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1. Introduction

The locally conservative enriched Galerkin (EG) method considered in
this paper adds a piecewise-constant P0 component to a continuous piecewise-
linear (P1) or multilinear (Q1) finite element discretization of the linear ad-
vection equation. The P1 ⊕ P0 version of this method was introduced by
Becker et al. [7] who proved that it is stable and converges at the same rate
as the P1 discontinuous Galerkin (DG-P1) method. At the same time, the EG
approach requires less degrees of freedom in the multidimensional case. The
P0 enrichment of the P1 continuous Galerkin (CG-P1) approximation renders
it intrinsically stable and provides the local conservation property. These
important advantages of the EG approach were recognized by Sun and Liu
[37] who extended it to mathematical models of coupled flow and transport
processes in porous media. An efficient EG method for general elliptic and
parabolic problems was designed and analyzed by Lee et al. [30]. The possi-
bility of enriching the CG-P1 or CG-Q1 space with discontinuous quadratic
edge bubbles was explored in [6, 8, 10]. The resulting approximations are
continuous at the vertices of the mesh and discontinuous across the edges.
They are as stable and accurate as DG-P2 but not locally conservative.

To enforce the validity of discrete maximum principles, numerical meth-
ods for conservation laws are commonly equipped with flux or slope limiters.
Recent years have witnessed significant advances in the analysis and design
of algebraic flux correction (AFC) tools for nonlinear high-resolution finite
element schemes [3, 5, 12, 25, 32]. However, no bound-preserving limiters
are currently available for locally conservative enriched Galerkin approxima-
tions, which restricts their practical applicability to problems with smooth
solutions. In the present paper, we constrain the EG discretization of the
linear advection equation in a way which guarantees preservation of local
bounds for the cell averages and for the nodal values of the CG component.
The evolution of cell averages is governed by a discrete conservation law
which we equip with a flux limiter. The subproblem for the CG degrees of
freedom is equipped with a limiter for antidiffusive element contributions.

This paper is organized as follows. In Section 2, we present the uncon-
strained EG scheme for our linear advection model. Semi-discrete subprob-
lems are formulated for the cell averages and CG unknowns. The inversion
of the consistent mass matrix is avoided using an inexpensive reconstruction
of nodal time derivatives from cell averages. In Section 3, we perform first-
order upwinding to identify the numerical fluxes and element contributions
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that require limiting. In Section 4, we present a predictor-corrector limiting
strategy based on the flux-corrected transport (FCT) algorithms proposed
in [9, 34]. In Section 5, we derive a monolithic version of the nonlinear EG
approximation building on the convex limiting framework developed in [27].
Limiters for L2 projections into CG and DG spaces are presented in Section 6.
In Section 7, we perform numerical studies for stationary and time-dependent
advection problems. Preliminary conclusions are drawn in Section 8.

2. Enriched Galerkin method

Let u(x, t) be a scalar conserved quantity advected by a given solenoidal
velocity field v(x) in a bounded domain Ω ⊂ Rd, d ∈ {2, 3} with Lipschitz
boundary Γ = ∂Ω. Consider the initial-boundary value problem

∂u

∂t
+∇ · (vu) = 0 in Ω× R+, (1a)

u(·, 0) = u0 in Ω, (1b)

(u− uin)v · n = 0 on Γ−, (1c)

where u0 is the initial data, uin is the boundary data, n is the unit outward
normal, and Γ− = {x ∈ Γ : v(x) · n(x) < 0} is the inflow boundary.

We discretize the linear advection equation (1a) in space using a conform-
ing mesh Th, the vertices and elements of which are denoted by x1, . . . ,xNh

and K1, . . . , KEh , respectively. The volume of an element Ke is denoted
by |Ke|. The numbers of vertices belonging to Ke are stored in the integer
set N e. The numbers of elements containing a vertex xi are stored in the
set Ei. The numbers of vertices belonging to these elements are stored in
Ni =

⋃
e∈Ei N

e. The boundary ∂Ke of each element is defined as a union
of Se components ∂Ke

s on which the outward unit normal ne is constant.
The integer set containing the numbers of elements sharing such a boundary
component (an edge in 2D or face in 3D) with Ke is referred to as Ee. The
notation ∂Ke

− = {x ∈ ∂Ke : v(x) · ne(x) < 0} and ∂Ke
+ = ∂Ke\∂Ke

− is

used in surface integrals over the boundary ∂Ke =
⋃Se

s=1 ∂K
e
s .

The finite element space of the locally conservative enriched Galerkin
method [7, 30, 37] is given by V c

h ⊕ V d
h , where V c

h is the CG-P1 or CG-Q1

space spanned by the Lagrange basis functions ϕ1, . . . , ϕNh
and V d

h is the
DG-P0 space spanned by the characteristic functions χ1, . . . , χEh

of mesh el-
ements. That is, any uh ∈ Vh admits a decomposition into a CG component
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uch =
∑Nh

j=1 u
c
jϕj ∈ V c

h and a DG component udh =
∑Eh

e=1 u
d
eχe ∈ V d

h . Integra-
tion by parts in the weak form of (1a) yields the semi-discrete problem

Eh∑
e=1

∫
Ke

wh
∂uh
∂t

dx =

Eh∑
e=1

∫
Ke

∇wh · (vuh)dx

−
Eh∑
e=1

∫
∂Ke

whûhv · neds ∀wh ∈ Vh, (2)

where ûh is the upwind-sided limit of uh = uch + udh, i.e.,

ûh(x) =


uch(x) + ude if x ∈ ∂Ke

+,

uch(x) + ude′ if x ∈ ∂Ke
− ∩ ∂Ke′ ,

uin if x ∈ ∂Ke
− ∩ Γ.

(3)

Using the DG-P0 test functions wd
h ∈ {χ1, . . . , χEh

}, we find that the cell
averages ūe = 1

|Ke|

∫
Ke uhdx of the EG approximation uh must satisfy

|Ke|dūe
dt

=

∫
Ke

∂uh
∂t

dx = −
∫
∂Ke

ûhv · neds, e = 1, . . . , Eh. (4)

The set of equations associated with wc
h ∈ {ϕ1, . . . , ϕNh

} is given by∑
e∈Ei

∫
Ke

ϕi
∂uh
∂t

dx =
∑
e∈Ei

∫
Ke

∇ϕi · (vuh)dx

−
∑
e∈Ei

∫
∂Ke

ϕiûhv · neds, i = 1, . . . , Nh. (5)

In view of the fact that
∑Nh

i=1 ϕi ≡ 1, the sum of (4) over e coincides with the
sum of (5) over i. Indeed, the system of semi-discrete equations (4) and (5)
is underdetermined because a globally constant function can be represented
exactly in the spaces V c

h and V d
h alike. As noticed by Becker et al. [7], this

non-uniqueness and the associated singularity of the global mass matrix can
be avoided, e.g., by choosing the discontinuous field udh to be massless.

To obtain a well-posed semi-discrete problem, we define the degree of
freedom ude as the difference between the cell averages of uh and uch, i.e.,

ude =
1

|Ke|

∫
Ke

(uh − uch)dx = ūe − ūce ∀e = 1, . . . , Eh. (6)
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The corresponding EG formulation can be interpreted as a variational mul-
tiscale (VMS) method [18, 19] in which ūe is the coarse-scale component of
uh|Ke , while ūce = 1

|Ke|

∫
Ke u

c
hdx is the coarse-scale component of ūe.

