of the topologi
al 
hara
teristi
s (e.g. the 
onne
tedness),or in sudden elimination or apparition of skeleton bran
hes.Let us illustrate this problem with the help of Fig. 2. In Fig. 2(a), we seethat the parameter value λ = 2 is not su�
ient to �lter out spurious bran
hesof the λ-medial axis. However if we set λ = 3, we loose a big and meaningfulskeleton bran
h, whereas some spurious bran
hes are still present.
(a) (b)Figure 2: (a) A shape and its λ-medial axis, with λ = 2. (b) Idem, with λ = 3.In 2D, this problem may be avoided by using a fourth 
riterion, whi
h 
on-sists of measuring the length of the portion of the obje
t boundary between theproje
ted points, as illustrated in Fig. 1(d). Based on this idea, several meth-ods have been proposed: hierar
hi
 skeletons [29℄, veinerization [30℄, multis
aleskeletons [21℄. The parameter for these methods is a threshold value for theborder portion length 
riterion. It 
an be easily seen that small variations of1Equivalently, one 
an 
onsider the radius instead of the diameter.3



this parameter do not provoke big 
hanges in the obtained result, 
ontrarily towhat happens with the parameter λ.Using any of these four 
riteria, one obtains for any obje
t a family of nestedskeletons, indexed by parameter values. Another way of seeing this family, isto 
onsider the fun
tion that asso
iates, to ea
h obje
t point, the value of the
onsidered 
riterion. For example, the fun
tion on whi
h is based the λ-medialaxis is 
alled PR (for Proje
tion Radius) in this arti
le. Final skeletons areobtained as level sets (i.e., thresholds) of this fun
tion (see Fig. 6).The aim of this arti
le is to formalize and generalize, in a dis
rete framework,the approa
hes based on the fourth 
riterion (border portion length), for theyprovide the best stability with respe
t to variations of the �ltering parameter.The method of R.L. Ogniewi
z and O. Kübler [29℄ is de�ned in the framework ofthe 2D 
onstinuous plane, more pre
isely it applies to (sets of) planar polygons,and the resulting skeletons are made of straight line segments. These skeletonsare proved to be homotopy-equivalent with inital obje
ts, however if one needsto dis
retize these skeletons in Z
2, one looses this property. On the other hand,the methods proposed by M. Pierrot-Deseilligny et al. [30℄ and A.X. Fal
aoet al. [21℄ are de�ned in the 2D square grid. However [30℄ does not provide analgorithm to 
ompute skeletons in pra
ti
e, and the algorithm proposed in [21℄does not guarantee topology preservation. To the best of our knowledge, thesemethods have not been extended to the 3D spa
e until now.The dis
rete obje
ts that we 
onsider in this arti
le are 
ubi
al 
omplexes,that is, they are sets of elements of di�erent dimensions (points, segments,squares, 
ubes, et
) that are glued together a

ording to 
ertain rules (seeSe
. 1). We 
onsider here 2D and 3D 
ubi
al spa
es, however our approa
hextends easily to any �nite dimension.The �rst step of our skeletonization s
heme 
onsists of a dire
tional parallelthinning (Se
. 4), guided by the priority fun
tion PR (Se
. 3), and based on theoperation of 
ollapse (Se
. 2). Collapse is an elementary topology-preservingtransformation whi
h is a dis
rete analog of a 
ontinuous deformation (a homo-topy). From the 
ollapse sequen
e produ
ed by this step, we derive an a
y
li
graph, whi
h we 
all a �ow graph (Se
. 4).In Se
. 6, we introdu
e the notion of topologi
al map (based on a �ow graph).A topologi
al map is a fun
tion, de�ned on the elements of a 
ubi
al 
omplex,that is a parti
ular 
ase of a dis
rete Morse fun
tion [22℄. We show that anythreshold of a topologi
al map derived from an obje
t X has the same topologyas X (Th. 12).In Se
. 7 we propose a method for 
omputing topologi
al maps that arebased on di�erent measures of shape 
hara
teristi
s, su
h that the one of borderportion length. In fa
t, any 
on
eivable measure may be used at this step, weindi
ate several meaningful examples. The validity of this method is establishedby Prop. 17.Our new skeletonizon s
heme 
onsists of 
omputing a topologi
al map M ,using the tools des
ribed above, and thesholding it at any desired level. We provethe property that, for threshold values that are 
lose to ea
h other, the resulting4



�ltered skeletons are also 
lose to ea
h other2, with respe
t to the Hausdor�distan
e (Th. 14). This property establishes the stability of our method w.r.t.the parameter value.In Se
. 9, we give some experimental results and 
omparisons with othermethods of the same 
lass. Unlike former approa
hes to de�ne and 
omputehierar
hi
 or multis
ale skeletons, our method also applies to 3D obje
ts forobtaining 
urvilinear skeletons (Se
. 10).1. Cubi
al 
omplexesIn this se
tion, we re
all brie�y some basi
 de�nitions on 
ubi
al 
omplexes,see also [7, 6℄ for more details. We 
onsider here n-dimensional 
omplexes,mainly with 0 6 n 6 3.Let S be a set. If T is a subset of S, we write T ⊆ S. We denote by |S| thenumber of elements of S.Let Z be the set of integers. We 
onsider the families of sets F
1
0, F

1
1, su
hthat F

1
0 = {{a} | a ∈ Z}, F

1
1 = {{a, a + 1} | a ∈ Z}. A subset f of Z

n, n > 2,whi
h is the Cartesian produ
t of exa
tly m elements of F
1
1 and (n−m) elementsof F

1
0 is 
alled a fa
e or an m-fa
e in Z

n, m is the dimension of f , we write
dim(f) = m.Observe that any non-empty interse
tion of fa
es is a fa
e. For example, theinterse
tion of two 2-fa
es A and B may be either a 2-fa
e (if A = B), a 1-fa
e,a 0-fa
e, or the empty set.We denote by F

n the set 
omposed of all fa
es in Z
n. An m-fa
e is 
alled apoint if m = 0, a (unit) edge if m = 1, a (unit) square if m = 2, a (unit) 
ubeif m = 3.Let f be a fa
e in F

n. We set f̂ = {g ∈ F
n | g ⊆ f} and f̂∗ = f̂ \ {f}.Any g ∈ f̂ is 
alled a fa
e of f .We 
all star of f the set f̌ = {g ∈ F

n | f ⊆ g}, and we write f̌∗ = f̌ \ {f}: anyelement of f̌ is a 
ofa
e of f . It is plain that g ∈ f̂ i� f ∈ ǧ.A �nite set X of fa
es in F
n is a 
omplex (in F

