
ar
X

iv
:1

91
2.

02
58

5v
1

 [
cs

.N
I]

 5
 D

ec
 2

01
9

Local Voting: A New Distributed Bandwidth

Reservation Algorithm for 6TiSCH Networks

Dimitrios J. Vergadosa,∗, Katina Kralevskab, Yuming Jiangb,
Angelos Michalasa

aDep. of Informatics, University of Western Macedonia, Kastoria, Greece
bDep. of Information Security and Communication Technology, NTNU,

Norwegian University of Science and Technology

Abstract

The IETF 6TiSCH working group fosters the adaptation of IPv6-based pro-

tocols into Internet of Things by introducing the 6TiSCH Operation Sublayer

(6top). The 6TiSCH architecture integrates the high reliability and low-energy

consumption of IEEE 802.15.4e Time Slotted Channel Hopping (TSCH) with

IPv6. IEEE 802.15.4e TSCH defines only the communication between nodes

through a schedule but it does not specify how the resources are allocated for

communication between the nodes in 6TiSCH networks. We propose a dis-

tributed algorithm for bandwidth allocation, called Local Voting, that adapts

the schedule to the network conditions. The algorithm tries to equalize the link

load (defined as the ratio of the queue length plus the new packet arrivals, over

the number of allocated cells) through cell reallocation by calculating the num-

ber of cells to be added or released by 6top. Simulation results show that equal-

izing the load throughout 6TiSCH network provides better fairness in terms

of load, reduces the queue sizes and packets reach the root faster compared

to representative algorithms from the literature. Local Voting combines good

delay performance and energy efficiency that are crucial features for Industrial

Internet-of-Things applications.

Keywords: IoT, IEEE 802.15.4e, 6TiSCH, networks, TSCH, 6top,

∗Corresponding author
Email addresses: dvergados@uowm.gr (Dimitrios J. Vergados), katinak@ntnu.no (Katina

Kralevska), jiang@ntnu.no (Yuming Jiang), amichalas@uowm.gr (Angelos Michalas)

Preprint submitted to Computer Networks December 6, 2019

http://arxiv.org/abs/1912.02585v1

Load balancing, Resource allocation

1. Introduction

Wireless Sensor Networks (WSNs) have advanced significantly in the past

decades. The recent increase of connected devices has triggered countless Internet-

of-Things (IoT) applications to emerge [1]. It is expected that 50 billion devices

will be connected to the Internet by 2020 [2]. The so-called Industrial Internet-

of-Things (IIoT) is modernizing various domains such as home automation,

transportation, manufacturing, agriculture, and other industrial sectors.

Often IoT is realized through Low-power and Lossy Networks (LLNs), which

consist of low complexity resource constrained embedded devices, that are in-

terconnected using different wireless technologies. The IEEE 802.15.4e stan-

dard defines the physical and the medium access control (MAC) layers for

ultra-low power and reliable networking solutions for LLNs [3]. There are five

MAC modes: Time Slotted Channel Hopping (TSCH), Deterministic and Syn-

chronous Multi-channel Extension (DSME), Low Latency Deterministic Net-

work (LLDN), Asynchronous Multi-Channel Adaptation (AMCA), and Radio

Frequency Identification Blink (BLINK) [4]. In this work, we study TSCH which

is designed to allow IEEE 802.15.4 devices to support a wide range of applica-

tions, including industrial ones. In industrial environments, the large metallic

equipment causes multi-path fading and interference [5], and TSCH combats

against them by combining channel hopping and time synchronization. The

channel hopping allows transmissions between nodes to use different channels,

while the slotted access enhances the reliability by synchronizing the nodes with

a schedule and, thus, avoiding collisions.

The IETF 6TiSCH working group standardizes the protocol stack for IIoT [6].

It combines the high reliability and the low-energy consumption of IEEE 802.15.4e

TSCH with the addressability and Internet integration capabilities of Internet

Protocol version 6 (IPv6). The communication in a 6TiSCH network is orches-

trated by a schedule composed of cells, where each cell is identified by [slotOffset,

IPv6

6LoWPAN

6top

IEEE 802.15.4e MAC-TSCH

IEEE 802.15.4 PHY

SF
Local

Voting

Figure 1: The 6TiSCH protocol stack. We propose an algorithm for bandwidth reservation,

called Local Voting, that is located in the 6top sublayer.

channelOffset] [7]. The schedule specifies the channel (based on the channelOff-

set) and the time slot (based on the slotOffset) for communication of a node

with each of its neighbors. The IEEE 802.15.4e standard defines how the sched-

ule is executed but it does not define how the schedule is built and updated.