In this work, we evolve the cell averages ūe while treating ude = ūe − ūce
as derived quantities because the local conservation laws (4) and the discrete
maximum principles to be enforced below are formulated in terms of ūe. The
semi-discrete problem consisting of systems (4) and (5) can be written as[

M̄ 0
0 ML

]
d

dt

[
ū
uc

]
=

[
ḡH(ū, uc)

gH(ū, uc) + ġH
(

dū
dt
, duc

dt

) ] , (7)

where ū = (ūe)
Eh
e=1 is the vector of cell averages, uc = (ucj)

Nh
j=1 is the vector

of CG degrees of freedom, M̄ = diag(|Ke|)Eh
e=1 is the diagonal mass matrix

of the space V d
h , and ML = diag(mi)

Nh
i=1 is the lumped mass matrix of the

space V c
h . Let me

ij denote the contribution of element Ke to the entry mij of

the consistent mass matrix MC = (mij)
Nh
i,j=1. The entries of MC and ML are

assembled from such element contributions as follows:

mij =
∑

e∈Ei∩Ej

me
ij, me

ij =

∫
Ke

ϕiϕjdx, (8)

mi =
∑
e∈Ei

me
i , me

i =
∑
j∈N e

me
ij =

∫
Ke

ϕidx. (9)

If Ke is a simplex, parallelogram or paralellepiped, then me
i = |Ke|

|N e| , where

|N e| denotes the cardinality of N e, i.e., the number of vertices of Ke.
The use of mass lumping on the left-hand side of (7) does not introduce

any error if it is compensated by the term ġH
(

dū
dt
, duc

dt

)
on the right-hand

side. Since the matrices M̄ and ML are diagonal, the lagged treatment of ġH

is particularly advantageous in the context of explicit schemes for numerical
solution of (7). Invoking (4) and (5), we find that right-hand side vectors
ḡH ∈ REh , gH ∈ RNh , and ġH ∈ RNh of system (7) are defined by

ḡHe = −
∫
∂Ke

ûhv · neds, (10)

gHi =
∑
e∈Ei

∫
Ke

∇ϕi · (vuh)dx−
∑
e∈Ei

∫
∂Ke

ϕiûhv · neds, (11)

5



ġHi =
∑
e∈Ei

∫
Ke

ϕi

[(
duci
dt
− duch

dt

)
−
(

dūe
dt
− dūce

dt

)]
dx. (12)

The superscript H refers to a ‘high-order’ target. The superscript L is re-
served for the ‘low-order’ approximations to be presented below.

Since
∑Eh

e=1 ḡ
H
e =

∑Nh

i=1 g
H
i and the components of ġH sum to zero, the

total masses of uh and uch change at the same rate. We have

d

dt

Eh∑
e=1

∫
Ke

uhdx =

Eh∑
e=1

|Ke|dūe
dt

=

Nh∑
i=1

mi
duci
dt

=
d

dt

Eh∑
e=1

∫
Ke

uchdx. (13)

It follows that
∑Eh

e=1

∫
Ke u

d
h(x, t)dx = 0 for all t > 0 if

∑Eh

e=1

∫
Ke u

d
h(x, 0)dx = 0.

That is, an initially massless discontinuous field udh remains massless.
To transform (7) into a system of ordinary differential equations (ODEs),

the right-hand side of which does not contain time derivatives, we replace
ġH with (ML − MC)u̇H , where u̇H is a vector of discrete time derivatives
expressed in terms of ū and ūc. This representation makes it possible to
avoid the need for inverting consistent mass matrices and decompose

g̃H(ū, uc) = gH(ū, uc) + (ML −MC)u̇H (14)

into element contributions suitable for algebraic flux correction (see below).
The semi-discrete problem for the continuous component uch becomes

ML
duc

dt
= g̃H(ū, uc). (15)

It is easy to verify that (15) is equivalent to (5) if u̇Hh ∈ V c
h satisfies∫

Ke

ϕi(u̇
H
i − u̇Hh )dx = ġHi ∀i = 1, . . . , Nh ∀e ∈ Ei. (16)

The matrix form of this system is given by (ML − MC)u̇H = ġH , where
ML −MC is a discrete diffusion (alias graph Laplacian) operator. The exact
solution u̇H of this linear system exists and is defined up to a constant for
any right-hand side ġH satisfying the zero sum condition

∑Nh

i=1 ġ
H
i = 0.

Clearly, it would be highly impractical to solve Poisson-like problems for
u̇H in numerical methods for system (15). The involved computational effort
would not pay off because u̇Hh ≈ u̇h ≈ u̇ch for the EG method in which u̇dh
represents a small correction of u̇ch. In pseudo-time stepping methods for
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steady state problems, we use the lumped-mass approximation u̇H ≈ 0. As
we show in Section 7, it also produces remarkably accurate results for time-
dependent advection problems discretized using the EG method. As another
inexpensive approximation, we consider the lumped-mass L2 projection

u̇i =
1

mi

∑
e∈Ei

me
i

dūe
dt

=
1

mi

∑
e∈Ei

me
i

|Ke|
ḡe(ū, u

c) (17)

of dūe

dt
= 1
|Ke| ḡe(ū, u

c) into the space V c
h . Taking advantage of the fact that

the time derivatives of udh are small compared to those of uch and uh, we

reconstruct u̇i ≈ duc
i

dt
from dūe

dt
in this way. Note that u̇i = 0 if dūe

dt
= 0 ∀e ∈ Ei.

If the cell average ūe is evolved using (4), then ḡe = ḡHe , as defined by (10),
should be used to calculate the approximate time derivative u̇i ≈ u̇Hi .

3. Algebraic splitting

A numerical scheme for a time-dependent conservation law is called local
extremum diminishing (LED) [20, 25] if the solution values or cell averages
stay bounded by the local maxima and minima at the previous time level
or Runge-Kutta stage. The LED property of the space discretization im-
plies positivity preservation and the validity of generalized discrete maximum
principles at steady state [32]. For example, the first-order upwind DG-P0

discretization of the linear advection equation is provably LED. The P0 en-
richment of a CG-P1 or CG-Q1 discretizations has a positive impact on the
rates of convergence to smooth solutions but may be insufficient to prevent
spurious undershoots and overshoots in the neighborhood of steep gradients.
This unsatisfactory behavior of EG solutions can be cured using the alge-
braic flux correction (AFC) methodology [3, 5, 25, 32], a general framework
for constraining a high-order discretization to be LED. As a first step toward
that end, we need to write our EG scheme in the equivalent form

M̄
dū

dt
= ḡL(ū) + f̄(uc), (18)

ML
duc

dt
= gL(uc) + f(ū, uc), (19)

where ḡL(ū) and gL(uc) correspond to low-order LED approximations. We
construct an algebraic splitting of this kind in this section. In Sections 4
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and 5, we present algorithms for constraining f̄(uc) = ḡH(ū, uc)− ḡL(ū) and
f(ū, uc) = g̃H(ū, uc)− gL(uc) to preserve LED property.

A low-order LED counterpart of the integral conservation law (4) can be
defined as the DG-P0 upwind approximation in which ûh is replaced with
the upwind-sided cell average. Substituting (3) into (4) and recalling that
ude = ūe − ūce, we obtain the corresponding algebraic splitting

|Ke|dūe
dt

= −
Se∑
s=1

∫
∂Ke

s

ˆ̄uev · neds +
Se∑
s=1

∫
∂Ke

s

(ˆ̄uce − ûch)v · neds, (20)

where

ˆ̄ue =


ūe on ∂Ke

+,

ūe′ on ∂Ke
− ∩ ∂Ke′ ,

uin on ∂Ke ∩ Γ−,

ˆ̄uce =


ūce on ∂Ke

+,

ūce′ on ∂Ke
− ∩ ∂Ke′ ,

uin on ∂Ke ∩ Γ−,

ûch =

{
uch on ∂Ke\Γ−,
uin on ∂Ke ∩ Γ−.

The right-hand side of the e-th equation in system (18) is defined by

ḡLe =
Se∑
s=1

ḡse, ḡse = −
∫
∂Ke

s

ˆ̄uev · neds, (21)

f̄e =
Se∑
s=1

f̄ s
e , f̄ s

e =

∫
∂Ke

s

(ˆ̄uce − ûch)v · neds. (22)

In this splitting, the flux ḡse is a first-order upwind approximation to the rate
of inflow across the boundary component ∂Ke

s , while f̄ s
e is an antidiffusive

flux depending on the upwind-sided fluctuation ˆ̄uce − ûch of uch.
If ūe is advanced in time using an explicit strong stability preserving (SSP)

Runge-Kutta method [11], then each stage has the structure of a forward
Euler step. The LED property of the fully discrete first-order upwind scheme

ūLe = ūe +
∆t

|Ke|
ḡLe (ū), e ∈ {1, . . . , Eh}, (23)

where ∆t is a positive time step, is guaranteed by the following Theorem.
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Theorem 1 (LED property of the DG-P0 upwind scheme). If the time
step ∆t satisfies the CFL-like condition

∆t

∫
∂Ke

|v · ne|ds ≤ |Ke|, (24)

then the local discrete maximum principle

min
∂Ke

ˆ̄ue =: ūmin
e ≤ ūLe ≤ ūmax

e := max
∂Ke

ˆ̄ue (25)

holds for the first-order upwind approximation ūLe defined by (23).

