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A B S T R A C T

In recent years the concept of precision medicine has become a popular topic particularly in medical oncology.
Besides the identification of new molecular prognostic and predictive biomarkers and the development of new
targeted and immunotherapeutic drugs, imaging has started to play a central role in this new era. Terms such as
“radiomics”, “radiogenomics” or “radi…-omics” are becoming increasingly common in the literature and soon
they will represent an integral part of clinical practice. The use of artificial intelligence, imaging and “-omics”
data can be used to develop models able to predict, for example, the features of the tumor immune micro-
environment through imaging, and to monitor the therapeutic response beyond the standard radiological cri-
teria.

The aims of this narrative review are to provide a simplified guide for clinicians to these concepts, and to
summarize the existing evidence on radiomics and “radi…-omics” in cancer immunotherapy.

1. Introduction

In recent years the concept of precision medicine has become an
area of immense interest (Burki, 2017; Ashley, 2016) in medical on-
cology (Le Tourneau et al., 2018). In this field, emerging mechanisms of
resistance (Khan and Spicer, 2019; Lim and Ma, 2019; Narayanan et al.,
2020; Kalbasi and Ribas, 2020), financial costs and toxicities (Postow
et al., 2018; Porcu et al., 2020; Solinas et al., 2018; Marin-Acevedo
et al., 2018; Porcu et al., 2019) are important elements to take into
account for guiding treatment decisions, in order to identify ideal
candidates that might benefit from a variety of novel and expensive
therapies. Besides the identification of new molecular prognostic and
predictive biomarkers (Dumitrescu, 2018) and the development of new
targeted (Dugger et al., 2018) and immunotherapeutic drugs (Hegde
and Chen, 2020; Dobosz and Dzieciątkowski, 2019), imaging has
started to play a pivotal role in the evolution towards precision

medicine (Acharya et al., 2018).
A fruitful collaboration between radiologists and medical oncolo-

gists is essential due to the growing dependency on imaging as a
therapeutic biomarker. This is particularly relevant in this new era of
cancer immunotherapy with immune checkpoint blockade (ICB) tar-
geting a variety of immune checkpoint molecules that physiologically
modulate the immune response (Solinas et al., 2019a; Solinas et al.,
2019b; Solinas et al., 2019c; Solinas et al., 2020; ElTanbouly et al.,
2020; Rowshanravan et al., 2018). These new drug regimens have a
novel mechanism of action. Instead of directly killing tumor cells, they
are able to harness the patient’s own immune response against cancer,
making unique and challenging the assessment of treatment response
(Litière et al., 2017; Seymour et al., 2017; Solinas et al., 2017; Porcu
et al., 2018). This requires a deep knowledge for the specific features
that characterize immune-related phenomena in each organ site. The
contribution of imaging is also important for differential diagnosis
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when facing with immune related adverse events (irAEs) (Porcu et al.,
2020; Solinas et al., 2018; Porcu et al., 2019).

Radiological sciences are thus moving from a dependency on basic
visual features in medical images to new non-visual features buried in
the pixel data that are not routinely detectable with the human eye
(Gillies et al., 2016). This is obtained thanks to the improvement of
computational power of informatic systems and to the use of artificial
intelligence (AI) (Obermeyer and Emanuel, 2016), specifically machine
learning techniques (Choy et al., 2018) such as deep learning (LeCun
et al., 2015).

With their ability to combine quantitative data obtained from
imaging together with those derived from genomic analyses, “radio-
mics” and “radiogenomics” metadata are becoming of common use in
clinical research. Hopefully, they will soon be part of daily routine
clinical practice with the aim to allow oncologists and radiologists to
optimize patient selection and management for medical therapy and to
better assess treatment responses (Lambin et al., 2012).

The aims of this narrative review are to provide a simplified guide
for clinicians to these new concepts, including some important tech-
nical aspects, and to summarize the existing evidence on radiomics in
cancer immunotherapy.

2. Definitions

“Radiomics” is defined as the analysis of imaging data through the
use of specific algorithms aimed at identifying quantitative features
otherwise not identifiable with the simple visual analysis, in order to
create enhanced data models for improving medical decision support
(Gillies et al., 2016; Lambin et al., 2012). Images from ultrasound (US),
computed tomography (CT), magnetic resonance (MR) and positron
emission tomography (PET) combined with CT (PET-CT) or MR (PET-
MR) can be analyzed with these techniques (Incoronato et al., 2017).

Radiogenomics or “imaging genomics” is the correlation of quanti-
tative data derived from radiomic analysis with genomic expression
data (Mazurowski, 2015). With this technique it is possible to create
models that are able to deduce the genetic expression of a tumor or
tissue sample from a simple CT scan using an imaging based phenotype
(Mazurowski, 2015; Bai et al., 2016) or to assess the treatment response
beyond the traditional dimensional criteria of tumor size (Litière et al.,
2017; Seymour et al., 2017; Solinas et al., 2017; Porcu et al., 2018).
Radiomic data can be also combined with other types of data, such as
clinical, demographic, laboratory and histological, or data derived from
other “-omics” sciences, such as transcriptomics (i.e. the study of RNA
expression in a tissue sample (Lowe et al., 2017)) in “radio-
transcriptomics” (Katrib et al., 2016) and proteomics (i.e. the study of
protein expression in a tissue sample (Aslam et al., 2017)) in “radio-
proteomics” (Djekidel, 2013).

