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Abstract

This article deals with the compact representation of incomplete probabilistic knowledge
which can be encountered in risk evaluation problems, for instance in environmental stud-
ies. Various kinds of knowledge are considered such as expert opinions about characteris-
tics of distributions or poor statistical information. Our approach is based on probability
families encoded by possibility distributions and belief functions. In each case, a technique
for representing the available imprecise probabilistic information faithfully is proposed,
using different uncertainty frameworks (possibility theory, probability theory, belief func-
tions...). Moreover the use of probability-possibility transformations enables confidence
intervals to be encompassed by cuts of possibility distributions, thus making the represen-
tation stronger. The respective appropriateness of pairs of cumulative distributions, contin-
uous possibility distributions or discrete random sets for representing information about the
mean value, the mode, the median and other fractiles of ill-known probability distributions
is discussed in detail.
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1 Introduction

In risk analysis, uncertainties are often captured within a purely probabilistic frame-
work. It suggests that all uncertainties whether of a random or an epistemic nature
should be represented in the same way. Under this assumption, the uncertainty as-
sociated with each parameter of a mathematical model of some phenomenon can
be described by a single probability distribution. According to the frequentist view,
the occurrence of an event is a matter of chance. However, not all uncertainties
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are random nor can be objectively quantified, even if the choice of values for pa-
rameters is based as much as possible on on-site investigations. Due to time and
financial constraints, information regarding model parameters is often incomplete.
For example, it is quite common for a hydrogeologist to estimate the numerical val-
ues of acquifer parameters in the form of confidence intervals according to his/her
experience and intuition (i.e expert judgment). We are then faced with a problem
of processing incomplete knowledge.
Overall, uncertainty regarding model parameters may have essentially two origins.
It may arise from randomness due to natural variability of observations result-
ing from heterogeneity (for instance, spatial heterogeneity) or the fluctuations of
a quantity in time. Or it may be caused by imprecision due to a lack of information
resulting, for example, from systematic measurement errors or expert opinions. As
suggested by Ferson and Ginzburg [20] and more recently developed by Helton et
al.[25], distinct representation methods are needed to adequately tell random vari-
ability (often referred to as "aleatory uncertainty") from imprecision (often referred
to as "epistemic uncertainty").
A long philosophical tradition in probability theory dating back to Laplace demands
that uniform distributions should be used by default in the absence of specific in-
formation about frequencies of possible values. For instance, when an expert gives
his/her opinion on a parameter by claiming: "I only know that the value of x lies
in an interval A", the uniform probability with support A is used. This view is also
justified on the basis of the "maximum entropy" approach [24]. However, this point
of view can be challenged. Adopting a uniform probability distribution to express
ignorance is questionable. This choice introduces information that in fact is not
available and may seriously bias the outcome of risk analysis in a non-conservative
manner [20]. A more faithful representation of this knowledge on parameter x is to
use the characteristic function of the set A, say π such that π = 1, ∀ x ∈ A and 0
otherwise. This is because π is interpreted as a possibility distribution that encodes
the family of all probability distribution functions with support in A (Dubois and
Prade [16]). Indeed, there exists an infinity of probability distributions with support
in A, and the uniform distribution is just one among them.

In the context of risk evaluation, the knowledge really available on parameters is
often vague or incomplete. This knowledge is not enough to isolate a single proba-
bility distribution in the domain of each parameter. When faced with this situation,
representations of knowledge accepting such incompleteness look more in agree-
ment with the available information. Of course, the Bayesian subjectivist approach
maintains that only a standard probabilistic representation of uncertainty is ratio-
nal, but this claim relies on a betting interpretation that enforces the use of a single
probability distribution, in the scope of decision-making, not with a view to faith-
fully report the epistemic state of an agent (See Dubois, Prade and Smets [18] for
more discussions on this topic). In practice, while information regarding variability
is best conveyed using probability distributions, information regarding imprecision
is more faithfully conveyed using families of probability distributions [32]. At the
practical, level such families are most easily encoded either by probability boxes
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(upper and lower cumulative probability functions [21] [22]) or by possibility dis-
tributions (also called fuzzy intervals) [17,12] or yet by belief functions of Shafer
[30].
This article proposes practical representation methods for incomplete probabilistic
information, based on formal links existing between possibility theory, imprecise
probability and belief functions. These results can be applied for modelling inputs
to uncertainty propagation algorithms.
In Section 2, we recall basics of probability-boxes ( upper & lower cumulative dis-
tribution functions ), possibility distributions and belief functions. We also recall
the links between these representations. All of them can encode families of proba-
bility functions. In section 3, the expressive power of probability boxes and possi-
bility distributions is compared. In section 4, some results on the relation between
prediction intervals and possibility theory are recalled. It allows a stronger form of
encoding of a probability family by a possibility distribution, whereby the cuts of
the latter enclose the prediction intervals of the probability functions. In Sections
5 and 6, we consider a non exhaustive list of knowledge types that one may meet
after an information collection step in problems like environmental risk evaluation.
We especially focus on incomplete non-parametric models, for which only some
characteristic values are known, such as the mode, the mean or the median and
other fractiles of the distribution. For each case we propose an adapted represen-
tation in terms of p-boxes, belief functions (Section 5), and especially possibility
distributions (Section 6).

2 Formal Frameworks for Representing Imprecise Probability

Consider a measurable space (Ω,A) where A is an algebra of measurable subsets
of Ω. Let P be a set of probability measures on the referential (Ω,A). For all A ⊆ Ω
measurable, we define:

its upper probability P(A) = sup
P∈P

P(A)

its lower probability P(A) = inf
P∈P

P(A).

Such a family may be natural to consider if a probabilistic parametric model is
used but the parameters such as the mean value or the variance are ill-known (for
instance they lie in an interval). It can be also obtained if the probabilistic model
relies on imprecise (e.g. set-valued) statistics (Jaffray, [26]), or yet incomplete sta-
tistical information (only a set of conditional probabilities is available). In a subjec-
tivist tradition, the lower probability P(A) can be interpreted as the maximal price
one would be willing to pay for the gamble A, which pays 1 unit if event A occurs
(and nothing otherwise) [32]. Thus, P(A) is the maximal betting rate at which one
would be disposed to bet on A. That means P(A) is a measure of evidence in favour
of event A. The upper probability P(A) can be interpreted as the minimal selling
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price for the gamble A, or as one minus the maximal rate at which an agent would
bet on A [32]. That means P(A) measures the lack of evidence against A since we
have:

P(A) = 1 − P(Ac)

It is clear that representing and reasoning with a family of probabilities may be very
complex. In the following we consider three frameworks for representing special
sets of probability functions, which are more convenient for a practical handling.
In the following we review three modes of representation of uncertainty that can be
cast in the imprecise probability model.

2.1 Probability boxes

Let X be a random variable on (Ω,A). Recall that a cumulative distribution func-
tion is a non decreasing function F : R → [0, 1] assigning to each x ∈ R the value
P(X ∈ (−∞, x]). This function encodes all the information pertaining to a probabil-
ity measure, and is often very useful in practice.
A natural model of an ill-known probability measure is thus obtained by consider-
ing a pair (F, F) of non-intersecting cumulative distribution functions, generalising
an interval. The interval [F, F] is called a probability box (p-box) [21] [22]. A p-box
encodes the class of probability measures whose cumulative distribution functions
F are restricted by the bounding pair of cumulative distribution functions F and F
such that

F(x) ≤ F(x) ≤ F(x) ∀x ∈ R

A p-box can be induced from a probability family P by:

∀x ∈ R F(x) = P((−∞, x])

∀x ∈ R F(x) = P((−∞, x])

Let P(P < P) = {P,∀A ⊆ Ω measurable, P(A) ≤ P(A) ≤ P(A)} be the probability
family limited by upper P and lower P probabilities induced from P. Clearly P is
a proper subset of P(P < P) generally. Let P(F ≤ F) be the probability family
containing P and defined by:

P(F ≤ F) = {P,∀x, F(x) ≤ F(x) ≤ F(x)}

Generally, P(F ≤ F) strictly contains P(P < P), hence also the set P it is built from.
The probability box [F, F] provides a bracketing of some ill-known cumulative
distribution function and the gap between F and F reflects the incomplete nature of
the knowledge, thus picturing the extent of what is ignored. However, as we shall
see, this representation method can be very imprecise.
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2.2 Basics of Numerical Possibility Theory

Possibility theory [12] is relevant to represent consonant imprecise knowledge. The
basic notion is the possibility distribution, denoted π, an upper semi-continuous
mapping from the real line to the unit interval. A possibility distribution describes
the more or less plausible values of some uncertain variable X. Possibility theory
provides two evaluations of the likelihood of an event, for instance whether the
value of a real variable X does lie within a certain interval: the possibilityΠ and the
necessity N. The normalized measure of possibilityΠ (respectively necessity N) is
defined from the possibility distribution π : R→ [0, 1] such that supx∈R π(x) = 1 as
follows:

Π(A) = sup
x∈A
π(x) (1)

N(A) = 1 − Π(A) = inf
x<A

(1 − π(x)) (2)

• The possibility measure Π verifies :

∀A, B ⊆ R Π(A ∪ B) = max(Π(A),Π(B)) (3)

• The necessity measure N verifies :

∀A, B ⊆ R N(A ∩ B) = min(N(A),N(B)) (4)

A possibility distribution π1 is more specific than another one π2 in the wide sense
as soon as π1 ≤ π2, i.e. π1 is more informative than π2.
A unimodal numerical possibility distribution may also be viewed as a nested set of
confidence intervals, which are the α-cuts [x

α
, xα] = {x, π(x) ≥ α} of π. The degree

of certainty that [x
α
, xα] contains X is N([x

α
, xα]) (= 1 − α if π is continuous).

Conversely, a nested set of intervals Ai with degrees of certainty λi that Ai contains
X is equivalent to the possibility distribution

π(x) = min
i=1...n
{1 − λi, x ∈ Ai}

provided that λi is interpreted as a lower bound on N(Ai), and π is chosen as the
least specific possibility distribution satisfying these inequalities [16].
We can interpret any pair of dual functions necessity/possibility [N,Π] as upper and
lower probabilities induced from specific probability families.

• Let π be a possibility distribution inducing a pair of functions [N,Π]. We define
the probability family P(π) = {P,∀A measurable, N(A) ≤ P(A)} = {P,∀A mea-
surable, P(A) ≤ Π(A)}. In this case, supP∈P(π) P(A) = Π(A) and infP∈P(π) P(A) =
N(A) (see [7,16]) hold. In other words, the family P(π) is entirely determined by
the probability intervals it generates.

• Suppose pairs (interval Ai, necessity weight λi) supplied by an expert are inter-
preted as stating that the probability P(Ai) is at least equal to λi where Ai is a
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measurable set. We define the probability family as follows: P(π) = {P,∀Ai, λi ≤
P(Ai)}. We thus know that P = Π and P = N (see [16], and in the infinite case
[7]).

2.3 Imprecise probability induced by random intervals

The theory of imprecise probabilities introduced by Dempster [8] (and elabo-
rated further by Shafer [30] and Smets [31] in a different context) allows impreci-
sion and variability to be treated separately within a single framework. Indeed, it
provides mathematical tools to process information which is at the same time of
random and imprecise nature. Contrary to probability theory, which in the finite
case assigns probability weights to atoms (elements of the referential), in this
approach we may assign such weights to any subset, called focal set, with the
understanding that portions of this weight may move freely from one element
to another in a focal set. We typically find this kind of knowledge when some
measurement device is tainted with limited perception capabilities and a random
error (variability) due to the variability of a phenomenon. We may obtain a sam-
ple of random intervals of the form ([mi − δ,mi + δ])i=1...K supposedly containing
the true value, where δ is a perception threshold, mi is a measured value and K is
the number of interval observations. Each interval is attached a probability νi of
observing the measured value mi. That is, we obtain a mass distribution (νi)i=1...K

on intervals, thus defining a random interval. The probability mass νi can be
freely re-allocated to points within interval [mi − δ,mi + δ]. However, there is not
enough information to do it.
Like possibility theory, this theory provides two indicators, called plausibility
Pl and belief Bel by Shafer [30]. They qualify the validity of a proposition stat-
ing that the value of variable X should lie within a set A (a certain interval for
example). Plausibility Pl and belief Bel measures are defined from the mass dis-
tribution assigning positive weights to a finite set F of measurable subsets of
Ω:

ν : F → [0, 1] such that
∑

E∈F
ν(E) = 1 (5)

as follows:
Bel(A) =

∑

E,E⊆A

ν(E) (6)

Pl(A) =
∑

E,E∩A,∅
ν(E) = 1 − Bel(Ā) (7)

where E ∈ F is called a focal element.Bel(A) gathers the imprecise evidence that
asserts A ; Pl(A) gathers the imprecise evidence that does not contradict A.

A mass distribution ν may encode the probability family P(ν) = {P,∀A mea-
surable, Bel(A) ≤ P(A)} = {P,∀A measurable, P(A) ≤ Pl(A)} [8]. In this case we
have: P = Pl and P = Bel, so that:

∀P ∈ P(ν), Bel ≤ P ≤ Pl (8)
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This view of belief functions is at odds with the theory of evidence of Shafer
and the transferable belief model of Smets, who never refer to an imprecisely
located probability distribution. Originally, Dempster [8] considered imprecise
probabilities induced from a probability space via a set-valued mapping. In this
scope, Bel(A) is the minimal amount of probability that must be assigned to A
by sharing the probability weights defined by the mass function among single
values in the focal sets. Pl(A) is the maximal amount of probability that can be
likewise assigned to A. We may define an upper F and a lower F cumulative
distribution function (a particular p-box) such that ∀x ∈ R F(x) ≤ F(x) ≤ F(x)
with :

F(x) = Pl(X ∈ (−∞, x]) (9)

F(x) = Bel(X ∈ (−∞, x]) (10)

But this p-box contains many more probability functions than P(ν).

The setting of belief and plausibility functions encompasses possibility and prob-
ability theories, at least in the finite case:
· When focal elements are nested, a belief measure Bel is a necessity measure,

that is Bel = N. A plausibility measure Pl is a possibility measure, that is
Pl = Π.
· When focal elements are some disjoint intervals, plausibility Pl and belief Bel

measures are both probability measures, that is, we have Bel = P = Pl, for
unions of such intervals.

Thus, all discrete probability distributions and possibility distributions may be
interpreted by mass functions. However, continuous belief functions have not re-
ceived much attention so far (except in the scope of random sets).

The above notions offer a common framework to treat the information of im-
precise and random nature. However an obvious question is how to compare
the expressivity of p-boxes, possibility distributions and belief functions. As we
shall see, a p-box generally contains less information than a belief function and
a possibility measure from which this p-box is derived. Possibility measures also
offer the capability of approximating confidence intervals. A representation us-
ing belief functions is potentially more complex than the two other representation
modes because a mass function must be specified for all subsets. However, using
only a few focal subsets may be enough in practice. In the next section we focus
on the respective expressive power of p-boxes and possibility measures.

3 Comparative expressivity of probability boxes and possibility distribu-
tions

Consider a unimodal continuous possibility distribution π with core {a} (i.e.
Π({a}) = π(a) = 1 and ∀ x , a, π(x) , 1). We assume a unimodal π for simplicity.
Results in this Section readily adapt to the case when the core of π is of the form
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[a, b]. The set of probability measures induced by π, that is, P(π), can be more
conveniently described by a condition on the cumulative distribution functions
of these probabilities (as first pointed out by Dubois and Prade [13]):

Theorem 1 Let π be a unimodal continuous possibility distribution with core {a}.
Then P(π) = {P,∀x, y, x ≤ a ≤ y, F(x) + 1 − F(y) ≤ max(π(x), π(y))}

Proof. see appendix A
Note that we can choose x and y such that π(x) = π(y) in the expression

of P(π), i.e. suppose that [x, y] is a cut of π. If Iα is the α-cut of π, it holds
that: P(π) = {P, P(Iα) ≥ N(Iα),∀α ∈ (0, 1]}. Thus by putting ∀x ≤ a, f (x) =
sup{y, π(x) ≥ π(y)}, we can prove that [11]:

P(π) = {P,∀x ≤ a, F(x) + 1 − F( f (x)) ≤ π(x)}.

