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A B S T R A C T

This study evaluates the performance of the random forest (RF) method on the prediction of the soil water
retention curve (SWRC) and compares its performance with those of nonlinear regression (NLR) and Rosetta-
based pedotransfer functions (PTFs), which has not been reported so far. Fifteen RF and NLR-based PTFs were
constructed using readily-available soil properties for 223 soil samples from Iran. The general performance of RF
and NLR-based PTFs was quantified by the integral root mean square error (IRMSE), Akaike’s information cri-
terion (AIC) and coefficient of determination (R2). The results showed that the accuracy of the RF-based PTFs
was significantly (P < 0.05) better than the NLR-based PTFs, and that the reliability of the NLR-based PTFs was
significantly (P < 0.01) better than the RF-based PTFs and all of the Rosetta-based PTFs. The average values of
the IRMSE, AIC and R2 of the RF method were 0.041 cm3 cm−3, −16997.7, and 0.987, and 0.053 cm3 cm−3,
−15547.5, and 0.981 for the training and testing steps of all PTFs, respectively, whereas the values for the NLR
method were 0.046 cm3 cm−3, −16616.4, and 0.984, and 0.048 cm3 cm−3, −16355.6, and 0.983 for the
training and testing steps, respectively. The PTF5 of the RF and NLR methods, with inputs of sand and clay
contents, bulk density, and the water content at field capacity and permanent wilting point, had the greatest R2

values (0.987 and 0.989, respectively), and the lowest IRMSE values (0.039 and 0.032 cm3 cm−3, respectively)
compared to other PTFs for the testing step. Overall, the RF method had less reliability for the prediction of the
SWRC compared to the NLR method due to overprediction, uncertainty of determination of forest scale and
instability in the testing step. These findings could provide the scientific basis for further research on the RF
method.

1. Introduction

Soil hydraulic properties are principle factors that control the
movement of water and solutes in the soil. Determination of the soil
hydraulic properties is required for many distinct applications linked
with irrigation, land use planning, drainage and drought risk assess-
ment (Dobarco et al., 2019). The soil water retention curve (SWRC) is
one of the most important soil hydraulic properties. It defines the re-
lationship between soil matric potential and soil water content (Hillel,
1998). The SWRC is a crucial parameter in soil and water management
for sustainable and improved agricultural production (Shwetha and
Varija, 2015). The SWRC depends principally on texture, structure and
bulk density (BD) of soils (Wassar et al., 2016). Many methods have
been introduced for the direct measurement of the SWRC in the

laboratory (e.g., the hanging water column and pressure plate methods)
(Klute, 1986) and in the field (e.g., tensiometric) (Bruce and Luxmoore,
1986). Measurements of the SWRC at several matric potentials can be
expensive, difficult and time-consuming, hence it is common to predict
it by modelling (Dobarco et al., 2019). Modelling of soil water is an
essential tool in evaluating the effects of different managements on crop
yield and environmental quality (Verhagen, 1997).

Pedotransfer functions (PTFs) translate easy-to-measure data that
we have (e.g., texture class, particle size distribution (PSD) and BD) into
difficult-to-measure data that we need (soil hydraulic data) (Bouma,
1989). Estimates of the SWRC by PTFs are valuable in many studies,
such as hydrology, soil mapping and hydrogeology (Børgesen and
Schaap, 2005). The point- and parametric-based PTFs are generally
developed to predict water content at specific matric potential values
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and the entire SWRC, respectively, by multiple linear (MLR) and non-
linear regression (NLR) methods (Gunarathna et al., 2019b; Merdun
et al., 2006; Minasny et al., 1999; Rajkai et al., 2004; Tomasella et al.,
2000). Data mining techniques including artificial neural networks
(ANNs) (Bayat et al., 2013a; Bayat et al., 2013b; Gunarathna et al.,
2019a; Koekkoek and Booltink, 1999; Pachepsky et al., 1996), group
method of data handling (GMDH) (Bayat et al., 2011; Neyshaburi et al.,
2015; Pachepsky and Rawls, 1999), nonparametric nearest neighbor
technique (Botula et al., 2013; Gunarathna et al., 2019a; Haghverdi
et al., 2015; Nemes et al., 2006; Nguyen et al., 2017) and support vector
machine (SVM) (Khlosi et al., 2016; Lamorski et al., 2008; Lamorski
et al., 2014; Twarakavi et al., 2009), have been applied successfully for
PTF development.

Random forest (RF), or random decision forests, has become a
popular approach as an ensemble learning method for prediction and
classification (Verikas et al., 2011). The RF method has been developed
by Breiman (2001) as an expansion of the classification and regression
trees (CART) technique to provide better performance of prediction
results (Wiesmeier et al., 2011). So far, few studies have been carried
out on the application of the RF method in soil science. Tóth et al.
(2014) applied the RF method to analyze the relationship between soil
water content at four matric suctions (0.1, 33, and 1500 kPa, and
150 MPa) and Hungarian soil map information. They found that the
importance of soil properties in the prediction of the soil water content
varied according to soil type and matric suction. Recently Szabó et al.
(2019) have developed PTFs based on RF and geostatistics methods to
map soil hydraulic properties, such as water contents at saturation, field
capacity and wilting point, for the Balaton catchment area in Hungary.
Araya and Ghezzehei (2019) compared the performances of four ma-
chine-learning algorithms including the k‐nearest neighbors (kNNs),
support vector regression (SVR), RF, and boosted regression tree (BRT)
for prediction of saturated hydraulic conductivity. They found that the
BRT model outperformed the other algorithms closely followed by the
RF model. Gunarathna et al. (2019a) tested three machine-learning
algorithms including ANN, kNN, and RF to estimate volumetric water
content at matric suctions of 10, 33 and 1500 kPa for soils in Sri Lanka.
They recommended that the PTFs to be developed using the RF algo-
rithm. Ließ et al. (2012) studied uncertainty in the spatial prediction of
soil texture by comparison of the RF and regression tree techniques for
56 soil profiles and found that the former method provided a better
result. Also, Wiesmeier et al. (2011) utilized the RF technique to de-
velop digital mapping of the soil organic matter content in 120 soil
profiles. They found that the prediction accuracy of the RF modeling
was acceptable. A review of literatures therefore revealed that the RF
data mining technique has been applied to develop PTFs to predict
specific points of the SWRC, such as field capacity and permanent
wilting point, or particular properties such as saturated hydraulic
conductivity, but it has not been used to develop parametric-based PTFs
of the van Genuchten model parameters, so far. Therefore, the objective
of the present study was to develop simple parametric-PTFs to predict
the SWRC with greater accuracy and reliability using a novel approach
with the RF data mining technique. We compare its performance with
those of the multiple NLR approach and with Rosetta software (Schaap
et al., 2001) on the prediction of the SWRC through finding the best

input variables and PTFs for the SWRC.