n) if for ea
h fa
e f ∈ X ,we have f̂ ⊆ X . See in Fig. 3(d) an example of a 
omplex, and in Fig. 3(b,
)examples of sets of fa
es that are not 
omplexes.2. CollapseThe 
ollapse operation is an elementary topology-preserving transformationwhi
h has been introdu
ed by J.H.C. Whitehead [41℄ and plays an important rolein 
ombinatorial topology. It 
an be seen as a dis
rete analogue of a 
ontinuousdeformation (a strong deformation retra
t). Collapse is known to preserve thehomotopy type.2in the sense of Lips
hitz 
ontinuity 5



x y

z t(a) (b) (
) (d)Figure 3: (a) Four points in Z
2: x = (0, 1); y = (1, 1); z = (0, 0); t = (1, 0). (b) Agraphi
al representation of the set of fa
es {f0, f1, f2}, where f0 = {z} = {0}×{0} (a 0-fa
e),

f1 = {x, y} = {0, 1} × {1} (a 1-fa
e), and f2 = {x, y, z, t} = {0, 1} × {0, 1} (a 2-fa
e). (
) Aset of fa
es that is not a 
omplex. (d) A set of fa
es that is a 
omplex.Let X be a 
omplex in F
n and let (f, g) ∈ X2. If f is the only fa
e of Xthat stri
tly in
ludes g, then g is said to be free for X and the pair (f, g) issaid to be a free pair for X . In other terms, (f, g) is a free pair for X whenever

ǧ∗ ∩ X = {f}. Noti
e that, if (f, g) is a free pair, then we have ne
essarily
dim(g) = dim(f) − 1.Let X be a 
omplex, and let (f, g) be a free pair for X . Let m = dim(f).The 
omplex X \ {f, g} is an elementary 
ollapse of X , or an elementary m-
ollapse of X .Let X , Y be two 
omplexes. We say that X 
ollapses onto Y , and we write
X ց Y , if Y = X or if there exists a 
ollapse sequen
e from X to Y , i.e.,a sequen
e of 
omplexes 〈X0, ..., Xℓ〉 su
h that X0 = X , Xℓ = Y , and Xiis an elementary 
ollapse of Xi−1, for ea
h i ∈ {1, . . . , ℓ}. See Fig. 4 for anillustration. Let J = 〈(fi, gi)〉ℓi=1 be the sequen
e of pairs of fa
es of X su
hthat Xi = Xi−1 \ {fi, gi}, for any i ∈ {1, . . . , ℓ}. We also 
all the sequen
e J a
ollapse sequen
e (from X to Y ).

X X1 X2Figure 4: X: a 2-dimensional 
omplex. X1: a 
omplex su
h that X 
ollapses onto X1; afree pair 
omposed of a square and an edge has been removed. X2: a 
omplex su
h that X1
ollapses onto X2; (a free pair 
omposed of an edge and a vertex has been removed), hen
e
X 
ollapses onto X2.Let us now state an elementary property of 
ollapse, whi
h gives a ne
essaryand su�
ient 
ondition under whi
h two 
ollapse operations may be performedin parallel (or in any order) while preserving topology.Proposition 1. Let X be a 
omplex, and let (f, g) and (k, ℓ) be two distin
tfree pairs for X. The 
omplex X 
ollapses onto X \ {f, g, k, ℓ} if and only if
f 6= k. In this 
ase, 〈(f, g), (k, ℓ)〉 and 〈(k, ℓ), (f, g)〉 are both 
ollapse sequen
esfrom X. 6



Proof. If f = k, then it is plain that (k, ℓ) is not a free pair for Y = X \ {f, g}as k = f /∈ Y . Also, (f, g) is not free for X \ {k, ℓ}. If f 6= k, then we have
g 6= ℓ, ǧ∗ ∩ X = {f} (g is free for X) and ℓ̌∗ ∩ X = {k} (ℓ is free for X). Thus,we have ℓ̌∗ ∩ Y = {k} as ℓ 6= g and k 6= f . Therefore, (k, ℓ) is a free pair for Y .The same reasonning shows that (f, g) is a free pair for Y ′ = X \ {k, ℓ}. �From Prop. 1, the following 
orollary is immediate.Corollary 2. Let X be a 
omplex, and let (f1, g1) . . . (fm, gm) be m distin
tfree pairs for X su
h that, for all a, b ∈ {1, . . . , m} (with a 6= b), fa 6= fb. The
omplex X 
ollapses onto X \ {f1, g1 . . . fm, gm}.The 
orollary (Cor. 4) of the following property will be useful in the sequel.Proposition 3. Let J = 〈(fi, gi)〉ℓi=1 be a 
ollapse sequen
e from a 
omplex Xto a 
omplex Y . Let j ∈ {2, . . . , ℓ} su
h that (fj , gj) is free for X. Let J ′ denotethe sequen
e obtained from J by swapping pairs j − 1 and j, more pre
isely,
J ′ = 〈(f ′

i , g
′

i)〉
ℓ
i=1 with f ′

j = fj−1, g
′

j = gj−1, f ′

j−1 = fj , g
′

j−1 = gj , and for all
i ∈ {1, . . . , ℓ} \ {j, j − 1}, f ′

i = fi and g′i = gi. Then, the sequen
e J ′ is also a
ollapse sequen
e from X to Y .Proof. We set X ′

i = X ′

i−1\{f
′

i , g
′

i} and Xi = Xi−1\{fi, gi}, for all i ∈ {1, . . . , ℓ},and X ′

0 = X0 = X . Obviously, we have X ′

i = Xi for all i ∈ {0, . . . , ℓ} \ {j − 1},thus we only have to prove Xj−2 ց X ′

j−1 ց Xj . We know that (fj−1, gj−1) isfree for Xj−2 (sin
e J is a 
ollapse sequen
e), and that (fj , gj) is free for Xj−2(sin
e it free for X), hen
e Xj−2 ց X ′

j−1. Furthermore, fj−1 6= fj be
ause bothpairs are in the 
ollapse sequen
e J . By Prop. 1, we dedu
e that (fj−1, gj−1) isfree for Xj−2 \ {fj, gj} = X ′

j−1, hen
e X ′

j−1 ց Xj . �Corollary 4. Let J = 〈(fi, gi)〉ℓi=1 be a 
ollapse sequen
e from a 
omplex X toa 
omplex Y . Let j1, . . . , jk ∈ {1, . . . , ℓ} be distin
t indi
es su
h that (fji
, gji

)is free for X for any i ∈ {1, . . . , k}. Let J ′ denote the sequen
e obtained from
J by shifting pairs ji to the beginning of the sequen
e, more pre
isely, J ′ =
〈(f ′

i , g
′

i)〉
ℓ
i=1 with f ′

i = fji
, g′i = gji

for all i ∈ {1, . . . , k}, and the other pairs of
J ′ are the remaining pairs of J left in the same order. Then, the sequen
e J ′ isalso a 
ollapse sequen
e from X to Y .3. The dis
rete λ-medial axis and the proje
tion radius mapThe original de�nition of the λ-medial axis (see [14℄) holds and makes sensein the (
ontinuous) Eu
lidean n-dimensional spa
e. The de�nition of a dis
rete
λ-medial axis (DLMA) in Z

n is given in [13℄, together with an experimentalevaluation of its stability and rotation invarian
e.Noti
e that the DLMA applies on a digital image (i.e., a subset of Z
n), noton a 
omplex. However, the bije
tive 
orrespondan
e between elements of Z

nand n-fa
es in F
n allows us to use the DLMA and related notions in the 
ontextof 
ubi
al 
omplexes. 7



Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n, we denote by d(x, y) the Eu-
lidean distan
e between x and y, in other words, d(x, y) = (

∑n

k=1(yk −xk)2)
1

2 .Let S ⊆ R
n, we set d(y, S) = minx∈S{d(y, x)}.Let x ∈ R

n, r ∈ R
+, we denote by Br(x) the ball of radius r 
entered on x,de�ned by Br(x) = {y ∈ R

n | d(x, y) 6 r}.Let S be a nonempty subset of R
n, and let x ∈ R

n. The proje
tion of xon S, denoted by ΠS(x), is the set of points y of S whi
h are at minimaldistan
e from x ; more pre
isely,
ΠS(x) = {y ∈ S | ∀z ∈ S, d(y, x) 6 d(z, x)}.Let X be an open bounded subset of R

n, and let λ ∈ R
+. We denote by Xthe 
omplement set of X , i.e., X = R

n \ X . The λ-medial axis of X is the setof points x in X su
h that the radius of the smallest ball that in
ludes ΠX(x)is not less than λ (see Fig. 5).
a

b x’’

a’’

a’ b’

x
x’

Figure 5: Illustration of the λ-medial axis. Left: Points x, x′ and x′′ and their respe
tive
losest boundary points. Top right: λ-medial axis with λ = ǫ, a very small positive realnumber. Bottom right: λ-medial axis with λ = d(a′, b′) + ǫ.For ea
h point x ∈ Z
n, we de�ne the dire
t neighborhood of x as N(x) =

{y ∈ Z
n | d(x, y) 6 1}.Transposing dire
tly the de�nition of the λ-medial axis to the dis
rete grid

Z
n would yield unsatisfa
tory results (see [13℄), this is why we need the followingnotion. Let S ⊆ Z

n, and let x ∈ S. The extended proje
tion of x on S (where
S = Z

n \S), denoted by Πe

S
(x), is the union of the sets ΠS(y), for all y in N(x)su
h that d(y, S) 6 d(x, S).Let S be a �nite subset of Z

n, and let λ ∈ R
+. We de�ne the fun
tion PRSwhi
h asso
iates, to ea
h point x of S, the value PRS(x) that is the radius ofthe smallest ball en
losing all the points of the extended proje
tion of x on S.In other terms, PRS(x) = min{r ∈ R

+ | ∃y ∈ R
n, Br(y) ⊇ Πe

S
(x)}, and we
all PRS(x) the proje
tion radius of x (for S). The dis
rete λ-medial axis of S,denoted by DLMA(S, λ), is the set of points x in S su
h that PRS(x) > λ.In Fig. 6, we show the fun
tion PRS and three examples of DLMAs of ashape S. Note that the fun
tion PRS 
an be 
omputed on
e and stored asa grays
ale image, and that any DLMA of S is a level set of this fun
tion ata parti
ular value λ. Noti
e also that DLMA has not, in general, the sametopology as the original shape. For more details, illustrations and performan
eanalysis, see [13℄. 8



(a) (b) (
) (d)
Figure 6: (a) The fun
tion PRS superimposed to the shape S. Darkest 
olors representhighest values of PRS(x). Any DLMA of S is a level set of this fun
tion at a parti
ularvalue λ. (b,
,d) Dis
rete lambda-medial axis with λ = 10, 30, 45 respe
tively.4. Guided 
ollapse and �ow graphIn this se
tion we introdu
e a thinning s
heme that produ
es a 
ollapsesequen
e, based on an arbitrary priority map (e.g., a distan
e map or a proje
-tion radius map). The general idea of guided thinning is not new: it has beenused by several authors to produ
e skeletons based on the Eu
lidean distan
e[19, 40, 39, 31℄, and 
onsists of using the priority fun
tion in order to spe
ifywhi
h elements must be 
onsidered at ea
h step of the thinning. Here, we 
om-bine this general idea with a parallel dire
tional 
ollapse algorithm introdu
edin [12℄, in order to minimize the number of arbitrary de
isions. When severalelements share the same priority, whi
h may o

ur quite often, we remove in par-allel all su
h elements that satisfy a 
ondition based on dire
tion and dimension.All dire
tions and dimensions are su

essively explored.First, we need to de�ne the dire
tion of a free fa
e. Let X be a 
omplex in
F

n, let (f, g) be a free pair for X . Sin
e (f, g) is free, we know that dim(g) =
dim(f)−1, and it 
an be easily seen that f = g∪g′ where g′ is the translate of gby one of the 2n ve
tors of Z

n with all 
oordinates equal to 0 ex
ept one, whi
his either +1 or −1. Let v denote this ve
tor, and c its non-null 
oordinate. Wede�ne Dir(f, g) as the index of c in v, it is the dire
tion of the free pair (f, g).Its orientation is de�ned as Orient(f, g) = 1 if c = +1, and as Orient(f, g) = 0otherwise.Considering two distin
t free pairs (f, g) and (i, j) for a 
omplex X in F
nsu
h that Dir(f, g) = Dir(i, j) and Orient(f, g) = Orient(i, j), we have f 6= i.From this observation and Cor. 2, we dedu
e the following property.Corollary 5. Let X be a 
omplex in F

n, and let (f1, g1), . . . , (fm, gm) be mdistin
t free pairs for X having all the same dire
tion and the same orientation.The 
omplex X 
ollapses onto X \ {f1, g1, . . . , fm, gm}.9



Now, we are ready to introdu
e algorithm 1. The symbol + is used to denotethe a
tion of appending an element at the end of a sequen
e.Algorithm 1: GuidedCollapse(X, P )Data: A 
ubi
al 
omplex X in F
n, and a map P from X to R (prioritymap)

J = 〈〉; R = {(p, f, g) | (f, g) is free for X , p = max(P (f), P (g))};1 while R 6= ∅ do2
m = min{p | (p, . , .) ∈ R}; Q = {(m, . , .) ∈ R}; R = R \ Q;3
L = {(f, g) | (. , f, g) ∈ Q};4 for t = 1 → n // dire
tion do5 for s = 0 → 1 // orientation do6 for d = n → 1 // de
reasing dimension do7

T = {(f, g) ∈ L | (f, g) is free for X ,8 Dir(f, g) = t, Orient(f, g) = s, dim(f) = d};
X = X \ T ;9 forea
h (f, g) ∈ T do10