Proof. Following Guermond and Popov [15], we show that ūLe is a convex
combination of ūe and some intermediate states ūse ∈ [ūmin

e , ūmax
e ]. Let us first

suppose that ∂Ke ∩ Γ = ∅. Define the coefficients

kse = −1

2

∫
∂Ke

s

v · neds, dse =
1

2

∫
∂Ke

s

|v · ne|ds. (26)

Since ∇ · v = 0, we have ūe
∫
∂Ke v · neds = 0 and, therefore,

ḡLe (ū) = −
∫
∂Ke

ˆ̄uev · neds =

∫
∂Ke
−

(ˆ̄ue − ūe)|v · ne|ds

=
Se∑
s=1

(kse + dse)(ūe′ − ūe) =
Se∑
s=1

2dse(ū
s
e − ūe), (27)

where e′ ∈ Ee is the number of Ke′ such that ∂Ke
s = ∂Ke ∩ ∂Ke′ and

ūse =

{
ūe′+ūe

2
+ kse

dse

ūe′−ūe

2
if dse > 0,

ūe if dse = 0.
(28)

Note that we have ūse ∈ [ūmin
e , ūmax

e ] by definition of kse and dse. In the case
∂Ke ∩ Γ 6= ∅, we represent the boundary integral

ḡLe (ū) =−
∫
∂Ke

ˆ̄uev · neds =

∫
∂Ke∩Γ−

(uin − ūe)|v · ne|ds

+

∫
∂Ke
−\Γ

(ˆ̄ue − ūe)|v · ne|ds =
Se∑
s=1

2dse(ū
s
e − ūe) (29)
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in terms of the generalized intermediate states

ūse =


ūe′+ūe

2
+ kse

dse

ūe′−ūe

2
if ∂Ke

s = ∂Ke ∩ ∂Ke′ ∧ dse > 0,

ūe + 1
2dse

∫
∂Ke

s∩Γ−
(uin − ūe)|v · ne|ds if ∂Ke

s ⊂ Γ ∧ dse > 0,

ūe otherwise

(30)
which are also in the range [ūmin

e , ūmax
e ] by definition of dse. Substituting

ḡLe (ū) =
∑Se

s=1 2dse(ū
s
e − ūe) into (23), we find that (cf. [12, 14, 15])

ūLe = ūe +
∆t

|Ke|

Se∑
s=1

2dse(ū
s
e − ūe) =

(
1− ∆t

|Ke|

∫
∂Ke

|v · ne|ds

)
ūe

+
∆t

|Ke|

(
Se∑
s=1

ūse

∫
∂Ke

s

|v · ne|ds

)
. (31)

The assertion of the theorem follows from the fact that the result is a convex
combination of ūe and ūse for time steps ∆t satisfying (24). �

Remark 1. If ∂Ke
s = ∂Ke ∩ ∂Ke′ = ∂Ke′

s′ is an internal edge/face, then

kse = −ks′e′ , dse = ds
′

e′ , ūse = ūs
′

e′ .

The first-order upwind fluxes ḡee′ = ḡse and ḡe′e = ḡs
′

e′ are given by

ḡee′ = (kse + dse)(ūe′ − ūe), ḡe′e = −ḡee′ .

Remark 2. In the one-dimensional case, the time step restriction imposed
by condition (24) underestimates the optimal CFL bound by a factor of 2.
However, the simple convexity-based approach to proving the LED property
is well suited for the design of high-order extensions (see Section 5).

Let us now represent the CG subproblem in the form (19). Integrating∫
Ke ∇ϕi · (vuch)dx by parts and exploiting continuity of ϕi, which implies∫

∂Ke∩∂Ke′
ϕiûhv · neds +

∫
∂Ke∩∂Ke′

ϕiûhv · ne′ds = 0 ∀e′ ∈ Ee
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for the uniquely defined upwind limit ûh = uch + ûdh = uch + ˆ̄ue − ˆ̄uce, the i-th
component of g̃H(ū, uc) that we defined in (15) can be written as

g̃Hi (ū, uc) =
∑
e∈Ei

∫
∂Ke∩Γ−

ϕi(uin − uch)|v · ne|ds

−
∑
e∈Ei

∫
Ke

ϕi∇ · (vuch)dx +
∑
e∈Ei

∫
Ke

ϕi(u̇
H
i − u̇Hh )dx (32)

+
∑
e∈Ei

(ūe − ūce)

(∫
Ke

v · ∇ϕidx−
∫
∂Ke

+∩Γ

ϕiv · neds

)
,

where u̇Hh =
∑Nh

j=1 u̇
H
j ϕj stands for the V c

h interpolant of the nodal time

derivatives u̇Hi reconstructed from ḡHe (ū, uc), e ∈ Ei.
The low-order LED approximation gL(uc) to g̃H(ū, uc) can be extracted

using the element matrix version [26, 34] of the discrete upwinding method
[29] which is commonly employed in algebraic flux correction schemes for
finite elements [3, 16, 25, 32]. Introducing the coefficients

keij = −
∫
Ke

ϕiv · ∇ϕjdx =

∫
Ke

∇ϕi · vϕjdx−
∫
∂Ke

ϕiϕjv · nedx

= −keji −
∫
∂Ke

ϕiϕjv · nedx (33)

of the element matrix associated with the discretized advective term∫
Ke

ϕi∇ · (vuch)dx =

∫
Ke

ϕiv · ∇uchdx = −
∑
j∈N e

keiju
c
j (34)

and using them to calculate the artificial diffusion coefficients (cf. [16, 34])

deij =


max{−keij, 0,−keji} if j ∈ N e\{i}, i ∈ N e,

−
∑

k∈N e\{i} d
e
ik if j = i ∈ N e,

0 otherwise

(35)

such that keij + deij ≥ 0 for all i ∈ N e and j ∈ N e\{i}, we define

gLi (uc) =
∑
e∈Ei

ge,Li , fi(ū, u
c) =

∑
e∈Ei

f e
i (36)
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in terms of the element contributions

ge,Li =

∫
∂Ke∩Γ−

ϕi(uin − uci)|v · ne|ds +
∑

j∈N e\{i}

(keij + deij)(u
c
j − uci) (37)

f e
i =

∫
∂Ke∩Γ−

ϕi(u
c
i − uch)|v · ne|ds−

∑
j∈N e\{i}

[me
ij(u̇

H
j − u̇Hi ) + deij(u

c
j − uci)]

+ (ūe − ūce)

(∫
Ke

v · ∇ϕidx−
∫
∂Ke

+∩Γ

ϕiv · neds

)
. (38)

In algebraic flux correction schemes for CG methods [26, 34], the antidiffusive
element contributions f e

i require additional high-order stabilization to avoid
ripples within the range of values satisfying discrete maximum principles
[26, 27, 34]. The last term on the right-hand side of (38) represents the
contribution of the discontinuous EG component ude = ūe − ūce. It provides
the desired stabilization effect without introducing free parameters, which
makes EG a better limiting target than artificially stabilized CG methods.

The forward Euler update corresponding to a single stage of an SSP
Runge-Kutta method for the low-order CG subproblem is defined by

uc,Li = uci +
∆t

mi

gLi (uc), i ∈ {1, . . . , Nh}. (39)

The so-defined approximation proves LED w.r.t. the nodal stencil Ni.

Theorem 2 (LED property of the low-order CG scheme [12, 15]). If

∆t
∑
e∈Ei

∫
∂Ke∩Γ−

ϕi|v · ne|ds +
∑

j∈N e\{i}

2deij

 ≤ mi, (40)

then uc,Li defined by (39) satisfies the local discrete maximum principle

umin
i ≤ uc,Li ≤ umax

i , (41)

umax
i = max

{
max

∂Ωi∩Γ−
uin,max

j∈Ni

ucj

}
, (42)

umin
i = min

{
min

∂Ωi∩Γ−
uin,min

j∈Ni

ucj

}
, (43)

where ∂Ωi is the boundary of the element patch Ωi =
⋃

e∈Ei K
e.