2. Materials and methods

2.1. Sample collection and determination

In the present study 223 undisturbed and disturbed soil samples
were taken from six provinces of Iran including west Azarbaijan (35° 8′
− 39° 46′ N, 44° 3′ − 47° 23′ E; 60 data), Hamedan (33° 59′ − 35° 48′
N, 47° 34′ − 49° 36′ E; 55 data), Kermanshah (33° 41′ − 35° 17′ N, 45°
24′ − 48° 6′ E; 26 data), Kurdistan (34° 45′ − 36° 31′ N, 45° 31′ − 48°
13′ E; 22 data), Mazandaran (35° 46′ − 36° 58′ N, 50° 21′ − 58° 08′ E;
30 data) and Fars (27° 2′ − 31° 42′ N, 50° 42′ − 55° 38′ E; 30 data).
Steel cylinders, measuring 5.1 cm in diameter and 3.5 cm in height,
were used to collect the undisturbed samples. Since the sampling was
done from different locations of the various provinces, the topsoil and
subsoil layers of soil at different locations had different depths and
thicknesses. We collected samples from the center of the topsoil and
subsoil layers, which represented the pedological A and B horizons,
respectively. The sampling depths varied from 10 to 35 cm for topsoil
(208 samples) and from 20 to 45 cm for subsoil (15 samples), reflecting
the variation in the soil profiles.

Soil PSD was analyzed by the hydrometer method (Gee and Or,
2002), and the geometric mean and standard deviation of particle
diameter (dg and δg, respectively) were calculated by equations from
Shirazi and Boersma (1984). Organic matter (OM) content was de-
termined by the Walkley and Black (1934) method and BD by the core
method (Blake and Hartge, 1986). Total porosity (TP) was calculated
from BD and particle density, and the saturated hydraulic conductivity
(Ks) was measured with a constant head permeameter (Klute and
Dirksen, 1986). The SWRC was constructed by measuring the volu-
metric water content at matric suctions of 0 (saturation status of soil
samples), 1, 2 and 5 kPa with a sandbox apparatus, and at 10, 25, 50,
100, 200, 500, 1000 and 1500 kPa with a pressure plate apparatus.
Undisturbed samples were used for measurement of the matric suctions
from 0 to 100 kPa and disturbed samples were used for matric suctions
from 200 to 1500 kPa. Two key points in the SWRC are the water
contents at field capacity (30 kPa suction; θFC) and permanent wilting
point (1500 kPa suction; θPWP).

2.2. Soil-water retention equation

The van Genuchten–Mualem (Eq. (1)) model (Mualem, 1976; van
Genuchten, 1980) was utilized to describe the SWRC data.

= + ×
+ ( )h

( ) 1
[1 ( ) ]

r s r
n 1 n

1
(1)

where θr and θs are residual and saturated water contents (cm3 cm−3),
respectively, and h is the soil water suction (kPa). The parameter α is
related to the inverse of the air entry pressure (> 0, kPa−1) and n (> 1,
dimensionless parameter) is related to the pore size distribution of the
soil (van Genuchten, 1980). In the present study, van Genuchten model
parameters θr, θs, α and n were obtained using the MATLAB software
(MathWorks, 2018).

Nomenclature

S Sand content (%)
C Clay content (%)
dg Geometric mean diameter (mm)
δg Geometric standard deviation (-)
BD Bulk density (g cm−3)
TP Total porosity (cm3 cm−3)
θFC Water content at field capacity, 33 kPa (cm3 cm−3)

θPWP Water content at 1500 kPa (cm3 cm−3)
OM Organic matter content (%)
Ks Saturated hydraulic conductivity (cm day−1)
θs Saturated water content (cm3 cm−3)
θr Residual water content (cm3 cm−3)
RF Random forest
NLR Nonlinear regression
SWRC Soil water retention curve
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2.3. Data pre-processing

Data pre-processing and regression assumptions, including detec-
tion of outliers, normality test of the residuals, multicollinearity and
independence of the residuals, were applied for all variables (Berry,
1993). The outliers in the data were identified by the inter-quartile
range (IQR) method (Seo, 2006) and were replaced by the lower and
upper threshold values (MathWorks, 2018). Before developing PTFs, all
variables were evaluated by Kolmogorov-Smirnov normality and mul-
ticollinearity tests by the SPSS 24 software (IBM, 2016). The degree of
multicollinearity in the PTFs was tested by the variance inflation factor
(VIF = 1/1-R2j , where R2j is the R2 value obtained by regressing the jth

predictor on the remaining predictors) (Hocking, 2013). Also, to avoid
multicollinearity between textural contents, the silt fraction was not
used as a predictor. The variables clay content, sand content, dg, δg,
OM, Ks, α and n had non-normal distributions, therefore, transforma-
tions were applied to normalize them.

2.4. Developing PTFs

The PTF inputs were arranged in four steps (Fig. 1). The first step
(PTFs 1–5) was based on basic soil properties (i.e., sand content (%),
clay content (%), BD (g cm−3), θFC (cm3 cm−3) and θPWP (cm3 cm−3))
according to Rosetta-based PTFs (Schaap et al., 2001) for comparison of
SWRC estimates by other methods. The parameters of the van Gen-
uchten model were predicted in all steps. In the second step (PTFs 6–9),
dg (mm) and δg were used as new inputs instead of sand and clay
contents in the previous step to evaluate the efficiency of using statis-
tical descriptors of PSD to predict the parameters of the van Genuchten
model. To build the third step (PTFs 10–12), TP (cm3 cm−3) replaced

BD from PTFs 3–5 to evaluate the effect of using TP instead of BD on the
prediction of the parameters of the van Genuchten model. In other
words, the purpose of the second and third steps was to evaluate
whether the use of another form of descriptors of soil structure (TP
instead of the BD) and soil texture (dg and δg instead of the sand and
clay contents) would improve the accuracy of the estimates or not. In
the last step, PTFs 13–15 were developed by including OM (%) and Ks

(cm day−1) as new variables to evaluate the efficiency of these instead
of the water content at specific matric suctions on the prediction of the
van Genuchten model parameters. The input variables of the 15 PTFs
are shown in Fig. 1.

