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Abstract
Interacting with objects in the environment introduces several new challenges for motor control: the
potential for instability, external constraints on possible motions and novel dynamics. Grasping and
manipulating objects provide the most elaborate examples of such motor tasks. We review each of
these topics and suggest that when sensory feedback is reliable, it is used to adapt the motion to the
requirements imposed by the object. When sensory feedback is unreliable, subjects adapt the stiffness
of muscles and joints to the task’s requirements. One of the simplifications introduced in the control
of such movements is a reduction in the effective number of degrees of freedom (sensorimotor axes
and muscle synergies) and recent findings and methodological considerations relevant to this topic
are discussed.

Introduction
Perhaps the most interesting movements that we make are those in which we interact with
various objects in our environment. These interactions introduce new challenges and problems
for understanding the neural control of movement. One of these is the potential for instability.
This arises especially in the use of tools. For example, if a screwdriver is not positioned properly
and the force exerted by the hand is not directed correctly, the screw may topple or the
screwdriver’s blade may slip. Furthermore, in many cases, interaction with an object introduces
a movement constraint. For example, when turning the handle on a door, the fingertips must
follow the precise arc of the handle. Similarly, when inserting a cork into a bottle, the cork
must be positioned properly, and the movement must be precisely vertical. Finally, interacting
with an object can introduce novel and sometimes unpredictable forces. For example, when
carrying a bucket of water, the natural back and forth motion of the hand can induce oscillations
of the bucket. If the water is not to be spilled, these oscillations must be damped by
compensatory arm movements.

Perhaps the most exquisite example of the control of contact forces arises in manipulatory
movements of the hand and fingers. We use our hands to grasp a variety of objects; we can
move these objects around freely in the hand, and we can use hand movements to explore the
characteristics of the object, such as its size, shape and texture. In this review we will focus on
the general topic of the motor control of contact forces and the sensory information that is
utilized. Since the control of grasping has been the subject of several recent reviews (on tactile
strategy [1], cortical control [2], and cognition [3]), we will refrain from duplicating topics
covered in these reviews. However, since the issue of coordinate systems and degrees of
freedom (synergies) has received less attention, we will review this topic in more depth.
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Controlling potential instability
Intuitively, a posture or a movement is stable if, following a small perturbation, we can easily
return to the same posture or the same path. This intuitive notion of stability conforms to its
mathematical definition. Specifically, the criterion for stability is that positive work must be
done to produce a deflection from the posture or path. Consequently, at a stable point, the
potential energy is at a local minimum. Rancourt and Hogan [4] have provided several
examples of motor tasks that are potentially unstable as well as a mathematical analysis of
these tasks. Typically, one can define a domain of states that are stable; any state that is outside
that domain is unstable. The extent of the domain depends on the limb configuration and
impedance. An increase in impedance or stiffness in any particular direction (over the entire
range of possible directions) can be actively produced by muscle co-contraction and/or stretch
reflexes.

Recently, Valero-Cuevas et al. [5] have devised an interesting task that permits an assessment
of human strength and manual dexterity. It requires subjects to compress a series of springs in
a pinch, the springs varying in their stiffness and in their propensity to buckle. They
subsequently provided a detailed analysis of the criterion for stability in this task [6••]; the task
is stable provided that the endcap by which the spring is grasped does not rotate by more than
a specified amount, the amount depending on the properties of the spring and on the amount
of compressive force exerted. They assessed visual and tactile sensory contributions to the
feedback control of this task and found that when available, tactile cues predominated, but that
the sensory weights were adjusted [7] if tactile cues were unavailable (following digital
anesthesia). The paradigm developed by this group is a promising one in that it offers the ability
to study postural stabilization in a task that is relatively simple biomechanically. Stabilization
of upright posture in standing humans has been the focus of numerous investigations in the
last few decades, but that task is much more difficult to model mathematically because of the
large number of degrees of freedom [8].