J = J + (f, g);11 forea
h pair (i, j) with j ∈ f̂∗ that is free for X do12
p = max(P (i), P (j));13 if p 6 m then L = L ∪ {(i, j)};14
R = R ∪ {(p, i, j)};15 return J ;16 Based on Cor. 5, the following property is straightforward.Proposition 6. Whatever the 
omplex X and the map P from X to R, X
ollapses onto GuidedCollapse(X, P ).Algorithm GuidedCollapse may be implemented to run in O(N log N) time
omplexity, where N denotes the 
ardinality of X , using a balan
ed binary treedata stru
ture (see [16℄) for representing the set R. For this evaluation, we 
on-sider the dimension of the 
omplex as a 
onstant (usually 2 or 3). Consequently,all lo
al operations (su
h as the sele
tion of neighboring pairs at line 12, andthe test that determines whether a pair is free or not) may be done in 
onstanttime. The management of R (lines 1, 2, 3, 15) has a 
ost in O(log N) for ea
hoperation. Remark that the 
ontents of T at di�erent iterations form disjointsets, thus the 
umulated 
ost of lines 8-15, during the whole exe
ution of thealgorithm, is not greater than O(N log N). The same 
an be said for the set Land lines 4-15.To 
on
lude this se
tion, we introdu
e the notion of a �ow graph asso
iatedto a given 
ollapse sequen
e.A (�nite dire
ted) graph is a pair (V, E) where V is a �nite set and E is asubset of V × V . An element of V is 
alled a vertex , an element of E is 
alled10



an ar
. A path in (V, E) is a sequen
e 〈vi〉ℓi=0 of verti
es su
h that ℓ > 0 andfor all i ∈ {1, . . . , ℓ}, we have (vi−1, vi) ∈ E. The number ℓ is the length of thepath. If ℓ = 0 the path is said trivial . If v0 = vℓ the path is a 
y
le. The graphis a
y
li
 if it does not 
ontain any non-trivial 
y
le.De�nition 7. Let X be a 
omplex and J = 〈(fi, gi)〉
ℓ
i=1 be a 
ollapse sequen
efrom X. For any k ∈ {1, . . . , ℓ}, ℓ > 0, we set Xk = X \ {fi, gi}k

i=1. We set
E1 = {(gi, fi)}ℓ

i=1 and E2 =
⋃ℓ

k=1{(fk, g) | g ∈ f̂k

∗

∩ Xk}.The �ow graph asso
iated to J is the (dire
ted) graph whose vertex set is Xand whose edge set is E = E1 ∪ E2.This de�nition is illustrated in Fig. 7. It 
an be easily seen that, whateverthe 
omplex X and the 
ollapse sequen
e J from X , the �ow graph asso
iatedto J is a
y
li
.
12 81 132 111 109 18

8 21 1 77 90 2 4 3 112 131 91 103 107 13

11 72 93 118 104 97 94 88

64 98 17 5 7 6 113 130 29 24 25 22 78 92 82

71 99 100 101 117 35 80 87

9 76 115 129 32 14

79 95 116 49

65 75 23 26 128 51 52 45

70 31 63 48

10 30 127 33 15

43 34 68

38 53 50 126 28 20 67 74

42 62 125 96 85

37 58 114 124 83 16

41 61 120 86 69

39 59 119 123 27 19 66 73

40 60 121 105 84

36 57 55 56 54 122 89 102 106 46

44 110 108 47

(a)

(b)Figure 7: (a) A 
ollapse sequen
e J . Ea
h pair (fi, gi) of J is depi
ted by an arrow from gito fi. The numbers indi
ate the indi
es of the pairs in J . (b) The �ow graph asso
iated to J .In Fig. 8 we illustrate �ow graphs asso
iated with 
ollapse sequen
es thatwere obtained by the above algorithm using two di�erent priority maps. For the11



sake of readability, we only display a spanning dire
ted forest (whi
h is a tree,in this 
ase) extra
ted from the �ow graph. For Fig. 8(d), the priority map isthe Eu
lidean distan
e map displayed in Fig. 8(b), and for Fig. 8(e), the prioritymap is the proje
tion radius map displayed in Fig. 8(
). We observe that ea
hbran
h of a λ-medial axis (level set of Fig. 8(
)) 
orresponds, roughly speaking,to a path in the �ow graph Fig. 8(e), but this is not true if we 
onsider the �owgraph Fig. 8(d).
(a) (b) (
)

(d) (e)Figure 8: (a) Original obje
t X (
omplex). Superimposed: 
enters of maximal in
luded Eu-
lidean balls. (b) Eu
lidean distan
e map of X (named ED). (
) Proje
tion radius map of X(named PR). (d) Spanning forest extra
ted from the �ow graph asso
iated to the sequen
eGuidedCollapse(X, ED). (e) Spanning forest extra
ted from the �ow graph asso
iated to thesequen
e GuidedCollapse(X,PR).5. Upstream of a vertex and its valuationFrom now, we 
onsider a 
ollapse sequen
e J = 〈(fi, gi)〉ℓi=1 from a 
omplex
X , and its asso
iated �ow graph (X, E = E1 ∪ E2). Using the notations ofDef. 7, any pair (fk, gk) of J is free for Xk−1, and we have X = X0 ց . . . ց Xℓ.We de�ne F = {fi}ℓ

i=1, G = {gi}ℓ
i=1 and XJ = F ∪ G.Let x ∈ X , we denote by Γ(x) the set of su

essors of x in the a
y
li
 graph

(X, E), that is, Γ(x) = {y ∈ X | (x, y) ∈ E}, and we denote by Γ−1(x) the setof prede
essors of x in this graph, that is, Γ−1(x) = {y ∈ X | (y, x) ∈ E}. Wedenote by d+(x) the outer degree of the vertex x in the graph (X, E), that is,the number of su

essors of x. 12



We 
all upstream of x the set of all verti
es that are an
estors of x in the �owgraph, that is, the set U(x) = {y ∈ X | there is a path from y to x in (X, E)}.In a 
ollapse sequen
e, 
ertain pairs 
an be swapped or eliminated, yieldinganother 
ollapse sequen
e (see e.g. Cor. 4). Intuitively, the elements of theupstream of a fa
e x of X are those that must indeed be 
ollapsed before x
an itself 
ollapse. In Fig. 9 we show several examples of verti
es and theirupstream.