Fig. 1 shows the 6TiSCH protocol stack where the 6TiSCH Operation Sublayer

(6top) integrates the IEEE 802.15.4e MAC-TSCH layer with the IPv6-enabled

upper stack [7]. The roles of the 6top sublayer are:

• to terminate the 6top Protocol (6P), which allows a node to communicate

with a neighboring node to add/delete cells;

• to run one or multiple 6top scheduling functions (SF), which define the

rules when to add/delete cells between neighboring nodes while monitoring

performance and collecting statistics.

The biggest challenges for enabling the pervasive deployment of IoT devices

are the demand for high reliability and the limited energy supply for the nodes.

These challenges are magnified with the increase of the number of network

devices and the emergence of new applications with diverse requirements. As

the deployment cases become more dense, and new applications and devices

are added, the traffic patterns become more congested. In these conditions, we

have found that the network performance is determined by the ability of the

network to distribute the resources (cells) among the competing links, in a way

that maximizes efficiency [8, 9].

In this paper, we propose a distributed bandwidth reservation algorithm

called Local Voting (LV). It balances the load between the links in the network,

where the load is defined as the ratio of the queue length plus new packet arrvals,

over the number of allocated cells. LV was originally proposed in [8] in the

context of wireless mesh networks. Here we adapt the above algorithm for the

link-based multi-channel environment of 6TiSCH networks. Through analysis

and extensive performance evaluation we show here that by redistributing cells

among the links, we can limit the maximum delay in the network, and at the

same time enhance reliability and fairness at a lower energy cost compared to

scenarios where no load balancing takes place.

Most of the related works focus on ways to construct an optimal schedule

between the links, without taking into consideration the optimal number of

cells that should be allocated to each link. These works usually consider the

On-The-Fly (OTF) bandwidth reservation algorithm [10]. Using the OTF algo-

rithm, each node in the network estimates the number of cells that it requires

for fulfilling its communication requirements by estimating the amount of new

and forwarded traffic that it needs to transmit to its parent nodes. Then, the

OTF module asks the 6top sublayer to add or remove cells, in order for the

allocation to match this number if possible. However, the OTF algorithm does

not consider the case where the requested number of cells exceeds the number

of available cells, due to congestion. The nodes under OTF also do not consider

the traffic requirements of the neighboring nodes, so there is no provision for cell

redistribution to neighbors with higher bandwidth demands. Finally, the OTF

algorithm tries to maintain a stable schedule by using a long-term average of

the estimated throughput, which leads to inefficient allocation when the traffic

patterns fluctuate. For these reasons we introduce LV algorithm that addresses

the above limitations of OTF. We compare a thorough performance comparison

between two versions of LV and OTF and Enhanced-OTF (E-OTF) [11]. Under

LV, information about the queue lengths and the cell allocations are periodi-

cally diffused among neighboring nodes, which use this information to calculate

the number of cells that should be allocated to each link based on the load of

each interfering link. Equalizing the load throughout the congested areas in

the network leads to better fairness in terms of load for LV compared to OTF

and E-OTF. The performance evaluation also shows that LV provides similar

performance in terms of delay to E-OTF with an energy consumption similar

to OTF, making LV a promising distributed bandwidth reservation algorithm

for 6TiSCH networks.

The rest of the paper is organized as follows. Section 2 summarizes the

related works. In Section 3, the network model is formulated. Section 4 presents

Local Voting algorithm. Extensive performance evaluation results are presented

in Section 5, and Section 6 concludes the paper.

2. Related Works

2.1. 6TiSCH scheduling protocols

Recently there have been many proposals for centralized and distributed so-

lutions for TSCH scheduling in the literature. Centralized algorithms designate

a specific scheduling entity that collects information about the network and

adjusts the TSCH schedule to it. The first proposed centralized algorithm is

Traffic Aware Scheduling Algorithm (TASA) [12], which builds a time/frequency

collision-free schedule in a centralized manner. A master node collects informa-

tion about the entire network topology and the load of each node. Then, it

computes the schedule by exploiting matching and coloring procedures. The

main disadvantages of centralized scheduling techniques is the signaling over-

head since each node in the network has to communicate with the scheduler,

there is a single point of failure, and there is a limit on the size of the topology

since the scheduler becomes a bottleneck of the scheduling function.