Kawato and his colleagues use a different task that also requires subjects to surmount a
potentially unstable situation. They require subjects to make planar arm movements to a target
using a robotic manipulandum. The manipulandum is programmed to produce elastic forces
acting on the arm as the subject moves (see also [9]), the elastic forces moving the hand away
from the intended path [10]. Thus, in contrast to the task just described [6••], there is no stable
region; a deviation from a straight-line trajectory will not encounter a restoring force but will
instead cause the hand to be pulled away. Subjects learned to compensate by selectively
increasing the arm stiffness in the direction of instability, that is, in the direction perpendicular
to the intended path. This was achieved by co-contraction of selective sets muscles [11].
Subjects required about six times as many trials to learn this task compared to movements in
stable force fields [12], suggesting a different mode of learning. This was supported by a
modeling study [13] showing that iterative learning rules that work for the learning of
movements in stable force fields will not work in unstable force fields.

Most recently, Kawato and colleagues extended these results by testing how subjects
compensate when they are exposed to three different unstable force fields, one perpendicular
to the movement path, and the other two at oblique angles [14•]. In all three instances, subjects
increased arm stiffness selectively so that it was always largest in the direction of instability.
This study showed that subjects have selective control over the extent of co-contraction of
shoulder, elbow and biarticular muscles.

To generalize from the results described above, we make the following suggestion. If there is
a bounded stable domain, such as in the task studied in [5,6••], subjects rely on sensory feedback
to maintain stability. However, if the task is inherently unstable [10–13,14•] and sensory
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feedback is ineffective, subjects can learn to selectively increase the impedance of the limb in
specific directions and to overcome the instability by this means.

Constrained movements
As mentioned in Section ‘Introduction’, in a large class of movements the motion is constrained
by the characteristics of the object with which we interact, as in turning a door handle. If the
motion of the hand does not conform precisely to this constraint, large, potentially destructive,
off-axis torques could be exerted on the hand as well as the handle. For this reason, such tasks
are notoriously difficult to execute with robots, which are intrinsically stiff. To our knowledge,
the control of constrained motion has not been studied in detail. However, following from the
results described above, one can hypothesize that their control would also involve the
modulation of limb impedance, namely a lowering of the off-axis impedance to allow for
deflections from the constrained path.

Constrained movements also involve sensory feedback control, and may involve adaptive
variation of finger, hand and arm posture. Imagine the process of running a fingertip along a
curved surface to explore its shape. Initial studies of haptic exploration have focused on
distortions in perceived shapes [15–17]; fewer studies have investigated the processes of using
somatosensory feedback during the movement (see also [1]). Adaptive variation in arm posture
has been documented in a task which involved interacting with a hand-held object with novel
(but stable) dynamics [18]. Subjects held a spinning gyroscope while they reached to targets
in three-dimensional space. Over the first few trials, the subjects went through a process of
learning the mechanics of this unusual tool by gradually changing the arm posture. Analysis
showed that the observed changes in arm posture were well-suited to learning the dimensions
of mechanical resistance provided by the gyroscope.

Novel object dynamics
Interacting with objects can alter the dynamics of the arm in sometimes unpredictable ways.
For example, when walking while carrying a pail of water, the motion of the arm can induce
oscillations of the pail, resulting in reactive forces on the arm and in turn altering its motion.
Furthermore, if the pail is to be stabilized, the motion of the arm has to be modified to damp
out the oscillations. Subjects can learn this task as shown by Dingwell et al. [19]. In their task
subjects had to move a mass coupled to the hand by a spring. To succeed in stabilizing the final
location of the mass, subjects had to produce hand trajectories that consisted of two alterations
of acceleration and deceleration, that is, the hand had to be decelerated in the middle of the
movement. Their results showed that subjects constructed internal models even for these non-
rigid objects with unusual dynamics; the learning did not involve merely an increase in limb
stiffness. As discussed by Kawato [20], internal models can take two forms: an inverse model
maps a desired trajectory into the appropriate forces to produce it, and a forward model predicts
the motion resulting from a particular force command. By contrast, in a study of the transport
of an object held in a tripod grasp [21••], intrinsic finger stiffness was sufficient to damp the
somewhat unpredictable oscillations provided by a pendulum hanging from the object.