12



Proof. The proof is similar to that of Theorem 1. We have

gLi (uc) =
∑
e∈Ei

∫
∂Ke∩Γ−

ϕi(uin − uci)|v · ne|ds +
∑

j∈N e\{i}

2deij(ū
e
ij − uci)


=
∑
e∈Ei

∑
j∈N e

2d̄eij(ū
e
ij − uci), (44)

where d̄eij = deij for j 6= i and d̄eii = 1
2

∫
∂Ke∩Γ−

ϕi|v · ne|ds. The intermediate
states ūeij associated with these coefficients are defined by

ūeij =


ucj + uci

2
+
keij
deij

ucj − uci
2

if j 6= i ∧ deij > 0,

uci +
1

2d̄eii

∫
∂Ke∩Γ−

ϕi(uin − uci)|v · ne|ds if j = i ∧ d̄eii > 0,

uci otherwise.

(45)

The assertion of the theorem follows from the fact that uc,Li is a convex
combination of states belonging to the interval [umin

i , umax
i ]. �

Remark 3. In view of (33), the ‘edge bar states’ ūeij and ūeji corresponding
to a pair of nodes i ∈ N e and j ∈ N e\{i} with deij > 0 are related by

ūeij =
ucj + uci

2
+
keji
deij

uci − ucj
2

+
uci − ucj

2deij

∫
∂Ke

ϕiϕjv · nedx

= ūeji +
uci − ucj

2deij

∫
∂Ke

ϕiϕjv · nedx

= ūeji −
keij + keji

2deij
(uci − ucj).

Remark 4. Preservation of local bounds for implicit time discretizations
of semi-discrete LED schemes and the validity of generalized discrete maxi-
mum principles at steady state can be shown using more sophisticated proof
techniques. For details, we refer the interested reader to [5, 32].

Remark 5. The provable order of accuracy of the DG-P0 upwind scheme
and of its low-order CG counterpart is 1

2
under suitable smoothness assump-

tions [17, 32]. For linear advection with constant velocity on a uniform

13



1D mesh, both schemes produce the first-order upwind finite difference ap-
proximation. That is why they are frequently called ‘first-order’ schemes in
the literature. Stable ‘second-order’ P1 finite element discretizations of the
pure advection equation converge to smooth exact solutions at the rate 3

2
on

general meshes [17, 39]. The EG-P1 method delivers this optimal order of
accuracy [7] without the need for parameter-dependent stabilization.

Decompositions (22) and (36) make it possible to blend ‘first-order’ and
‘second-order’ approximations in a conservative manner. Importantly, the
zero sum condition fee′ + fe′e = 0 holds for each pair of fluxes fee′ = f̄ s

e and
fe′e = f s′

e′ , where e′ ∈ Ee is the number of an element Ke′ such that ∂Ke
s =

∂Ke∩∂Ke′ = ∂Ke′

s′ . Similarly, our definition (38) of the element contributions
f e
i has the property that

∑
i∈N e f e

i = 0 if ∂Ke∩Γ = ∅. Multiplying flux pairs

{f s
e , f

s′

e′ } and components of f e = (f e
i )i∈N e by adaptively chosen correction

factors ᾱs = ᾱs′ and αe
i , respectively, their contribution to the residual of the

semi-discrete scheme can be constrained to be LED. In the next two sections,
we define ᾱs and αe

i for two kinds of bound-preserving EG schemes.

4. Flux-corrected transport

The presence of the additional terms f̄(uc) and f(ū, uc) on the right-
hand sides of the EG subpoblems (18) and (19) may lead to a loss of the
LED property that we proved in Theorems 1 and 2. To prevent violations
of local discrete maximum principles in our EG schemes, we will adjust the
magnitudes of the raw antidiffusive fluxes f̄ s

e and element contributions f e
i .

An algorithm for calculating the corresponding correction factors ᾱs ∈ [0, 1]
and αe

i ∈ [0, 1] is called limiter. It should preserve the discrete conserva-
tion properties, provably enforce preservation of local bounds, and leave the
‘second-order’ target discretization unchanged in smooth regions. The al-
gebraic flux correction (AFC) methodology [3, 25, 32] provides a general
framework for the design and analysis of such limiters.

The oldest representative of AFC schemes for finite elements is the flux-
corrected transport (FCT) algorithm [29, 36, 38]. FCT adds limited antidiffu-
sive corrections to the degrees of freedom calculated using a bound-preserving
low-order scheme. Adopting this predictor-corrector strategy, the low-order

14



approximations (23) and (39) can be improved as follows:

ūFCT
e = ūLe +

∆t

|Ke|

Se∑
s=1

ᾱsf̄ s
e , e ∈ {1, . . . , Eh}, (46)

uc,FCT
i = uc,Li +

∆t

mi

∑
e∈Ei

αe
if

e
i , i ∈ {1, . . . , Nh}. (47)

Of course, the accuracy of the so-defined EG-FCT scheme depends on the
choice of the limiting parameters ᾱs and αe

i . Varying them between 0 and 1,
the antidiffusive correction terms can be adjusted to keep the values of ūFCT

e

and uc,FCT
i in the range determined by the extended local bounds

ūmax,FCT
e = max

i∈N e
max

{
max
e′∈Ei

ūe′ , u
c
i ,max

e′∈Ei
ūLe′

}
≥ ūLe , (48)

ūmin,FCT
e = min

i∈N e
min

{
min
e′∈Ei

ūe′ , u
c
i ,min

e′∈Ei
ūLe′

}
≤ ūLe , (49)

umax,FCT
i = max

{
max
j∈Ni

ucj,max
e∈Ei

ūe,max
j∈Ni

uc,Lj

}
≥ uc,Li , (50)

umin,FCT
i = min

{
min
j∈Ni

ucj, ,min
e∈Ei

ūe,min
j∈Ni

uc,Lj

}
≤ uc,Li . (51)

Since the values of ūLe and uc,Li are in this range, the FCT constraints

ūmin,FCT
e ≤ ūFCT

e ≤ ūmax,FCT
e , (52)

umin,FCT
i ≤ uc,FCT

i ≤ umax,FCT
i (53)

can always be enforced by tuning ᾱs and αe
i in an appropriate manner.

Zalesak’s multidimensional FCT algorithm [38] yields the following defi-
nition of the correction factors ᾱs for step (46) of our AFC scheme:

ᾱs = min
1≤s≤Se



min{R+
e , R

−
e′} if ∂Ke

s = ∂Ke ∩ ∂Ke′ ∧ f̄ s
e > 0,

min{R−e , R+
e′} if ∂Ke

s = ∂Ke ∩ ∂Ke′ ∧ f̄ s
e < 0,

R+
e if ∂Ke

s ⊂ Γ ∧ f̄ s
e > 0,

R−e if ∂Ke
s ⊂ Γ ∧ f̄ s

e < 0,

1 otherwise,

(54)
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where the element-based correction factors R±e are defined by

R+
e = min

{
1,
|Ke|
∆t

(ūmax,FCT
e − ūLe )∑Se

s=1 max{0, f̄ s
e}

}
, (55)

R−e = min

{
1,
|Ke|
∆t

(ūmin,FCT
e − ūLe )∑Se

s=1 min{0, f̄ s
e}

}
. (56)

Importantly, the same correction factor ᾱs = ᾱs′ is used for fluxes f̄ee′ = f̄ s
e

and f̄e′e = f̄ s′

e′ = −f̄ee′ associated with ∂Ke
s = ∂Ke ∩ ∂Ke′ = ∂Ke′

s′ . Hence,
the FCT correction step (46) preserves the local conservation property.

In contrast to edge-based approaches (cf. [12, 25, 27, 32]), element-based
FCT limiters [1, 9, 29, 34, 36] are readily applicable to the antidiffusive
element contributions defined by (38). Following [1, 34], we will choose the
correction factors αe

i so as to satisfy the localized inequality constraints

f e,min
i ≤ αe

if
e
i ≤ f e,max

i ∀e ∈ Ei, (57)

where

f e,max
i =

me
i

∆t
(umax,FCT

i − uc,Li ), f e,min
i =

me
i

∆t
(umin,FCT

i − uc,Li ). (58)

As we show below, conditions (57) guarantee the validity of the FCT con-
straints (53) for the nodal value uc,FCT

i of the CG component.
The corresponding range of admissible correction factors αe

i is given by

0 ≤ αe
i ≤ Re

i =


min

{
1,

fe,max
i

fe
i

}
if f e

i > 0,

min
{

1,
fe,min
i

fe
i

}
if f e

i < 0,

1 otherwise.

