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Abstract

Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are

associated with shape features. In this study, we propose a fully automatic way to quantify

tumor imaging characteristics using deep learning-based segmentation and test whether these

characteristics are predictive of tumor genomic subtypes.

We used preoperative imaging and genomic data of 110 patients from 5 institutions with

lower-grade gliomas from The Cancer Genome Atlas. Based on automatic deep learning seg-

mentations, we extracted three features which quantify two-dimensional and three-dimensional

characteristics of the tumors. Genomic data for the analyzed cohort of patients consisted of

previously identified genomic clusters based on IDH mutation and 1p/19q co-deletion, DNA

methylation, gene expression, DNA copy number, and microRNA expression. To analyze the

relationship between the imaging features and genomic clusters, we conducted the Fisher exact

test for 10 hypotheses for each pair of imaging feature and genomic subtype. To account for

multiple hypothesis testing, we applied a Bonferroni correction. P-values lower than 0.005 were

considered statistically significant.

We found the strongest association between RNASeq clusters and the bounding ellipsoid

volume ratio (p < 0.0002) and between RNASeq clusters and margin fluctuation (p < 0.005).

In addition, we identified associations between bounding ellipsoid volume ratio and all tested

molecular subtypes (p < 0.02) as well as between angular standard deviation and RNASeq

cluster (p < 0.02). In terms of automatic tumor segmentation that was used to generate the

quantitative image characteristics, our deep learning algorithm achieved a mean Dice coefficient

of 82% which is comparable to human performance.
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1 Introduction

Lower-grade gliomas (LGG) are a group of WHO grade II and grade III brain tumors. As opposed

to grade I which are often curable by surgical resection, grade II and III are infiltrative and tend

to recur and evolve to higher-grade lesion. Predicting patient outcomes based on histopathologi-

cal data for these tumors is inaccurate and suffers from inter-observer variability [1]. One of the

promising methods that might address this issue is defining subtypes of LGG through clustering of

patients based on DNA methylation, gene expression, DNA copy number, and microRNA expres-

sion [1]. It was shown that the clusters identified in such way are to a large extent in agreement

with another basic molecular subtype based on IDH (IDH1 and IDH2) mutation and 1p/19q co-

deletion [1, 2]. Patients with tumors from different molecular groups substantially differ in terms

of typical course of the disease and overall survival [3].

A new research direction in cancer, called radiogenomics, aims at investigating the relationship

between tumor genomic characteristics and medical imaging [4]. Imaging can provide important

information before surgery or in cases when resection is not possible. Very recent studies in this

area have discovered an association of tumor shape features extracted from MRI with its genomic

subtypes [5, 6]. However, the first step when extracting tumor features was the manual segmentation

of MRI. Such annotation is costly, time consuming and results in annotations with high inter-rater

variance [7].

Deep learning is a new field of machine learning that is recently revolutionizing the automated

analysis of images [8, 9]. There are many examples of successful applications of deep learning in

medical imaging [10, 11, 12, 13, 14] and more specifically in brain MRI segmentation [15]. In recent

years, progress in deep learning for automatic brain segmentation matured to a level that achieves

performance of a skilled radiologist [16]. Most of these efforts are focused on glioblastoma rather

than LGG. Development of models that yield high quality segmentation of LGG in brain MRI

would potentially allow for automatization of the process of tumor genomic subtype identification

through imaging that is fast, inexpensive, and free of inter-reader variability.

In this study, we combine the field of deep learning and radiogenomic and propose a fully

automatic algorithm for quantification of tumor shape and test whether the assessed shape features

are prognostic of tumor molecular subtypes. Developing imaging-biomarkers that could inform of

tumor genomics would provide the information to clinicians sooner in a non-invasive way and in

some cases could allow for better stratification of tumors where resection is not performed. In this
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study, we show promise for eventually developing such imaging-based biomarkers.

The reminder of this paper is organized as follows. Section 2 describes data used in our study

whereas section 3 describes segmentation model, features used for tumor quantification, and sta-

tistical methods. Then, in section 4 we show results for the segmentation algorithm and prediction

of genomic subtypes. In section 5 we discuss our findings. Finally, sections 6 and 7 are devoted to

limitations and conclusions of the study, respectively.