Figure 9: Four verti
es (white dis
s) and their respe
tive upstreams (bla
k dis
s), for the same�ow graph as in Fig. 7.Let L be a map from X to R∪{+∞}. Roughly speaking, the map L̃ de�nedbelow 
umulates, for ea
h vertex x, the values of L on all verti
es of the upstreamof x.De�nition 8. Let L be a map from X to R ∪ {+∞}. We de�ne the map L̃su
h that, for any x ∈ X:
L̃(x) = L(x) +

∑

y∈Γ−1(x)

L̃(y)/d+(y)Noti
e that this de�nition is re
ursive, and that it makes sense sin
e thegraph (X, E) is a
y
li
. Intuitively, the division by d+(y) is motivated by the fa
tthat a value must not be taken in a

ount several times in the sum. The values
L̃(x) 
an be 
omputed thanks to the following re
ursive program (algorithm 3).13



Algorithm 2: IntegrateRe
(X, Γ, Γ−1, L, R, x)if R(x) 6= −∞ then return R(x);1
S = L(x);2 forea
h y ∈ Γ−1(x) do3

S = S + (IntegrateRe
(X, Γ, Γ−1, L, R, y)/|Γ(y)|);4
R(x) = S;5 return R(x);6Algorithm 3: Integrate(X, Γ, Γ−1, L)Data: X : a 
ubi
al 
omplex; Γ, Γ−1: the su

essor and the prede
essorfun
tion of a dire
ted a
y
li
 graph on X ; L: a map from X to R;Result: R: a map from X to Rforea
h x ∈ X do R(x) = −∞;1 forea
h x ∈ X do IntegrateRe
(X, Γ, Γ−1, L, R, x);2 return R;3 Observe that lines 1 and 5 of Alg. (2) ensure that at most |Γ−1(x)| re
ursive
alls will o

ur for ea
h element x, thus the overall time 
omplexity of Alg. (3)is in O(N + |E|), where N = |X |. Again, if we 
onsider the dimension of the
omplex as a 
onstant (n = 2 or n = 3), Alg. (3) is in O(N) sin
e |E| 6 3nN .Two parti
ularly simple fun
tions L yield meaningful indi
ators asso
iatedto the elements of X . Let us �rst 
onsider the fun
tion L1 su
h that L1(x) = 1 if

dim(x) = n, and L1(x) = 0 otherwise. The map L̃1 asso
iates, to ea
h element xof X , the �area of U(x)� (or its volume in 3D). Now, let us 
onsider L2 = 1B(X),where B(X) is the set of all fa
es that are free for X . We 
all B(X) the borderof X . In other words, L2(x) = 1 if x ∈ B(X), and L2(x) = 0 otherwise. Themap L̃2 asso
iates, to ea
h element x of X , a measure (length in 2D, surfa
earea in 3D) of U(x) ∩ B(X).Fig. 10(a1, a2) show the maps L1 and L2 respe
tively, for the same obje
t
Y . The maps L̃1 and L̃2 are displayed in Fig. 10(b1, b2).6. Topologi
al mapsIn this se
tion, we introdu
e the notion of topologi
al map. A topologi
almap based on a 
ollapse sequen
e J is a map on the elements of X that satis�es
ertain 
onditions relative to J and its asso
iated �ow graph. Then, we provean important property of su
h maps: if M is a topologi
al map, then any levelset of M is homotopy-equivalent to X . In Se
. 7, we will show how to buildsu
h a map, based on any given fun
tion on X .De�nition 9. Let M be a map from X to R ∪ {+∞}. We say that M is atopologi
al map on X (based on J) if:14



0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 1.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 1.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 1.0 0.0 1.0 0.0

1.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

1.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 1.0

0.0 1.0 0.0 1.0 0.0

(a1) (a2)
0.1 0.3 0.6 0.8 1.3 0.3 0.1

0.0 1.0 0.1 1.1 1.7 1.0 0.0

0.1 0.3 0.7 1.0 3.3 3.6 4.3 0.3 0.1

0.0 1.0 0.1 1.1 4.7 1.0 0.0

0.1 0.3 0.7 1.0 6.3 6.6 6.9

0.0 1.0 0.1 1.1 7.1

0.1 0.3 0.6 0.8 8.0

0.1 1.3 1.4 2.5 3.9 1.3 0.1

1.0 1.0 0.1 0.1 4.1 1.0 1.0

0.1 1.3 1.6 1.8 6.2 6.3 7.9 1.3 0.1

1.0 1.0 0.1 0.1 8.1 1.0 1.0

0.1 1.3 1.6 1.8 10.2 10.3 10.5

1.0 1.0 0.1 0.1 11.5

0.1 1.3 1.4 2.5 14.0

(b1) (b2)
1.1 1.1 1.2 1.2 1.7 1.1 1.1

1.0 1.0 1.1 1.1 1.7 1.0 1.0

1.1 1.1 1.2 1.2 3.6 3.6 4.7 1.1 1.1

1.0 1.0 1.1 1.1 4.7 1.0 1.0

1.1 1.1 1.2 1.2 6.6 6.6 7.1

1.0 1.0 1.1 1.1 7.1

1.1 1.1 1.2 1.2 8.0

1.3 1.3 2.5 2.5 4.1 1.3 1.3

1.0 1.0 1.1 1.1 4.1 1.0 1.0

1.3 1.3 1.8 1.8 6.3 6.3 8.1 1.3 1.3

1.0 1.0 1.1 1.1 8.1 1.0 1.0

1.3 1.3 1.8 1.8 10.3 10.3 11.5

1.0 1.0 1.1 1.1 11.5

1.3 1.3 2.5 2.5 14.0

(c1) (c2)Figure 10: (a1, a2) Maps L1 and L2 on the same 
omplex Y . (b1, b2) Maps eL1 and eL2. Forthe sake of readability, only one digit after the de
imal point is displayed. (c1, c2) Results S1and S2 of the AlphaTM operator on eL1 and eL2, respe
tively, with α = 0.1.i) for all (g, f) in E1, M(g) = M(f); andii) for all (f, g) in E2, M(g) > M(f); andiii) for all g in X \ XJ , M(g) = +∞.Let α be a positive real number. If we repla
e ii) with the stronger require-ment:ii') for all (f, g) in E2, M(g) > M(f) + α,then we say that M is an α-topologi
al map on X (based on J).The notion of topologi
al map is inspired from the one of dis
rete Morsefun
tion (see [22℄). A topologi
al map 
an be seen (apart from the in�nitevalues) as a parti
ular 
ase of dis
rete Morse fun
tion, and Th. 12 
ould also beproved using results of [22℄. However as the proof is short we in
lude it for thesake of self-
ontainedness. 15
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Figure 11: A 1-
omplex X, a �ow graph on X (bla
k arrows for ar
s of E1, red arrows forar
s of E2), and a (1-)topologi
al map M on X (numbers).Let λ ∈ R ∪ {+∞}, we de�ne Mλ = {x ∈ X | M(x) > λ}, the (upper)level set of M at level λ. The main property of a topologi
al map M is that anylevel set of M is homotopy-equivalent to X , as implied by the following theorem(Th. 12, see Fig. 12 for an illustration). The two next propositions will be usedfor proving it.Proposition 10. Let (gk, fk) ∈ E1. For all g′ in f̂k