A standard question in motor learning paradigms concerns the extent to which skills learned
in one locus can be generalized to other spatial configurations [22]. This approach was recently
applied to a task in which dynamic interactions between the two hands were produced by
connecting them with a (virtual) spring [23•]. Subjects pulled with the right hand and had to
resist the force with the left hand. Using a standard design, the investigators interspersed catch
trials where the right hand force was not transmitted, and they measured the reactive force
generated by the left hand. They then changed the subjects’ posture so that the left arm was
rotated by 30° but the force direction was unchanged, and determined whether generalization
occurred in a frame of reference tied to the arm or to the object. The results depended on the
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complexity of the dynamical object (the spring). When the spring configuration was simple,
the force was defined in an object-centered frame of reference, but this was not the case when
the complexity of the configuration was increased by altering the force direction by means of
a pulley arrangement.

Grasping and manipulating objects
Object grasp and manipulation provides the most exquisite example of the sensorimotor control
of contact forces and it has been studied extensively. The criteria for a stable grasp are well
understood and have been formulated by roboticists [24]. The coefficient of friction of the
surface to be grasped requires that the ratio of components of the force tangential and
perpendicular to the surface be less than a critical value, limiting permissible contact forces to
be within a friction cone (Figure 1a). Experimental evidence shows that subjects regulate this
ratio quite precisely [25]. When an object is grasped with several digits (such as in a tripod
grasp), additional constraints are provided by the requirements for equilibrium [24,26]. The
vertical components of the contact forces (the load forces) equal the object’s weight, and the
horizontal force components must intersect at a common point (force focus, Figure 1b). This
force focus must lie within the intersection of the three friction cones; the larger this area is,
the more stable is the grasp (see also Figure 1c). This consideration affects the choice of contact
points for grasping [24], but other factors are also likely to be influential. For example, a contact
point at a region of high surface curvature would be undesirable, because the direction
perpendicular to the surface, and hence the friction cone, could change appreciably if the
contact point changes only slightly (Figure 1d).

In fact, subjects are very consistent in their choice of contact points [27] and results from a
recent experiment demonstrate that subjects adjust the location of contact points to optimize
contact forces. The task involved a five-digit grasp (the thumb opposing the four fingers) of
an object with an eccentric weight that tended to rotate the object in the roll direction. If the
location of the contact points of the digits is fixed, subjects adjust the contact forces at individual
digits to counteract the external torque [28,29]. However, if they are free to do so, subjects
alter the location of the contact points, primarily at the thumb and the index finger to minimize
the effort required to grasp the object [30•].

A concept that has been developed in the field of robotics also shows much promise for the
study of the neural control of grasping. This approach characterizes the extent to which force
and motion in each of the digits can be transmitted to the grasped object by means of matrix
transformations [31••]. The result of such an analysis yields velocity and force transmission
ellipsoids for displacement and rotation. A similar analysis defines the effective stiffness of
the hand plus the object. Thus, this approach provides a computational framework for analyzing
grasp and manipulation. The analysis was applied for several different tasks, and showed that
the orientations of the ellipsoids varied for objects (e.g. cup, jar, and teaspoon) as well as for
tasks (grasping a jar to unscrew the lid versus lifting the jar). The analysis suggests that even
when subjects choose identical contact points, they may adjust the posture of the hand in light
of the intended manipulation of the object [32].

Hand impedance has been estimated [33] by asking subjects to grasp a handle (the thumb
opposing the four fingers) whose aperture gradually increased and by measuring the resultant
changes in grasp force. These authors reported values of 150–250 N/m, which is comparable
to the reported stiffness of the arm [10,34].

Finally, we should note that the velocity transmission ellipsoid based strictly on finger
kinematics may substantially underestimate the extent to which an object can be maneuvered,
since it neglects motion of the wrist and of the proximal arm. In fact, it is quite likely that in
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rotating a grasped object, much of the imparted motion results from motion at the wrist [35•,
36].