As a counterpart, distributed approaches have been proposed where nodes

agree on the schedule by applying distributed scheduling protocols and neighbor-

to-neighbor negotiation, without having a central entity. The first distributed

scheduling algorithm was proposed in [13], and it has been followed later by

numerous algorithms. Decentralized traffic aware scheduling (DeTAS) [14] uses

a hierarchical approach where all nodes follow a macro schedule that is a com-

bination of micro-schedules for each routing graph. Orchestra [15] is the first

algorithm towards autonomous scheduled TSCH where nodes compute their

own schedule locally and autonomously based on the routing layer information.

At the MAC layer, decentralized scheduling results in cell overlapping and

thus in many collisions. A collision occurs when the same cell is allocated to

different pairs in the same interference range. In order to avoid cell overlap-

ping and reduce internal interference, Decentralized Broadcast-based Schedul-

ing algorithm (DeBraS) [16] allows nodes to share scheduling information. The

collision reduction and throughput improvement by DeBraS for dense networks

come at the cost of higher energy consumption.

The algorithm proposed in [17] allows every sensor node to compute its

time-slot schedule in a distributed manner. A scheme called Reliable, Efficient,

Fair and Interference-Aware Congestion Control (REFIACC) [18], takes into

account the heterogeneity in link interference and capacity when constructing

the scheduling send policy in order to reach the maximum fair throughput in

wireless sensor networks. The authors in [19] proposed a ”housekeeping” mech-

anism which detects scheduled collisions and reallocates each colliding cell to

a different position in the schedule. A distributed cell-selection algorithm for

reducing scheduling errors and collisions is proposed in [20]. It considers a fixed

queue length, thus, the algorithm cannot adapt to the network conditions.

Wave [21] builds the schedule by constructing a series of waves in order to

minimize the delay in convergecast applications. All successive waves are copies

of the first wave, where slots without scheduled transmissions are removed. An

extension of Wave, where subsequent waves overlap, has been presented in [22].

Recently, Decentralized Adaptive Multi-hop scheduling for 6TiSCH Net-

works (DeAMON) [23] and Recurrent Low-Latency Scheduling Function (ReSF) [24]

have been proposed. ReSF minimizes the latency by reserving minimal-latency

paths from the source to the sink, and it only activates these paths when recur-

rent traffic is expected. This results into a latency improvement of up to 80%

compared to state-of-the-art low-latency scheduling functions. This improve-

ment comes on the cost of an increased power consumption.

2.2. 6TiSCH bandwidth reservation algorithms

On-the-fly (OTF) [10] is a distributed algorithm that dynamically adapts the

bandwidth allocation by calculating the number of cells to be added or removed

according to a neighbor-specific threshold. OTF is prone to schedule collisions

since nodes might not be aware of which cells are allocated to other pairs of

nodes.

The authors in [11] assess the performance of OTF in terms of reliability and

latency. In their assessment they focus on the impact of the network dynamics

on the OTF performance, namely the routing protocol and the 6top negotia-

tions. Based on the their analysis, they propose Enhanced-OTF (E-OTF) which

improves the OTF performance by modifying the allocation algorithm in OTF.

First, E-OTF considers the channel quality in the computation of resources by

introducing a measure for the average number of required retransmissions for

a successful packet transmission. Second, it includes a mechanism to recover

from congestion by taking into consideration the amount of queued data. How-

ever, E-OTF does not consider the energy consumption, that is one of the main

requirements for efficient resource allocation algorithms for IoT devices.

Scheduling Function Zero (SF0) [25] adapts dynamically the number of re-

served cells between neighboring nodes based on the application’s bandwidth

requirements and the network conditions. SF0 uses Packet Delivery Rate (PDR)

statistics to reallocate cells when the PDR of one or more cells is much lower

than the average PDR. Cost-aware cell relocation (CCR) [26] complements SF0

by detecting scheduling collisions and relocating the involved cell. To detect

collisions, CCR compares the PDR of all cells to a particular neighbor. If one

cell has a PDR significantly lower than the PDR of other cells, then there is

a schedule collision and that cell is relocated to a different slot/channel in the

TSCH schedule.

References [27, 28, 29] provide an extended literature overview of scheduling

algorithms in IEEE 802.15.4e.

