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a b s t r a c t

This work presents a new method for motion estimation of tagged cardiac magnetic resonance sequences

based on variational techniques. The variational method has been improved by adding a new term in

the optical flow equation that incorporates tracking points with high stability of phase. Results were

obtained through simulated and real data, and were validated by manual tracking and with respect to a

reference state-of-the-art method: harmonic phase imaging (HARP). The error, measured in pixels per

frame, obtained with the proposed variational method is one order of magnitude smaller than the one

achieved by the reference method, and it requires a lower computational cost.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The estimation of cardiac tissue motion and its deformation

has been an area of major interest in medical image analysis

[1]. Myocardial ischemia is a frequently encountered pathologi-

cal problem that is caused by a locally reduced blood flow due to

obstruction of the coronary arteries. The mechanical properties of

an ischemic myocardium are altered, and therefore the injured tis-

sue contracts irregularly. Non-invasive estimation of myocardial

contractility is of great interest in order to detect regions with

abnormal contraction. The degree of abnormality is also of impor-

tance to determine the potential of the injured region to recover

contractile function after therapy [2].

The most important parameter to assess the regional function of

the myocardium is the regional strain [3,4]. However, the myocar-

dial strain measurement implies the accurate evaluation of the

myocardial displacement.

Cardiac magnetic resonance (CMR) is one of the reference meth-

ods to perform the dynamic exploration of the cardiac function

non-invasively. This imaging method is not only used to study the

motion of the myocardial wall but also other functional parameters
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such as perfusion and viability. Therefore, it is a very valuable imag-

ing technique to assess the diagnostics of different cardiovascular

diseases [5].

Cardiac motion assessment using conventional dynamic CMR

imaging has recently been gaining more and more interest, primar-

ily due to its availability and easier clinical application [6]. However,

the main drawback of this imaging modality is the absence of reli-

able identifiable landmarks within the heart wall, which limits the

assessment of the intramural motion [7,8]. Different magnetic res-

onance imaging (MRI) techniques have been proposed to overcome

this problem: (1) Tagged MRI (TMRI); (2) Phase contrast magnetic

resonance imaging (PCMRI); and (3) pulse field gradient-based

MRI methods (Harmonic phase imaging (HARP)) and displacement

encoding with stimulated echoes (DENSE [9])). TMRI modulates

the underlying image intensity with the help of a specific pre-

saturation technique [10]. This essentially produces a pattern of

dark lines, or so-called tags, on the image. Deformation of these

temporary lines is analyzed to derive a motion model of the under-

lying tissue. In contrast, PCMRI uses phase shifts induced in the

transverse magnetization with “instantaneous” velocity-encoding

pulses for measuring motion; the phase of the signal is directly

related to the velocity of the material within each voxel at the time

of velocity-encoding. The velocity field can then be integrated to get

the displacement. In DENSE and HARP, a uniform pattern of phase

modulation is encoded into the tissue at a chosen time, and the
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deformation of that pattern is detected at a later time and utilized

to estimate the motion [11–13].

Over the past years, tagged MR imaging has become an

established technique to estimate myocardial motion [14], being

available in most clinical scanners. Some of the methods proposed

in the literature for the estimation of displacement fields include

tracking intensity spatial modulation on the magnitude images

(using segmentation of minimum intensity lines, optical flow, reg-

istration), using B-spline models [9,15,16] or tracking the harmonic

phase (HARP) [11,17].

Tracking intensity minima is normally based on the devel-

opment of an intensity profile model of a grid line. It is

time-dependent, and it usually depends on a user who manually

starts to identify the location of the lines. The most probable loca-

tion is searched, or segmentation procedures are used such as

morphological operations to locate dark lines in the image [18],

matched filters [19,20], Gabor filters [21,22], deformable grids

[23,24] or manually identified points [25]. The advantage of the

optical flow methods is that they provide a dense estimation of

the motion field in two dimensions rather than just a sparse set of

data, and they do not required segmentation. There have been sev-

eral strategies to perform the tracking of lines of the myocardium

using such techniques [26–28], some of them trying to suppress

the effects of the tag fading [29,30] or using registration techniques

[31]. On the other hand, the HARP technique uses harmonic phase

tracking to track the phase of the tissue tagging pattern in “angle”

images [10,14,32].