Define a particular probability box [F,F] such that:

F(x) = Π(X ∈ (−∞, x]) (11)

F(x) = N(X ∈ (−∞, x]). (12)

It is clear that F(x) = π(x) ∀x such that F(x) < 1 and F(x) = 1 − π(x) ∀x such that
F(x) > 0. Define

π+(x) =



















π(x) f or x ≤ a

1 f or x ≥ a
, π−(x) =



















π(x) f or x ≥ a

1 f or x ≤ a

the functions π+(x) and 1−π−(x) can be equated to the cumulative distribution func-
tions F and F. The probability box (F, F) = (π+, 1 − π−) has an important specific
feature: there exists a real value a such that F(a) = 1 and F(a) = 0. It means that
the p-box contains the deterministic value a, so that the two cumulative distribu-
tions are acting in disjoint areas of the real line separated by this value. We can
retrieve a possibility distribution from such two cumulative distribution functions
as π = min(F, 1−F) and thus retrieve the possibility distribution that generated the
p-box. However it is clear that this process applied to any p-box does not yield a
normalized possibility distribution, when the cumulative distributions are too close.
A probability box can be a precise tool for approximating a probability distribution
in the latter case, but it then forbids the case where the modelled unknown may be
deterministic.

Moreover the two sets of probability functions P(π) and P(F < F) differ. The
following results indicate that the former is more precise than the latter (Dubois
and Prade [13]):

Theorem 2 The probability family encoded by the unimodal continuous possibility
distribution π is included in the probability family encoded by the probability box
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[F, F] induced from π:

P(π) ⊂ P(F < F) for F = 1 − π− and F = π+

Proof. Let be P ∈ P(π). As limy→+∞ F(x)+1−F(y) = F(x) and limy→+∞max(π(x), π(y))
= π+(x), we obtain according to Theorem 1: F(x) ≤ π+(x). In the same way,
limx→−∞ F(x) + 1 − F(y) = 1 − F(y) and limx→−∞max(π(x), π(y)) = π−(y), thus
F(y) ≥ 1 − π−(y). Hence we have P ∈ P(F < F).
On the other hand, the other inclusion is false, indeed take for example the tri-
angular possibility distribution π with support [0, 2] and core {1}. Define P(F <
F) = {P,∀x, 1 − π−(x) ≤ F(x) ≤ π+(x)} and P a probability measure such that
P({0.5}) = 0.5 and P({1.5}) = 0.5. We do have P ∈ P(F < F), however P < P(π)
because, for A = (−∞, 0.5] ∪ [1.5,+∞), it holds P(A) = 1 > Π(A) = 0.5.�

We can systematize this counterexample and find probability families included in
the probability box [F, F] induced by π, which are not present in P(π). The follow-
ing result improves a previous one due to Dubois and Prade [13]:

Theorem 3 Let P be a probability measure in P(F < F) such that:

• There exists γ ≥ a satisfying P((−∞, γ]) = F(γ) (see Figure 1.a) (or P((−∞, γ]) =
F(γ), (see Figure 1.b)).

• There exists θ ∈ {x ≤ a/F(x) ≤ 1 − F(γ)} such that P((−∞, θ]) , 0 (see Figure
1.a) (or θ ∈ {x ≥ a/1 − F(x) ≤ F(γ)} such that P((−∞, θ]) , 1), (see Figure
1.b)).

Then P < P(π).

1

a) b)

1

PSfrag replacements

π

ππ

F F
F

F
F

F

γγθ θ
0 01

a a

Fig. 1. Probabilities in P(F < F) but not in P(π).

Proof. Let P ∈ P(F < F) with cumulative function F.
Consider the case where γ ≥ a exists satisfying P((−∞, γ]) = F(γ) (see Figure 1.a).
Using Theorem 1 and the features of F on (−∞, θ], we have P((−∞, θ]∪ [γ,+∞)) =
F(θ) + 1 − F(γ) > 1 − F(γ) = π(γ) = max(π(θ), π(γ)) Thus, P < P(π).
Similarly, if there exists γ ≤ a satisfying P((−∞, γ]) = F(γ), (see Figure 1.b); we
have F(γ) + 1 − F(θ) > F(γ) = π(γ) = max(π(γ), π(θ)). �
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The probability box induced by π can thus contain multimodal distributions (if
F(θ) = F(γ) for instance), and some unimodal distributions with mode different
from a which are ruled out by the probability family encoded by the possibility
distribution π.

Theorem 3 identifies a set of probability measures which are not in P(π). Consider π
and F such that F ≤ F = π+. If F is known on (−∞, a], we can define a lower bound
F∗ of F on [a,+∞) such that the corresponding probability measure P belongs to
P(π) if and only if F ≥ F∗. Consider the function g : y 7→ min{x ≤ a|π(x) = π(y)}.
From theorem 1, we deduce that F ∈ P(π) if and only if

F(y) ≥ 1 − π(y) + F(g(y)), ∀y ≥ a

The function 1− π(y) + F(g(y)) is not necessarily increasing (see Figure 2), we can
thus define

F∗(y) = max(F(a), 1 − π(y) + F(g(y))) for y ≥ a see Figure 2

Conversely if F is known on [a,+∞) an upper bound F∗ can be found on (−∞, a]
such that P ∈ P(π) if and only if

F(x) ≤ F∗(x) = min(F(a), π(a) − 1 + F( f (x)))

It is clear that sets {P|F(x) ≤ F(x) ∀x ≤ a and F(x) = 1 ∀x ≥ a} and {P|F(x) ≥

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

π 

F on [1,10]

1−π(y)+F(g(y)) on [10,17]

° 
F

*
 on [1,17]

Fig. 2. Example of probability families included in P(π) induced by the triangular possibil-
ity distribution of core {10} and support [1, 17]

F(x) ∀x ≥ a and F(x) = 0 ∀x ≤ a} are included in P(π). They correspond to
probability densities with support [min, a] or limited by [a,max] and their mode is
not the mode of π.

Conversely, suppose F < F is the available information, and there exists a real
value a such that F(a) = 1 and F(a) = 0. The above results show that the pos-
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sibility distribution min(F, 1 − F) cannot encompass all probability distributions
restricted by the p-box. An obvious example is as follows: consider a probability
distribution P, and the probability box (F, F) such that F(x) = F(x) for x < a and
1 otherwise; F(x) = F(x) for x > a and 0 otherwise. The corresponding possibility
distribution is π(x) = F(x) if x < a, π(x) = 1 − F(x) if x > a and π(x) = 1 if x = a.
It can be checked that P < P(π) while F < F < F.

Can we find a non-trivial possibility distribution π? such that P(π?) contains the
probability box [F, F] ? Note that F(x) ≥ F(x) ≥ F(x) implies ∀x ≤ a ≤ y, F(x) +
1 − F(y) ≤ F(x) + 1 − F(y). Thus, with intervals [x, g(x)], where g(x) is such
that F(x) = 1 − F(g(x)), ∀x ≤ a, F(x) + 1 − F(g(x)) ≤ 2F(x). Thus, by letting
π?+(x) = min(1, 2F(x)) and π?−(y) = min(1, 2(1 − F(y))) we do build a possibility
distribution (often very imprecise) π? such that P(F < F) ⊂ P(π?).

We may conclude: To represent knowledge using a possibility distribution is more
precise than using the upper & lower cumulative distribution functions F, F it in-
duces.

As a consequence, if we seek to estimate the probability P(X ∈ [x, y]) using the
probability box [F, F] induced by π, for some x , y, we may obtain a bracket-
ing of this probability larger than that the one obtained from the possibility distri-
bution. From the probability box, we can estimate a best envelope of probability
P(X ∈ [x, y]) by:

max(0, F(y) − F(x)) ≤ P(X ∈ [x, y]) ≤ F(y) − F(x).