∗ su
h that g′ 6= gk, wehave (fk, g′) ∈ E2.Proof. We know that (fk, gk) is free for Xk−1, implying that Xk−1 is a 
omplexand that fk ∈ Xk−1, hen
e f̂k ⊆ Xk−1. Sin
e Xk = Xk−1 \{fk, gk} and g′ 6= gk,by de�nition of E2 we have (fk, g′) ∈ E2. �Proposition 11. Let M be a topologi
al map on X, based on J . Let s =
min{M(x) | x ∈ X}. If s < +∞, let t = min{M(x) | x ∈ X and M(x) > s},otherwise let t = +∞. Then, X 
ollapses onto Mt. Moreover, M (restri
ted tothe elements of Mt) is a topologi
al map on Mt.Proof. If s = +∞ then the property trivially holds, let us assume s < +∞. Let
S = {(xi, yi)}k

i=1 be the set of all pairs of E1 su
h that M(xi) = M(yi) = s.By de�nition of t, all elements of X \Mt are in these pairs. Let (x, y) be any ofthese pairs, and let (fj , gj) denote the pair of J su
h that fj = y and gj = x.We know that x ⊆ y.We 
laim that (y, x) is free for X . To prove this, suppose that y′ is a fa
e of
X su
h that y′ 6= y and x ⊆ y′. As (y, x) = (fj , gj) is free for Xj−1, we dedu
ethat there exists a pair (fℓ, gℓ) in J su
h that ℓ < j and fℓ = y′. Let x′ = gℓ.Thus (x′, y′) ∈ E1, and by Prop. 10 we have (y′, x) ∈ E2, hen
e M(x) > M(y′),in 
ontradi
tion with the de�nition of s and S.This proves that all pairs (yi, xi) in S are free for X . As all these pairsappear in the 
ollapse sequen
e J , we know that all yi are distin
t fa
es of X ,and by Cor. 2 we 
on
lude that X 
ollapses onto Mt.The fa
t that M is a topologi
al map on Mt is a 
onsequen
e of Cor. 4. �Th. 12 is a straightforward 
onsequen
e of Prop. 11.Theorem 12. Let M be a topologi
al map on X. Whatever the number λ ∈
R ∪ {+∞}, the 
omplex X 
ollapses onto Mλ.16



M1 M3

M7 M9Figure 12: Level sets of the topologi
al map M of Fig. 11 at levels 1, 3, 7 and 9.The next theorem (Th. 14) expresses the stability of our skeletonizations
heme, with respe
t to the variations of the �ltering parameter.Let S, T be two subsets of R
n. We set

H(S|T ) = max
s∈S

{min
t∈T

{d(s, t)}},and dH(S, T ) = max{H(S|T ), H(T |S)} is the Hausdor� distan
e between Sand T .Let X be a 
omplex in F
n, we denote by S(X) the union of all fa
es of X ,
alled the support of X . For 
omparing two 
omplexes X and Y , we 
onsiderthe Hausdor� distan
e between their supports S(X) and S(Y ).The following property follows easily from the de�nitions.Proposition 13. Let Y be a 
omplex, let S be a set of pairs that are free for Y ,and let Z be the set of all fa
es that are in the pairs of Y . Then, dH(S(Y ),S(Y \

Z)) 6 1.The proof of Th. 14 is quite similar to the one of Prop. 11.Theorem 14. Let α, λ ∈ R, α > 0, λ > 0. Let k ∈ N. Let M be an α-topologi
al map on X. Then, dH(S(Mλ),S(Mλ+kα)) 6 k.Proof. Clearly if the property holds for k = 1, it also holds for any k. Weassume now that k = 1. If λ = +∞ then the property trivially holds, let usassume λ < +∞. Let S = {(xi, yi)}k
i=1 be the set of all pairs of E1 su
h that

λ 6 M(xi) = M(yi) < λ + α. Let (x, y) be any of these pairs, and let (fj , gj)denote the pair of J su
h that fj = y and gj = x. We know that x ⊆ y.Suppose that y′ is a fa
e of Mλ su
h that y′ 6= y and x ⊆ y′. As (y, x) =
(fj , gj) is free for Xj−1, we dedu
e that there exists a pair (fℓ, gℓ) in J su
hthat ℓ < j and fℓ = y′. Let x′ = gℓ. Thus (x′, y′) ∈ E1, and by Prop. 10 wehave (y′, x) ∈ E2, thus M(x) > M(y′) + α, hen
e M(y′) < M(x) − α < λ, in
ontradi
tion with the fa
t that y′ belongs to Mλ.This proves that all pairs (yi, xi) in S are free for Mλ, and by Prop. 13, wededu
e the result. � 17



7. Topologi
al map indu
ed by an arbitrary mapIn this se
tion, we show that given any map L on X , we 
an de�ne and
ompute a topologi
al map that is �
lose to� L, more pre
isely it is the lowestmap above L that is a topologi
al map.De�nition 15. Let L be any map from X to R∪{+∞}, and let α be a positivereal number. We 
onsider a map M su
h that:a) M is an α-topologi
al map; andb) for all f in XJ , M(f) > L(f); and
) M is minimal for 
onditions a) and b), that is, any map M ′ verifying botha) and b) is su
h that M ′ > M .As stated by the following property, M is uniquely de�ned. We say that themap M is the α-topologi
al map indu
ed by L.Proposition 16. Let M and M ′ be two maps that verify 
onditions a), b) and
) of Def. 15. Then, we have M = M ′.Proof. Sin
e for any 
ouple (x, y) of E1 we have M(x) = M(y) and M ′(x) =
M ′(y), we observe that either M and M ′ are equal, or they di�er on a 
ertainnumber of 
ouples of E1. Suppose that (x, y) is a 
ouple of E1 su
h that M ′(x) 6=
M(x). Without loss of generality, we assume that (1) M ′(x) > M(x) (hen
ealso M ′(y) > M(y)), and (2) no fa
e z of X veri�es both M ′(z) 6= M(z) and
M ′(z) < M ′(x).Consider the map M ′′ su
h that M ′′(x) = M ′′(y) = M(x) = M(y), and
∀z ∈ X \ {x, y}, M ′′(z) = M ′(z). Obviously M ′′ veri�es 
ondition b) above.We 
laim that M ′′ is an α-topologi
al map, 
ontradi
ting the minimality of M ′;proving this 
laim will a
hieve the proof.Conditions i) and iii) of Def. 9 are easily veri�ed. Condition ii) must onlybe 
he
ked for ar
s adja
ent to x and y, sin
e for all other ar
s, M ′′ and M ′
oin
ide.If (z, x) is an ar
 of E then ne
essarily (z, x) ∈ E2. We have M ′(x) >