To compare the results of PTFs 1–5 of the RF and NLR methods with
those of the Rosetta models, the parameters of the van Genuchten
model (θr, θs, α and n) were estimated by the PTFs built in the Rosetta
software (PTFs 1–5), using the measured values of input variables based
on PTFs 1–5 as predictors in the Rosetta program. The estimated
coefficients of the van Genuchten model were used to calculate the
estimated water content at matric suctions from 0 to 1500 kPa (esti-
mated SWRCs). Then curve-by-curve comparison of the measured and
estimated SWRCs was performed with different evaluation statistics.
Since there is no training step in the Rosetta software, the results of the
Rosetta model was only compared with the results of the testing step.
To evaluate the effect of using different descriptors of PSD on the
prediction of the SWRC, PTFs 6, 7, 8 and 9 from the second step were
compared with PTFs 2, 3, 4 and 5 from the first step, respectively
(Fig. 1). In the same way, to evaluate effect of using different de-
scriptors of soil structure on the prediction of the SWRC, PTFs 10, 11
and 12 from the third step were compared with PTFs 3, 4 and 5 from
the first step, respectively. Also, the PTFs 13–15 were compared with
the PTFs 4 and 5 to find out the efficiency of OM and Ks variables as

Fig. 1. Input variables of the 15 pedotransfer functions (PTFs) for predicting the van Genuchten model parameters (θr, θs, α and n) of the soil water retention curve
(SWRC). A list of abbreviations is available in the notation box.
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predictors (Fig. 1).
In the present study, the k-fold cross validation approach (Efron and

Tibshirani, 1994) was utilized to obtain training and testing datasets for
each PTF. The number of folds (i. e., k) was obtained by trial and error.
To do so, some PTFs, selected randomly, were developed with 10, 15
and 20-fold cross-validation. Then, the k value which resulted in the
best performance of the PTFs, was selected to develop all PTFs in this
study. The results showed that 20-fold cross validation performed better
than the other folds in most of the PTFs (Table 1). Therefore, 20-fold
cross validation was selected to develop PTFs in this study. Based on
this approach, the 223 samples were randomly divided into 20 subsets
and 20 models were developed by each predicting technique for each
PTF. In each model, training and testing datasets were based on a ratio
of 19:1. Finally, the average of the results of 20 models was calculated
for each PTF. Therefore, all data were used for the training and testing
steps of the PTFs.

2.5. Description of modeling techniques

2.5.1. Multiple nonlinear regression
A NLR model based on a second-order polynomial for the prediction

of the response variable y from a number of p predictors can be written
as (Rawls and Brakensiek, 1985):

= + +
=

y a b x c x( )
i

p

i i i i
1

2

(2)

where a is the intercept, and two regression coefficients bi and ci are
determined for every input variable xi.

2.5.2. Random forest: An ensemble of regression trees
RF has become a popular tool for regression and classification

problems. The RF is an ensemble method based on the regression tree
methodology (i.e., CART) that was introduced for better performance
(Breiman, 2001). The model building process in the RF is the same as
that in the CART method but without pruning (Breiman, 1984). Also,
whereas a regression tree only grows by a single tree the RF grows by
forest of trees. In other words, unlike a regression tree, in the RF for
each tree only a subset of the input variables is applied. The number of
inputs in each tree and also the number of trees in the forest can be
distinct and it depends on the dataset. Least-squares boosting (LSBoost)
fits regression ensembles. At every step, the ensemble fits a new learner

to the difference between the observed response and the aggregated
prediction of all learners grown previously. The ensemble fits to mini-
mize the mean-squared error (MathWorks, 2018). The number of trees
used here was 16 which was established by trial and error. An archi-
tecture of the RF algorithm is shown in Fig. 2 where input matrix X
consists of N samples and M input variables (sample set S = [(xi, yi),
i = 1, 2, …, N], (X, Y) ∈ RM × R). The bootstrap method is utilized to
construct n tree sample sets from the sample set S. At each bootstrap
sample, about one-third of the dataset S was utilized as out of the
bootstrap data or out-of-bag (OOB) data; whereas the rest is called in-
bag data (Ibrahim and Khatib, 2017) (Fig. 2). Modeling of the regres-
sion tree is done for each sample set. In the RF algorithm, all individual
trees give a predictive result. The final prediction value is calculated
based on an average result of all individual trees (Wiesmeier et al.,
2011). The prediction error is defined as follows (Liaw and Wiener,
2002):

= =MSE
y y

n

( )
OOB

i

n

i i
OOB

tree

1

2
tree

(3)

where MSEOOB is the mean square error of the OOB data prediction, ntree
is the number of trees, and yi and yi

OOB are the actual value of the OOB
data and the average of all OOB predictions, respectively. Among all the
ensemble methods, the RF method has high capability in solving clas-
sification and regression problems, because the RF method combines
several simple regression trees to better optimize prediction (Zaklouta
and Stanciulescu, 2012). The RF method increases differences for each
single tree through random selection of the training samples and dif-
ferent variables at each splitting node. In the present study, the NLR
and RF algorithms were implemented by fitnlm and fitensemble func-
tions in the MATLAB software, respectively. (MathWorks, 2018).

2.6. Evaluation criteria

The estimated water content was computed by estimated para-
meters of the van Genuchten model for each PTF at matric suctions
from 0 to 1500 kPa. For curve-by-curve comparison of the measured
and predicted SWRCs, different evaluation statistics were used. Various
statistical criteria including integral root mean square error (IRMSE),
integral mean error (IME) (Tietje and Tapkenhinrichs, 1993), Akaike’s
information criterion (AIC) (Akaike, 1974) and coefficient of

Table 1
The results of 10, 15 and 20-fold cross-validation (k) for van Genuchten model parameters of the soil water retention curve derived from nonlinear regression (NLR)
and random forest (RF) techniques based on root mean square error (RMSE) for pedotransfer functions PTF 3, 5 and 11 in the train and test datasets.