It is important to underlie that the term “radiogenomics” can be
referred also to the scientific field that addresses the associations be-
tween genetic alterations and response to radiotherapy (Andreassen
et al., 2016), but in this review we will focus on systemic treatments
(i.e. targeted and immunotherapeutic drugs).

We can grossly identify two distinct phases in radiomic and “radi…-
omics” processes: 1) the feature identification and 2) the model de-
velopment phases.

3. Feature identification in radiomics

Radiomics is based on the discovery of imaging features not iden-
tifiable with the simple visual analysis, through the use of specific and
sophisticated algorithms (Gillies et al., 2016; Lambin et al., 2012). From
a technical point of view, the whole process can be divided into three
steps (Gillies et al., 2016; Mazurowski, 2015) (Fig. 1):

1) Image acquisition, database creation and data selection: all imaging
examination can be “radiomically” analyzed, including MR, CT, US

and PET (Gillies et al., 2016; Lambin et al., 2012; Incoronato et al.,
2017). A reasonable rule of thumb is that the minimum number of
samples for creating a radiomic database is 10 examinations of the
same disease (Gillies et al., 2016).

2) Identification and segmentation of the volume of interest (VOI):
once the imaging database has been created, investigators must
identify and segment a VOI. This must and can be drawn manually
or (semi-) automatically (Polan et al., 2016).

3) Extrapolation of descriptive features (texture analysis): for a given
VOI, several mathematical descriptive features can be extracted
through the use of dedicated commercially available or in-house
software (Varghese et al., 2019; Lubner et al., 2017).

3.1. Texture analysis

In material science, “texture” is a measure of the variation of a
surface: a material with rough-textured surface is characterized by a
high rate of change between the high and low points of its surface,
compared to smooth-textured material (Varghese et al., 2019;
Macdonald et al., 2004). In order to understand imaging texture ana-
lysis, it should be remembered that medical images, as well as all other
images, consist of several thousands or millions of pixels (Richard,
2006). A pixel can be defined as the lowest level of abstraction of an
image or the smallest element of an image, whereas the voxel is its 3D
counterpart (Richard, 2006; Taira et al., 2010). The principles at the
base of medical imaging technologies is to represent body structures as
groups of small voxels according to a predefined regular matrix
(Richard, 2006; Taira et al., 2010), and every voxel can be identified in
the space according to its spatial coordinates (x, y, z), assigning them an
intensity value (f) as the function of 3D space, according to the formula
(Richard, 2006; Taira et al., 2010):

voxel value= f(x,y,z)

The intensity value is visually represented with discrete shades of
grey that, as well as dimensions, can vary (i.e. absolute value and
range) depending on the technique adopted (CT, MR, US or PET) and
the reconstruction methods (Taira et al., 2010).

These are the elements needed to understand the concept of imaging
texture analysis. In analogy to what happens in material sciences, the
imaging texture analysis allows to mathematically study the distribu-
tion and the differences in grey-scale of the pixel/voxels of a given
image, and to automatically extract up to hundreds of quantitative
features (Varghese et al., 2019; Lubner et al., 2017). The features ex-
tracted from texture analysis can be typically divided into four different
types (Incoronato et al., 2017; Rizzo et al., 2018) (Table 1): a) shape-
based; b) first-order statistics; c) second-order statistics; d) higher-order
statistics.

Shape-based features are the most intuitive, and they collect
quantitative data regarding the geometric features of the VOI. Examples
include: volume, surface area, spiculations and compactness
(Incoronato et al., 2017). Some typical shape-based features are listed
in Table 2.

First-order statistics are generally histogram-based and describe the
distribution of pixels inside a VOI without spatial relationship in-
formation (Incoronato et al., 2017); examples of this type of statistics
include mean, standard deviation, range, entropy, skewness and kur-
tosis (Incoronato et al., 2017). Some examples of first order statistics
are listed in Table 3.

Second-order statistics, also called texture-based metrics
(Incoronato et al., 2017; Rizzo et al., 2018; Kolossváry et al., 2018;
Davnall et al., 2012; Haralick and Shanmugam, 1973; Galloway, 1975;
Tixier et al., 2011; Thibault et al., 2014; Amadasun and King, 1989; Sun
C, Wee WG, 1983) analyze the spatial relationships between voxels
with similar intensity values within a VOI and providing information
about the heterogeneity within the lesion (Lambin et al., 2012;
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Incoronato et al., 2017; Kolossváry et al., 2018). This kind of metrics
are expressed in terms of matrices, signifying that statistics are calcu-
lated not from the values themselves but from the relationships be-
tween two voxels (Incoronato et al., 2017; Taira et al., 2010; Kolossváry
et al., 2018), and several other sub-features are mineable from each
matrix (Incoronato et al., 2017). Examples of second-order statistics are
represented by the gray level co-occurrence matrix (GLCM) (Rizzo
et al., 2018; Haralick and Shanmugam, 1973), the grey-level run-length
matrix (GLRLM) (Rizzo et al., 2018; Kolossváry et al., 2018; Galloway,
1975), the gray-level size-zone matrix (GLSZM) (Tixier et al., 2011), the
gray-level distance-zone matrix (GLDZM) (Thibault et al., 2014), the
neighborhood gray-tone difference matrix (NGTDM) (Amadasun and
King, 1989) and the neighboring gray-level dependence matrix
(NGLDM) (Sun C, Wee WG, 1983). The main second order statistics and
their meaning is reported in Table 4.