M ′(z) + α, hen
e M ′(z) < M ′(x) and by (2), M ′(z) = M(z). We also have
M(x) > M(z) + α, and by de�nition of M ′′ we dedu
e M ′′(x) > M ′′(z) + α.If (y, z) is an ar
 of E then ne
essarily (y, z) ∈ E2. We have M ′(z) > M ′(y)+
α. By de�nition of M ′′, we know that M ′(z) = M ′′(z) and M(y) = M ′′(y); andby (1), M ′(y) > M ′′(y). From all this we 
on
lude that M ′′(z) > M ′′(y) + α.
� This notion is illustrated in Fig. 13. Below, we give an algorithm that
omputes the α-topologi
al map indu
ed by any given map on X . Before this,let us re
all brie�y the notions of rank and topologi
al sort (an introdu
tion totopologi
al sort, in
luding de�nition, properties and algorithm, 
an be found,e.g., in [16℄). Let G = (V, E) be an a
y
li
 graph and let x ∈ V , the rank of xin G is the length of the longest path in G that ends in x. The topologi
al sortof G is an operation that results in a partition {V r}r=k

r=0 of V su
h that ea
h V ris the subset of V 
ontaining all verti
es of rank r.18



0010010 0 10

1010101010
10

10
10

20 0 +

8

1111121220 10 10

1011111212
13

13
10

20(a) (b)Figure 13: (a) A map L on the 
omplex X of Fig. 11. (b) The 1-topologi
al map indu
ed by
L.Algorithm 4: AlphaTM(X, E1, E2, L, α)Data: A 
omplex X , the ar
 sets E1, E2 of a �ow graph on X , a map Lfrom X to R, a real number α > 0forea
h x ∈ X do1 if x does not appear in E1 ∪ E2 then

M(x) = +∞;else
M(x) = L(x);Let {Xr}r=k

r=0 be the result of the topologi
al sort of the a
y
li
 graph2
(X, E1 ∪ E2);for r = 0 → k do3 forea
h x ∈ Xr do4 forea
h y su
h that (y, x) ∈ E1 do5

M(y) = M(x) = max{M(x), M(y)};forea
h y su
h that (y, x) ∈ E2 do6
M(x) = max{M(x), M(y) + α};return M ;7Proposition 17. Let M be a map from X to R, and let α be real number, α > 0.The result of AlphaTM(X, E1, E2, M, α) is the α-topologi
al map indu
ed by M .Proof. Condition iii) of Def. 9 is ensured by line 1. In lines 3-6, ea
h vertex of the�ow graph is examined exa
tly on
e, and, due to the order of s
anning (lines 3,4)and by de�nition of topologi
al sort, the �nal values M(y) of all prede
essors yof the 
urrent vertex x have been 
omputed before it is examined. For verti
esthat have no prede
essor, the output value of M is equal to the input value.Otherwise, lines 5 and 6 ensure that 
onditions i) and ii') of Def. 9 hold. By
onstru
tion, the minimality of M is guaranteed. �Let N = |X | and M = |E1 ∪ E2|. The time 
omplexity of the topologi
alsort is in O(N + M) (see [16℄). Sin
e the sets Xr form a partition of X , theoverall time 
omplexity of Alg. (4) is also in O(N + M), and in O(N) if thedimension of the 
omplex is 
onsidered as a 
onstant (n = 2 or n = 3).19



8. Computing hierar
hi
 skeletonsLet us now summarize our method to produ
e families of �ltered homotopi
skeletons (see algorithm 5). It is assumed here that X is a pure n-
omplex in
F

n, that is, a 
omplex in whi
h ea
h fa
e is in
luded in an n-fa
e.Algorithm 5: TopoMap(X, L, α)Data: A 
omplex X , a map L on X , a real number αLet P be the proje
tion radius map of X (see Se
. 3);1 Let J = GuidedCollapse(X, P ) (see Se
. 4);2 Let (X, E = E1 ∪ E2) be the �ow graph asso
iated to J , and let Γ, Γ−13 be the su

essor and prede
essor fun
tions of this graph (see Se
. 4);Let L̃ = Integrate(X, Γ, Γ−1, L) (see Se
. 5);4 Let M = AlphaTM(X, E1, E2, L̃, α) (see Se
. 7);5 return M ;6 First, we 
ompute the proje
tion radius map (Se
. 3) on the n-fa
es of X ,and extend it to the other elements of X (if y ∈ X is not an n-fa
e, then we set
P (y) to the max of P (xi) where the xi's are all n-fa
es that in
lude y).Using algorithm 1 (Se
. 4) we build a 
ollapse sequen
e and a �ow graphon X .By 
onstru
tion, the upstream (Se
. 5) of any vertex x of this �ow graphis 
omposed by elements of X that, in any family of �ltered skeletons, shoulddisappear before x does.Integrating information given by map L (Se
. 5) allows us to asso
iate, toea
h element x of X , a value L̃(x) that represents a measure of the upstream of
x. The lower this value, the sooner the point x may disappear.Then, thanks to algorithm 4 (Se
. 7), we produ
e a topologi
al map Mbased on this measure. Thanks to Th. 12, we know that any level set of Mis homotopy-equivalent to X . Therefore, �ltered (i.e., pruned) skeletons areobtained by thresholding the map M ; lowest levels of threshold 
orrespond tohighest levels of detail. Some results are shown in Fig. 14 and Fig. 15, usingmap L2.Another interesting map is L3, whi
h asso
iates to ea
h point x of X thebise
tor angle of x, that is, the maximal angle âxb with a, b any two points inthe extended proje
tion of x on X (see [18℄). In the next se
tion, we will seethat L3 yields parti
ularly good results.A

ording to the time 
omplexity evaluation of previous algorithms, theoverall time 
omplexity of Alg. (5) is in O(N log N), where N = |X |.9. Quality assessment and 
omparisonsIn order to assess the quality of the produ
ed skeletons, and to 
omparethem to those obtained by other methods, we use stability w.r.t. rotations asour quality 
riterion, following a methodology introdu
ed in [13℄.20



Figure 14: Two renderings of the result of the TopoMap operator, on the same obje
t X as inFig. 6 and the map L2.
(a) (b) (
)Figure 15: (a,b,
) Three level sets of TopoMap(X, L2), at values 25, 48 and 72, respe
tively.Rotation invarian
e is an important property of skeleton that holds in the
ontinuous framework. If Rθ denotes the rotation of angle θ and 
enter 0, and

S denotes the skeleton transform, the rotation invarian
e property states that
S(Rθ(X)) = Rθ(S(X)), whatever X and θ.In a dis
rete framework, this property 
an only hold for parti
ular 
ases (e.g.,when θ is a multiple of 90 degrees). Nevertheless, we 
an experimentally measurethe dissimilarity between S(Rθ(X)) and Rθ(S(X)) for di�erent instan
es of Xand θ, and di�erent de�nitions of skeleton. The lower this dissimilarity, themore stable under rotation the method is.Let us now des
ribe more pre
isely the methodology that we used for thisexperimental evaluation.Let X be a �nite subset of Z

n. Noti
e that a 
ubi
al 
omplex has a naturalembedding in Z
n and 
an thus be treated as a point set. Let Y ⊆ X , we set