With a similar reasoning as in the proof of theorem 1, we can show ∃ (x, y), x , y
such that:

max(0, F(y) − F(x)) < N([x, y])

Indeed, for x < a < y such that π+(x) > 0 and π−(y) > 0, we have:

max(0, F(y) − F(x)) = max(0, 1 − π−(y) − π+(x)) = 0 if π+(x) + π−(y) > 1;

N([x, y]) = 1 −max(π+(x), π−(y)) > 0

It is clear that π+(x) + π−(y) > max(π+(x), π−(y)) which implies N([x, y]) > F(y) −
F(x).

Note that the cumulative distributions describing any p-box can be generated by a
belief function, contrary to the case of possibility distributions (see Ferson et al.
[21]). So an open interesting problem is to characterize the set of belief functions
whose upper and lower cumulative distributions coincide with a (discrete) p-box,
and among them the least informative one (for instance maximizing the expected
size of the focal elements). This is left for further research.
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4 Approximating probability families by possibility distributions

Let p be a unimodal probability density function. Denote by M the mode of p. Let
P be the probability measure associated to p. So far we considered possibility dis-
tributions π which verify the following condition (dubbed Dominance condition):

P(A) ≤ Π(A), for all measurable events A

We say that the possibility measure dominates the probability measure and it means
P ∈ P(π).

More generally, π dominates a probability family P if and only if P ⊆ P(π). It
holds that P(max(π1, π2)) is the convex closure of P(π1)∪P(π2), since the possibil-
ity distribution max(π1, π2) generates the possibility measure max(Π1,Π2). On the
contrary, P(min(π1, π2)) , P(π1) ∩ P(π2) in general, because min(Π1,Π2) is not a
possibility measure. So, if a probability family P is dominated by two possibility
distributions π1, π2, one cannot deduce that P is dominated by min(π1, π2), even if
min(π1, π2) is normalized.

An approximate (covering) possibilistic representation of a given family P is any π
such that P ⊆ P(π). Clearly it means that π dominates all probability functions in
P. Ideally π should be such that P(π) is as small as possible. However such optimal
covering approximations of probability families generally do not exist (see Dubois
and Prade [14]). Nevertheless, in the remainder of the paper we shall lay bare var-
ious informative approximate covering possibilistic representations of probability
families induced by incomplete probabilistic data.

However as previously seen, a possibility measure also encodes a set of nested con-
fidence intervals provided by an expert. A possibility measure π such that P ∈ P(π)
can be constructed as follows ([11], [15]): Let Jλ = [x(λ), y(λ)], for λ ∈ [0, 1] be a
continuous nested interval family such that Jλ ⊆ Jβ if λ ≥ β, J0 = {x∗} ⊂ supp(p)
and J1 = supp(p) where supp(p) is the support of a unimodal probability density
p. Then, the possibility distribution π given by :

π(x(λ)) = π(y(λ)) = 1 − P(Jλ) ∀λ (13)

dominates p. That is p ∈ P(π) (or P ≤ Π). If we choose Jλ such that:

Jλ = {x, p(x) ≥ λ}, ∀λ ∈ [0, sup(p)]. (14)

Jλ is of the form [x, f (x)] where f (x) = max{y, p(y) ≥ p(x)}. Then, Jλ is the nar-
rowest prediction interval of probability α = P(Jλ), x∗ is the mode M of p and Jλ is
also the most probable interval of length |y(λ) − x(λ)| [12].

Hence, if we choose Jλ as in (14) and π as in (13), we obtain a possibility dis-
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tribution π?p such that Π ≥ P (dominance condition) and the α-cut of π?p is indeed
the narrowest prediction interval of p of confidence level 1 − α (prediction interval
condition). Such π?p is called the optimal transform of p,

π?p (x) = 1 − P({y, p(y) ≥ p(x)}) = F(x) + 1 − F( f (x))

and π?p (M) = 1. This transformation is optimal in the sense that it provides the most
specific possibility distribution among those that dominate p, and preserve the or-
der induced by p on the support interval.

It is clear that function π?p is a kind of cumulative distribution. More precisely, given
any total ordering of values � on the real line, and any value x, let A�(x) = {y, x �
y}, and assume A�(x) is measurable for all x. The function F�(x) = P(A�(x))) is the
cumulative function according to the order relation �. If �=> the usual ordering on
the real line, then F = F�. Now, choosing the ordering induced by the density p,
that is, x �p y if and only if p(x) > p(y), then F�p = π

?
p .

Computing π?p is not so obvious in general, but the case of symmetric densities
has been considered in [11]; it is shown that π?p is convex on each side of the mode
of p. This result no longer holds in the general case, but we can approximate any
unimodal density p by means of a piecewise continuous function. Then we can
easily show he following result:

Theorem 4 Let p be a unimodal continuous probability distribution function of
mode M and of bounded support supp(p). If p is (piecewise) linear, then its optimal
transform is piecewise convex.

Proof. see appendix B

Using the idea of narrowest prediction intervals described above, it is also inter-
esting to characterize approximate covering possibilistic representations of prob-
ability families P that account for such prediction intervals. A possibility distri-
bution π is said to strongly dominate a probability measure P with density p if
{x; p(x) ≥ λ} = Jλ ⊆ {x, π(x) ≥ α} for α = 1 − P(Jλ) (dubbed prediction inter-
val condition). Given a probability family P one may try to find the most specific
possibility distribution πP thatstrongly dominates all P ∈ P such a possibility dis-
tribution is πP = supp∈Pπ

?
p . πP has the peculiarity that any of its α-cuts contain the

(1 − α)-prediction interval of any p ∈ P. Note that this approach is enabled by the
property P(π1) ∪ P(π2)) ⊆ P(max(π1, π2)).
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5 Simple Models of Incomplete Probabilistic Knowledge using p-boxes and
belief functions

The preceding results can be applied to the definition of faithful representations of
poor probabilistic knowledge by means of probability boxes, belief functions and
especially possibility distributions. The extreme case is when an expert provides an
interval containing the unknown value. Generally there is a little more information
than a simple interval: an expert may have an idea on typical values in the inter-
val: the median , the mean, the mode. Additional information on a distribution may
be the knowledge of appropriate fractiles and confidence intervals. These pieces
of information define constraints restricting a probability family. The problem is
whether such family can be simply described or approximated by means of the
simple tools described in the previous sections. These representation techniques
suggest that simple non-parametric representations of available uncertain knowl-
edge, where incompleteness and variability receive specific treatments, are feasible
in the scope of further uncertainty propagation steps in risk analysis problems. This
section recalls representation methods proposed by Ferson using p-boxes, when the
mean-value of a density is known, and for the modelling of a small set of precise
observations by means of imprecise probabilities. Moreover, belief functions can
be directly used for exploiting the knowledge of fractiles.

5.1 Representations by Probability Boxes

As discussed earlier, probability boxes generalise the idea of interval from a pair
of points to a pair of cumulative distribution functions. They are a very natural
way of extending the notion of interval. They are especially informative when the
two cumulative distributions are close to each other. They come up as a natural
choice for imprecise parametric models with imprecise parameters. For instance,
a Gaussian model where the mean-value and/or the variance is known to lie in a
prescribed interval may naturally yield a narrow p-box (even if the latter contains
non-Gaussian distributions). However, we do not deal with parametric models here.
The p-box model has been especially investigated by Ferson et al [21]. We recall
his proposals for representing distributions with fixed mean value as well as for
using the Kolmogorov-Smirnov confidence limits in order to derive a p-box from
small data samples.