Although the use of the HARP technique is widely spread [33,34],

it is not commonly used for obtaining dense motion fields because

of the calculation time required and the vulnerability of the method

in the presence of noise. On the other hand, optical flow techniques

allow motion field estimation from image sequences with reason-

able computation cost, and they provide valuable information to

process video sequences.

Variational methods have recently been used and have evolved

as a powerful tool to solve problems in the field of image sequence

analysis [11], image restoration [35], sequence segmentation and

super-resolution [36,37]. Concerning optical flow estimation, sev-

eral reviews have been published [38,39] covering the differences

among the main optical flow techniques. Performance studies have

proven that the variational approach is among the best methods

[38]. However, the variational methods have not been applied to

the myocardial motion estimation problem as much as the regis-

tration or phase harmonic-based methods. One can refer to [30] as

a reference where a variational technique for motion estimation in

tagged magnetic resonance sequences was considered.

In this paper, we propose the use of variational optical flow tech-

niques to estimate displacements fields from MR tagged images.

Preliminary results were presented in [40], using the standard

variational technique and applying it to myocardial segmenta-

tion. In this paper, the use of variational methods for myocardial

motion estimation is presented and validated in synthetic and real

sequences. More in detail, a variational method with a total varia-

tion (TV) term has been adopted. Optical flow is estimated without

smoothing the solution and preserving discontinuities in the opti-

cal flow. The intrinsic feature of the tagged images phase is used to

perform more accurate and robust tracking, incorporating into the

approach the motion estimates of control points with high phase

stability.

2. Materials and methods

Many experiments provide evidence for superior performance

of the variational optical flow techniques [38]. The basis of these

methods is the constancy of the intensity structures of local time-

varying image regions under motion, at least for a short duration

[41]. The use of this method actually assumes intensity conserva-

tion between consecutive frames that can be admitted in the case of

tagged MR image frames separated by short time intervals as com-

pared with T1 recovery [31]. However, if required, the T1 signal

modulation could also be included in the criterion [31].

Formally, if u(x1, x2, t) is the intensity of the pixel (x1, x2) at time

t,

u (x1 (t) , x2 (t) , t) = const, ∀t (1)

Taking the derivative at t = 0 with respect to time yields,

v(x1, x2) · ∇u(x1, x2, t0) + ut(x1, x2, t0) = 0 (2)

where v = (v1,v2), ut = du/dt and v1 = ∂x1
∂t

and v2 = ∂x2
∂t

are the veloc-

ity fields. Eq. (2) is known as the optical flow constraint equation.

However, we have only one equation for two unknown compo-

nents of the velocity. This is the basis of the well-known aperture

problem. Because this problem is underdetermined (ill-posed),

additional constraints are required. One of the most popular con-

straints is based on the use of second-order derivatives, by choosing

a parametric model of velocity or by regularizing the velocity fields

[11]. In our formulation, we follow the regularization approach.

2.1. Variational approach

Horn and Schunck in [41] were the first to propose the following

regularization term (B) in Eq. (3),

min
v

∫
˝

(v · ∇u + ut)
2dx︸ ︷︷ ︸

A

+ ˛r

∫
˝

(||∇u1||2 + ||∇u2||2)dx︸ ︷︷ ︸
B

(3)

where ˛r is a constant and ||;|| is the usual Euclidian norm. Nev-

ertheless, this term (B) smoothes isotropically, and it does not

take into account the optical flow discontinuities [42]. More robust

norms have to be considered to cope with discontinuities, and the

one chosen in our approach is the following∫
˝

�
(∥∥∇v1

∥∥)
dx +

∫
˝

�
(∥∥∇v2

∥∥)
dx (4)

where functions � allow noise removal and edge preservation.