2 Dataset

2.1 Patient population

The data used in this study was obtained from The Cancer Genome Atlas (TCGA) and The Cancer

Imaging Archive (TCIA). We identified 120 patients from TCGA lower-grade glioma collection1 who

had preoperative imaging data available, containing at least a fluid-attenuated inversion recovery

(FLAIR) sequence. Ten patients had to be excluded since they did not have genomic cluster

information available. The final group of 110 patients was from the following 5 institutions: Thomas

Jefferson University (TCGA-CS, 16 patients), Henry Ford Hospital (TCGA-DU, 45 patients), UNC

(TCGA-EZ, 1 patient), Case Western (TCGA-FG, 14 patients), Case Western – St. Joseph’s

(TCGA-HT, 34 patients) from TCGA LGG collection. The complete list of patients used in this

study is included in Online Resource 1. The entire set of 110 patients was split into 22 non-

overlapping subsets of 5 patients each. This was done for evaluation with cross-validation.

2.2 Imaging data

Imaging data was obtained from The Cancer Imaging Archive2 which contains the images corre-

sponding to the TCGA patients and is sponsored by the National Cancer Institute. We used all

modalities when available and only FLAIR in case any other modality was missing. There were 101

patients with all sequences available, 9 patients with missing post-contrast sequence, and 6 with

missing pre-contrast sequence. The complete list of available sequences for each patient is included

in Online Resource 1. The number of slices varied among patients from 20 to 88. In order to

capture the original pattern of tumor growth, we only analyzed preoperative data. The assessment

of tumor shape was based on FLAIR abnormality since enhancing tumor in LGG is rare.

1https://cancergenome.nih.gov/cancersselected/lowergradeglioma
2https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
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A researcher in our laboratory, who was a medical school graduate with experience in neuroradi-

ology imaging, manually annotated FLAIR images by drawing an outline of the FLAIR abnormality

on each slice to form training data for the automatic segmentation algorithm. We used software

developed in our laboratory for this purpose. A board eligible radiologist verified all annotations

and modified those that were identified as incorrect. Dataset of registered images together with

manual segmentation masks for each case used in our study is released and made publicly available

at the following link: https://kaggle.com/mateuszbuda/lgg-mri-segmentation.

2.3 Genomic data

Genomic data used in this study consisted of DNA methylation, gene expression, DNA copy number,

and microRNA expression, as well as IDH mutation 1p/19q co-deletion measurement. Specifically,

in our analysis we consider six previously identified molecular classifications of LGG that are known

to be correlated with some tumor shape features [6]:

1. Molecular subtype based on IDH mutation and 1p/19q co-deletion (three subtypes: IDH

mutation-1p/19q co-deletion, IDH mutation-no 1p/19q co-deletion, IDH wild type)

2. RNASeq clusters (4 clusters: R1-R4)

3. DNA methylation clusters (5 clusters: M1-M5)

4. DNA copy number clusters (3 clusters: C1-C3)

5. microRNA expression clusters (4 clusters: mi1-mi4)

6. Cluster of clusters (3 clusters: coc1-coc3)

3 Methods

3.1 Automatic segmentation

Figure 1 shows the overview of the segmentation algorithm. The following phases comprise the fully

automatic algorithm for obtaining the segmentation mask: image preprocessing, segmentation, and

post-processing. Then, once the segmentation masks are generated, we extracted shape features

that were identified as predictive of molecular subtypes. The following sections provide details on

each of the steps. Source code of the algorithm described in this section is also available at the

following link: https://github.com/mateuszbuda/brain-segmentation.
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Figure 1: A schema showing data processing steps of our system for molecular subtype inference from a

sequence of brain MRI

3.1.1 Preprocessing

Images varied significantly between patients in terms of size. The preprocessing of the image

sequences consisted of the following steps:

• Scaling of the images to the common frame of reference.

• Removal of the skull to focus the analysis on the brain region (a.k.a., skull stripping).

• Adaptive window and level adjustment based on the image histogram to normalize intensities

of tissues between cases.

• Z-score normalization of the entire data set.

The details of all the pre-processing steps are included in the Online Resource 2.

3.1.2 Segmentation

The main segmentation step was performed using a fully convolutional neural network with the

U-Net architecture [10] shown in Figure 2. It comprises four levels of blocks containing two con-

volutional layers with ReLU activation function and one max pooling layer in the encoding part

and up-convolutional layers instead in the decoding part [17, 18, 19, 20, 21]. Consistent with the

U-Net architecture, from the encoding layers we use skip connections to the corresponding layers in

the decoding part. They provide a shortcut for gradient flow in shallow layers during the training

phase [22].