Muscle synergies in grasp and manipulation
The skeletal hand has a large number of degrees of freedom and the number of motor units
innervating the hand is even larger. Nevertheless, there is substantial evidence that the effective
number of the degrees of freedom, that is to say, the number of degrees of freedom that can be
controlled independently, is considerably smaller. For example, the digits of the hand cannot
be moved independently of each other [37,38]. Such constraints are commonly referred to as
the expression of synergies [8] and a popular approach to define them has been to use principal
components analysis (PCA, but see [39,40] for a different approach).

This analysis results in a set of functions that express the pattern of covariation among the
mechanical degrees of freedom. Since this analysis has been applied in several different ways,
a more detailed discussion of the method as applied to time-varying patterns such as EMG or
finger movements is warranted. Consider a set of parameters p(t), where we define p to be an
n-dimensional vector and define pi(t) and pj(t) to refer to two of the degrees of freedom. Also
assume that we have recorded m different movements. The usual PCA begins by computing
the covariance matrix Cij

(1)

and the subscripts m and q refer to a particular trial and a particular point in time. Each principal
component, determined from this covariance matrix, then defines a particular posture [41] or
a particular combination (across muscles) of EMG levels. During movement, these patterns
are then scaled in time.

A recent example is provided by an analysis of finger motion during haptic exploration and
grasping tasks [42•]. This study found that as many as seven principal components were needed
to account for 90% of the variance. Remarkably, the same synergies could account for grasping
as well as haptic exploration and many were similar to those described previously [41,43].

The synergies as defined above require all of the values of all of the degrees of freedom (e.g.
the activity in various muscles) to change together across time. However, this criterion is overly
restrictive because it does not coincide with physiological observations. For example, during
reaching movements in three-dimensional space, various arm muscles exhibit bursts that are
staggered in time [44] (Figure 2a). Computing the covariance matrix in a different manner
yields a result that relaxes the criterion of strict temporal covariation of the degrees of freedom.

Specifically, the subscripts i and j in Eq. (1) now refer to trials, while the subscript m now refers
to a degree of freedom. This approach has been applied to characterize the kinematics of finger
movements during grasping [45] as well as patterning of finger muscle activity during
fingerspelling in the American Sign Language [46•]. Figure 2b shows the primary pattern (the
first principal component) in the activity of finger muscles as subjects make a wide variety of
abrupt (point-to-point) transitions from one static hand shape to another. In this analysis, each
principal component was composed of EMG bursts that had a certain fixed phase relation across
muscles, that is, a physiological pattern. Note that since the relative timing of bursts in different
muscles is fixed (but not necessarily identical), there is a reduction in the number of effective
degrees of freedom and a simplification of the control signals required to generate this pattern.
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Thus an alternative approach to defining synergies, that is more physiological, has been
developed by d’Avella et al. [47]. They use an iterative approach to identify the temporal
waveforms that correspond to each synergy, with the proviso that the waveforms for different
synergies can be staggered in time by amounts that differ from trial to trial. This would be
especially useful in tasks where different synergies are used for different components of the
task. For example, the transition from motion to exerting a constant force against a surface
with the tip of a finger requires two distinct and temporally separate muscle synergies [48•].

Recently, this method was applied to characterize EMG patterns in a task that involving
reaching to various objects, grasping them and then transporting them [49•]. The authors found
that three synergies could account for 80% of variance. Remarkably, each of the three could
be associated with one component of the task: the earliest being related to the reach component,
the second to the grasp and the third to the transport phase of the movement. Consistent with
this interpretation, the scaling of the second synergy depended strongly on the object shape,
while others did so only weakly. A potential drawback of this approach is that the waveforms
are not necessarily orthogonal to each other, implying that the primary synergies could change
if additional ones were added to the model. However, a recent study showed that the synergies
change only slightly when an additional one is added [50].