Higher-order statistics work by imposing filter grids on an image, in
order to extrapolate repetitive and/or non-repetitive patterns
(Incoronato et al., 2017). The filters most frequently employed in
radiomic studies are (Incoronato et al., 2017): the laplacian of Gaussian
(Marr and Hildreth, 1980; Ferreira Junior et al., 2018), the Gabor
(Fogel and Sagi, 1989), the wavelet transform (Mallat, 1989; Chaddad
et al., 2018) and the fractal dimensions (Cusumano et al., 2018; Lopes

and Betrouni, 2009; Aerts et al., 2016) filters (Table 5). Filtered images
are then processed in order to extract first- and second-order statistics
(Incoronato et al., 2017).

A more comprehensive technical and mathematical description of
the different features that could be extracted from texture analysis has
been addressed in other articles (Lambin et al., 2012; Incoronato et al.,
2017) and is beyond the scope of this review.

3.2. Critical points in radiomic analysis

Some major critical points that could interfere with the final results
and the creation of a reliable model can be recognized in radiomic
analysis.

Among them, the database composition is crucial for the correct
creation of predictive and analytic models (Gillies et al., 2016;
Incoronato et al., 2017; Taira et al., 2010). Databases for radiomic
studies should be comprised of a minimum of 100 patients, although
larger cohorts could provide more statistical power (Gillies et al.,
2016).

In addition to the size of the database, the quality of the data is also
important: wide variations in protocol acquisition of imaging in-
vestigations and the lack of standardization of these protocols across
manufacturers and sites do not generally represent a problem in routine
identification of radiomic features (Gillies et al., 2016). However, var-
iations in image acquisitions could introduce biases due to the fact that
reconstruction parameters might introduce changes that are not related
to the underlying biologic effects (Gillies et al., 2016).

Finally, besides the lack of standardization of image acquisition, the
type of segmentation of the VOI can interfere with the final results of
radiomic analysis (Gillies et al., 2016; Lambin et al., 2012; Incoronato
et al., 2017). In oncology the VOI is usually represented by the tumor
lesion(s) (single or multiple). It should be remembered that the

Fig. 1. The steps of the feature identification in radiomics.

Table 1
Features extractable from texture analysis (Incoronato et al., 2017; Taira et al.,
2010).

Features extractable from texture analysis

Shape based features
First-order statistics
Second-order statistics
Higher-order statistics

Table 2
Examples of shape-based features (Lambin et al., 2012; Incoronato et al., 2017).

Examples of shape-based features

Features Formula Formula values Significance
Volume ; V=volume of the VOI; N=number of voxels within the segmented VOI;

vs=voxel size
Volume of the VOI - information on
the size of the lesion

Surface area
= ∑

⎯ →⎯⎯⎯⎯
× ⎯ →⎯⎯⎯

=A a b a c| |i
NT

i i i i1
1
2

A=surface area of the VOI; NT=number of triangles derived from the
triangulation of the tumor surface; ai, bi,ci = vertices of the i-th triangle

Surface area of the VOI - information
on the size of the lesion

Compactness
=c π36 V

A

2
3

c=compactness; V=volume; A=surface area How much a VOI differs from a sphere

Spherical disproportion =spherical disproportion A
πR4 2

A=surface area of the VOI; R=radius of a sphere with the same volume of the
VOI

Measures of how much the volume
resembles a sphere

Sphericity
=sphericity πV

A
(36 2)

1
3

A=surface area of the VOI; V=Volume of the VOI
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characteristics of the tumor can change overtime, representing a further
source of variability (Gillies et al., 2016). In addition, it is often difficult
for a researcher to identify and to correctly segment the VOI because
not infrequently tumors have indistinct margins with the surrounding
structures. In this situation, segmentation can be the most variable
portion of the radiomic analysis, due to the fact that slight differences in
VOI segmentation can heavily interfere with final results (Gillies et al.,
2016; Lambin et al., 2012; Incoronato et al., 2017). However, although
the debate about the reproducibility of segmentation is still ongoing
(notably the inter-operator variability in semi-automated techniques),

there is general consensus that maximum reproducibility is achievable
by using computer-aided edge detection followed by manual correction
(Gillies et al., 2016).

4. The model development in radiomics and “radi…-omics”

Once radiomic and non-radiomic features (such as those derived
from histologic, genomic, proteomic or transcriptomic analyses) are
collected, they can be used for data mining, representing the process of
discovering patterns in datasets (Gillies et al., 2016; Incoronato et al.,

Table 3
: Examples of first-order statistics (Lambin et al., 2012; Incoronato et al., 2017).