In contrast to the related works, this paper introduces congestion control to

the scheduling algorithm, in a way that leads to optimal performance in terms

of delay. Specifically, the local voting mechanism is used for determining how

many cells should be allocated to each link, not only based on its own traf-

fic requirements, as other schemes already do, but also considering the traffic

requirements and allocations of the neighboring (conflicting) links, This algo-

rithms allocates the cells in a way that minimizes the maximum value of the

ratio of queue length over number of cells (the load). Since the delay per link

is given by this ratio, the allocation ensures the minimum delay per link under

congestion.

3. Network Model and Problem Formulation

Our model considers a 6TiSCH network which has built a tree routing topol-

ogy with one or multiple parents per node, using the Routing Protocol for

Low-Power and Lossy Networks (RPL) [30]. For reader’s convenience, Table 1

summarizes the notation used throughout this paper.

The communication in the network can be modeled by a graph G = (V,E),

where V = {ni : 0 ≤ i < N} is the set of all nodes and E is the set of edges

that represent the communication symmetric links between the nodes. Data is

gathered over a tree structure GT = (VT , ET) rooted at the sink node n0 where

n0 ∈ VT , VT ⊆ V , and ET ⊆ E. We consider both of the cases where each

node has only one parent (tree) and where there are multiple parents per node.

Without loss of generality, we consider a single-sink model. We assume that all

nodes are synchronized, and each node has a single half-duplex radio transceiver.

Since the communication is half-duplex, each node cannot transmit and receive

Table 1: List of notations

G = (V,E) Network topology graph where V is the set of all nodes and

E is the set of edges between the nodes

N Total number of nodes in the network

GT = (VT , ET) Tree topology graph where VT ⊆ V and ET ⊆ E

n0 Sink node, n0 ∈ VT

ni i-th node in the network, ni ∈ V, 1 ≤ i < N

f Slot frame

S Total number of time slots in a slot frame

t Time slot where 0 ≤ t < S

M Total number of channel offsets

chOf Channel offset where 0 ≤ chOf < M

c
(t,chOf)
(i,j) Cell with coordinates (t, chOf) assigned to link (i, j)

N
(1)
i Set of one-hop neighbors of node ni

Ni,j Set of all links that could interfere with link (i, j)

qf(i,j) Number of packets that ni sends to nj at frame f

pf(i,j) Number of allocated cells to link (i, j) at frame f

zf(i,j) Number of new packets received by ni with destination nj

at frame f

uf

(i,j) Number of cells added/deleted to link (i, j) at frame f due

to Local Voting

rf(i,j) Number of cells released from link (i, j) at frame f

xf

(i,j) Load of link (i, j) at frame f

Ñ(l,k) ⊂ N
(1)
i Set of neighboring links of link (l, k), that can give at least

one cell to link (l, k)

simultaneously on the same channel. We propose a link scheduling algorithm

where a link (i, j) is a pairwise assignment of a directed communication between

a pair of nodes (ni, nj), where i 6= j, in a specific time slot within a given frame

and a channel.

Time in TSCH is slotted, and assumed to be (almost) perfectly synchronized

in the whole system. The basic time interval is referred to as a time slot t. A

time slot t is long enough for one packet to be sent from node ni to node nj

and optionally node nj to reply. This is represented in Fig. 2 for the node pair

(n3, n1). Each frame f consists of equal number of S time slots with the same

duration f = {0, . . . , S − 1}. The resource allocation in a 6TiSCH network is

controlled by a TSCH schedule that allocates cells for node communication. A

cell represents a unit of bandwidth that is allocated based on a decision by a

centralized or a distributed scheduling algorithm. As explained previously, a

cell is defined by a pair of time slot and channel offset [31]. The slot offset is

equal to time slot t while the channel offset chOf is translated into a frequency

with the following equation:

channel = F ((chOf +ASN) mod M) , (1)

where chOf denotes the channel offset, ASN counts the number of time slots

since the network started, M is the number of physical channels (by default

16 in TSCH), and mod is the modulo operator. F (·) is a bijective function

mapping an integer comprised between 0 and 15 into a physical channel. The

number of channel offsets is equal to the number of available frequencies 0 ≤

chOf < M . The schedule can be represented by a matrix with dimensions: the

total number of channel offsets M and total number of time slots in a slot frame

S. One example of a schedule with 4 time slots and 3 channels is given in Fig. 2.

Note that some cells can be shared between different links (e.g. n8 → n5 and

n6 → n4), as long as there is no mutual interference. A TSCH schedule instructs

node ni what to do in a specific time slot and frequency: transmit, receive, or

sleep. The cell assigned to link (i, j) at slot offset t and channel offset chOf is