(59)

Recall that the raw antidiffusive element contributions f e
i satisfy the zero

sum condition
∑

i∈N e f e
i = 0 for ∂Ke ∩ Γ = ∅. For the CG component to re-

main globally conservative, the choice of the nodal correction factors αe
i must

guarantee that
∑

i∈N e αe
if

e
i = 0 for ∂Ke ∩Γ = ∅. This requirement is clearly

satisfied if the same element-based correction factor αe = minj∈N e Re
j is used

for all i ∈ N e. However, this straightforward definition does not guarantee
continuous dependence of αef e

i on the data because small variations of one
component may cause large changes of other components.
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The CG-FCT schemes proposed in [1, 34] adjust the values of f̃ e
j = Re

jf
e
j

in a manner which guarantees the validity of the zero sum condition for
f e,∗
j = αe

jf
e
j . Adopting this limiting strategy, we calculate the sums

f̃ e,+ =
∑
j∈N e

max{0, f̃ e
j }, f̃ e,− =

∑
j∈N e

min{0, f̃ e
j } (60)

and balance them using the nodal correction factors defined by [1, 16, 34]

αe
i =


min

{
1,− f̃e,−

f̃e,+

}
Re

i if f̃ e
i > 0 ∧ ∂Ke ∩ Γ = ∅,

min
{

1,− f̃e,+

f̃e,−

}
Re

i if f̃ e
i < 0 ∧ ∂Ke ∩ Γ = ∅,

Re
i otherwise.

(61)

In practice, we bypass the computation of Re
i . Given f e,max

i and f e,min
i ,

we calculate the tentative bound-preserving element contributions

f̃ e
i = Re

if
e
i = min{f e,max

i ,max{f e
i , f

e,min
i }} (62)

and the sums f̃ e,± defined by (60). The mass correction procedure corre-
sponding to definition (61) of the nodal correction factors αe

i yields

f e,∗
i = αe

if
e
i =


min

{
1,− f̃e,−

f̃e,+

}
f̃ e
i if f̃ e

i > 0 ∧ ∂Ke ∩ Γ = ∅,

min
{

1,− f̃e,+

f̃e,−

}
f̃ e
i if f̃ e

i < 0 ∧ ∂Ke ∩ Γ = ∅,
f̃ e
i otherwise.

(63)

The design philosophy behind this element-based limiting strategy can be
summarized as ‘pointwise clipping + mass correction’. As we show in the
next section, it is well suited for monolithic AFC schemes as well.

Theorem 3 (LED property of the FCT scheme). Let the correction fac-
tors ᾱs and αe

i be defined by (54) and (61), respectively. Then approximations
(46) and (47) satisfy the local maximum principles (52) and (53).

Proof. The FCT correction (46) of the low-order value ūLe is LED because

ūmin,FCT
e − ūLe ≤

∆t

|Ke|

Se∑
s=1

R−e min{0, f̄ s
e} ≤

∆t

|Ke|

Se∑
s=1

ᾱsf̄ s
e

≤ ∆t

|Ke|

Se∑
s=1

R+
e max{0, f̄ s

e} ≤ ūmax,FCT
e − ūLe .
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Following [9, 34], we prove that (47) is LED as well by noticing that

umin,FCT
i ≤ ūei := uc,Li +

∆t

me
i

f e,∗
i ≤ umax,FCT

i . (64)

The LED property of (47) follows from the fact that uc,FCT
i = 1

mi

∑
e∈Ei m

e
i ū

e
i

is a convex combination of the bound-preserving states ūei . �

5. Monolithic convex limiting

Algebraic flux correction of FCT type is performed after the discretization
in time and introduces a splitting error which is proportional to the (pseudo-)
time step size. For that reason, FCT-like predictor-corrector approaches
are not to be recommended for applications that require the use of large
time steps or computation of steady state solutions. As an alternative to
FCT, we propose a monolithic convex limiting (MCL) strategy based on the
one developed in [27]. Instead of correcting low-order LED approximations
to the EG degrees of freedom, let us add the sums of limited antidiffusive
fluxes f̄ s,∗

e = ᾱsf̄ s
e and element contributions f e,∗

i = αe
if

e
i to the right-hand

sides ḡLe (ū) and gLi (uc) of the semi-discrete low-order schemes. This limiting
approach approximates (18) and (19) by the nonlinear system

|Ke|dūe
dt

= ḡLe (ū) +
Se∑
s=1

f̄ s,∗
e (uc), e = 1, . . . , Eh, (65)

mi
duci
dt

= gLi (uc) +
∑
e∈Ei

f e,∗
i (ū, uc), i = 1, . . . , Nh. (66)

For the steady state of this problem to be well-defined, the nonlinear correc-
tion terms f̄ s,∗

e (uc) and f e,∗
i (ū, uc) should be Lipschitz continuous [3, 32]. Ad-

ditionally, the element contributions f e
i should be calculated using ḡe = ḡLe in

formula (17) for u̇i. This reconstruction of the nodal time derivatives ensures
that their contribution to f e

i vanishes and full mass lumping is performed in
(66) if the solution to (65) reaches a steady state.

As before, we restrict explanations of the proposed methodology and
its theoretical analysis to explicit SSP Runge-Kutta (pseudo-)time stepping.
However, the limiters to be presented in this section are independent of the
time discretization and directly applicable to stationary problems.
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In the proofs of Theorems 1 and 2 we exploited the fact that

ḡLe (ū) =
Se∑
s=1

2dse(ū
s
e − ūe), (67)

gLi (uc) =
∑
e∈Ei

∑
j∈Ni

2d̄eij(ū
e
ij − uci), (68)

where ūse and ūeij are bound-preserving intermediate states. Introducing

ūei =
1

d̄ei

∑
j∈N e

d̄eijū
e
ij, d̄ei =

∑
j∈N e

d̄eij, (69)

we require that f̄ s,∗
e and f e,∗

i satisfy the FCT-like inequality constraints

ūmin,MCL
e ≤ ūs,∗e := ūse +

f̄ s,∗
e

2dse
≤ ūmax,MCL

e , (70)

umin,MCL
i ≤ ue,∗i := ūei +

f e,∗
i

2d̄ei
≤ umax,MCL

i . (71)

The basic local bounds for the monolithic version are defined by

ūmax,MCL
e = max

{
max

∂Ke∩Γ−
uin,max

i∈N e
max

{
max
e′∈Ei

ūe′ , u
c
i

}}
, (72)

ūmin,MCL
e = min

{
min

∂Ke∩Γ−
uin,min

i∈N e
min

{
min
e′∈Ei

ūe′ , u
c
i

}}
, (73)

umax,MCL
i = max

{
max

∂Ωi∩Γ−
uin,max

j∈Ni

ucj,max
e∈Ei

ūe

}
, (74)

umin,MCL
i = min

{
min

∂Ωi∩Γ−
uin,min

j∈Ni

ucj,min
e∈Ei

ūe

}
. (75)

A linearity-preserving (LP) version of these bounds can be constructed as
proposed in Section 6.1 of [27]. The use of limiters that guarantee linearity
preservation (i.e., produce f̄ s,∗

e = f̄ s
e and f e,∗

i = f e
i for locally linear input

functions uh) is essential for achieving optimal convergence to smooth solu-
tions [4]. The MCL bounds (72)–(75) are LP on uniform meshes.

As we show below, an explicit SSP Runge-Kutta time discretization of
(65) produces a convex combination of ūe and ūs,∗e , s = 1, . . . , Se for time
steps satisfying (24), while the discrete counterpart of (66) produces a convex
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combination of uc,Li and ūe,∗i , e ∈ Ei for time steps satisfying (40). Hence,
the conditional LED property can be shown as in Theorems 1 and 2.

In contrast to FCT, the MCL constraints for ūs,∗e and ue,∗i are independent
of the time step and no sums appear in the definition of ūs,∗e . However,
conditions (70) and (71) exhibit the same structure as (64). Therefore, they
can be enforced in the much same way as in localized FCT algorithms.