Manual segmentation served as a ground truth for training a model for automatic segmentation.

We trained two networks, one for cases with three sequences available (pre-contrast, FLAIR, and

post-contrast) and the other that used only FLAIR. For the second network, instead of missing

sequences we used neighboring FLAIR slices from both sides of a slice of interest as additional

channels. Since in this scenario the two sequences, which occupied channel 1 and channel 3 of the

input are not available, we filled these channels with neighboring tumor slices to provide additional

information to the network.
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Input
256x256x3

Conv 3x3, ReLU
256x256x32

Max pooling 2x2
128x128x32

Concatenation

Conv 3x3, ReLU
128x128x64

Max pooling 2x2
64x64x64

Conv 3x3, ReLU
64x64x128

Max pooling 2x2
32x32x128

Conv 3x3, ReLU
32x32x256

Max pooling 2x2
16x16x256

Conv 3x3, ReLU
16x16x512

Conv 3x3, ReLU
16x16x512

Up-conv 2x2
32x32x256

Conv 3x3, ReLU
32x32x256

Up-conv 2x2
64x64x128

Conv 3x3, ReLU
64x64x128

Up-conv 2x2
128x128x64

Conv 3x3, ReLU
128x128x64

Up-conv 2x2
256x256x32

Conv 3x3, ReLU
256x256x32

Conv 1x1, Sigmoid
256x256x1

Conv 3x3, ReLU
256x256x32

Conv 3x3, ReLU
128x128x64

Conv 3x3, ReLU
64x64x128

Conv 3x3, ReLU
32x32x256

Conv 3x3, ReLU
32x32x256

Conv 3x3, ReLU
64x64x128

Conv 3x3, ReLU
128x128x64

Conv 3x3, ReLU
256x256x32

Figure 2: U-Net architecture used for skull stripping and segmentation. Below each layer specification we

provide dimensionality of a single example that this layer outputs

The number of slices containing tumor was considerably lower than those with only background

class present. Therefore, to account for this fact, we applied oversampling with data augmentation

that was proved to help in training convolutional neural networks [23]. We did it by having three

instances of each tumor slice in our training set. For one oversampled slice we applied random

rotation by 5 to 15 degrees and for the other slice we applied random scale by 4% to 8%. To

further reduce the imbalance between tumor and non-tumor pixels, we discarded empty slices

that did not contain any brain or other tissue after applying skull stripping. This step has been

undertaken since training a fully convolutional neural network with images that do not contain any

positive voxels can be highly detrimental. Please note that a significant majority of voxels in the

abnormal slices are still normal and therefore sufficient negative data is available for training.
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3.1.3 Post-processing

To further improve the accuracy, we implemented a post-processing algorithm that removes false

positives. Specifically, we extracted all tumor volumes using connected components algorithm on a

three-dimensional segmentation mask for each patient. We did it using 6-connected pixels in three

dimensions, i.e. neighboring pixels are defined as being connected along primary axes. Eventually,

we included in the final segmentation mask only the pixels comprising the largest connected tu-

mor volume. This post-processing strategy benefits extraction of shape features (described in the

following section) since they are sensitive to isolated false positive pixel segmentations.

3.1.4 Extraction of shape features

We consider three shape features of a segmented tumor that were identified as important in the

context of lower grade glioma radiogenomic [6]:

Angular standard deviation (ASD) is the average of the radial distance standard deviations

from the centroid of the mass across ten equiangular bins in one slice, as described in [24]. Before

calculating the value of this feature, we normalize radial distances to have mean equal one. Angular

standard deviation of a tumor shape is a quantitative measure of variation in the tumor margin

within relatively small parts of the tumor. It also captures non-circularity of the tumor, i.e. low

value indicates circle like shape.

Bounding ellipsoid volume ratio (BEVR) is the ratio between the volume of segmented FLAIR

abnormality and its minimum bounding ellipsoid. This feature captures the irregularity of the

tumor in three dimensions. If the tumor fits well into its bounding ellipsoid (high value of BEVR),

it is considered more regular while if more space in the bounding ellipsoid is unfilled, the shape is

considered irregular.