Examples of first-order statistics

Statistics Formula Formula values Significance
Range = −range X Xmax ( ) min ( ) max(X) = maximum intensity value of the voxels of the VOI; min(X) =

minimum intensity value of the voxels of the VOI
The range of mean intensity values

Mean = ∑ =X X i( )
N i

N1
1

X =mean intensity value of the voxels of the VOI; N=number of voxels within
the segmented VOI; X(i) = gray value of the ith voxels of the VOI

Average intensity value of voxels within
a VOI

Standard deviation
= ∑ −

− =
−σ X i X( ( ) )

N i
N1

1 1
2 Σ = standard deviation; N=number of voxels within the segmented VOI; X(i)

= gray value of the ith voxels of the VOI
The widening of intensity value
variation

Entropy = − ∑ =entropy P i P i( ) log ( )i
Ni

1 2
N=number of voxels within the segmented VOI; P= first-order histogram of
the VOI computed on Nl bins

Randomness within a data sample

Skewness ∑
= =

−
skewness i

N X i X

Nσ
1 ( ( ) )3

3

σ = standard deviation; N=number of voxels within the segmented VOI; X(i)
= gray value of the ith voxels of the VOI

Asymmetry of a given histogram around
the mean

Kurtosis ∑
= =

−
kurtosis i

N X i X

Nσ
1 ( ( ) )4

4

σ = standard deviation; N=number of voxels within the segmented VOI; X(i)
= gray value of the ith voxels of the VOI

Degree of peakedness of a given
histogram

Root mean square
∑

=RMS i
N X i

N

( )2 RMS= root mean square; X(i) = gray value of the ith voxels of the VOI;
N=Number of voxels within the segmented VOI

The square root of the mean of squares
of all voxels intensity

Table 4
Typically used second-order statistics and examples of features mineable from each matrix (Lambin et al., 2012; Incoronato et al., 2017).

Typically-used second-order statistics

Statistics Feature description Examples of features mineable from each matrix

Grey Level Co-occurrence Matrix (GLCM) (Taira et al.,
2010; Davnall et al., 2012)

It describes how frequently voxels with similar intensity
value are located next with each other along a given
direction and distance

Autocorrelation, cluster shade, cluster prominence,
homogeneity, entropy, inverse difference normalized, sum
average

Grey-Level Run-length Matrix (GLRLM) (Taira et al.,
2010; Rizzo et al., 2018; Haralick and
Shanmugam, 1973)

It describes how many voxels with the same intensity value
are located next to each other

Short run emphasis, gray level non-uniformity, run
percentage, short run high gray level emphasis, run length
variance

Grey-Level Size-Zone Matrix (GLSZM) (Galloway,
1975)

It describes the amount of homogeneous connected areas
within a VOI, of a given size and intensity

Small area emphasis, large area emphasis, intensity non
uniformity, zone percentage, high intensity small area
emphasis

Grey-Level Distance-Zone Matrix (GLDZM) (Tixier
et al., 2011)

It describes the amount of homogenous connected areas
within the VOI, of a given intensity and distance from the
shape borders

Small distance emphasis, intensity non-uniformity, zone
percentage, intensity variance, distance zone variance

Neighborhood Grey-Tone Difference Matrix (NGTDM)
(Thibault et al., 2014)

It describes the differences between the intensity of a given
voxel and the average intensity of neighboring voxels
within a given distance

Coarseness, contrast, busyness, complexity, strength

Neighboring Grey-Level Dependence Matrix (NGLDM)
(Amadasun and King, 1989)

It describes the relationships between the intensity of a
given voxel with the intensity of all its neighboring voxels
at a given distance

Small dependence emphasis, grey-level non uniformity,
low grey-level emphasis, dependence variance,
dependence entropy

Table 5
Filters usually used in radiomic studies for higher-order statistics (Incoronato et al., 2017).

Filters usually used in radiomic studies for higher-order statistics

Filters usually used in radiomic studies Function

Laplacian of Gaussian (Sun C, Wee WG, 1983; Marr and Hildreth,
1980)

This filter highlights the regions of rapid intensity change, commonly used for edge detection

Gabor filters (Ferreira Junior et al., 2018) These filters permit to detect edges of images in different directions and widths
Wavelet transform (Incoronato et al., 2017; Fogel and Sagi, 1989;

Mallat, 1989)
This transform allows to decouple textural information of the image into low- and high-frequency
coefficients; these coefficients can be considered as the projections of the signal of the original voxels onto
multi-resolution subspaces

Fractal dimensions (Chaddad et al., 2018; Cusumano et al., 2018;
Lopes and Betrouni, 2009)

Fractal dimensions estimates the complexity of an image by measuring the self-similarity grade of the
structures of the analyzed image
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2017). By exploring the mutual relationships between radiomic and
non-radiomic features with a selected outcome variable, AI modeling
can be used to develop models that, once validated, could be used for
different purposes. As an example, starting from imaging, these models
could be used to predict the genotype of a tumor, the overall survival
(OS) or the response of a disease to a given treatment or to assess the
response to a treatment beyond the classic radiologic criteria (Gillies
et al., 2016; Lambin et al., 2012; Incoronato et al., 2017; Lo Gullo et al.,
2020). Change detection between temporal time points provides
treatment response criteria beyond the classic radiologic criteria by
measuring temporal changes of radiomic features from a time series of
images (for example pre- and post-treatment) (Chang et al., 2019; Fave
et al., 2017). This “modelling” process involves three aspects: a) feature
selection, b) modelling methodology selection and c) validation
(Lambin et al., 2012). All the process that brings to the model devel-
opment are reported in Fig. 2.

4.1. Feature selection

The feature selection should be data-driven due to the large volume
of data elements that must be taken into consideration (virtually un-
limited), including the radiomic characteristics seen above (Gillies
et al., 2016; Lambin et al., 2012; Incoronato et al., 2017). Considering
all the possible features in the model could result in overfitting, which
may make the model less useful when tested on new data (Lambin et al.,
2012). Initial data analysis should include reduction of relatively in-
significant variables in the model, selecting the archetypal features
through dimensional reduction techniques, such as principal compo-
nent analysis, clustering, least absolute shrinkage and selection op-
erator (LASSO) and automatic relevance determination (ARD) (Lambin
et al., 2012; Muthukrishnan and Rohini, 2016a; Muthukrishnan and
Rohini, 2016b). Multi-factorial data models are ideally analyzed using
machine-learning techniques (Gillies et al., 2016; Lambin et al., 2012;
Incoronato et al., 2017).