Among the different � functions proposed in [43], in this paper

�(t) = t has been implemented and therefore Eq. (4) corresponds

to total variation (TV). Very good anisotropic denoising proper-

ties of the TV semi-norm are well-known [36]. Since TV is highly

nonlinear and non-continuous, special attention must be paid to

its discretization. Several relaxed linearization schemes have been

proposed. We follow the half-quadratic regularization scheme in

[44] that introduces an auxiliary variable.

Finally, by including the terms above referred and an extra term

for quasi-homogeneous areas [11], the energy minimization equa-

tion that we propose is given by

min
v

∫
˝

(v · ∇u + ut)
2dx + ˛r

∫
˝

�
(∥∥∇v

∥∥)
dx + ˛c

∫
˝

c (x) ‖v‖2
2dx

(5)

2.1.1. Implementation

The solution to the energy minimization in Eq. (5) with respect to

the velocity fields v1 and v2 is characterized by the Euler–Lagrange

equation, which in the vector-matrix notation takes the form [40]([
UX1

UX1
+ ˛rL1(z) + ˛cc

] [
UX1

UX2

]
[
UX1

UX2

] [
UX2

UX2
+ ˛rL2(z) + ˛cc

]
)(

v1

v2

)

= −
(

UtUX1

UtUX2

)
(6)
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Matrices L1 and L2 appear from discretization of the regulariza-

tion term in Eq. (4) [37] and depend on z, which is the auxiliary

variable introduced by the half-quadratic scheme that can be cal-

culated as

z (x, y) =
�′ (∣∣∇v (x, y)

∣∣)∣∣∇v (x, y)
∣∣ (7)

Matrices L1(z) and L2(z) are Toeplitz matrices, positive semidef-

inite constructed by z, and they perform shift-variant convolutions

with z. To avoid division by zero, z is defined for the TV case as,

z
(

i ± 1/2, j ± 1/2
)

=

⎧⎪⎨
⎪⎩

1

|v (i ± 1, j ± 1) − v (i, j) | if |v (i ± 1, j ± 1) − v (i, j) | > ε

1

ε
otherwise

(8)

where ε is the relaxation parameter [36]. Note that in the relatively

flat regions,
∣∣∇v (x)

∣∣ ≤ ε, L (z) becomes the Laplacian operator. In

regions with a high image gradient,
∣∣∇v (x)

∣∣ ≥ ε, vT L(z)v approxi-

mates the TV semi-norm of the velocity v.

2.2. Enhanced method for tagged MR

In the same way that the homogeneous term has been added,

it is easy to add other terms to adapt the algorithm to the prob-

lem. The main idea of the improved version has been introducing

a regularization term in order to find a more accurate optical flow

based on prior robust estimates in given control points. The new

term is going to have information regarding the displacement of

several points inside the myocardium with a very low error, and

these points will henceforth be called control points. The term has

the following form,

ˇ
∑

i

(vi − pi) (9)

where pi is the set of control points. The parameter ˇ is a parameter

determining the influence of Eq. (9) in the energy minimization Eq.

(5).

With this equation, a solution of compromise is going to be

obtained. The regularization term is going to provide a more accu-

rate optical flow in the neighborhood of the control points. In those

regions without any control point, this term does not have any

effect.

Following the form of Eq. (6), the implementation equation that

includes the new term is([
UX1UX1 + ˛rL1 + ˛cc + ˇM

]
[UX1UX2]

[UX1UX2]
[
UX2UX2 + ˛rL2 + ˛cc + ˇM

]
)

(
v1

v2

)
= −

(
UtUX1 + ˇ · p1

UtUX2 + ˇ · p2

)
(10)

where M is a diagonal matrix with ones on positions corresponding

to control points in Eq. (9).

Thus, the half-quadratic algorithm consists of the following

steps: L1 and L2 are first initialized by velocities from a previous

step (direct solution of optical flow equation). Then, new velocities

are computed by solving Eq. (10). L1 and L2 are updated and Eq. (10)

is solved again. The process is repeated until classical convergence

criteria are met, such as the relative norm of differences or gradi-

ent are below a certain threshold. Empirically we have determined

that for our synthetic and real data, five iterations were enough

to achieve sufficient accuracy and keeping the computational cost

low.