Rearranging (70) and (71), we find that f̄ s,∗
e and f e,∗

i should satisfy

2dse(ū
min,MCL
e − ūse) =: f̄ s,min

e ≤ f̄ s,∗
e ≤ f̄ s,max

e := 2dse(ū
max,MCL
e − ūse), (76)

2d̄ei (u
min,MCL
i − ūei ) := f e,min

i ≤ f e,∗
i ≤ f e,max

i := 2d̄ei (u
max,MCL
i − ūei ), (77)

where the upper bounds are nonnegative and the lower bounds are nonposi-
tive by definition of the low-order intermediate states (30) and (45).

Remark 6. In practice, we use the equivalent representations (cf. [27])

f̄ s,max
e = 2dseū

max,MCL
e − w̄s

e, f e,max
i =

∑
j∈N e

(2d̄eiju
max,MCL
i − w̄e

ij), (78)

f̄ s,min
e = 2dseū

min,MCL
e − w̄s

e, f e,min
i =

∑
j∈N e

(2d̄eiju
min,MCL
i − w̄e

ij) (79)

in terms of the products w̄s
e = 2dseū

s
e and w̄e

ij = 2d̄eijū
e
ij, the direct calculation

of which avoids rounding errors due to division by dse and d̄ei .

We begin with the presentation of the flux limiter for cell averages. In-
stead of finding a correction factor ᾱs which guarantees the validity of (70)
and (76) for f̄ s,∗

e = ᾱsf̄ s
e , we define the limited flux f̄ s,∗

e directly as in [27].

For any e′ ∈ Ee, the fluxes f̄ ∗ee′ = f̄ s,∗
e and f̄ ∗e′e = f̄ s′,∗

e′ associated with the
edge or face ∂Ke

s = ∂Ke ∩ ∂Ke′ = ∂Ke′

s′ must have the same magnitude and
opposite signs for the local conservation property to be preserved. Hence,
the formula for f̄ ∗ee′ must guarantee the validity of inequality constraints for
f̄ ∗e′e and vice versa. This requirement leads to the definition (cf. [27])

f̄ s,∗
e =



min{f̄ s
e , f̄

s,max
e ,−f̄ s′,min

e′ } if f̄ s
e > 0, ∂Ke

s = ∂Ke′

s′ ,

max{f̄ s
e , f̄

s,min
e ,−f̄ s′,max

e′ } if f̄ s
e < 0, ∂Ke

s = ∂Ke′

s′ ,

min{f̄ s
e , f̄

s,max
e } if f̄ s

e > 0, ∂Ke
s ⊆ Γ,

max{f̄ s
e , f̄

s,min
e } if f̄ s

e < 0, ∂Ke
s ⊆ Γ,

1 otherwise.

(80)
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To satisfy conditions (77) for all nodes of element Ke, we define the limited
antidiffusive element contributions f e,∗

i = αe
if

e
i using formula (63). That is,

our monolithic convex limiting approach differs from the FCT version only
in the definition of the bounds f e,max

i and f e,min
i for the computation of f̃ e

i .

Theorem 4 (LED property of the monolithic limiter). For f̄ s,∗
e and f e,∗

i

defined by (80) and (63), the fully discrete EG-MCL scheme

ūMCL
e = ūe +

∆t

|Ke|

[
ḡLe (ū) +

Se∑
s=1

f̄ s,∗
e (uc)

]
, e = 1, . . . , Eh, (81)

uc,MCL
i = uci +

∆t

mi

[
gLi (uc) +

∑
e∈Ei

f e,∗
i (ū, uc)

]
, i = 1, . . . , Nh (82)

is LED w.r.t. the MCL bounds (72)–(75) under the same time step restric-
tions as the low-order schemes analyzed in Theorems 1 and 2.

Proof. By virtue of (67)-(71), the update defined by (81) and (82) yields

ūMCL
e = ūe +

∆t

|Ke|

Se∑
s=1

2dse(ū
s,∗
e − ūe),

=

(
1− ∆t

|Ke|

Se∑
s=1

2dse

)
ūe +

(
∆t

|Ke|

Se∑
s=1

2dse

)
ūs,∗e

and

uc,MCL
i = uci +

∆t

mi

∑
e∈Ei

2d̄ei (ū
e,∗
i − uci)

=

(
1− ∆t

mi

∑
e∈Ei

∑
j∈N e

2d̄eij

)
uci +

(
∆t

mi

∑
e∈Ei

∑
j∈N e

2d̄eij

)
ūe,∗i ,

where the states ūs,∗e and ūe,∗i are constrained to satisfy (70) and (71). �

The steady-state limits of the nonlinear discrete problems (81) and (82)
are well-defined and can be analyzed as in [3, 32]. The continuity require-
ments for the MCL version of (63) are satisfied because the limited element
contributions can be written as f e,∗

i = c+
i f

e,max
i +c−i f

e,min
i with bounded coef-

ficients c±i ≥ 0. We remark that boundedness of c±i cannot be guaranteed for
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element-based limiters that use the same correction factor αe = minj∈N e Re
j

for all components. As a consequence, steady-state residuals of resulting
schemes may begin to stagnate after reaching a certain threshold.

An implicit treatment of our semi-discrete problem requires iterative so-
lution of nonlinear systems [22, 25]. For example, let us discretize (65) and
(66) in time using an implicit two-level θ scheme corresponding, e.g., to the
Crank-Nicolson (θ = 1

2
) or backward Euler (θ = 1) method. A simple fixed-

point iteration is defined by the deferred correction scheme

|Ke|ūm+1
e − θ∆tḡLe (ūm+1) = |Ke|ūe + (1− θ)∆tḡLe (ū)

+ ∆t
Se∑
s=1

[θf̄ s,∗
e (uc,m) + (1− θ)f̄ s,∗

e (uc)], (83)

miu
c,m+1
i − θ∆tgLi (uc,m+1) = miu

c
i + (1− θ)∆tgLi (uc)

+ ∆t
∑
e∈Ei

[θf e,∗
i (ūm, uc,m) + (1− θ)f e,∗

i (ū, uc)], (84)

where m ≥ 0 is the iteration index and ū, uc without iteration index refer
to values at the old time step. The initial guesses ū0 and uc,0 can be defined
using the solution values from the previous time step or calculated by solving
linear systems associated with the low-order LED approximation.

The convergence behavior of fixed point iterations for nonlinear AFC
problems often leaves a lot to be desired, especially for time steps larger than
the CFL bounds for explicit schemes. Significant speedups can be achieved,
e.g., using Anderson acceleration [25] or quasi-Newton methods [2, 33].

6. Constrained projections

In Sections 4 and 5, we constrained the cell averages ūe and CG compo-
nents uci to satisfy local discrete maximum principles. The restriction of the
EG solution uh = uch + udh to a mesh cell Ke, e = 1, . . . , Eh is given by

uh(x) = ūe + [uch(x)− ūce] ∀x ∈ Ke (85)

and is generally not bound-preserving. It is neither easy nor necessary to
constrain ūe and uch in a way which guarantees the LED property for uh. Sim-
ilarly to finite volume methods, the main physically meaningful unknowns
of a locally conservative approximation are the cell averages. Additional un-
knowns of DG and EG finite element schemes are needed just to evolve the
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cell averages in a more accurate way and to define more accurate reconstruc-
tions from cell averages. When it comes to visualization of EG solutions or
their use in other equations of a coupled problem, the reconstruction defined
by (85) can be postprocessed using an algebraic form of slope limiting to
enforce preservation of local bounds for the output.

Let u∗h denote a limited projection of the EG approximation (85) into
the space V c

h or its DG counterpart. The vertex-based limiting procedure
presented in [24] can be used to enforce the inequality constraints

ūmin
i ≤ ue,∗h (xi) ≤ ūmax

i ∀i ∈ N e, (86)

ūmax
i = max

{
max
e∈Ei

ūe,max
j∈Ni

ucj

}
, ūmin

i = min

{
min
e∈Ei

ūe,min
j∈Ni

ucj

}
(87)

using the element-based correction factor

γe = min
i∈N e


min

{
1,

ūmax
i −ūe

uc
h(xi)−ūc

e

}
if uch(xi) > ūce,

min
{

1,
ūmin
i −ūe

uc
h(xi)−ūc

e

}
if uch(xi) < ūce,

1 if uch(xi) = ūce

(88)

to define the ‘slope-limited’ DG reconstruction

ue,∗h (x) = ūe + γe[uch(x)− ūce] ∀x ∈ Ke. (89)

Note that the multiplication of the massless P1/Q1 component uch(x)− ūce by
any γe ∈ R does not change the cell average.