4.2. Modeling techniques

The modeling process usually exploits machine-learning techniques
(Choy et al., 2018). Machine-learning can be defined as a method of
data science based on computer algorithms able to learn complex re-
lationships from data without being programmed with explicit rules
and to make accurate decisions (Choy et al., 2018; Wang and Summers,
2012). Machine-learning techniques can be broadly classified into three
subcategories: a) supervised, b) unsupervised and c) reinforcement
learning (Choy et al., 2018; Deo, 2015).

Supervised learning techniques are used to learn a general rule in
order to map inputs and outputs, exploiting labeled input data and
learning known patterns (Choy et al., 2018). Unsupervised learning

techniques exploit unlabeled data in order to learn unknown patterns to
find the hidden structure of the data, separating them into different
clusters (Choy et al., 2018). Reinforcement learning techniques exploit
labeled input data in order to learn a series of actions from the con-
sequences of the interactions with an environment (Choy et al., 2018;
Zhang et al., 2018). These techniques can be used also in combination
(Gillies et al., 2016; Lambin et al., 2012; Incoronato et al., 2017). A list
of the principal machine learning techniques is provided in Table 6.

Artificial neural networks are a subset of machine-learning methods
inspired by the functioning of the central nervous system, that consist of
a large number of processing elements called neurons (or nodes or cells)
highly interconnected between them (Choy et al., 2018; Dayhoff and
DeLeo, 2001). Neurons are organized in layers: an input layer, one or
different “hidden” layers, and one output layer (Choy et al., 2018;
Dayhoff and DeLeo, 2001); all the neurons of a layer are fully inter-
connected with all the neurons of the previous layer (Choy et al., 2018;
Dayhoff and DeLeo, 2001).

Deep learning, also known as hierarchical learning, is a subset of
artificial neural networks algorithms that typically contain several
hidden layers (Choy et al., 2018; LeCun et al., 2015; Saba et al., 2019).
This technique attempts to model high-level abstractions in data that
make them directly applicable to computer vision and image recogni-
tion (Choy et al., 2018; LeCun et al., 2015). Deep learning models used
for imaging analysis can be further divided as typical, in which input
data are in the vector form (nonstructured; one-dimensional) and
convolutional neural networks (CNNs) in which input data are struc-
tured in the two-dimensional or three-dimensional form (Choy et al.,
2018).

CNNs are feedforward artificial neural networks containing multiple
hidden layers that consist of convolutional (including filter elements
called kernels) or pooling neurons, in addition to normalization and
fully connected layers (Choy et al., 2018). Convolution is a mathema-
tical operation that can be applied to find patterns in signals or filter
signals, and the convolution layers in the network are the principal
components (Choy et al., 2018). On the other hand, pooling layers are
used to reduce overfitting and gain computational performances by
reducing spatial dimensions (Choy et al., 2018). Thanks to these
properties, CNNs are particularly useful for feature extraction from
images and they currently represent the most used machine learning
technique in medical imaging (Choy et al., 2018; Saba et al., 2019;
Kohli et al., 2017).

A CNN trained for a specific application can be directly applied to a
different but related task. This offers significant time advantage when
developing a model for a new application in which a pre-trained model
can be trained on a smaller dataset relevant to the new application. For
example, a CNN pretrained on a given dataset for nonmedical images
can be applied also in medical imaging (Choy et al., 2018). This ma-
chine learning approach is known as transfer learning (Choy et al.,

Fig. 2. The steps of the model development.
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2018; Grapov et al., 2018), and has been used in many applications
including prostate cancer classification (Yuan et al., 2019) and lung
nodule classification (Nishio et al., 2018).

4.3. Validation of the model and evaluation of its performances

The performance of a machine-learning model must be reproducible
on new data in order to be accepted both in the scientific and clinical
communities. The process of validation defines the models performance
by using new internal and/or preferably external data (Choy et al.,
2018; Lambin et al., 2012; Park et al., 2019). Internal validation
methods, such as split sample or bootstrapping, assess how well the
experiment is conducted, particularly when evaluating the relationships
between variables (Park et al., 2019; Cook and Campbell, 1979). Ex-
ternal validation assesses the “generalizability” of the model, i.e.,
whether the model maintains a level of performance when tested on
new data, especially that which avoids any deliberate selection bias
(Park et al., 2019; Ferguson, 2004).

The model performances can be measured in different ways, in
particular in terms of calibration and discrimination (Lambin et al.,
2012). Discrimination is the ability of the model to correctly classify
cases that match a given outcome from those who do not match that
outcome, and it can be typically measured in terms of sensitivity and
specificity by using the receiver operating characteristic (ROC), i.e. the
area under the ROC curve (AUC) (Lambin et al., 2012; Metz, 1978).
Calibration can be defined as the agreement between model predictions
and observed outcomes, and it is typically reported by using a cali-
bration plot and calibration-in-the-large/slope (Lambin et al., 2012;
Steyerberg et al., 2010).