2.2.1. Obtaining the control points

Although Eq. (10) seems to have an easy implementation,

obtaining the control points is a difficult task. Nevertheless, the tags

of the image are an essential property that will allow such points to

be obtained. There are some papers proposing tracking of the dark

lines to find points of minimum intensity [17–20]. In this case, sev-

eral points could be chosen between the tag lines as control points.

Nevertheless, the tag fading is a limitation for these techniques, as

the error allowed in the displacement estimation of those points

has to be very small.

In contrast, techniques using the phase of the images (for

instance, the HARP technique reported in [10,14]) turn out to be

very accurate for tracking a few sets of selected points that have

phases not affected by noise and where tag jumping is avoided. As

we only need a set of points and not a dense optical flow for these

control points, the control points will be a set of points with high

stability of phase.

In 1-1 SPAMM (spatial modulation of magnetization) tagging

pulse sequences [46–48], tags are created with a sinusoidal cross-

sectional intensity profile. At any point on or between the tags, the

tissue has both a magnetization intensity and a spatial phase of

the periodic tag magnetization pattern, which are dependent on

position [8]. Therefore, when the heart moves, a particular piece

of tissue has the same phase in the deformed state as it has in the

reference state. The phase of those images is an intrinsic property

that can be tracked.

The control points are selected automatically taking into

account that the phase of the tagged images is restricted to be

in the range [−�, +�]. First the algorithm selects all the pixels

belonging to a given range of phase in the phase image (in our case

we selected from 0.4 to 0.5 rad which corresponds to the decay of

the tag towards the trough. Following the previous process several

pixels are selected in the same tag, therefore the algorithm fur-

ther selects only those points belonging to tag intersections Thus, a

grid of selected points in the myocardium is formed (see Fig. 1).

For tracking those points, a similar procedure to that reported

in [8,10] is established using the Newton–Raphson method. The

Newton–Raphson method is a well-known technique to find the

root of a function. We applied it to a small region centered at

the point of interest to find the roots in the difference of phase

images. To avoid tag jumping, the Newton–Raphson method was

only run in a small window around each point, taking into account

tag spacing. Additionally, those points which had a difference of

phase error higher than 10−3 were rejected. Therefore, only points

Fig. 1. Automatically selected control points in one frame of the simulated

sequences.
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with very good phase stability were chosen as control points. This

automatic selection provides control points with robust tracking

estimates that take into account prior information that is very valid

for enhancing the method. In principle, it does not matter which

points are selected, although it is desirable that they are evenly

distributed, what is guaranteed by the automatic selection of the

points in the tag intersections. It is also important to note that the

computational time does not increase significantly, as only a few

points are going to be selected. An example of a set of control points

is shown in Fig. 1. Approximately, 60 control points are automat-

ically selected in synthetic data (see Section 2.3.1) and around 40

control points in real data (see Section 2.3.2). This number is smaller

for real sequences as the spatial resolution of these sequences is

smaller, and there are less tag intersections in the myocardium.

2.3. Experiments

Two different experiments were performed, the first one with

synthetic data and the second one with five different real datasets.

The methods shown in the previous section have been compared

both with a reference method (HARP) and with the manual tracking

of structures.

2.3.1. Experiments with synthetic data

The first experiments were conducted with synthetic data. The

simulated sequence was generated from a real magnetic resonance

CINE image with a pixel size of 1.17 × 1.17 mm, a spatial resolution

of 176 × 204 pixels and a slice thickness of 8 mm [49]. The tags were

simulated using a sinusoidal function in both directions.

The image has been deformed using a separable model in time

and space using polar coordinates as follows

g0 (t, x) = � (r) · ς (t) (11)

where g0 is the image, � (r) represents the spatial deformation, and

ς (t) simulates the left ventricular contraction through the cardiac

cycle. The objective of the spatial deformation is to simulate the

myocardial contraction, which causes more radial movement at

the endocardium than at the epicardium. Therefore, the myocar-

dial thickness changes when the temporal function is applied [49].