5.1.1 Probability distributions with known mean and support

Suppose an expert supplies the mean µ and the support I = [b, c]. Let Pmean
I de-

note the set of probabilities with support I and prescribed mean, equal to µ. Fer-
son [21] proposes to represent this knowledge by a probability box [F, F]. To ob-
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tain it, he separately solves two problems for each value x as follows: F(x) =
supF:E(X)=µ F(x) and F(x) = infF:E(X)=µ F(x) (the unknown is F). Using the
characteristic property of the mean:

∫ µ

inf(I)
F(y)dy =

∫ sup(I)

µ

(1 − F(y))dy

one obtains the following results

F(x) =



















x−µ
x−b ∀x ∈ [µ, c]

0 ∀x ∈ [b, µ]
, F(x) =



















1 ∀x ∈ [µ, c]
c−µ
c−x ∀x ∈ [b, µ]

The probability box [F, F] (see Figure 3 for an example) defines a probability
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Fig. 3. Probability box built from
x ∈ [2, 7] and E(X) = 4.
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Fig. 4. Possibility distribution π con-
taining the probability box [F, F].

family P(F, F) which contains P
mean
I . It could be tempting to use the probability

family induced by possibility distribution π such that π(x) = c−µ
c−x for x ∈ [b, µ]

and π(x) = 1 − x−µ
x−b for x ∈ [µ, c]. But, as expected from the previous sections, the

inclusion P
mean
I ⊂ P(π) does not hold. The probability P, defined by P(X = 2) = 3/5

and P(X = 7) = 2/5, is enough to show we do not have the inclusion. Indeed, we do
have E(X) = 4 but P(X = 2 or X = 7) = 1 and Π(X = 2 or X = 7) = 0.6, which is
contradictory with P ≤ Π. As pointed out earlier, the probability family P(π) such
that π+(x) = min(1, 2F(x)) and π−(y) = min(1, 2(1− F(y))) (see Figure 4), contains
Pmean

I and P(F, F). However, it is clear that this p-box is poorly informative, and
that the covering possibility is even more so. In fact, the mean value does not seem
to bring much information on the distribution, and the problem of finding a better,
tighter representation of this kind of information remains open. Moreover, while
the average value is very easy and often natural to compute from statistical data,
it is not clear that this value is cognitively plausible, that is, one may doubt that a
single representative value of an ill-known quantity provided by an expert refers
to the mean value. For instance, while some quantities like average income can be
easily figured out, the average human size sounds like a very artificial notion, and
would not be directly perceived by individuals.
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5.1.2 Representing small data samples by a p-box

When the available knowledge is just a small data sample (x1, ..., xn) coming from
the unknown cumulative distribution function F, Ferson et al. [21] define a prob-
ability box [F, F] by using Kolmogorov-Smirnov confidence limits (noted K.S.)
[19,28]. These confidence limits are distribution-free bounds about the sample em-
pirical cumulative distribution function Fn where n is the size of the sample. We
can define Fn as follows:

Fn(x) =



































































0 for x < x(1)

...

i
n for x(i) ≤ x < x(i+1)

...

1 for x ≥ x(n)

where x(i) are the order statistics of the sample.
Fn and Fn converge to the empirical cumulative distribution Fn when the sample be-
comes very large, although convergence is rather slow. Kolmogorov-Smirnov limits
require that the samples be independent and identically distributed. This is a very
standard assumption, but it is sometimes hard to justify (if the values come from
heterogeneous sources, for instance). To obtain these bounds, we use the maximum
deviation DKS between Fn and F defined as follows:

DKS = max
i=1,...,n

(

|F(x(i)) −
i
n
|, |F(x(i)) −

i − 1
n
|
)

DKS is a random variable whose exact distribution is not known but Kolmogorov
found that

√
nDKS has a limiting distribution given by:

∀ t ≥ 0 lim
n→∞

P(
√

nDKS ≤ t) = 1 − 2
+∞
∑

k=1

(−1)k+1e−2k2t2

This limit has been tabulated and allows for each confidence level α to find a value
Dn(α) such that P(DKS ≤ Dn(α)) = 1 − α. To conclude, the K.S. bounds are com-
puted with the expression min(1,max(0, Fn(x)±Dn(α)) for a fixed confidence level
α. For instance, at 95% confidence level, for a sample size of 10, the value of Dn(α)
is 0.40925 (see Figure 5). These limits are often used to express the reliability of
results of a simulation or to test if the sampling from the simulation follows some
probability laws. However, it is not common to use K.S. limits on input parameters
to define a probability family respecting the available data. We must be aware that
K.S. limits are not sure bounds but statistical ones. It means for instance that 95%
of the time the true distribution will lie inside the bounds.

The obtained p-box cannot be obtained from a possibility distribution, as it gener-
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Fig. 5. Kolmogorov-Smirnov confidence limits (gray) about an empirical cumulative dis-
tributino function (black) assuming a sample size of 10.

ally does not include the step-function corresponding to a deterministic value.

5.2 Discrete belief functions representations

Very naturally the representation of a family of probabilities by means of a belief
function (a discrete random set) is appropriate if the probability of prescribed events
is known. This is typically the case when only the median m of a distribution is
known. The meaning of the median is: P(X ≤ m) = 0.5. Let P

med
I be the set of prob-

ability functions with support I = [b, c] and with median m. This knowledge can be
exactly represented by a mass function νm such that νm([b,m]) = νm(]m, c]) = 0.5.
The belief function Belm, deduced from νm, encodes all probabilities with median
m, i.e., Pmed

I = {P,∀C, Belm(C) ≤ P(C)}.

This representation naturally extends to the case when some fractiles and the sup-
port I of the unknown probability distribution function are known. Suppose an ex-
pert supplies fractiles, say x1, x2 and x3 at 5%, 50% and 95%. Denote P

x1,x2,x3
I the set

of probability distribution functions of support I = [b, c] and of fractiles x1, x2, x3.
We can represent this knowledge in an exact way using a belief function by the
following obvious mass function ν f ract: ν f ract([b, x1]) = 0.05, ν f ract(]x1, x2]) = 0.45,
ν f ract(]x2, x3]) = 0.45 and ν f ract(]x3, c]) = 0.05. The belief function Bel f rac, de-
duced from ν f rac, is dominated by all probabilities with fractiles x1, x2 and x3, i.e.,
P

x1,x2,x3
I = {P,∀C, Bel f rac(C) ≤ P(C)}.

Note that the mass function induced by fractiles bears on a partition of the sup-
port. On the contrary if an expert, provides a confidence interval, x ∈ A ⊆ R with
a certainty degree λ, the most cautious interpretation corresponds to an inequality
P(A) ≥ λ. The corresponding mass function ν assigns λ to A and 1 − λ to the real
line itself. This is called a simple support function by Shafer. Note that the two
focal elements are nested. The knowledge of a confidence interval with confidence
λ is less precise than a fractile: if A = [x1, x3] with confidence at least λ, we cannot
deduce the probability degrees associated to intervals (−∞, x1] and [x3,+∞), except
if we assume the symmetry of the underlying density.
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A confidence interval can be represented by the possibility distribution [16]:

∀x ∈ R π(x) =



















1 i f x ∈ A

1 − λ i f x < A

where π encodes the probability family P(π) = {P, λ ≤ P(A)}. When A is large
enough, but, in practice, bounded, the level of confidence is 1. This representation
extends when several nested confidence intervals {A1 ⊂ A2 ⊂ . . .Ak} are obtained
for several confidence levels {λ1 < λ2 < . . . λk} as suggested previously. The cor-
responding mass assignment is ν(Ai) = λi+1 − λi, assuming λ0 = 0 . It yields a
discrete possibility distribution. The next section considers the case of continuous
possibility distributions.

6 Representations by continuous possibility distributions

The use of continuous possibility distributions for representing probability families
heavily relies on probabilistic inequalities. Such inequalities provide probability
bounds for intervals forming a continuous nested family around a typical value.
This nestedness property leads to interpreting the corresponding family as being
induced by a possibility measure. While these bounds are usually used for proving
convergence properties, we propose here to use them for representing knowledge.
This is the case of the Chebyshev inequality for instance. The classical Cheby-
shev inequality [27] defines a bracketing approximation on the confidence intervals
around the known mean µ of a random variable X, knowing its standard deviation
σ. The Chebyshev inequality can be written as follows:

P(|X − µ| ≤ kσ) ≥ 1 − 1
k2

for k ≥ 1

By referring to the Section 2.2, Chebyshev inequality allows to define a possibility
distribution π by considering intervals [µ − kσ, µ + kσ] as α-cuts of π and letting
π(µ−kσ) = π(µ+kσ]) = 1/k2 (see Figure 6). This possibility distribution (see [11])
defines a probability family P(π) such that Pµ,σ ⊆ P(π) containing all distributions
with known mean and standard deviation, whether the unknown probability distri-
bution function is symmetric or not, unimodal or not. If it is moreover assumed that
the unknown probability distribution is unimodal and symmetric, we can improve
the possibility distribution π by means of Camp-Meidel inequality [27] (see Figure
6).