5. Radiomics and “radi…-omics” in cancer immunotherapy

Radiomics could be a helpful tool in cancer immunotherapy for
optimal patient selection (El Naqa I, Ten Haken RK, 2018). It may act as
a non-invasive digital biopsy technique able to quantify tumor T-cell
infiltration, to support personalized immunotherapy interventions, and
to longitudinally monitor the therapeutic response above the traditional
dimensional criteria (Solinas et al., 2017; Porcu et al., 2018). In parti-
cular, digital biopsy thorugh the combination of radiomics and patho-
mics features (i.e. data derived from the analysis of imaging data of
pathological samples, in analogy with what seen for radiomics (Gupta
et al., 2019)), represents a promising technique that could improve the
diagnosis, prognosis and outcome prediction in the optic of

personalized medicine (Banna et al., 2019a).
One of the first attempts to create and validate a radiomic signature

able to discriminate the different tumor immune-phenotypes (inflamed
versus immune-desert) and to be associated with a benefit from anti-
Programmed Cell Death-Ligand 1 (PD-L1) ICB, was performed on a
retrospective multicohort study (= 4 independent cohorts) including
patients with advanced solid tumors (Sun et al., 2018). The develop-
ment of the radiomic signature of CD8+ T cells was accomplished with
the use of CT scans, RNA sequencing and genomic data (from tumor
biopsies). Remarkably, patients treated with anti- Programmed Cell
Death-1 (PD-1) and PD-L1 drugs, experienced major benefit from ICB
(i.e., objective response or stable disease and improved survival) in the
presence of a high baseline CD8+ T cell radiomic score (Sun et al.,
2018). In order to understand the progresses in this field and how these
models would be valuable tools in daily clinical practice for the correct
management of oncologic patients, several radiomic studies focused on
immunotherapy in different types of tumors (particularly in non-small
cell lung cancer (NSCLC)) have been conducted. Ongoing clinical trials
testing radiomics in immunotherapy are listed in Table 7).

5.1. Radiomics in immunotherapy for non-small cell lung cancer

Immunotherapy is one of the options approved in clinical practice
for the treatment of NSCLC (Herbst et al., 2018). Interestingly AI has
been widely applied in NSCLC research, from optical biopsy to histo-
pathology and genomic classification (Rabbani et al., 2018). AI was
further employed in different radiomic studies, with some of them
creating models able to distinguish responders and non-responders, to
stratify prognosis and to monitor the effects of treatment in patients
undergoing cancer immunotherapy.

To identify responders to immunotherapy, starting from the hy-
pothesis that local tumor immune-environment would be associated
with patient outcomes and responses to treatments, in their retro-
spective study Tang C et al. (Tang et al., 2018) applied radiomics by
creating a model able to forecast the tumor immune-environment of
primary NSCLC. The authors firstly divided patients into two groups, a
training (114 patients) and a validation group (176 patients) (Tang
et al., 2018). In both groups they analyzed the tumor immune-en-
vironment on the surgically resected primary tumor by analyzing the
expression of PD-L1 on tumor cells and the density of tumor-infiltrating
CD3+ (T) lymphocytes through immunohistochemistry (IHC) and au-
tomated cell counting. They further analyzed the correlation between
the 5 year-overall survival (OS) and the tumor immune-environment

Table 6
List of principal machine learning techniques (Choy et al., 2018; Zhang et al., 2018).

List of principal machine learning techniques

Category Algorithm category Algorithm

Supervised learning Classification Decision trees
K-nearest neighbors
Support vector machine
Random forests
Naïve Bayes classifier

Algorithms able to learn a general rule in order to map inputs and outputs, exploiting labeled input data and
learning known patterns.

Regression Linear/non-linear regression
Local regression (LOESS)
Ordinary least squares regression
Neural networks

Unsupervised learning Cluster analysis Hierarchical clustering
K-means clustering

Algorithms that exploit unlabeled data to learn unknown patterns to find the hidden structure of the data,
separating them into different clusters.

Dimension reduction Linear discriminant analysis
Principal component analysis

Reinforcement learning - Q-learning
State-Action-Reward-State-Action

Algorithms that exploit labeled input data in order to learn a series of actions from the consequences of the
interactions with an environment.

Deep Deterministic Police Gradients
Normalize Advantage Functions
Asynchronous Advantage Actor-critic
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features by distinguishing the: 1) immune activated tumors (char-
acterized by a greater quantity of CD3+ lymphocytes and a lower
percentage of tumor cells expressing PD-L1) and the 2) immune-in-
hibited tumors (characterized by a lower quantity of CD3+ lympho-
cytes and a greater percentage of tumor cells expressing PD-L1). Re-
markably they found that patients from the immune activated tumor-
subgroup had the highest 5 year-OS when compared with those be-
longing to the immune-inhibited-subgroup (Tang et al., 2018). Authors
then extracted 12 radiomic features from the pre-treatment CT scans of
the training group and developed an immune pathology-informed
model by using a hierarchical clustering algorithm (Choy et al., 2018;
Tang et al., 2018). Specifically, the authors found that the favorable
outcome group was characterized by low CT intensity and high het-
erogeneity, i.e. the group with a favorable immune activated state,
characterized by low PD-L1 count and higher CD3 infiltration (Tang
et al., 2018).