It is composed of a circumferential term that rotates the whole

image to simulate circumferential movement of the heart, and it

only depends on the distance of each point to the center of the

ventricle.

� (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k · sin

(
�

2

r

rc

)
for r < rc

k · sin

(
�

2

r − r1

rc − r1

)
for rc < r < rext

k · sin

(
�

2

rext − r1

rc − r1

)
for rext < r

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(12)

where rc is the endocardium radius, rext the pericardium radius and

k a constant to change the amplitude of the displacement.

The equation of the temporal evolution function ς (t) is defined

using a continuous pulse function ˘ (ti, ti+1) in the range [ti, ti+1]

based on hyperbolic tangents [34]:

ς (t) = ˘ (t0, t1) · sin2

(
� · t

2 · T
3

)
+ ˘ (t1, t2) · (a + b × t) (13)

where t0 = 0.0T, t1 = 0.446T, t2 = 0.960T, a = 0.431, b = −0.007 and

T = 33

˘ (ti, ti+1) = 1

4
(1 + tanh (˛ (t − ti))) (1 + tanh (˛ (ti−1 − t))) (14)

where ˛ = 1.136.

To run the experiments on these synthetic data, the myocardium

was divided into six regions according to the standardized myocar-

dial division of segments [50]. In each region, four points were

selected and tracked manually along each sequence. Overall, 24

points were selected along every sequence. Results obtained with

the variational and the enhanced variational methods were com-

pared with those obtained with HARP. The error for the three

implementations was computed as a root mean squared (RMS)

error.

The values of the parameters used in the program were selected

experimentally by assigning different values to the parameters

from given intervals and choosing the parameters which lead to

a better convergence (fewer numbers of iterations) of the main

equation (10). The parameter value intervals considered were

˛c ∈ (10−5, 10−8), ˛r ∈ (10−5, 10−7), and ˇ ∈ (10−5, 10−7). In this

case, for the variational method the following values were cho-

sen: ˛c = 10−7, ˛r = 10−5. For the enhanced variational method,

the parameters ˛c = 10−6, ˛r = 10−6 and ˇ = 10−6 provided the

best performance. The motion field was initialized by solving only

the optical flow constraint equation (OFCE), term A of Eq. (3). To

find the minimum of this term, we took its derivative with respect

to v and set it to zero, clearing the terms v1 and v2.

The same experiments were repeated with the same synthetic

sequence and with four different levels of additive noise, with

SNR of 34 dB, 26 dB, 23 dB and 20 dB. The noise has been added

in the frequency domain. Real and imaginary parts of each image

were computed, and a Gaussian distribution was added to each

part independently. Results obtained with each technique in the

noisy images were compared. In Fig. 2, two frames of the syn-

thetic sequence corresponding to those without noise and with

SNR = 34 dB are represented.

2.3.2. Experiments with real data

The algorithms presented in Sections 2.1 and 2.2 were also

tested with five real magnetic resonance sequences. Tagged MR

images were acquired using an optimized tagging sequence on a

Philips Intera 1.5 T (Philips Medical Systems, The Netherlands) and

with a five-element phased-array coil dedicated to cardiac imag-

ing [31]. The tagging sequence used was an enhanced version of

the free breathing SPAMM sequence provided by the manufac-

turer of our Philips Intera scanner [45]. The proposed sequence

makes use of Cartesian k-space filling, turbo gradient echo (GE)

pulses and both ECG and respiration gating. The main parame-

ters of the sequence are: matrix = 192 × 192 (phase × frequency),

4 NSA, rectangular FOV = 100%, acquisition percentage = 100%,

TE = 1.9 ms, TR = shortest (5.5 ms for a heart rate of 80 bpm), flip

angle = 13◦, turbo factor = 8, slice thickness = 8 mm, orthogonal grid

line spacing = 8 mm, respiratory synchronization = gating, acquisi-

tion time = 1′12′′, 13 phases for 80 bpm. With these parameters, the

contrast between the marks and the tissue are enhanced and main-

tained until the last image of the dynamic series [45]. Five healthy

volunteers were examined, and short axis images with a frame rate

of 13 frames per cycle were acquired. Images were cropped to select

the myocardial region of interest. Analyzed image sizes ranged from

53 × 53 to 165 × 165.