A globally conservative constrained L2 projection into the CG space V c
h

can be performed using the FCT methodology (cf. [28, 35]) to enforce (86).
Let ũ be a given function that may represent, e.g., the initial data u0 or the
EG solution uh at the final time. The standard L2 projection defined by∑

e∈Ei

∑
j∈N e

me
iju

H
j =

∑
e∈Ei

∫
Ke

ϕiũdx, i = 1, . . . , Nh (90)

provides the high-order target uHh for flux-corrected remapping (FCR). Using
the cell averages of ũ, let us define the low-order reconstruction

uLi =
1

mi

∑
e∈Ei

me
i ũe, ũe =

1

|Ke|

∫
Ke

ũdx (91)
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as in formula (17). Since uLi is a convex combination of ũe, it is bounded by
the local extrema ūmax

i = maxe∈Ei ũe and ūmin
i = mine∈Ei ũe.

To construct a better LED approximation to uHh , we notice that

uHi = uLi +
1

mi

∑
e∈Ei

f̃ e
i , i = 1, . . . , Nh, (92)

where

f̃ e
i =

∫
Ke

ϕi(u
H
i − uHh + ũ− ũe)dx,

∑
i∈N e

f e
i = 0. (93)

Using this relationship between uHh and uLh , we define

u∗i = uLi +
1

mi

∑
e∈Ei

γef̃ e
i , i = 1, . . . , Nh (94)

using the element-based correction factor

γe = min
i∈N e


min

{
1,

me
i (ūmax

i −uL
i )

f̃e
i

}
if f̃ e

i > 0,

min
{

1,
me

i (ūmin
i −uL

i )

f̃e
i

}
if f̃ e

i < 0,

1 otherwise.

(95)

Note that this formula has the same structure as (88). The LED property of
the element-based FCR algorithm can be shown as in Theorem 3.

Remark 7. For an EG approximation ũ = uch + udh, we have ũ|Ke − ũe =
uch|Ke + (ūe − ūce) − ūe = uch|Ke − ūce. Hence, the element contributions to
be limited are given by f̃ e

i =
∫
Ke ϕi(u

H
i − uHh + uch − ūce)dx. The cost of

solving the linear system (90) for uH can be reduced using a truncated series
approximation to the inverse of the consistent mass matrix [13, 26].

7. Numerical examples

In this section, we study the numerical behavior of the presented limit-
ing techniques for the EG method in 2D. Computations are performed on
triangular and rectangular meshes. We illustrate the stabilizing effect of
the DG-P0 enrichment and verify the ability of FCT and MCL limiters (as
presented in Sections 4 and 5, respectively) to enforce discrete maximum
principles in EG schemes. For visualization purposes and for quantitative
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assessment of numerical errors, we project the results into the CG space V c
h

using the FCR procedure presented in Section 6. The error of a constrained
EG approximation is defined as u − u∗h, where u is the exact (or reference)
solution and u∗h ∈ V c

h is the FCR projection of the numerical solution. We
measure the accuracy of u∗h using the discrete error norms [25]

E1(h) :=

Nh∑
i=1

mi|u(xi)− u∗i | ≈
∫

Ω

|u− u∗h|dx = ‖u− u∗h‖L1(Ω), (96)

E2(h) :=

√√√√ Nh∑
i=1

mi(u(xi)− u∗i )2 ≈

√∫
Ω

(u− u∗h)2dx = ‖u− u∗h‖L2(Ω). (97)

The experimental order of convergence is determined using the formula [31]

p = log2

(
Ei(2h)

Ei(h)

)
, i = 1, 2. (98)

The values of the global maxima umax = max1≤j≤Nh
u∗j and minima umin =

min1≤j≤Nh
u∗j are reported as well to show the LED properties of the schemes

under investigation and quantify the levels of numerical dissipation.

7.1. Solid body rotation

We begin with the solid body rotation benchmark [31]. This difficult 2D
test is widely used in numerical studies of algebraic flux correction schemes
[16, 25, 26, 27, 32] and variational shock capturing techniques for stabilized
finite element methods [23]. Hence, the results to be presented can be com-
pared to numerical solutions obtained with CG and DG approaches.

In the solid body rotation experiment, the divergence-free velocity field
v(x, y) = (0.5−y, x−0.5)> is used to rotate a slotted cylinder, a sharp cone,
and a smooth hump around the center (0.5, 0.5) of the domain Ω = (0, 1)2.
The initial condition, as defined by LeVeque [31], is given by

u0(x, y) =



uhump
0 (x, y) if

√
(x− 0.25)2 + (y − 0.5)2 ≤ 0.15,

ucone
0 (x, y) if

√
(x− 0.5)2 + (y − 0.25)2 ≤ 0.15,

1 if

{(√
(x− 0.5)2 + (y − 0.75)2 ≤ 0.15

)
∧

(|x− 0.5| ≥ 0.025 ∨ y ≥ 0.85) ,

0 otherwise,
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where

uhump
0 (x, y) =

1

4
+

1

4
cos

(
π
√

(x− 0.25)2 + (y − 0.5)2

0.15

)
, (99)

ucone
0 (x, y) = 1−

√
(x− 0.5)2 + (y − 0.25)2

0.15
. (100)

Homogeneous Dirichlet boundary conditions are prescribed at the inlets.
After each full rotation, the exact solution u(·, 2πk), k ∈ N coincides with

the initial data u0. Time integration is performed using the optimal second-
order explicit Runge-Kutta method and the time step ∆t = 10−3. The P1⊕P0

and Q1 ⊕ P0 versions of the EG method are used for discretization in space
on triangular and rectangular uniform meshes with spacing h = 1

128
.

In Figures 1 and 2, we present the continuous projection u0
h = uh(·, 0) of

the initial data u0 into V c
h and (FCR projections of) numerical solutions uh

after one full rotation (t = 2π). For a better comparison of the methods un-
der investigation, the E1 error w.r.t. the reference solution u(·, 2π) = u0

h and
the range of numerical solution values are shown above each plot. The CG-P1

and CG-Q1 results are displayed in Figs 1(b) and 2(b), respectively. They
are highly oscillatory even in regions where the exact solution is smooth. The
global spreading of numerical errors is responsible for the suboptimal con-
vergence behavior of the continuous Galerkin method and strong ‘terracing’
effects (spurious distortions) in flux-limited CG approximations [34].

The diagrams shown in the bottom rows of Figs 1 and 2 demonstrate that
the stabilizing effect of the P0 enrichment provides an effective cure for global
oscillations. The stability of the P1 ⊕ P0 version is backed by the theoretical
analysis of Becker et al. [7]. The Q1 ⊕ P0 approach performs much better
than CG-Q1. However, no rigorous proof of stability is available, and the
solutions presented in Figs 2(c),(d) are not quite as accurate as their P1⊕P0

counterparts shown in Figs 1(c),(d). The smooth waves emanating from the
slotted cylinder indicate that a piecewise-constant enrichment of the CG-Q1

approximation might be insufficient to ensure optimal convergence behavior.
The use of u̇Hi = 0 in the definition of f e

i introduces more numerical damp-
ing than formula (17). This property of the lumped-mass approximation is
reflected in the smaller magnitude of spurious undershoots/overshoots and
smaller values of the E1 errors. The activation of limiters makes u̇Hi defined
by (17) a better choice than u̇Hi = 0 because stronger damping tends to have
an adverse effect on the overall accuracy of an LED approximation.
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(a) E1 =0.00e-0, uh ∈ [0.0, 1.0] (b) E1 =4.43e-2, uh ∈ [−0.354, 1.451]

(c) E1 =2.57e-2, uh ∈ [−0.116, 1.169] (d) E1 =3.13e-2, uh ∈ [−0.207, 1.313]

Fig. 1: Solid body rotation, triangular mesh, h = 1
128 , ∆t = 10−3. The plots show (a)

CG-P1 interpolant of u0 and numerical solutions at t = 2π obtained with (b)
CG-P1, (c) EG-P1 ⊕ P0 with u̇Hi = 0, (d) EG-P1 ⊕ P0 with u̇Hi defined by (17).
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(a) E1 =0.00e-0, uh ∈ [0.0, 1.0] (b) E1 =4.43e-2, uh ∈ [−0.369, 1.483]