RDTX(Y ) =
⋃

y∈Y B<

d(y,X)
(y), where B<

r (x) = {y ∈ Z
n | d(x, y) < r}. Thetransformation RDTX is sometimes 
alled reverse distan
e transform [15℄.It is well known that any obje
t 
an be fully re
onstru
ted from its medialaxis, more pre
isely, we have X = RDTX(Y ) whenever Y is the the set of all21




enters of maximal balls of X . However, this is no longer true if we 
onsider�ltered skeletons.Then, it is interesting to measure how mu
h information about the originalobje
t is lost when we raise the �ltering parameter. Considering a skeletoniza-tion pro
edure Sλ where λ is the only parameter, we set
ρX(λ) =

|X \ RDTX(Sλ(X))|

|X |
.In words, ρX(λ) is the area of the di�eren
e between X and the set re
on-stru
ted from its �ltered skeleton, divided by the area of X . We 
all ρX(λ) the(normalized) residual (of X, 
orresponding to �ltering value λ).Obviously, for di�erent skeletonization methods the �ltering parameter doesnot play the same role. To ensure a fair evaluation we will 
ompare the resultsof di�erent methods for approximately equal values of their residuals, ratherthan for equal values of their parameters.For 
omparing shapes or skeletons, we use the Hausdor� distan
e (see Se
. 6),and also a dissimilarity measure proposed by M.P. Dubuisson and A.K. Jain [20℄as an alternative to the Hausdo� distan
e. The drawba
k of Hausdor� distan
efor measuring shape dissimilarity is its extreme sensibility to outliers, the lattermeasure avoids this drawba
k.Let X, Y be two subsets of R

n. We set
D(X |Y ) =

1

|X |

∑

x∈X

min
y∈Y

{d(x, y)},and dD(X, Y ) = max{D(X |Y ), D(Y |X)} is the Dubuisson and Jain's dissimi-larity measure between X and Y (
alled dissimilarity in the sequel for the sakeof brevity).We 
ondu
ted our experiments on a database of 216 shapes provided byB.B. Kimia [34℄. The 216 images are divided into 18 
lasses (birds, 
ars, et
.),Fig. 16 shows one (redu
ed) image of ea
h 
lass.
Figure 16: A sample of the 216 shapes of Kimia's database.In those experiments, we 
ompare three variants of our method, and twoother methods whi
h are, to the best of our knowledge, among the best ones inregard to the stability 
riterion whi
h is our main 
on
ern in this work. More22



pre
isely, we 
ompare:a) Our method, using the map L1 as des
ribed in se
tion 5 (area indi
ator);b) Our method, using the map L2 as des
ribed in se
tion 5 (border indi
ator);
) Our method, using the map L3 as des
ribed in se
tion 5 (bise
tor angle);d) A homotopi
 thinning pro
edure by iterative simple point removal, guidedby a priority fun
tion whi
h is the PR map, and 
onstrained to preserve thepoints belonging to the λ-medial axis;e) The skeletonization method proposed by R. Ogniewi
z, using the implemen-tation that 
an be found in the Stony Brook Algorithm Repository3.1% 2% 3% 4% 5% 6% alla 1.22 1.58 1.69 1.63 1.53 1.46 1.52b 1.67 1.87 1.48 1.23 1.24 1.29 1.46
 1.56 1.69 1.44 1.20 1.10 1.09 1.35d 2.23 1.57 1.32 1.24 1.28 1.34 1.50e 1.78 1.78 1.45 1.16 1.09 1.05 1.39Table 1: Dissimilarity1% 2% 3% 4% 5% 6% alla 7.80 11.7 13.7 14.4 14.0 13.4 12.5b 14.0 17.6 14.7 11.0 9.83 9.83 12.8
 12.6 15.4 14.0 10.9 8.59 7.99 11.6d 16.6 15.9 13.7 12.8 12.7 12.6 14.1e 14.6 15.1 13.2 9.48 7.95 7.19 11.3Table 2: Hausdor� distan
eTables 1 and 2 show respe
tively average dissimilarity and Hausdor� distan
ebetween S(Rθ(.)) and Rθ(S(.)), on all shapes of the database, for angles θvarying between 0 and 89 degrees by steps of one degree, and for appli
ationsof the �ve methods yielding residuals varying between 1% and 6%. Best results(lowest values) are highlighted in boldfa
e, worst ones in itali
. Fig. 17 illustratethe level of �ltering obtained on a shape for these residual values.It 
an be observed that variant (a) of our method performs very well withmoderate �ltering, while for higher residual amounts Ogniewi
z' method (e) isbetter. In the average, variant (
) of our method performs as well as (e) on thistest set.3http://www.
s.sunysb.edu/~algorith/implement/skeleton/implement.shtml23



1% 2% 3%
4% 5% 6%Figure 17: Filtered skeletons (method b) yielding 1% to 6% residuals.10. The 3D 
aseUnlike former approa
hes to de�ne and 
ompute hierar
hi
 or multis
aleskeletons, our method also applies to 3D obje
ts for 
omputing 
urvilinear skele-tons. All de�nitions and algorithms that we gave previously are indeed validwhatever the dimension of the 
omplex. We illustrate this by showing a fewresults in 3D: see Fig. 18 and Fig. 19.Fig. 18 shows an original 3D shape X (a), and the topologi
al map Mof X indu
ed by L2(X) (b). In this 2D proje
tion, the map M governs thetransparen
y. Then, (
) and (d) show two examples of �ltered skeletons of Xobtained by thresholding M at levels 100 and 1200, respe
tively.Fig. 19 illustrates the e�e
tiveness of our method in the presen
e of 
ontournoise. In (a), (b) and (
), we have three versions of a 3D obje
t with variousamounts of random noise (obtained by randomly adding or suppressing simplepoints around the border, 1000 points for (b), 2000 points for (
)), and theirrespe
tive �ltered skeletons, using the same parameter value. Noti
e that, evenif the skeletons of the noisy obje
ts are a bit sinuous (whi
h is not abnormal,sin
e they are medial representations of shaky obje
ts), they are free of spuriousbran
hes.11. Con
lusionThe method that we propose is guaranteed to preserve topology and is stablewith respe
t to variations of the �ltering parameter, as stated by Th. 12 andTh. 14 respe
tively. We 
ompared it (in 2D) with the method of [29℄ and with atopology-preservingmethod dire
tly based on the DLMA, regarding the stabilityw.r.t. rotations. This 
omparison is in favour of our method, as reported inSe
. 9. We also illustrate in Se
. 10 its appli
ation in 3D for obtaining 
urvilinear24



(a) (b)
(
) (d)Figure 18: (a) Original shape X. (b) Topologi
al map M indu
ed by L2(X). (
) The levelset M100, a skeleton of X. (d) The level set M1200, another skeleton of X.skeletons. Furthermore, our method is highly �exible: many variants 
an beimagined, in parti
ular by 
hoosing alternative valuations of the upstream. Infurther works, we will investigate the 
ase of 3D surfa
e skeletons, and thepossibility to obtain skeletons only 
omposed of voxels.Referen
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