Again, according to the standardized myocardial division of seg-

ments [50], the myocardium was divided into six regions, and four

points of each region were manually tracked. Overall, 24 points

were selected along each sequence. The points were selected at

frame 0, which is the beginning of the systolic phase. Thus, at frame

0 the tracked points of all methods were identical but differed

with increasing frame number. The experiments were performed

using the variational method, the enhanced variational method

and the reference method HARP. The results obtained with each

method were compared with the displacements obtained from the

points tracked manually. The error for the three implementations

was computed as the average root mean square error for each

segment.
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Fig. 2. (a) First image of the synthetic sequence without noise. (b) First images of the synthetic sequence with SNR = 34 dB.

The values of the parameters were set experimentally as

described in Section 2.3.1 for the synthetic sequences by assigning

different values within given intervals and choosing the parame-

ters which lead to a better convergence behavior of the main Eq.

(10). As a result, the values of the parameters used in the program

were for the variational method: ˛c = 10−6 and ˛r = 10−7. For the

enhanced variational method, parameter values were ˛c = 10−8,

˛r = 10−7 and ˇ = 10−7. The best performance was obtained using

these parameters, but we also tested the sensitivity of the results

(difference in the average RMS error) performing the process using

the same parameters used for the synthetic sequences. The motion

field was initialized in the same way as explained for synthetic

sequences.

To test if there is a statistically significant difference between

the variational and the enhanced variational methods, a paired t-

test was performed on the results obtained. Dependent samples

(or “paired”) t-tests consist of a sample of matched pairs of similar

units, or one group of units that has been tested twice (a “repeated

measures” t-test). In our case, these are the tests performed with

the variational method and enhanced variational method.

3. Results

3.1. Results with simulated data

In Fig. 3, a comparison among the manually tracked points (tri-

angles in blue color), the HARP method (circles in magenta color)

and the enhanced variational method (diamonds in green color)

is shown for one of the sequences. Three significant frames of the

sequence are represented. In order to show the figures with more

clarity, only one point per region has been shown. Note that blue

triangles are barely distinguishable from the green diamonds due

to the accuracy of the motion tracking.

From Fig. 3, it can be inferred that the results obtained with the

enhanced variational method are very accurate and close to those

tracked manually. Compared with the HARP method, our results

are more stable and accurate, due to the tag jumping resulting from

some of the points, which is an inherent drawback of this method.

The same simulated experiments were performed adding Gaus-

sian noise with four different variances. The same reference points

of the experiment shown above were used. The improvement

achieved by the enhanced method is shown in Table 1. It shows

the root mean squared error (in pixels) for the 24 points divided by

the number of frames taken during the systolic phase. The improve-

ment achieved can be inferred from these data.

As we can see in Table 1, results obtained by the enhanced vari-

ational method are closer to those obtained manually, and both the

enhanced and original variational methods perform much better

than the original HARP technique. While the RMS error increases

with the noise in the HARP method, the error decreases in the

variational methods. This can be explained because the variational

methods work better with smoother images. These variational

methods can track points even in the presence of some noise due

to the regularization term added.

To test if there is a statistically significant difference between the

variational and the enhanced variational methods, a paired t-test

was performed on these results. The p value obtained for a one-tail

test of significance is 0.0022, which means that the difference is

significant (p < 0.05).

3.2. Results with real data

Fig. 4 shows the optical flow recovered from one of the

sequences on three illustrative frames. Blue triangles are the manu-

ally tracked points, magenta circles are the points obtained with the

HARP method and the green diamonds are the points obtained by

the enhanced variational method (the variational method has not

been represented because the density of points was too high and

the representation became confusing). Note that blue triangles are

barely distinguishable from the green diamonds due to the accu-

racy of the motion tracking. In this picture, tag jumping of the HARP

technique can be clearly observed. In spite of this, the enhanced

variational method resulted in a good correlation with the man-

ually tracked points along the whole sequence. The RMS error (in

pixels) for all points in this sequence is 0.919 for the variational

method, 0.802 for the enhanced variational method and 5.973 for

the HARP technique.