θr θs α n

RMSE RMSE RMSE RMSE

Train Test Mean Train Test Mean Train Test Mean Train Test Mean

PTF3 k = 10 NLR 0.058 0.060 0.059 0.063 0.065 0.064 1.017 1.037 1.027 0.426 0.436 0.431
RF 0.052 0.061 0.056 0.058 0.073 0.066 0.893 1.084 0.989 0.374 0.442 0.408

k = 15 NLR 0.058 0.060 0.059 0.064 0.064 0.064 1.017 1.030 1.024 0.426 0.434 0.430
RF 0.052 0.061 0.057 0.058 0.070 0.064 0.894 1.033 0.964 0.374 0.441 0.408

k = 20 NLR 0.058 0.060 0.059 0.064 0.064 0.064 0.064 0.064 0.064 0.426 0.437 0.432
RF 0.051 0.060 0.056 0.057 0.071 0.064 0.057 0.071 0.064 0.368 0.442 0.405

PTF5 k = 10 NLR 0.051 0.053 0.052 0.053 0.054 0.054 0.764 0.796 0.780 0.380 0.397 0.389
RF 0.043 0.056 0.050 0.046 0.056 0.051 0.675 0.869 0.772 0.327 0.411 0.369

k = 15 NLR 0.051 0.053 0.052 0.053 0.055 0.054 0.764 0.790 0.777 0.381 0.399 0.390
RF 0.044 0.054 0.049 0.046 0.055 0.050 0.679 0.848 0.763 0.329 0.421 0.375

k = 20 NLR 0.051 0.053 0.052 0.053 0.055 0.054 0.765 0.789 0.777 0.381 0.399 0.390
RF 0.042 0.054 0.048 0.044 0.054 0.049 0.654 0.842 0.748 0.316 0.412 0.364

PTF11 k = 10 NLR 0.058 0.061 0.060 0.065 0.067 0.066 1.018 1.052 1.035 0.431 0.448 0.440
RF 0.050 0.061 0.056 0.047 0.057 0.052 0.770 0.978 0.874 0.370 0.443 0.406

k = 15 NLR 0.058 0.061 0.060 0.065 0.067 0.066 1.019 1.037 1.028 0.432 0.447 0.439
RF 0.050 0.060 0.055 0.047 0.057 0.052 0.770 1.009 0.889 0.369 0.450 0.410

k = 20 NLR 0.058 0.060 0.059 0.065 0.065 0.065 1.020 1.024 1.022 0.432 0.439 0.435
RF 0.049 0.061 0.055 0.046 0.056 0.051 0.745 0.964 0.855 0.361 0.443 0.402
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determination (R2) (Wösten et al., 2001), were utilized to assess the
predictive ability of the RF and NLR algorithms, which are defined as:

=IRMSE cm cm
b a

y y d h( ) 1 ( ) log | |
a

b

i i
3 3 2

1
2

(4)

=IME cm cm
b a

y y d h( ) 1 ( ) log | |
a

b

i i
3 3

(5)

= × +
=

AIC N
y y

N
Pln

( )
2

i

N
i i

1

2
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= =

=

R
y y

y y
1
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( ¯ )

i

N

i i

i

N

i i

2 1

2

1

2
(7)

where h is the matric suction (kPa), yi, yi and ȳi are the measured,
predicted and average of the measured values of the water content,
respectively, a and b values define the matric suction range over which
the experimental curve is measured, i.e., 0 and 1500 kPa, respectively,
and P and N are the number of parameters and the number of points
that were considered in the SWRC, respectively. In calculating the AIC,
N is the total number of points that were considered in the SWRC of all
soil samples (i. e., N = number of soil samples × number of paired
points of the suction-water content for each soil sample), and i is paired
points of the suctions-water content of the SWRC of each soil sample.

To evaluate the performance of each method in different PTFs, the
effect of method as the first factor at two levels in the training step (i.e.,
NLR and RF methods) and at three levels in the testing step (i.e., NLR,

RF and Rosetta methods), and the different PTFs as the second factor at
15 levels (PTF1 to PTF15), were investigated using a two-way analysis
of variance (ANOVA) with a randomized complete block design, based
on the IRMSE of prediction of the SWRC. The IRMSE criterion calculates
the total error, including bias and random errors, and is a more ap-
propriate criterion for evaluating the accuracy and reliability of the RF
and NLR methods compared to other criteria (Chai and Draxler, 2014).
Therefore, to compare the predicting accuracy and reliability of the RF
and NLR methods, the average values of the IRMSE was compared with
Duncan’s test by MathWorks (2018) software.

3. Results and discussion

3.1. Descriptive statistics of the soil properties

Table 2 summarizes some basic descriptive statistics for soil vari-
ables of the entire dataset used for the development of the PTFs. It can
be seen that the average and maximum of clay content were 21.4 and
48%, respectively. The OM ranged from 0.17 to 4.41% with a mean of
1.84%, which was low due to the arid and semi-arid climates of Iran.
The variation in soil texture is shown graphically in the United States
Department of Agriculture (USDA) textural triangle (Fig. 3). Con-
sidering the distribution and range of the variables (Fig. 3 and Table 2),
the dataset can be considered as representative of soils in arid and semi-
arid regions of Iran.

3.2. Correlation of input and output variables

The simple correlation coefficients between all variables are de-
picted by matrix plot in Fig. 4. Correlation analysis was done between

Fig. 2. An architecture of a random forest.
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normalized input and output variables. The correlation test was not
performed for the θr variable, because its value was zero in 138 out of
223 soil samples, as has been reported in other studies (Campbell and
Horton Jr, 2002; Rawls et al., 1991; Tomasella et al., 2000) for θr
variable. Clay and sand contents, θFC, θPWP, dg and OM had the greatest
significant correlations with the parameters of the van Genuchten
model (Fig. 4), which was consistent with other studies (Dexter et al.,

2008; Nemes et al., 2006). For example, the correlation coefficient
between clay content and θs (r = 0.323) is close to that between OM
and θs (r = 0.268). Also, the results showed that there were significant
correlations between θPWP and input variables of clay content (+), sand
content (–), BD (–), OM (+) and Ks (–), and also between θPWP and θs