Margin fluctuation (MF) is computed as follows. First, we find the centroid of the tumor and

distances from it to all pixels on the tumor boundary in one slice. Then, we apply averaging filter of

length equal to 10% of the tumor perimeter measured in the number of pixels. Margin fluctuation

is the standard deviation of the difference between values before and after smoothing, i.e. applying

averaging filter. Similarly as in ASD, radial distances are normalized to have a mean of one. This

is done in order to remove the impact of tumor size on the value of this feature. Margin fluctuation

is a two-dimensional feature that quantifies the amount of high frequency changes, i.e. smoothness

of the tumor boundary and was previously used for analysis of spiculation in breast tumors [25, 26].
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3.2 Statistical analysis

Our hypothesis was that fully automatically-assessed shape features are predictive of tumor molec-

ular subtypes. Since we considered 6 definitions of molecular subtypes based on genomic assays

and multiple imaging features, we focused our analysis on the relationships between imaging and

genomics that were found significant (with manual tumor segmentation) in a previous study [6].

Specifically, those were the following relationships: bounding ellipsoid volume ratio with RNASeq,

miRNA, CNC, and COC, the relationship of Margin fluctuation with RNASeq, and the relationship

of angular standard deviation with IDH/1p19q, RNASeq, Methylation, CNC, and COC resulting

in 10 specific hypotheses. To assess statistical significance of these associations, we conducted the

Fisher exact test (fisher.test function in R) for each of 10 combinations of imaging and genomics.

For the purpose of this test, we turned each continuous imaging variable value into a number from

1 to 4 based on which quartile of the feature value it fell into. For each of the imaging and genomic

feature combinations, we used only the cases that had both: imaging and genomic subtype data

available.

We conducted a total of 10 statistical tests for each pair of imaging feature and genomic subtype

for our primary hypothesis. To account for multiple hypothesis testing, we applied a Bonferroni

correction. P-values lower than 0.005 (0.05/10) were considered statistically significant for our

primary radiogenomics hypotheses.

Additionally, we evaluated performance of the deep learning-based segmentation itself. We

used Dice similarity coefficient [27] as the evaluation metric which measures the overlap between

the segmentation provided by the algorithm and the manually-annotated gold standard.

In the evaluation process, we used cross-validation. Specifically, we divided our entire dataset

into 22 subsets, each containing exactly 5 cases. The model training was conducted on the training

subsets and then the model was applied to the test cases. This was repeated 22 times until each

subset served once as the test set. The cases then were pooled for the analysis as described above.

The number of cases included in the training and test sets (which determines the number of

folds) is a trade-off between computational cost of training multiple models and having more data

to train each of them. The two extremes of this approach are leave-one-out strategy which results

in one-case folds and the other is 50% split which gives 2 folds. We found folds of 5 patients to be

a good balance between a training set size and computational cost.
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4 Results

The patients’ characteristics are shown in Table 1. The average patient age was 47. Fifty six

of the patients were women, fifty three were men, and the gender of one was unknown. The

tumors’ characteristics are provided in Table 2. There were three histological types of tumors:

oligodendroglioma (47), astrocytoma (33), oligoastrocytoma (29), and one unknown. Grade of the

tumors in our data included 51 cases of grade II, 58 of grade III, and grade of one tumor was

unknown.

Characteristic Patients (N=110)

Age (years)

Median 47

Range 20-75

Gender

Female 56

Male 32

Not available 1

Table 1: Patient characteristic. Age for one patient was missing and was ignored in the calculation.

The results of the radiogenomic analysis are shown in Figure 3. We confirmed our primary hy-

pothesis for two pairs of imaging features and genomic subtype. We found the strongest association

between RNASeq cluster and the bounding ellipsoid volume ratio (p < 0.0002) along with margin

fluctuation (p < 0.005). In addition, we identified considerable correlations for the bounding el-

lipsoid volume ratio and all tested molecular subtypes (p < 0.02) as well as for angular standard

deviation and RNASeq cluster (p < 0.02).