When the parameters that resulted in the best performance for

the synthetic sequences were used a very slight difference was

obtained in the resultant error what actually corresponds to an

averaged RMS error difference of 1.26%, corresponding to 0.0079

pixels.

To test if there is a statistically significant difference between the

variational and the enhanced variational methods, a paired t-test

was also performed on these results. The p value obtained for a one-

tail test of significance is 0.0017, which means that the difference

is significant (p < 0.05).

Fig. 5a shows the average tracking RMS error for the five

sequences tested using the variational method, the enhanced vari-

ational method, and HARP. For only the second sequence, the

HARP method performed better than the variational method. But

in that case, the enhanced variational method performed better

than the others did. In all the other cases, the variational tech-

niques performed much better than the HARP method. In Fig. 5b

we can see the differences between the variational method and

the variational enhanced methods for all the sequences. In all
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Fig. 3. (a) First frame (b) fourth frame and (c) eighth frame of the sequence of the simulated data. Blue triangles are manually tracked points, magenta circles are the points

obtained with the HARP method and the green diamonds are the points obtained by the variational method enhanced (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of the article).

Table 1
Average RMS error for all the frame results obtained for the simulated data with and without noise.

RMS error (pixels) Without noise With noise

SNR = 34 dB SNR = 26 dB SNR = 23 dB SNR = 20 dB

Variational method 0.611 0.595 0.565 0.518 0.448

Enhanced variational method 0.542 0.510 0.468 0.434 0.422

HARP method 4.924 5.373 5.449 5.364 5.610

cases, the enhanced variational method decreased the tracking

error.

3.3. Computational cost

A study of the computational time required to run the imple-

mented programs was conducted. The programs were written in

MATLAB code and run in a PC with a 1.6 GHz Intel Pentium pro-

cessor with 1.23 GB RAM. In Table 2, results for the five sequences

tested are shown.

As can be observed, the size of the sequences has been included

in Table 2, since this factor influences the computational time. Com-

paring the computational time for the variational and enhanced

methods, it can be seen that for the smaller sequences, the required

time in the enhanced variational method is increased by two for

sequence 5 and by two for sequence 1. Nevertheless, for sequences

Fig. 4. (a) First frame (b) third frame and (c) fifth frame of the first real sequence. Blue triangles are manually tracked points, magenta circles are the points obtained with

the HARP method and the green diamonds are the points obtained by the variational method enhanced. (d–f) Optical flow displacement fields for the same frames (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of the article).
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Fig. 5. (a) Comparison of the average tracking RMS error for the five sequences tested when the different methods, variational (asterisk), enhanced variational (diamond),

and HARP (square) are used. (b) Average tracking RMS error for the five sequences tested with the variational (flat color) and enhanced variational (grated) method.

Table 2
Computational time obtained for the five sequences tested.

CASE Computational time (s) Ratio between computational time

Seq Size (pixels) Variational method Enhanced variational method HARP, 24 points Enh Var/Var Enh. Var/HARP

1 123 × 110 × 7 19.518 108.857 52.14 5.518 2.088

2 65 × 63 × 7 13.329 49.982 10.44 3.150 4.187

3 165 × 165 × 7 182.232 223.973 102.287 1.229 2.190

4 126 × 126 × 7 43.623 72.915 64.233 1.621 1.135

5 53 × 53 × 7 5.628 11.356 10.947 2.018 1.037

with higher resolution (sequence 4 and 3), this time is increased by

less than a factor of two. The computational time for including the

control points becomes less relevant when the sequences are big-

ger. Evidently, the computational cost for the enhanced variational

method will increase as long as we initially select more control

points (this time is proportional to the number of control points

selected). Nevertheless, it is important to achieve a reasonable com-

promise between computational cost and results obtained. In our

implementation, we have initially selected one control point per

tag, which appears to be a good result.