(+) and n (–) parameters of the van Genuchten model (Fig. 4). Botula
et al. (2012) also found the same observation for the correlation of θPWP

with sand and clay contents and BD of tropical Lower Congo soils.
Nevertheless, with regard to these correlation coefficients, clay and
sand contents, θFC, dg and OM can be used for developing PTFs to es-
timate the SWRC. On the contrary, there was no correlation between Ks

and the van Genuchten model parameters. There are many cases, where
two variables might not show a strong simple correlation, but may
show a strong association in the regression, along with other predictors.
In other words, the simple correlation coefficient is a way to show the
relationship between independent and dependent variables, but it
cannot show a model for the relationship between these two variables,
when other independent variables have been used in a multiple re-
gression (Simmons et al., 2011). The result of multiple regression
analysis with backward selection method showed that the Ks variable
remained in the PTF14 and PTF15 for all the van Genuchten model
parameters. Some of the regression equations with backward selection
method are shown in the following as examples:

= + × + × + × =Clay Sand K R0.69 0.22 0.278 0.20 , 0.31r s

(8)

= + × + × + × =Clay BD K R3.72 0.23 0.17 0.282 , 0.33s (9)

= + × + × =n Sand K R1.76 0.24 0.164 , 0.30s (10)

On the other hand, the non-linear correlations between variables are
very important in this study. Both the multiple NLR approach and RF
data mining technique are non-linear prediction methods. Fig. 4 only
shows simple linear correlation between variables, but there may be
non-linear correlations between variables, which may affect the esti-
mation of the dependent variables. For example, the results of non-
linear correlations showed that Ks had strong correlations with θs and α
of the van Genuchten model parameters by logarithmic
(θs = 0.652–0.027 × lnKs, R = 0.62**) and power
(α = 0.007 × Ks

0.283, R = 0.57**) equations, respectively, which were
greater than their simple correlations

3.3. Development of the PTFs using the RF and NLR methods

Results of the multicollinearity analysis (VIF) are shown in Table 3.
The VIF values showed low levels of multicollinearity among the in-
dependent variables (VIF < 10) (Khodaverdiloo et al., 2011).

3.3.1. Comparing the accuracy and reliability of the RF and NLR methods
Table 4 shows the results of the ANOVA of the IRMSE of prediction

of the SWRC by different methods and PTFs. The effect of methods and
PTFs, and their interaction, on the IRMSE was significant at P < 0.01,
0.01 and 0.05, respectively, in the training step, and at P < 0.01, 0.01
and 0.01, respectively, in the testing step. Therefore, we focus on the
results and discussion of the comparison of the method × PTF inter-
action effects.

Results of the prediction of the SWRC through the van Genuchten
model using the NLR and RF- based PTFs are depicted in Figs. 5 and 6
for the training and testing steps, respectively. The accuracy and re-
liability are used to express the performance of the PTFs in the training
and testing steps, respectively.

The results of the first to fourth steps of the training dataset (Fig. 5)
showed that the RF method had better performance compared to the
NLR method for the prediction of the SWRC in all PTFs in terms of the
IRMSE and R2 criteria and the differences were significant (P < 0.05)
for PTFs 2, 3, 6, 7, 10, 13, 14 and 15 in terms of the IRMSE criterion.

Table 2
Some descriptive statistics of the measured soil variables and parameters of the
van Genuchten model of the soil water retention curve for the entire dataset
(223 soil samples).

Variablesa Mean CV (%) Minimum Maximum P-value

Clay content (%) 21.39 54.05 3.47 48.00 0.00
Log (clay content) 1.27 19.08 0.54 1.68 0.66
Sand content (%) 35.45 48.40 5.90 89.80 0.00
Sand content* −0.01 −14350.94 −3.40 3.14 0.90
Bulk density (g cm−3) 1.43 10.97 1.03 1.84 0.83
θFC (cm3 cm−3)$ 0.33 20.44 0.15 0.55 0.45
θPWP (cm3 cm−3) 0.18 26.21 0.04 0.31 0.90
dg (mm) 0.07 86.62 0.00 0.21 0.00
Log (dg) −1.33 −27.91 −2.34 −0.67 0.77
δg (-) 11.57 29.39 4.54 19.97 0.00
δg* −0.01 −9872.87 −2.53 1.80 0.96
Total porosity (cm3

cm−3)
0.46 13.26 0.31 0.61 0.67

Organic matter content
(%)

1.84 53.68 0.17 4.41 0.00

(Organic matter
content)(1/4)

1.13 14.83 0.64 1.45 0.86

Ks (cm day−1) 169.10 96.58 0.06 530 0.00
(Ks)(1/4) 3.23 30.37 0.50 4.80 0.59
θr (cm3 cm−3) 0.04 158.05 0.00 0.17 0.00
θs (cm3 cm−3) 0.52 16.26 0.35 0.70 0.56
α (kPa−1) 0.06 115.62 0.00 0.29 0.00
α* 0.01 8889.14 −2.93 2.19 0.93
n 1.24 9.80 1.08 1.48 0.00
Ln (n-1) −1.55 −30.92 −2.52 −0.74 0.05

*Normalized form of sand content: 0.91 + 1.06 × Ln((sand content- 4.3)/
(100.2-sand content)); normalized form of δg: −1.04657 + 1.39359 × Asinh
((δg- 8.4)/3.04); and normalized form of α: 3.6 + 0.92 × Ln((α- 8.2 × 10−6)/
(1.6-α)). P-value is a significance value for normality test.
$. A list of abbreviations is available in the notation box.

a CV, coefficient of variation.

Fig. 3. Variation of soil texture classes for the dataset (n = 223) on the United
States Department of Agriculture (USDA) textural triangle.

M. Rastgou, et al. Computers and Electronics in Agriculture 174 (2020) 105502

6



Also, the accuracy of the RF method was better than that of the NLR
method in 80% of the PTFs (with the exception of the PTFs 5, 9 and 12)
in terms of the AIC criterion. In the training step, the values of the
IRMSE of the first to fourth steps for the NLR model varied from 0.030
to 0.063 cm3 cm−3 and these were larger than those in the RF model,
which ranged from 0.028 to 0.061 cm3 cm−3, respectively. Also, the
values of the R2 of the first to fourth steps for the RF model varied from
0.981 to 0.992, and this was larger than those in the NLR model, which
ranged from 0.979 to 0.991 (Fig. 5).