In Table 3 we provide ROC AUC scores for the task of discriminating each RNASeq cluster

from all other subtypes based on shape features extracted from segmentation masks obtained with

the deep learning algorithm and compare them to manual segmentations. We selected RNASeq

cluster since it showed the strongest association with shape features. In addition, we included ROC

AUC based on two demographic variables, i.e. age and gender. The results show that deep learning

was able to provide tumor segmentations of a quality that allowed for extraction of shape features

that match manual segmentations. Specifically, cluster R2 was distinguished from all other clusters
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based on inversed bounding ellipsoid volume ratio with AUC of 0.80 and 0.78 for deep learning-

based and manual segmentations, respectively. In terms of angular standard deviation, AUC for

deep learning was 0.73 and for manual segmentations was 0.72. The predictive value of demographic

variables for R2 cluster was notably lower with AUC=0.66 for age and AUC=0.50 for gender. A

detailed comparison of manual and automatic segmentation for the task of discriminating cluster

R2 from all other clusters with respect to sensitivity, specificity, positive predictive value, and

negative predictive value is given in Online Resource 1.

In terms of tumor segmentation, our deep learning algorithm achieved mean Dice coefficient of

82% and median Dice coefficient of 85%. For the 101 cases with all sequences available, mean and

median Dice coefficient was the same as for all 110 cases. For the remaining 9 cases segmented

based on FLAIR sequence only, mean and median Dice coefficient was 82% and 88%, respectively.

Characteristic Cases (N=110)

Histologic type and grade

Astrocytoma

Grade II 8

Grade III 25

Oligoastrocytoma

Grade II 14

Grade III 21

Oligodendroglioma

Grade II 29

Grade III 18

Not available 1

IDH-1p/19q subtype

IDH mutation, 1p/19q co-deletion 26

IDH mutation, no 1p/19q co-deletion 56

IDH wild type 25

Not available 3

Table 2: Tumor characteristic.
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Figure 3: Box and whisker plots demonstrating the relationship between tested genomic clusters and imaging

features that quantify tumor shape

Examples of segmentations that we obtained alongside with ground truth masks for cases of vary-

ing performance of our segmentation algorithm are presented in Figure 4. Due to max pooling

layers included in the U-Net architecture which allow for processing of large volumes on currently

available computers, the automated segmentation is less sensitive to high curvature and sulcation

and therefore, the produced masks tend to be more smooth comparing to manual segmentations.
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Variable R1 R2 R3 R4

Deep learning ASD 0.26 0.73 0.53 0.47

Deep learning 1/BEVR 0.23 0.80 0.36 0.53

Age 0.29 0.66 0.72 0.41

Gender 0.44 0.50 0.58 0.52

Table 3: ROC AUCs of shape features and demographic variables for the task of discriminating

one RNASeq cluster from all others.

Figure 4: Examples of automatic segmentation for low (top), moderate (middle), and high (bottom) agree-

ment with ground truth. Their Dice coefficient is 50%, 82% and 95% respectively. In each pair, the first image

shows a heatmap of raw model output and in the second image blue outline corresponds to ground truth

and red to postprocessed automatic segmentation output. Images show FLAIR modality after preprocessing

and skull stripping.

Given small sample size, we additionally assessed the stability and performance of our segmen-

tation model using predictions generated for noisy input. For each input image, we applied additive

Gaussian noise with zero mean and standard deviation equal to 10% and 20% of standard devia-

tion computed on the training data. In the first case with 10% noise level, mean Dice coefficient

decreased to 81%. After increasing noise level to 20%, mean Dice coefficient further decreased to

79%. In both cases, median Dice coefficient was 85%.
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5 Discussion

In this study, we were able to demonstrate that fully automatically-assessed imaging features of low

grade gliomas are associated with tumor molecular subtypes established using genomic analysis.

The strength of these associations was shown to be moderate. Deep learning algorithms were used

to segment the tumors.

Using imaging to predict tumor genomics is of very high importance and if accurate models

are developed, it could be incorporated in the current treatment paradigm in a variety of ways.

In the simplest scenario, if the model is highly accurate, it could simply replace the genomic

analysis altogether. Current state of the art radiogenomic models, such as the one shown in this

paper which represents moderate predictive performance, do not yet justify such substitution.

However, there are other ways in which even models with moderate performance could contribute

valuable information. The imaging data is available early in the process and therefore approximate

assessment of tumor biology before the surgery could still be of help in guiding the next steps. The

approximate imaging surrogate of molecular subtype would also be of particular use for patients

that do not immediately undergo surgical excision of the tumor. In such case, in the absence

of tissue analysis, the approximate classification by imaging could be of very high value since

genomic subtypes are highly correlated with patient outcomes. If biopsy results are available for a

tumor that has not been fully resected, the imaging surrogate of subtype can still be of use given

a potential high intra-tumor heterogeneity of the lesions and therefore a possibility that a local

biopsy does not accurately reflect the overall genomics of a tumor. Imaging offers a complete view

of a tumor. Finally, even if the overall accuracy is not perfect, it might be possible to operate at

a high positive predictive value or high predictive value and the surrogate imaging-based models

of genomic subtypes could be still used for triaging patients for genomic tests, even if it is a small

minority of the patients. For example, if based on imaging there is a high confidence that a tumor

is of a particular aggressive subtype, the patient could be treated accordingly without additional

expensive and invasive genomic testing. If on the other hand the imaging-based marker has low

confidence, then additional genomic test could be ordered.