P(|X − µ| ≤ kσ) ≥ 1 − 4
9k2

for k ≥ 2
3
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Fig. 6. Optimal possibility distribution πp knowing µ = 2 and σ = 1 and using Bien-
aymé-Chebychev and Camp-Meidel inequality.

Very often, and as seen above, the nested intervals share the same midpoints, thus
yielding symmetric possibility distributions. In the following we do not make this
restriction. On the contrary, we shall also rely on the most narrow intervals of fixed
confidence levels as introduced earlier in this paper. It leads to exploit information
on the mode of distributions rather than the mean. Moreover we make the additional
assumption that the distributions have a bounded support. Some assumptions can
be made on the shape of the density (without going to the point of choosing a
particular mathematical model like a Gaussian): symmetry, convexity or concavity
can be assumed, for instance.

6.1 Distributions with known mode and support: simple dominance

Suppose the mode M and the support I of the unknown probability distribution
function p is supplied by an expert. In this section unimodality of distributions is
assumed. One might argue that the mode best corresponds to the notion of usual
value, as being the most frequently observed value. Even if the mode is known to
be difficult to extract from a sample of statistical data, one may consider that the
most frequent value (or a most frequent small range of values) is the natural feature
extracted from repeated observations by humans. So the problem of representing
this kind of knowledge looks natural. We can take advantage of the fact that the
cumulative distribution function F, associated to a unimodal (asymmetric) prob-
ability distribution function p with mode M and bounded support I, satisfies the
following properties:

• F is convex on [inf(I),M] since p increases on [inf(I),M].
• F is concave on [M, sup(I)] since p decreases on [M, sup(I)].

Thus, the concavity of F changes at M. Let PM
I be the set of probabilities with

support I = [b, c] and with mode M. Ferson (in [22]) proposes to represent this
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knowledge by the probability box [FL, FL] such that

• FL(x) = x−b
M−b for x ∈ [b,M] and 1 otherwise.

• FL(x) = x−M
c−M for x ∈ [M, c] and 0 otherwise.

Indeed it is obvious that any probability distribution with mode M and support I is
such that FL > F > FL.

Theorem 5 The triangular possibility distribution πL = min(FL, 1−FL), with sup-
port [b, c] and core {M} dominates all probabilities lying in P

M
I .

Proof. consider the nested family of intervals [x, y] such that:

(x − b)
M − b

=
(c − y)
c − M

.

They are cuts of the triangular possibility distribution πL. Define the cumulative
distribution FL as follows: FL(x) = F(M)(x−b)

M−b for x ≤ M, and FL(x) = F(M) +
(x−M)(1−F(M))

c−M for x ≥ M. Due to the convexity of any F before the mode, and its
concavity after the mode, it is clear that FL(x) ≥ F(x) for x ≤ M, and FL(x) ≤ F(x)
for x ≥ M. Using (13) in Section 4, it is clear that:

∀(P, x) ∈ PM
I × [b,M], P([x, y]c) = F(x) + 1 − F(y)

≤ FL(x) + 1 − FL(y)

=
F(M)(x−b)

M−b + 1 − (F(M) + (1−F(M))(y−M)
c−M )

= x−b
M−b = πL(x)

So it holds that ΠL(A) ≥ P(A) ∀A,∀P ∈ P
M
I .�

Clearly this result corresponds to a Chebyshev-like probabilistic inequality built
from the α-cuts of πL. The triangular possibility distribution πL of mode M is thus a
more precise representation than the p-box [FL, FL]. Namely, the probability fam-

ily P(πL) is a better approximation of PM
I than the probability box [F, F] proposed

by Ferson. Note that the assumption of bounded support is crucial in getting this
piecewise linear representation. Moreover it is noticeable that this distribution does
not depend on the value F(M).

Suppose now this value is known. Let P
M,F(M)
I be the set of probabilities with sup-

port I = [b, c], with mode M and value F(M) at M. The latter information can
be modelled by a belief function (see Section 2.3) but we may wish to preserve a
possibilistic representation and alter its shape so as to account for this fractile, still
ensuring the Dominance condition. Assume F(M) ≤ 0.5. We choose nested inter-
vals Jx = [x, F−1(1 − F(x))] around the median, and let M = F−1(1 − F(M)). We
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have seen F is concave on [M, c]. So, F > FL on [M, c]. Hence

M ≤ ML =
1

1 − F(M)
{(c − M)(1 − F(M)) − cF(M) + M}

Now we can use πp(x) = 1 − P(Jx) as a possibility distribution dominating p. Let

0 108642
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Fig. 7. M=4, F(M) = 0.4, min = 0 and max = 10.

Jx = [x, y]. The following possibility distribution πL,F(M) can then be used in place
of πL:

• For x ∈ [b,M], πp(x) = 2 · F(x), and πp is convex. So πp(x) ≤ 2 · FL(x). So we
let πL,F(M)(x) = 2 · FL(x).

• For y ∈ [M,ML], πp(y) = F(x) + 1 − F(y) ≤ F(M) + 1 − F(y), and the latter is
convex. We let πL,F(M)(y) = F(M) + 1 − FL(y).

• For y ∈ [ML, c], π(y) = 2 · (1 − F(y)) is convex. πp(y) ≤ 2 · (1 − FL(y)). So we let
πL,F(M)(y) = 2 · (1 − FL(y))

Thus, we have P
M,F(M)
I ⊆ P(πL,F(M)). The obtained shape is more realistic than the

triangular fuzzy interval especially when M is the center of I, because the lack of
balance of the probability mass is reflected on the possibility distribution (see Fig-
ure 7). In the case where F(M) = 0.5, we obtain M = M and we thus retrieve
the triangular πL with a support [b, c] and a core {M}. Note that it cannot be re-
fined by exploiting the fact that both πL and the above derived πL,F(M) dominate
P

M,F(M)
I to refine the result, considering min(πL,F(M), πL) as a tighter approximant.

Indeed, as pointed out earlier min(πL,F(M), πL) will not dominate P
M,F(M)
I generally,

as P(min(πL,F(M), πL)) differs from P(πL,F(M)) ∩ P(πL)

6.2 Accounting for fractiles in the continuous possibilistic representation

Suppose the expert provides the mode M and the median m of the probability dis-
tribution. Let P

M,m
I be the set of such unimodal probability functions bounded by

I = [b, c] and assume m < M. Then we can refine the possibilistic approxima-
tion πL by accounting for the additional information on the median, namely that
F(m) = 0.5. It means that F goes through the point of coordinates (m, 0.5). So,
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instead of FL, we can consider the piecewise cumulative distribution Fm
L made

of the segments [(b, 0), (m, 0.5)], [(m, 0.5), (M, F(M))], [(M, F(M)), (c, 1)]. Clearly,
F ≤ Fm

L < FL on [b,M]. Hence by choosing again the intervals [x, y] such that
(x−b)
M−b =

(c−y)
c−M , we obtain a more specific piecewise linear possibility distribution

πm
L ≤ πL which dominates all probability distributions with mode M and median m.

That is, P
M,m
I ⊂ P(πm

L ). In particular :

πm
L (m) = πm

L (m) = 0.5 + (1 − F(M))
m − b
M − b

where (m−b)
M−b =

(c−m)
c−M .

Note that this possibility distribution πm
L depends on F(M), and that if M > m, the

inequality F(M) ≥ M−b
2(m−b) holds, since πm

L ≤ πL. When F(M) = M−b
2(m−b) , the triangular

possibility distribution πL is retrieved, for instance when the mode and the median
coincide (F(M) = 0.5). If F(M) = 1 (the most asymmetric case) then πm

L (m) = 0.5.
Exploiting this representation needs an estimation of F(M). But this quantity is a
good measure of the asymmetry of the distribution.