The results of the first to fourth steps of the testing dataset (Fig. 6)
showed that the NLR method had a better performance compared to the
RF method on the prediction of the SWRC for PTFs 5, 8, 9 and 15 only
in terms of the IRMSE criterion (significant at P < 0.05). In the other
PTFs there were no significant differences between the IRMSE of the
two methods and the R2 and AIC criteria were comparable. In the
testing step, the values of the IRMSE and AIC of the first to fourth steps

Fig. 4. Correlation matrix plot between input and output variables. ** Correlation is significant at the P < 0.01 level. * Correlation is significant at the P < 0.05
level. A list of abbreviations is available in the notation box.

Table 3
The variance inflation factor (VIF) values for normalized form of the input variables.

PTFs Clay* (%) Sand (%) BD$ (g cm−3) θFC (cm3 cm−3) θPWP (cm3 cm−3) dg (mm) δg (–) TP (cm3 cm−3) OM (%) Ks (cm day−1)

PTF2 1.42 1.42
PTF3 1.43 1.52 1.10
PTF4 1.45 1.56 1.25 1.31
PTF5 1.79 1.58 1.27 2.48 2.56
PTF6 1.00 1.00
PTF7 1.11 1.11 1.01
PTF8 1.25 1.33 1.01 1.22
PTF9 1.28 2.50 2.73 1.34 1.22
PTF10 1.55 1.43 1.11
PTF11 1.58 1.46 1.32 1.26
PTF12 1.60 1.79 2.49 2.56 1.28
PTF13 1.48 1.65 1.25 1.14
PTF14 1.55 1.64 1.14 1.06
PTF15 1.55 1.65 1.25 1.15 1.06

*Normalized form of the input variables is available in Table 2.
$ A list of abbreviations is available in the notation box.

Table 4
Analysis of variance of the integral root mean square error (IRMSE) of the
prediction of the soil water retention curve by different methods (nonlinear
regression and random forest) and pedotransfer functions (PTFs 1–15) for both
the train and test datasets.

Source Degree freedom Mean square F-value P-value

Train Repeat (Block) 222 0.007 19.09 < 0.0001
PTFs 14 0.062 180.68 < 0.0001
Methods 1 0.038 109.69 < 0.0001
PTFs × Methods 14 0.001 1.78 0.0356
Error 6288 0.0003

Test Repeat (Block) 222 0.010 16.04 < 0.0001
PTFs 14 0.073 117.22 < 0.0001
Methods 2 0.656 1056.43 < 0.0001
PTFs × Methods 18 0.002 3.68 < 0.0001
Error 7398 0.0006
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Fig. 5. Results of the prediction of the soil water retention curve (SWRC) through the van Genuchten model by the nonlinear regression (NLR) and random forests
(RF) techniques for the training step as reflected in the integral mean error (IME), integral root mean square error (IRMSE), coefficient of determination (R2), and
Akaike’s information criterion (AIC). Vertical lines indicate the standard deviations. Means with the same letter are not significantly different at the significance level
of P < 0.05 (IRMSE only).
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for the RF models varied from 0.038 to 0.065 cm3 cm−3 and from
−13476.2 to −17646.8, respectively, and these were comparable to
those of the NLR models (with the exception of PTF1), which ranged
from 0.032 to 0.064 cm3 cm−3 and from −14096.1 to −19234.1, re-
spectively (Fig. 6). Also, the values of the R2 of the first to fourth steps
for the NLR models varied from 0.979 to 0.989, and this was compar-
able to those of the RF models for all PTFs, which ranged from 0.977 to
0.987 (Fig. 6).

In each of the PTFs 1 to 5, the NLR and RF methods performed
better (P < 0.05) than the Rosetta PTFs. Fig. 6(A) shows that the
Rosetta-based PTFs had greater values of the IME criterion compared to
the NLR and RF-based PTFs. The reason can be attributed to the various
methods of optimizing parameters. The Rosetta method has only one
ANN type with particular structure. In other words, the number of
hidden layers (one) and neurons (six) and also the activation function
(tangent hyperbolic) are constant for prediction of the SWRC in the
Rosetta software. Therefore, the Rosetta method is not a dynamic ap-
proach for optimization, whereas the parameters of the RF method,
such as number of splits and trees, and learning rate continuously and
dynamically, change to achieve the best result of the objective function.
The Rosetta method was developed from a large dataset, while the soils
used in the present study were collected from a completely different
climate area that was not represented in the Rosetta's database. Also,
presented RF and NLR models were trained using this particular dataset
while Rosetta had been trained using a different dataset. In other words,
the results of the PTFs in the testing step were based on a soil dataset
used for training. This could be a reason for Rosetta's poor performance
compared with the RF and NLR methods. As a result, it seems that the
universal portability of the Rosetta method can be limited. The testing
results are in agreement with Touil et al. (2016) who found that the
parametric-based PTFs of nonlinear models gave a better prediction
than the Rosetta PTFs. The Fig. 5(A) and 6(A) showed that all of the IME
values were negative for all PTFs at the training and testing steps. There
are regular errors (bias) in the prediction of the SWRC that can be
corrected by finding a correction coefficient, which would improve the
accuracy and reliability of the estimations (Bayat et al., 2015).

The RF method in the training section gave better predictions of the
SWRC compared to the NLR method (Fig. 5). The RF method produces
low bias and variation in the data by majority voting compared to a
single regression tree (Cheng et al., 2019; Matin and Chelgani, 2016). In
this connection, the results of the standard deviations (SD) of evalua-
tion criteria in each PTF for the training step (Fig. 5) showed that the RF
method had a lower variation than the NLR method. Accordingly, the
values of SD for the IRMSE and R2 criteria were 0.024 and 0.022, re-
spectively, for the NLR model and these were larger than those in the
RF model, which were 0.020 and 0.017, respectively, for the training
step. On the other hand, the RF method can be applied to high

dimensional datasets in regressions (Janitza et al., 2016; Zhao et al.,
2016).