An important step toward accurate and reproducible assessment of imaging features of lower-

grade gliomas is accurate segmentation of the tumors. While the annotation by radiologists is

considered a gold standard, a considerable inter observer variability has been documented for this

task. For the whole tumor segmentation of LGG on brain MRI, Dice coefficient between two
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expert raters is 84% with standard deviation of 2% [7]. This demonstrates that our algorithm falls

within acceptable level precision. At the same time, our algorithm provides a fully reproducible

and consistent way of tumor quantification for future cases.

Automatic segmentation of tumors such as the one showed in this study has multiple advantages.

First, it addresses the inter-observer variability described above. Since there is only one reader (the

computer algorithm), the inter-observer variability is non-existent. Furthermore, it addresses the

problem of intra-observer variability. The algorithm is deterministic which means that given the

same image, the algorithm will always perform an identical assessment. Finally, application of a

computer algorithm is inexpensive and fast. The performance of our segmentation algorithm in

terms of the mean Dice coefficient was 82% which puts it on a par with expert human readers.

This was achieved with the help of deep learning which has demonstrated similar phenomenal

performance in other applications.

Our results show that RNASeq R2 cluster, compared to other clusters, is associated with the

tumors of notably higher irregularity of shape as quantified by bounding ellipsoid volume ratio, an-

gular standard deviation and margin fluctuation. R2 cluster is in turn linked to considerably poorer

overall survival as compared with R1, R3, and R4 [1]. The same conclusion can be drawn for molec-

ular subtype of IDH wild type which indicates less favorable prognosis that is close to glioblastoma

prognosis [1]. It is associated with relatively high angular standard deviation. This is consistent

with findings obtained in the previous study for shape features extracted from manually segmented

tumors [6]. This points out to a conclusion that angular standard deviation, margin fluctuation,

bounding ellipsoid volume ratio, and potentially other features that measure the irregularity of

tumor shape may be prognostic of patient’s outcome.

6 Limitations

This study had limitations. It constitutes only a first step toward imaging-based surrogates of

genomic subtypes. Specifically, only three imaging features were considered. While these features

were selected based on prior evidence of their effectiveness and therefore are of high importance,

they constitute a small sample of different features that could be calculated including texture and

enhancement of the tumor and its surroundings. Furthermore, a fairly limited sample size was used

in the study (110 patients) since data that contains comprehensive genome-wide assays alongside

with imaging is still rare. While no separate validation set was available in this study, we utilized
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a commonly used cross-validation technique, which splits the data into training and test sets to

avoid a positive evaluation bias.

Regarding segmentation algorithms, there are many methods for performing automatic seg-

mentation of brain tumors that could be considered for comparison and to further improve our

results [28, 29]. First, regarding general approaches to segmentation, in [16] deep learning with

sliding-window approach was used. An improvement that significantly reduces computational com-

plexity is a fully convolutional neural network which allows for processing entire image in one for-

ward pass [30, 31]. In U-Net architecture, used in our study, additional skip connections between

encoder and decoder parts of the network are used [10]. Second, regarding network architecture,

different types have been proposed, e.g. ResNet [32], Inception [33], and DenseNet [34], which

were incorporated in segmentation models. Finally, various optimization functions for training

deep learning segmentation models were proposed. The most commonly applied is cross-entropy

loss, used also in classification models. However, for highly imbalanced segmentation tasks, loss

functions based on Dice similarity coefficient outperformed other loss functions in many applica-

tions [22, 35, 36, 37].

7 Conclusions

In conclusion, we demonstrated that features of MRI, extracted in a fully automatic manner using

deep learning algorithms, were associated with tumor molecular subtypes of lower-grade gliomas

determined using genomic assays. This shows promise for reproducible non-invasive imaging-based

surrogates of tumor genomics in brain cancer.
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