Tactile sensing in grasp and manipulation
In grasp, the hand is shaped and the contact forces are generated in a largely predictive manner
based on prior experience [51,52]. If the grip force is not large enough, peripheral tactile
afferents (fast adapting FAI and FAII as well as slowly adapting SAI) signal incipient slip and
elicit an increase in grip force at short latencies [53]. A variety of cues are available for adapting
the shape of the hand to an object’s shape and size. This topic was addressed in a recent study
[54•] in which the visual information about an object’s size was dissociated from its true size,
the actual object being unexpectedly larger or smaller. Subjects adapted their grip aperture to
this discrepancy and the investigators showed that neither finger speed nor force at the time of
contact provided information about the discrepancy, but that there were reliable timing cues
relative to the time of contact.

Behavioral studies have pointed to a role of tactile information from the fingers in a variety of
tasks [55]. For example, they have the potential to signal spatial errors in pointing movements
of the arm, provided the fingers contact a surface at the end of the movement. How this
information is encoded has not been studied, however. Tactile cues are also important in
providing information about an object’s properties such as shape, size and texture and
compliance during haptic exploration [16,56]. Specifically, the orientation of edges contacting
the fingerpads is known to be important for shape perception, and this topic has been the focus
of a recent study [57–59]. Their studies show a progressive elaboration of this information as
one progresses from peripheral afferents to primary (S1) and secondary (S2) somatosensory
cortex. Peripheral SAI afferents respond to gratings but they are not tuned to orientation.
Orientation tuning is first found in area 3b of S1, with receptive fields restricted to a single
finger pad. To the contrary, neurons in S2 are also tuned to orientation, with receptive fields
spanning multiple finger pads, providing a potential substrate for encoding object shape.

In haptic exploration, the fingertips are generally swept across the surface of an object, implying
that information is acquired serially. Forming the percept of the object’s shape thus requires
that information be stored in working memory and then integrated. This aspect of tactile sensing
has been studied by Romo and Salinas [60], using a task in which monkeys discriminated the
frequency of two vibratory stimuli presented in succession. Neurons in S1 responded only to
the stimulus as it was presented. However, in S2 and in the prefontal cortex, the response to
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the second stimulus depended on the frequency of the preceding stimulus, thus providing a
substrate for the comparisons needed for frequency discrimination.

Conclusion
Humans are obviously capable of learning a large variety of motor skills required for
manipulating objects and using implements. Generally, error information on one trial is used
to modify movements on subsequent trials to decrease the error and to improve the probability
of success. When the error information is unreliable (because the task is inherently unstable or
the dynamics are largely unpredictable), limb impedance can be selectively modified to
improve motor performance. However, the precise sensory information and the neural
algorithms are largely unknown. Thus, the challenge for the future is not to demonstrate that
humans can learn a particular motor skill, but to identify the information and the algorithm that
is used to do so.
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Figure 1.
Criteria for a stable grasp. Friction restricts the force exerted by the finger tip to lie within a
friction cone (a), else the finger will slip. The angle of the friction cone is defined by the ratio
of the tangential and normal components of the applied force, which must be less than the
coefficient of friction of the surface. In a tripod grasp (e.g. the thumb opposing two fingers),
the horizontal components of the force exerted by the three digits must intersect at a common
point (the force focus, b). The permissible location of the force focus is determined by the
intersection of the three friction cones (dark shaded area). Part (c) illustrates an unstable grasp
configuration, because the permissible forces exerted by the two fingers cannot oppose the
force exerted by the thumb. Part (d) shows contact points in a two-digit grasp that are
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suboptimal, because a small change in the location of the contact point (dark green and light
green friction cones) alters the direction of the friction cone by a large amount, requiring a
compensatory change in the direction of force produced by the opposing digit.
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Figure 2.
Patterns of muscle activity for arm (a) and hand (b) movements. In (a), EMG activity is
rectified, smoothed and averaged across repeated reaching movements. The subject reached
with the right arm from a waist-level central target to a target on the right. The EMG related
to antigravity forces was subtracted away [44]. In (b), EMG activity was rectified, smoothed,
averaged across repeated movement, and normalized in amplitude and time. In contrast to
(a), only the first principal component is shown. It was computed across trials for each muscle.
The subject made 27 transitions from one hand shape to another as he spelled words using
American Sign Language [46]. In both the arm (a) and the hand (b), phasic bursts of muscle
activity are staggered across muscles.
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