As depicted in Fig. 6, unlike in the training section, the NLR method
gave better predictions in the testing section compared to the RF
method for the prediction of the SWRC. In other words, the reliability of
the NLR method was better than that of the RF method in all the PTFs.
The NLR equations can be more useful than the MLR method for the
prediction of the SWRC due to their high flexibility (Williams et al.,
1992). In other words, the NLR models have capacity to capture non-
linear relationships in the dataset. Tomasella et al. (2000) successfully
developed parametric PTFs for soils of the humid tropics using poly-
nomials of nth order. Medrado and Lima (2014) successfully developed
NLR-based PTFs to predict the four parameters of the van Genuchten
model for Brazilian soils. Also, Touil et al. (2016) developed para-
metric-PTFs to predict the SWRC using the NLR method from more
readily-available properties such as soil texture, OM content, and BD for
242 soil samples of Algeria. They reported that the parametric-PTFs had
better performance than Rosetta-based PTFs.

In the present study, in contrast to the NLR method which had less
differences between the error values of the training and testing steps,
the error values of the RF method in the testing dataset were much
greater than those in the training dataset. These results can be due to
overprediction phenomenon in the RF method. Gupta et al. (2017)
expressed that one of the disadvantages of the RF method is the over-
prediction. In other words, the RF method is a ‘greedy’ method that
easily leads to overprediction and instability in the testing step and
solving this problem can be of great significance for improving the
reliability of the RF method (Liu, 2014). Also, Ma et al. (2005) reported
instability in results of the RF method. The forest size developed by the
RF has not been clearly defined (Liu, 2014). Therefore, oversized scale
can decrease the reliability and efficiency of the SWRC prediction. Hong
et al. (2016) evaluated landslide susceptibility maps produced using the
RF method and compared these maps with those from statistical-based
methods, such as logistic regression, and their study revealed that the
performance of the statistical-based methods was better than that of the
RF method. A similar result was reported by Esposito et al. (2014).
Generally, RFs are best suited for problems with many input variables
and a reasonable sample size. According to our results (Figs. 5 and 6),
performance of the PTFs was improved by increasing the number of
input variables.

3.3.2. Evaluation of the effect of the basic soil properties on prediction
performance of the SWRC

A significant improvement was achieved in the accuracy of PTF5
(with the inputs of Sand content + Clay content + BD + θFC + θPWP)
compared to other PTFs (with the exception of PTFs 4, 8, 9, 11 and 12)
by both NLR and RF methods in terms of the IRMSE criterion (Fig. 5).

Fig. 5. (continued)
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Fig. 6. Results of the prediction of the soil water retention curve (SWRC) through the van Genuchten model by the Rosetta software, nonlinear regression (NLR) and
random forests (RF) techniques for the testing step as reflected in the integral mean error (IME), integral root mean square error (IRMSE), coefficient of determination
(R2), and Akaike’s information criterion (AIC). Vertical lines indicate the standard deviations. Means with the same letter are not significantly different at the
significance level of P < 0.05 (IRMSE only).
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Among the PTFs of each method (RF or NLR), PTF5 had the greatest R2

(0.992 and 0.991, respectively) and the smallest IRMSE (0.028 and
0.03, respectively) and AIC (-19432 and −19571.1, respectively) in the
training step of the prediction of the SWRC. In connection with the
importance of input variables, an improvement was achieved in the
reliability of the prediction of the SWRC by PTFs 9 (with the inputs of
dg + δg + BD + θFC + θPWP) and 12 (with the inputs of Sand con-
tent + Clay content + TP + θFC + θPWP) from the second and third
steps, using the NLR (IRMSE = 0.032 cm3 cm−3, AIC = -19234.1 and
R2 = 0.989) and RF (IRMSE = 0.038 cm3 cm−3, AIC = -17646.8 and
R2 = 0.987) methods, respectively, in comparison with the other PTFs
of each method (Fig. 6). However, the differences of PTFs 9 and 12 were
not significant (P < 0.05) with PTFs 4, 5, 8, 11 and 12 in the NLR
method and with PTFs 4, 5, 8, 9 and 11 in the RF method, respectively,
in terms of the IRMSE criterion.

3.3.2.1. Effect of using different input variables of PSD and soil structure as
predictors on the SWRC prediction. To evaluate the effect of using
different descriptors of the PSD on the prediction of the SWRC, PTFs
2, 3, 4 and 5 (clay and sand contents) from the first step were compared
with PTFs 6, 7, 8 and 9 (dg and δg) from the second step, respectively. In
the same way, to evaluate the effect of using different descriptors of soil
structure on the prediction of the SWRC, PTFs 3, 4 and 5 (BD) were
compared with PTFs 10, 11 and 12 (TP) from the third step,
respectively. The accuracy and reliability of the prediction of the
SWRC by both NLR and RF methods were not significantly different
(P < 0.05) (Fig. 5B and 6B). For descriptors of soil structure, the
accuracy and reliability of the prediction of the SWRC by both NLR and
RF methods decreased in terms of the IRMSE criterion for PTFs 10 to 12
from the third step compared to PTFs 3 to 5 (with the exception of PTFs
11 and 12 in the testing step for the RF method), respectively, when TP
was used instead of BD in the list of input variables (Fig. 5B and 6B).
However, the differences were not significant (P < 0.05).

The lack of significant differences between textural contents (clay
and sand contents) and statistics (dg and δg), and also between TP and
BD on the SWRC prediction can be due to correlation of these para-
meters with the parameters of the van Genuchten model (Fig. 4). The
SWRC is strongly influenced by the soil structure or pore-size dis-
tribution and soil texture at small and great matric suctions, respec-
tively (Pachepsky et al., 2006). Therefore, input variables of the tex-
tural contents or statistics can influence the residual saturation region
of the SWRC. However, soil water content at the dry end (high matric
suctions) of the SWRC is primarily determined by textural contents
(Hillel, 1998). Also, TP and BD are indicators of soil structure and had
significant correlations with θs (Fig. 4). Indeed, TP was calculated by
BD and particle density (Rab et al., 2011). The dg and δg predictors were

derived from soil textural contents (Shirazi and Boersma, 1984).
Therefore, these could be reasons for similar effects of textural contents
and statistics and also TP and BD predictors on the prediction of the
SWRC.