This result is easily extended to any other fractiles, or any set of fractiles if they
are known a priori. In particular, consider the case where an expert gives fractiles,
say x1, x2 and x3, at 5%, 50% and 95%, on top of the mode M. By definition x2 is the
median, and suppose that it coincides with the mode. Let P

x1,x2,x3
I be the probability

family having these fractiles defined in the Section 5.2. With the same reasoning as
above, we can represent this knowledge by the following (symmetric) possibility
distribution : π(x1) = π(x3) = F(x1) + 1 − F(x3) = 0.1, π(x2) = 1 and linear in-
terpolations on [b, x1], [x1, x2], [x2, x3] and [x3, c] for other values of π(x). Clearly
P

x1,x2,x3
I ∪ PM,m ⊂ P(π) (respecting the Dominance condition defined in Section 4).
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Fig. 8. Expert gives fractiles on 5%, 50% and 95% equal to 1, 5 and 9 on [0,10].

6.3 Distributions with known mode and support: bracketing prediction intervals

Suppose that I = [b, c] contains the support of the unknown probability distribution
function p and the symmetry of p is assumed. Let PS

I be the set of such probabili-
ties. Their mode is b+c

2 due to symmetry (but it includes the uniform probability on
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I). If p is symmetric, the optimal transform π?p around the mode is convex on each
side of the mode [11]. The symmetric triangular possibility distribution πS with
support I and core b+c

2 is thus such that πS ≥ π?p ,∀p, and is really equal to supp∈PS
I
π?p

[11]. So not only do P(πS ) contain PS
I but also, the α-cuts of πS braket the narrowest

prediction intervals of these probabilities. Nevertheless, P(πS ) also contains prob-
ability densities that are not symmetric and whose mode differ from b+c

2 (but they
do not bracket their prediction intervals, necessarily). One may argue that the p-
box [F

?
, F
?
] defined by F

?
(x) = x−b

c−b if x ≤ b+c
2 , and 1 otherwise, F

?
(x) = x−b

c−b
if x ≥ b+c

2 , and 0 otherwise, is a more informative representation of symmetric
densities with support in I. But note that in this case, the possibility distribution
π(x) = min(F

?
(x), 1 − F

?
(x)) if x , b+c

2 is also dominating all such symmetric dis-
tributions, and is even more precise than the p-box. But of course, it cannot bracket
their prediction intervals. The specific merit of πS is precisely to bracked the pre-
diction intervals in P

S
I , Interestingly, note that πS = 2 ·min(F

?
, 1−F

?
) for x , b+c

2 .
If we know some fractiles, we can refine the representation as explained in the
previous section. Such refinements would respect the prediction interval condition
(see Figure 8) due to the symmetry assumption.

When p is asymmetric, the optimal transform π?p , associated to p may fail to be
convex on each side of the mode M. So the α-cuts of the triangular possibility dis-
tribution πL with core {M} do not always contain the optimal (1 − α)-prediction
intervals of the probability measures of mode M, as clear from theorem 4 on the
optimal transforms of piecewise linear densities. For instance consider the example
on Figure 9 suggested in [11], where:

p(x) = 0.6x + 1.2 on [−2,−1.5]

p(x) = (0.2/3)x + 0.4 on [−1.5, 0]

p(x) = −0.2x + 0.4 on [0, 2].

The interval [−1.4, 1.4] corresponding to the α-cut equal to 0.3 of the triangular
possibility distribution does not contain the optimal 0.7-prediction interval of prob-
ability measure of mode 0, which is [−1.5, 1.5] : the optimal transform of p (in
Section 4) is indeed not convex everywhere.

We can nevertheless find an upper bound of π?p for a unimodal asymmetric con-
tinuous density p. Then, using the concavity of F and considering nested intervals
Jx = [x,max{y, p(y) ≥ p(x)} = f (x)] we have:

• For x ≤ M, π?p (x) ≤ F(x)+1−F( f (x)) ≤ FL(x)+1−F(M) = F(M)(x−b)
M−b +1−F(M).

• For x ≥ M, π?p (x) ≤ F( f −1(x))+1−F(x) ≤ F(M)+1−FL(x) = 1− 1−F(M)
c−M (x−M)

Knowing the value F(M) is necessary to be able to define this approximation (see
Figure 10 for instance). In general, it will be difficult to come up with a more
informative possibility distribution which accounts for the prediction intervals of
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Fig. 9. Optimal transformation of p around the mode.

all probability measures on an interval I with fixed mode, due to the wide range of
such distributions. Some additional assumptions must be made, for instance on the
convexity-concavity of the unknown probability density function p.

Theorem 6 If the density function p is convex increasing on ]b,M[ and concave
strictly decreasing on ]M, c[, then π?p is also convex on ]b,M[.

Proof. see appendix C.
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Fig. 10. the upper bound of π?p and its improvement when the concavity-convexity of p is
know for M=0 and F(M) = 0.4.

The assumption F(M) < 0.5 is consistent with the convexity of p on ]b,M[ and
its concavity on ]M, c[. In this case, a possibility distribution linearly increasing

24



from 0 to 1 on [b,M] covers all optimal transforms of such densities on this side.
On the other side of the mode, using a linear shape is possible with π(c) = 1 −
F(M) (see Figure 10). In summary, assuming F(M) is known and the assumption of
theorem 5 on convexity & monotony of p holds, then a more informative possibility
distribution whose cuts contain the confidence intervals of distributions of mode M
having such characteristics can be computed.

7 Conclusion

The notion of imprecise probability offers a natural formal framework for repre-
senting imprecise knowledge on numerical quantities. Several types of information
can be approximated by means of possibility distributions, others are directly and
exactly representable by belief functions, yet other more naturally fit the probabil-
ity box framework. In several cases, possibility distributions provide a concise ap-
proximate representation of a set of probability measures, sometimes interpretable
in terms of confidence intervals of probabilities in such families. In fact each mode
of representation seems to be adapted to the knowledge of specific characteristics
of distributions. Only p-boxes seem to capture information about mean values in a
reasonable way. Belief functions directly model fractile information, while possi-
bility measures are particularly well-suited for representing families of distributions
whose mode is known, and can integrate additional information on symmetry and
concavity of densities, as well as known fractiles. The recent works of Neumaier
[29] focus on probability families P of the form P = P(π) ∩ P(1 − ρ) where π is
a possibility distribution and ρ is a function I → [0, 1] acting as a lower bound
of π, i.e. ρ ≤ π. The probability family P(π) = P is recovered when ρ = 0. The
probability family P is more precise than P(π) and assessing its potential demands
more future investigations.

Our representation tools using possibility theory are currently applied to risk man-
agement problems [5,6]. In such problems, straightforward Monte-Carlo methods
involve too rich assumptions of complete probabilistic knowledge and stochastic
independence between parameters. Moreover, uncertainty due to variability and un-
certainty due to incomplete knowledge are mixed up in the resulting distribution. In
contrast, Bardossy et al. [1], Bárdossy and Fodor [2], Dou et al. [10,9] present appli-
cations of possibility theory to propagate imprecise information in environmental
models. However a proper handling of real cases requires the propagation of het-
erogeneous uncertain information where imprecision and variability of parameters
are separately accounted for and propagated through numerical models. Guyonnet
et al. [23] (see also Bárdossy and Fodor [2]) propose a method for the joint propaga-
tion of fuzzy intervals and probabilistic numbers. This method is further elaborated
in [3,5]. Various joint possibility-probability propagation techniques are compared
in [6], some involving independence assumptions, other ones, more conservative,
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avoiding such assumptions. Comparison with p-box propagation is also made. For
a stimulating discussion of various uncertainty propagation techniques, using ran-
dom intervals imprecise probability and possibility theory, see [?].

The unified representation framework proposed here makes it easy to represent
poor data of various types in a faithful and yet simple way. It facilitates the defini-
tion of a uniform mode of propagation in risk management, in spite of the heteroge-
neous character of the data collected and the computation of conservative estimates,
something that is not allowed by traditional probabilistic methods.
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A Proof of theorem 1

⊆: Let be P ∈ P(π) and an interval A such that A = [x, y] containing a.
By definition, N(A) ≤ P(A) is equivalent to F(y) − F(x) ≥ 1 − supz<[x,y] π(z), i.e.
F(x)+ 1−F(y) ≤ max(π(x), π(y)). We thus have P(π) ⊆ {P,∀x, y, x ≤ a ≤ y, F(x)+
1 − F(y) ≤ max(π(x), π(y))}.
⊇: Let be P ∈ {P,∀x ≤ a ≤ y, F(x) + 1 − F(y) ≤ max(π(x), π(y))}. Considering any
measurable A.