The prediction of PD-L1 expression on tumor cells in NSCLC through
the use of radiomics was also investigated by Jiang M et al. (Jiang et al.,
2019) in 18

fluorodeoxyglucose (18F-FDG) PET/CT. PD-L1 expression
was measured in surgical specimens by using IHC (Jiang et al., 2019).
Also in this case authors divided patients into two cohorts (a training
and a testing cohort). Clinical and radiomic features derived from CT,
PET and PET/CT data were extracted from the training cohort and fil-
tered by applying ARD and LASSO. Single predictive models for CT,
PET and PET/CT features were realized by applying a logistic regres-
sion classifier and a random forest classifier to find the PD-L1 expres-
sion status from the filtered features (Choy et al., 2018; Muthukrishnan
and Rohini, 2016a; Muthukrishnan and Rohini, 2016b; Jiang et al.,
2019). This model was tested in the testing cohort, applying the ROC
for estimating model performances, leading to good results in terms of
AUC especially for models derived from CT and PET/CT images (Jiang
et al., 2019).

Also Mu W et al. (Rabbani et al., 2018) developed models able to
predict the clinical outcome of NSCLC patients treated with im-
munotherapy from baseline pretreatment 18F-FDG PET/CT scans. Also
in this case, radiomic features were extracted from PET, CT and PET/CT
images from a training cohort in order to create/test a multiparametric
radiomic signature to be validated either in a retrospective and in a
prospective test cohorts, able to predict durable clinical outcome with
good results (AUC: 0.86 for training, 0.83 for retrospective and 0.81 for
prospective test cohorts) (Mu et al., 2019).

Another approach for developing models predicting OS and re-
sponses to immunotherapy was used by Khorrami et al. by exploiting
delta-radiomics (Khorrami et al., 2020). In this study, the authors ret-
rospectively analyzed data from 139 patients with NSCLC divided into a
discovery set and into two independent validation sets (Khorrami et al.,
2020). Radiomic features were extracted within and outside tumor
nodules from pre- and post-treatment CT scans, and the relative dif-
ferences were computed (Khorrami et al., 2020). Subsequently, a model
to predict treatment responses according to the commonly used re-
sponse evaluation criteria in solid tumors (RECIST) (Nardone et al.,
2020) was developed by using a linear discriminant analysis (LDA)
classifier (Choy et al., 2018; Khorrami et al., 2020). This model was
shown able to distinguish responders from non-responders with high
AUC values (0.88 ± 0.08) (Khorrami et al., 2020). A similar approach
was used more recently by Nardone V et al. in patients with metastatic
NSCLC treated with the anti-PD-1 nivolumab (Eisenhauer et al., 2009).

Finally, an example of more complex predictive model created by
integrating radiomic and several types of non-radiomic data (patients
demographics, clinical and hematological data, and driver mutations)
was presented in the research by Tunali I et al. (Tunali et al., 2019).
Authors created a model for identifying rapid disease progression
phenotypes in patients affected by NSCLC treated with ICB by including
not only histological and radiomic data derived from pre-treatment
contrast-enhanced CT scans (600 radiomic features extracted from the
largest lung lesions and tumor border regions), but also considering

patient demographics, clinical and hematological data, and driver
mutations (Tunali et al., 2019). Also in this case they were able to
identify parsimonious clinical-radiomic models able to predict rapid
disease progression phenotypes, even if these models have been not
tested in a validation cohort (Tunali et al., 2019).

So far, the majority of clinical trials that test the potential of
radiomics in immunotherapy involve patients with NSCLC (Table 7).

5.2. Radiomics in cancer immunotherapy (other types of tumors) and
adverse events to immunotherapy

Similar to NSCLC, other types of cancer have been investigated in
radiomic studies for the potential development of models able to pre-
dict and monitor the responses to immunotherapy.

Liao H et al (Liao et al., 2019), in analogy to other studies (Tang
et al., 2018; Jiang et al., 2019), developed a radiomic-based biomarker
able to predict cytotoxic CD8+ T-lymphocyte infiltration in hepato-
cellular carcinoma (HCC) on pre-treatment contrast enhanced CT. The
model was developed by using elastic-net regularized regression ana-
lysis (Zhang et al., 2017) from radiomic features and IHC data from a
training dataset consisting of 100 patients and validated on a validation
dataset of 42 patients (Liao et al., 2019). Similarly, Chen S et al (Chen
et al., 2019) developed a model able to predict the pre-treatment im-
muno-score (i.e., the intralesional density of CD3+ and CD8+ T lym-
phocytes (Fridman et al., 2012)) of HCC, starting from IHC data and
radiomic features of pre-treatment liver MR examinations performed
with Gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid
(Gd-EOB-DTPA) (Wang et al., 2017) of 207 patients who underwent
surgical resection for their HCC. 1044 radiomic feature of the tumoral
and peri-tumoral regions extracted from the hepatobiliary phase of MR
scans were used to generate three different models by using the extreme
randomized tree technique in order to predict the immuno-score
(Geurts et al., 2006). The model was generated using a training cohort
of 150 patients and validation group of 57 patients (Chen et al., 2019).
The intratumoral radiomic features of this model showed good perfor-
mances in predicting the immuno-score (AUC=0.823). However,
performances resulted to be even better with the model generated from
both intra-tumoral and peri-tumoral radiomic features (AUC=0.904)
and with the one generated from clinical data combined with selected
radiomic features (AUC=0.926) (Chen et al., 2019).