(c) E1 =2.86e-2, uh ∈ [−0.098, 1.150] (d) E1 =3.13e-2, uh ∈ [−0.207, 1.314]

Fig. 2: Solid body rotation, rectangular mesh, h = 1
128 , ∆t = 10−3. The plots show (a)

CG-Q1 interpolant of u0 and numerical solutions at t = 2π obtained with (b)
CG-Q1, (c) EG-Q1 ⊕ P0 with u̇Hi = 0, (d) EG-Q1 ⊕ P0 with u̇Hi defined by (17).
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(a) E1 =1.96e-2, uh ∈ [0.0, 1.0] (b) E1 =1.90e-2, uh ∈ [0.0, 1.0]

(c) E1 =1.94e-2, uh ∈ [0.0, 1.0] (d) E1 =1.88e-2, uh ∈ [0.0, 1.0]

Fig. 3: Solid body rotation, triangular mesh, h = 1
128 , ∆t = 10−3. The plots show the

EG-P1 ⊕ P0 solutions at t = 2π obtained using (a) FCT and u̇Hi = 0, (b) FCT
and u̇Hi defined by (17), (c) MCL and u̇i = 0, (d) MCL and u̇i defined by (17).
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(a) E1 =2.19e-2, uh ∈ [0.0, 0.997] (b) E1 =2.12e-2, uh ∈ [0.0, 998]

(c) E1 =2.23e-2, uh ∈ [0.0, 0.995] (d) E1 =2.11e-2, uh ∈ [0.0, 0.999]

Fig. 4: Solid body rotation, rectangular mesh, h = 1
128 , ∆t = 10−3. The plots show the

EG-Q1 ⊕ P0 solutions at t = 2π obtained using (a) FCT and u̇Hi = 0, (b) FCT
and u̇Hi defined by (17), (c) MCL and u̇i = 0, (d) MCL and u̇i defined by (17).
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The results presented in Figs 3 and 4 illustrate the ability of our limiting
techniques to enforce discrete maximum principles without distorting smooth
solution profiles. Remarkably, even the peaks of the rotating cone and hump
are preserved very well, although our LED approximations set the antidif-
fusive terms to zero at any local extremum. The presented FCT and MCL
results are virtually indistinguishable. Hence, the accuracy of the constrained
EG approximations is largely determined by the choice of u̇Hi and by the def-
inition of the local bounds. We conclude that both FCT and MCL are well
suited for explicit EG discretizations of time-dependent advection problems.
However, the FCT correction factors depend on the time step, which makes
MCL a better limiter for implicit schemes and steady-state computations.

7.2. Steady circular advection

In the second numerical experiment, we solve the steady-state counterpart
of (1a) in Ω = (0, 1)2 using the velocity field v(x, y) = (y,−x). The inflow
boundary condition and the exact solution at any point in Ω̄ are given by

u(x, y) =


1, if 0.15 ≤ r(x, y) ≤ 0.45,

cos2
(

10π r(x,y)−0.7
3

)
, if 0.55 ≤ r(x, y) ≤ 0.85,

0, otherwise,

(101)

where r(x, y) =
√
x2 + y2 denotes the distance to the corner point (0, 0).

Numerical solutions are marched to the steady state using uniform tri-
angular meshes and the same explicit SSP Runge-Kutta scheme as in the
solid body rotation test. Computations are terminated when the L1 norm of
the pseudo-time derivative u̇h, as defined by (17), becomes smaller than the
prescribed tolerance. The CG-P1 projection of the exact solution and the
numerical approximations corresponding to h = 1

128
are shown in Fig. 5. The

enrichment of the oscillatory CG-P1 approximation with the P0 component of
the EG method reduces the magnitude of spurious undershoots/overshoots
and localizes them to thin layers around the discontinuities of the exact so-
lution. The nonlinear MCL correction enforces strict preservation of local
bounds, while leaving smooth portions of the EG solution unchanged.

To study the numerical behavior of EG-P1 ⊕ P0 approximations to prob-
lems with smooth solutions, we perform grid convergence studies for [32]

u(x, y) = exp
(
−100(r(x, y)− 0.7)2

)
, 0 ≤ x, y ≤ 1 (102)
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(a) E1 =0.00e-0, uh ∈ [0.0, 1.0] (b) E1 =8.50e-3, uh ∈ [−0.097, 1.106]

(c) E1 =3.91e-3, uh ∈ [−0.049, 1.063] (d) E1 =4.04e-3, uh ∈ [0.0, 1.0]

Fig. 5: Steady advection, triangular mesh, h = 1
128 . The plots show (a) CG-P1 inter-

polant of the exact solution and stationary numerical solutions obtained with (b)
CG-P1, (c) EG-P1 ⊕ P0, (d) EG-P1 ⊕ P0 + MCL.
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using the same velocity field. The convergence history presented in Tables 1
and 2 demonstrates that second-order superconvergence can be achieved with
EG-P1⊕P0 on uniform triangular meshes. The unlimited solutions have small
undershoots and overshoots on all mesh levels. The EG-P1 ⊕ P0 scheme
equipped with the MCL limiter produces larger E2 errors on coarse meshes
but converges quadratically as well and guarantees the validity of the global
discrete maximum principle w.r.t. the weakly imposed Dirichlet boundary
condition on Γ−. As the mesh is refined, the global maxima and minima of
the numerical solutions approach the exact values umax = 0 and umin = 1. On
the finest mesh, the MCL convergence rate drops to 1.70, which is still higher
than the provable order of accuracy for EG discretizations of pure advection
problems. The lack of superconvergence for h = 1

256
can be attributed to the

increased influence of rounding errors in the computation of limited fluxes
and correction factors. Further research is required to verify this conjecture
and design efficient implementations of EG-MCL for stationary problems.

h E2 p umin umax

1
32

5.33e-3 -6.210e-3 1.0073
1
64

1.26e-3 2.08 -2.726e-3 1.0028
1

128
2.91e-4 2.11 -1.037e-3 1.0010

1
256

7.08e-5 2.04 -3.638e-4 1.0002

Table 1: Steady advection. EG-P1 ⊕ P0 convergence history.

h E2 p umin umax

1
32

9.00e-3 0.0 0.984
1
64

2.40e-3 1.91 0.0 0.995
1

128
6.19e-4 1.96 0.0 0.999

1
256

1.90e-4 1.70 0.0 1.000

Table 2: Steady advection. EG-P1 ⊕ P0 + MCL convergence history.

In Figure 6, we show the evolution history of the steady-state residuals∫
Ω
|u̇h|dx for EG and EG-MCL on the finest mesh. It can be seen that

our monolithic limiting strategy does not inhibit convergence to stationary
solutions. The MCL-corrected residuals converge monotonically to machine
zero and exhibit the same qualitative behavior as the EG residuals. The
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Fig. 6: Steady advection, h = 1
256 , steady state residuals

∫
Ω
|u̇h|dx vs. pseudo-time.

numbers of pseudo-time steps required to reach the tolerance 10−7 differ by
a factor of 1.7. This is a remarkably small difference, given the fact that the
steady-state problem is linear for EG and nonlinear for EG-MCL.

8. Conclusions

The methodology developed in this paper exploits the variational multi-
scale nature of the locally conservative EG method leading to a well-organized
interplay of its CG and DG components. The primary unknowns are the EG
cell averages which we evolve directly. The CG component provides the an-
tidiffusive fluxes for the evolution of cell averages, while the cell averages
and their time derivatives are used to calculate the antidiffusive element con-
tributions of the algebraic limiting procedure for the CG subproblem. The
bound-preserving properties of the presented limiting techniques were shown
in the context of explicit SSP Runge-Kutta schemes. The monolithic limiting
approach is readily applicable to implicit time discretizations and stationary
problems as well. The well-posedness of nonlinear discrete problems and va-
lidity of generalized discrete maximum principles can be verified using the
proof techniques developed in [3, 5, 27, 32] for edge-based algebraic flux cor-
rection schemes. The design of limiters for EG discretizations of parabolic
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and elliptic problems requires additional theoretical and numerical studies.
It is hoped that the present paper provides a good stepping stone toward
further development of provably bound-preserving EG methods.
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