Regarding the HARP method, the computational time shown in

Table 2 has been obtained only for the 24 points per sequence (the

points tracked manually), which for the smallest sequence is less

than 0.1% of the total amount of pixels of the image. It can be seen

that in three out of the five sequences tested, the time obtained

for computing only 24 points is higher than the time consumption

of the variational method. That means that, for computing all the

points of the sequence, the computational time will be much higher

and not even comparable with the times obtained with variational

methods. Comparing these results also with registration-based

techniques for motion estimation [31], the computational cost is

comparable to the enhanced variational method described here.

4. Discussion and conclusions

In this paper, a new method for motion estimation for tagged

cardiac magnetic resonance sequences has been presented. The

technique is based on a variational approach that has been

improved by taking into account the particular features of these

types of images. Specifically, the variational method has been

enhanced by tracking some selected points by means of their phase

stability.

The new method has been tested with simulated data (with and

without additive noise) and with real data. It has been compared

with the HARP method and the standard variational method based

on total variation. Results show that the variational method is more

accurate than the HARP technique. Although results with HARP

methods have been proved to be very accurate if the phase is reli-

able [10], in some cases large myocardial motion or image artifacts

may cause points to be tracked to wrong locations (tag jumping)

at a given time frame, causing erroneous tracking in successive

frames as well. This fact has been confirmed by the numerous tests

done in Section 3. On the other hand, comparing the results with

other published works is difficult mainly because different data sets

have been used, and the exact evaluation methodology is not thor-

oughly described or available. Taking into account this limitation,

we can compare our results to those obtained by previously pub-

lished methods [10,14,49,51] in terms of the RMS error reported

in their validation experiments ranging from 0.3 pixels to 1.1 pix-

els. Therefore, the proposed method obtains comparable results in

this sense taking advantage of all the inherent features of tagged

sequences and requiring a low computational cost to compute the

dense displacement field.

The enhanced variational method proposed provides superior

results in most of the cases compared with the conventional vari-

ational method itself. Even if no control points are provided, the

enhanced variational method will perform as well as the variational

method. It has been proven that both methods are very robust to

noise degradations of images, as is the case of the tagged cardiac

magnetic resonance images. Even with a low temporal support

(sometimes we have only six images in the systolic period), the

proposed method is able to compute an accurate optical flow for

each pair of images. The increase in the accuracy achieved with

the enhanced variational method can be relevant in the presence

of noise and for the computation of secondary parameters which

involve spatial derivatives, such as the strain, which are effects that

will be further investigated.

The proposed techniques could be useful in other applications

as well, if some control points with confident motion estimation

can be extracted. The computational cost of this enhancement is

small, whereas the results are improved. In addition, with the vari-

ational method proposed, a dense optical flow is obtained for each

sequence with a very small computational cost.

The major drawback of this method, and in general of all

differential methods, comes with sequences with low temporal

resolution, where the result of the temporal derivatives may not
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be reliable. The temporal resolution could be decreased depend-

ing on the speed of the objects in the sequence. In the case of

myocardial motion analysis from tagged cardiac magnetic reso-

nance sequences systolic motion has been assessed accurately with

the typically acquired temporal resolution. However, further inves-

tigation is guaranteed in whether these methods could be applied

to early diastole assessment and the required temporal resolu-

tion required in that case. On the other hand, the selection of the

parameters is not a trivial task. Further research will be focused

on improving the method for parameter selection, with the aim

of achieving the smallest possible motion estimation error. As it is

known, one of the most prominent limitations of variational tech-

niques is their dependence on the selection of parameters. In our

experiments we noted a very slight difference in the results when

the adjusted parameters for the synthetic sequences were used for

the real data, however further analysis of this fact could be inter-

esting regarding different MR scanners or acquisition protocols. On

the other hand, it is important to note the advantages of variational

techniques, such as their robustness to noise and the better tracking

of point of interest.
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