Many researchers used textural contents (Adhikary et al., 2008;
Chakraborty et al., 2011; Minasny et al., 1999; Tomasella and Hodnett,
1998), dg and δg (Rab et al., 2011; Scheinost et al., 1997; Ungaro et al.,
2005), BD (Bayat et al., 2011; Pachepsky et al., 1998) and TP (Bayat
et al., 2011; Pachepsky et al., 1998; Schaap et al., 1998) as effective
predictors to derive point- and parametric-PTFs. Nemes et al. (2003),
Schaap et al. (2001) and Schaap et al. (1998) reported that the variables
of PTF5 have better capability on predicting the parameters of the van
Genuchten (1980) model with an average RMSE of 0.026, 0.044 and
0.058 cm3cm−3, respectively.

According to the results of the accuracy (Fig. 5) and reliability
(Fig. 6) of PTFs 5, 9 and 12, it seems that certain points of the SWRC
(e.g., θFC) can help to improve the prediction of the SWRC and this is in
agreement with Schaap et al. (2001). These results indicate that the
presence of at least one moisture point (e.g., θFC) can improve the
prediction of the SWRC. In the first step, PTF5 with two moisture points
(θFC + θPWP) and PTF4 with one moisture point (θFC) improved the
prediction of the SWRC by 55, 48, 42% and 51, 44, 38% in terms of the
IRMSE criterion compared to the PTFs 1, 2 and 3, respectively, in the RF
method in the training step. In the testing section of the second step,
PTF9 with two moisture points (θFC + θPWP) and PTF8 with one
moisture point (θFC) decreased the IRMSE by 49, 44% and 44, 39%
compared to PTFs 6 and 7, respectively, in the NLR method. The points
above are also true for the RF-based PTF12 in the third step of the
testing section. Many researchers successfully applied θFC and θPWP as
effective predictors to derive point- and parametric-PTFs (Børgesen and
Schaap, 2005; Nemes et al., 2003; Schaap et al., 2001; Touil et al.,
2016; Twarakavi et al., 2009).

3.3.2.2. Effect of using OM and Ks as predictors on the SWRC
prediction. To evaluate the effect of using OM and/or Ks and points of
the SWRC on the prediction of the SWRC, the performances of PTFs 13,
14 and 15 were compared with those of PTFs 4 and 5. The accuracy and
reliability of the prediction of the SWRC by both NLR and RF methods,
significantly (P < 0.05) decreased in terms of the IRMSE, for the PTFs
13, 14 and 15 from the fourth step, when OM and/or Ks were used with
textural contents and BD as inputs instead of θFC or both θFC and θPWP in
the list of input variables, compared to PTFs 4 and 5 at the first step
(Fig. 5B and 6B). Therefore OM and Ks were not as effective predictors
as θFC and θPWP in the prediction of the SWRC, because θFC and θPWP are
two points of the SWRC and enter direct information of the SWRC into
the PTFs, whereas OM and Ks enter indirect information, and therefore

Fig. 6. (continued)
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had less effect in the improvement of the estimation of the SWRC. These
results agreed well with results obtained by Børgesen and Schaap
(2005). They reported that PTFs with the inputs of θFC and θPWP had
smaller RMSE values than a PTF with the input of OM (0.038 versus
0.042) in the prediction of the SWRC. On the other hand, the results
showed that by adding OM and/or Ks as predictors in the PTFs 13, 14
and 15, the accuracy (Fig. 5B) and reliability (Fig. 6B) of the prediction
of the SWRC improved by 16, 13, 17 and 7.1, 6.3, 6.9%, respectively,
compared to the PTF3 in terms of the IRMSE criterion in the RF method.

The SWRC depends mainly on the soil texture and structure (Hillel,
1998), with OM affecting the SWRC through development of soil
structure (Nemes et al., 2005), important at low suctions. However, the
OM retains water itself. Similarly, Ks can be a descriptive index of soil
texture and porosity (Hillel, 1998). The correlation results showed that
Ks can be strongly influenced by clay content and textural statistics (dg

and δg) (Fig. 4). Bayat et al. (2013b) applied OM and Ks to estimate
water content at the measured matric suctions. They found that the OM
and Ks can be most appropriately used in point-based PTFs to estimate
water content at the matric suctions of 25 and 50 kPa. Also, the result of
the present study agreed well with results obtained by Hollis et al.
(1977) and Rawls et al. (1983). In this study, the OM and Ks in the PTFs
13, 14 and 15 were not effective predictors compared to θFC and θPWP in
the PTFs 4 and 5, otherwise they had better results than PTF3.

4. Conclusion

Machine-learning tools have been widely applied for the prediction
of the SWRC. The present study evaluated the capability and perfor-
mance of the RF method as a novel machine learning tool and compared
its performance with that of the NLR method on the prediction of the
SWRC, using different combinations of easily-available soil properties.
It was found that the RF method had a better performance (P < 0.05)
than the NLR method in the training step of the prediction of the SWRC
in term of the IRMSE, AIC and R2 criteria. However, in the testing step,
NLR had a better performance than RF. The poor performance of the RF
compared to the NLR method could be due to overprediction in the
former, resulting in instability in the testing step. The RF method can be
sensitive to sparse areas on the prediction space. In other words, the
performance and sensitivity of predictions, and the computational in-
tensity of the RF method depends on the distribution and number of
observations and input variables. Therefore, the method should be
tested further with different datasets to evaluate its performance
through soil and water investigations. An improvement was achieved in
the accuracy of the prediction of the SWRC in the training step of the
PTF5 (with the inputs of Sand content + Clay
content + BD + θFC + θPWP) by both NLR and RF methods and also an
improvement was achieved in the reliability of the PTF9 (with the in-
puts of dg + δg + BD + θFC + θPWP) and PTF12 (with the inputs of
Sand content + Clay content + TP + θFC + θPWP) by the NLR and RF
methods compared to other PTFs, respectively. Considering that the
PTFs 5, 9, and 12 had no significant difference from PTF4 (with the
inputs of Sand content + Clay content + BD + θFC) and PTF8 (with the
inputs of dg + δg + BD + θFC + θPWP), these latter PTFs, with less and
more-easily measured input variables, are suggested to be the best PTFs
for the prediction of the SWRC. Also, PTFs without predictors of θFC and
θPWP, such as the PTF3 (with the inputs of Sand content + Clay
content + BD) and PTF7 (with the inputs of dg + δg + BD), can be
effective models for the prediction of the SWRC.
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