AI has been further applied for exploring the potential of radiomic
features in predicting the responses to immunotherapy in other types of
tumor, i.e. glioblastoma (Sinigaglia et al., 2019; Verduin et al., 2018),
melanoma (Guerrisi et al., 2020), brain metastases (Galldiks et al.,
2020; Bhatia et al., 2019) and also hematopoietic tumors (Cottereau
et al., 2020). An example is represented by the retrospective study of
Bhatia et al. (Bhatia et al., 2019) that identified several MR radiomic
features associated with increased OS in a cohort of 88 patients with
brain metastases from melanoma that were treated with ICB. Another
interesting example is the study by Cotterau AS et al (Cottereau et al.,
2020) that tested the predictive value of the combination of metabolic
tumor volume and radiomic features derived from baseline 18F-FDG
PET in evaluating of progression free survival (PFS) and OS in patients
with diffuse large B cell lymphoma treated with a drug therapy protocol
that included the anti-CD20 rituximab.

Lastly, it is noteworthy to report that researchers are starting to
develop models able to predict patients at risk for irAEs. For example,
the model of Colen RR et al (Colen et al., 2018) was able to identify
patients at risk for immune-related pneumonitis (Porcu et al., 2019) by
extracting radiomic features from baseline chest CT scans of 30 patients
treated with immunotherapy who did not develop immune-related
pneumonitis, and those of 2 patients who developed immune-related
pneumonitis. For the analysis, six VOIs (one for every lobe of the right
lung, and three specular VOIs for the contralateral lung) with radius
between 14-15mm were segmented, and 1860 radiomic features were
extracted (Colen et al., 2018). A maximum relevance minimum
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redundancy algorithm (Peng et al., 2005) was applied to identify fea-
tures associated with immunotherapy-induced pneumonitis, and an
unsupervised anomaly detection algorithm (Goldstein and Uchida,
2016) was used to develop the predictive algorithm (Colen et al., 2018).
This model was able to correctly identify the two patients that devel-
oped immune-related pneumonitis (Colen et al., 2018). An ongoing trial
(Table 7) is evaluating the relationship between radiomics and adverse
events.

6. Current situation and future prospects

Radiomics is changing radiology and oncology (Ha, 2019; Trebeschi
et al., 2019; Bera et al., 2018; Du et al., 2019; Banna et al., 2019b), but
the process of translation from pure research to clinical practice is fa-
cing some difficulties (Park et al., 2020; Deutsch and Paragios, 2019).
In a recent article by Sollini et al (Choi et al., 2016), authors adopted a
phase classification criteria for radiomic studies similar to the one used
for drug development, and the relative paucity of phase III and IV trials
evaluating radiomic models. They conclude that the results in this field
are promising but still not mature enough to be adopted in a routine
clinical context.

Besides the intrinsic technical limitations of radiomic analysis and
exposed in the above paragraph, this “translation gap” is due to several
factors, specifically the quality of science and reports (Waterton and
Pylkkanen, 2012; Moons et al., 2015), with the scientific community
trying to give some instruments in order to overcome these limitations.
Regarding the quality of reporting, Moons KG et al (Buckler et al., 2011)
proposed that radiomic researches should be reported according to the
Transparent Reporting of a multivariable prediction model for In-
dividual Prognosis Or Diagnosis (TRIPOD) checklist. Regarding the
quality of science, Lambin et al (Lambin et al., 2012) developed a system
of metric based called “radiomic quality score” (RQS). This consists of
16 components that consider several aspects of the structure of a
radiomic scientific research, including modeling technique, feature re-
producibility, biologic/clinical validation and performance index. A
recent study by Park JE et al (Park et al., 2020) that evaluated the
radiomic studies present in literature by applying RQS (Lambin et al.,
2012) and TRIPOD (Buckler et al., 2011) evidenced that both the sci-
entific and reporting quality is generally insufficient, particularly the
scientific quality. However, the scientific community is making great
efforts to bridge this gap. An example is represented by the activation of
national and international initiatives such as the quantitative imaging
biomarkers alliance (QIBA) promoted by the Radiological Society of
North America (RSNA) and by the National Institute for Biomedical
Imaging, and the European Imaging Biomarkers Alliance (EIBALL)
sustained by the European Society of Radiology (ESR), whose main goal
is to standardize quantitative imaging (Gillies et al., 2016; Sollini et al.,
2019; Alberich-Bayarri et al., 2019).

It is reasonable to speculate that all these efforts and the techno-
logical improvements in computer science will bring soon to the in-
troduction of several radiomic models in clinical practice.

In the coming future, hopefully radiomics would represent an im-
portant predictive or prognostic tool in medical oncology. However,
nowadays it is too premature to derive definitive conclusions from
published works, that together with the ongoing studies are almost
observational (either prospective and retrospective, as reported in
Table 7). Prospective trials comparing a specific treatment to a control
in patients having or not a particular radiomic biomarker would help
addressing these questions and making these tools available in clinical
practice (Bogowicz et al., 2019).

7. Conclusions

Radiomics and “radi…-omics” techniques leverage imaging in-
formation beyond those attained through visual inspection. In the field
of cancer immunotherapy, radiomics has already shown value in

characterizing the tumor immune-environment and to stratify prog-
nosis by easily evaluating the baseline imaging investigations.

Even though the process of translation of these models from pure
research to clinical practice is still in progress, they represent an in-
novative tool that once applied in clinical practice will help clinicians in
the correct management of the oncologic patient.
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