(a) For A = (−∞, x] with x ≤ a, F(x) + 1 − F(+∞) ≤ max(π(x), π(+∞)) ⇔ F(x) ≤
π+(x)⇒ P(A) ≤ Π(A).

(b) For A = [y,+∞) with y ≥ a, F(−∞)+1−F(y) ≤ max(π(y), π(−∞)) ⇔ 1−F(y) ≤
π−(y)⇒ P(A) ≤ Π(A).

(c) For A = [x, y] with y ≤ a, knowing that F is increasing and according to case
(a), we have F(y) − F(x) ≤ F(y) ≤ π+(y). Hence P(A) ≤ Π(A).

(d) For A = [x, y] with x ≥ a, knowing that F is limited by 1 and according to case
(b), we have F(y) − F(x) ≤ 1 − F(x) ≤ π−(x). Hence P(A) ≤ Π(A).

(e) For A, union of intervals such that Π(A) < 1. Suppose Π(A) is obtained for
some y which lies on the right side of a. We may consider a set A′ = (−∞, x] ∪
[y,+∞) such that π(x) = π(y). Necessarily, A′ contains A, and we have Π(A) =
Π(A′) = π(x) and P(A) ≤ P(A′). We have x ≤ a ≤ y ,thus P(A) ≤ P(A′) =
F(x)+1−F(y) ≤ max(π(x), π(y)) = Π(A′) = Π(A). We then have P(A) ≤ Π(A).

(f) For A, union of intervals such that Π(A) = 1, choose y on the boundary of A
such that π(y) is maximal. Suppose that y is on the right of a, we can consider
a set as A′ = [x, y] ⊂ A such that π(x) = π(y). We have Π(A) = Π(A′) = 1 and
N(A) = N(A′), moreover x ≤ a ≤ y thus F(x) + 1 − F(y) ≤ max(π(x), π(y)) ⇔
F(y) − F(x) ≥ 1 − π−(y). we then have, N(A) = N(A′) ≤ P(A′) ≤ P(A), thus
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P(A) ≥ N(A).�

B Proof of theorem 4

First, we show that the optimal transform of a triangular density function p, is
convex on each side of the mode M (see Figure B.1). Let [b, c] be the support of
p.We have:

p−(x) = p(M)
M−b (x − b) and p−1

− (λ) = M−b
p(M)λ + b

p+(x) = p(M)
c−M (c − x) and p−1

+ (λ) = c − c−M
p(M)λ

For λ ∈ [0, p(M)], we obtain π?p (p−1
− (λ)) = π?p (p−1

+ (λ)) = λ2

2p(M) (c − b). Then:

• For x ≤ M, by putting λ = p−(x), we have:

π?p (x) =
p(M)(c − b)
2(M − b)2

(x − b)2

whose second derivative is positive, hence π?p is convex on [b,M].
• Similarly, for x ≥ M, by putting λ = p+(x), we have:

π?p (x) =
p(M)(c − b)
2(c − M)2

(x − c)2

hence π?p is convex on [M, c].
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S 1 + S 2

1

λ

p−1
− (λ) p−1

− (λ) p−1
+ (λ)p−1

+ (λ)b bc cMM

p−
p+

p(M)
π?p

Fig. B.1. Triangular probability density p on the left and the shape of its π?p optimal trans-
formation on the right.

Now let p be piecewise linear and λ1 ≤ λ2 ≤ · · · ≤ λn be the ordinates of the points
where the slope changes. In particular p(M) = λn and p(b) = p(c) = λ1 = λ2 = 0.

For illustration, we picture the case where the density p is linear on 4 intervals
[b = min(supp(p)), a2], [a2,M], [M, a4] ,[a4, c = max(supp(p))] (see Figure B.2).

Consider index i such that λi < λi+1, λ ∈ [λi, λi+1]. Denote [bi, bi] and [bi+1, bi+1] the
intervals whose end-points have ordinates λi and λi+1, and [x, y] such that p(x) =
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Fig. B.2. Linear unimodal continuous probability density.
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Fig. B.3. Step of the optimal transformation of linear unimodal continuous probability den-
sity when λ ∈ [p(a2), p(a3)].
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Fig. B.4. Shape of π?p optimal transformation of linear unimodal continuous probability
density.

p(y) = λ (see Figure B.3 where λi = p(a2), λi+1 = p(a4), [bi, bi] = [a2, p−1
4 (p(a2))],

[bi+1, bi+1] = [p−1
2 (p(a4)), a4]) and [x, y] = [p−1

2 (λ), p−1
4 (λ)]. The integral computing

π?p (x) = π?p (y) contains a constant part corresponding to the areas under p outside

the interval [bi, bi] (T1 and T2 in Figure B.3), plus a part linear in λ corresponding
to rectangles (R1 and R2 in Figure B.3) of areas λi · (x−bi) and λi · (bi − y) inside the
intervals [bi, x] and [y, bi], plus a quadratic part in λ corresponding to the area of
the remaining triangles (S 1 and S 2 in Figure B.3) located inside the intervals [bi, x]
and [y, bi] and bounded by p and the horizontal line of ordinate λi and the verical
lines of abcissae x and y respectively. The second derivative of π?p is this equal to
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zero except for the quadratic part of π?p for which it is constant. Hence, we find the
same expression as in the optimal transformation triangular density p (see Figure
B.1). Then, π?p is piecewise convex and Figure B.4 shows the shape of π?p in the
case where the density p is linear on 5 points.�

C Proof. of theorem 6

We must show that the second derivative of π?p is positive on ]b,M[. Consider p1

(the left part of p) and p2 (the right part of p) defined as follows:

• ∀x ∈ [b,M], p1(x) = p(x) and 0 otherwise.
• ∀x ∈ [M, c], p2(x) = p(x) and 0 otherwise.

For x ∈ [b,M], π?p (x) = F(x) + 1 − F( f (x)) where f (x) = max{y, p(y) ≥ p(x)}.
If we differentiate π?p on ]b,M[, we obtain:

π?
′

p (x) = F
′
(x) − f

′
(x)F

′
( f (x)) = p1(x) − f

′
(x)p2( f (x))

However p1(x) = p2( f (x)), thus:

π?
′

p (x) = p1(x)
(

1 − f
′
(x)

)

Hence differentiating again:

π?
′′

p (x) = p
′

1(x)
(

1 − f
′
(x)

)

− p1(x) f
′′
(x)

We know that p1(x) = p2( f (x)); if we differentiate this equality, we obtain:

f
′
(x) =

p
′

1(x)

p′2( f (x))

The function p1 increases on ]b,M[, then p
′

1 ≥ 0. The function p2 strictly decreases
on ]M, c[, then p

′

2 < 0. We thus deduce that f
′ ≤ 0 ≤ 1. We conclude that:

p
′

1(x)(1 − f
′
(x)) ≥ 0, ∀x ∈]b,M[

By differentiating again f
′
, we obtain

f
′′
(x) =

p
′′

1 (x) − ( f
′
(x))2 p

′′

2 ( f (x))

p
′

2(x)

We know that p is convex on ]b,M[ (resp. concave on ]M, c[), we have p
′′

1 (x) ≥ 0 for
all x ∈]b,M[ (resp. p

′′

2 (x) ≤ 0 for all x ∈]M, c[). Hence, p
′′

1 (x)−( f
′
(x))2 p

′′

2 ( f (x)) ≥ 0
for all x ∈]b,M[ and thus f

′′
(x) ≤ 0 for all x ∈]b,M[. We thus conclude that

p1(x) f
′′
(x) ≤ 0, ∀x ∈]b,M[.
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To summarize, we have p
′

1(x)(1 − f
′
(x)) ≥ 0 and p1(x) f

′′
(x) ≤ 0, ∀x ∈]b,M[ We

thus have proved that π?
′′

p is positive on ]b,M[, and hence the convexity of π?p on
]b,M[.�
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