Data ACK

n
1
 n

3

n
8
 n

5

n
4

n
3

n
2

n
5

n
6

n
1

n
8

n
7

n
6
 n

4
 n

4
 n

2

n
5
 n

3

n
3
 n

1

n
2
 n

1

Cell

N
u
m

b
e
r

o
f

C
h
a
n
n
e
ls

Slot Frame

n
3
 n

1

Figure 2: TSCH schedule for the presented topology where solid lines represent connection

between nodes based on RPL and dashed lines represent possible communication between

nodes.

denoted by c
(t,chOf)
(i,j) where

c
(t,chOf)
(i,j) =

1, ni transmits and nj receives at t and chOf;

0, otherwise;
(2)

for ni ∈ V, 0 ≤ t ≤ S − 1, and 0 ≤ chOf ≤ M − 1.

There exists a scheduled cell for node nj from the pair (ni, nj) such that nj

receives the transmission from ni at the same t and chOf that are scheduled for

transmission of node ni. Each scheduled cell is an opportunity for node ni to

communicate with its one-hop neighbor nj where nj ∈ N
(1)
i and N

(1)
i denotes

the one-hop neighborhood of node ni. We consider an interference model where

two nodes are one-hop neighbors as long as their Packet Delivery Rate (PDR) is

larger than 0. In real scenarios, nodes that are at more than two hops distance

can also interfere but with lower probability [32], thus, we only consider the

one-hop neighborhood.

The 6top sublayer qualifies each cell as either a hard or a soft cell. A soft

cell can be read, added, removed, or updated by the 6top sublayer, while a hard

cell is read-only for the 6top sublayer. In the context of the proposed algorithm,

all reallocated cells are soft cells.

The role of the bandwidth reservation algorithm is to ensure that there are

enough resources to meet the application requirements such as traffic load, end-

to-end delay, and reliability. The proposed scheduling algorithm must satisfy

the following communication conditions:

1. Multi-point to point communication where data is generated only by

source nodes ni, where ni ∈ VT , and it is gathered at the sink node

n0.

2. The communication is half-duplex, thus, each node cannot transmit and

receive simultaneously on the same channel.

3. Nodes ni and nj from the pair (ni, nj) transmit and receive in the same

cell, i.e., (t, chOf), respectively.

4. Collision-free communication: A cell with coordinates (t, chOf) is allo-

cated to link (i, j) such that exactly one of the neighbors, i.e., node ni, of

the receiving node nj should transmit at slot offset t and channel offset

chOf, and the other neighbors nl of the receiving node nj , where nl ∈ N
(1)
j

and nl 6= ni, might receive at slot offset t and channel offset chOf.

In general, to prevent collisions between pairs of links (i, j) and (l, k), the fol-

lowing collision-free constraints are defined.

Primary conflict constraint: A node cannot transmit and/or receive two

packets at the same time slot t, even not on different channels chOf1 and chOf2,

i.e.,

c
(t,chOf1)
(i,j) c

(t,chOf2)
(l,k) = 0, for all:{i, j} ∩ {k, l} 6= ∅,

nk ∈ N
(1)
i , nl ∈ N

(1)
j .

(3)

Eq. (3) indicates that the communication is half-duplex.

Secondary conflict constraint: A receiver cannot decode an incoming packet

in a channel chOf, if another node in its neighborhood is also transmitting at

the same channel chOf at the same time slot t. Hence, a node is not allowed to

receive more than one transmission simultaneously, i.e.,

c
(t,chOf)
(i,j) c

(t,chOf)
(l,k) = 0, for all:nk ∈ N

(1)
i , nl ∈ N

(1)
j . (4)

Eq. (4) indicates the interference constraint.

4. Local Voting Bandwidth Reservation Algorithm

Each source node ni, where ni ∈ VT and ni 6= n0, has a queue with packets to

be transmitted to the root through a parent node, which is a one-hop neighbor

of the node ni. The internal scheduling on the queue is first-come-first-serve. A

cell is allocated to link (i, j) so that node ni transmits a packet to nj as it is

given in Eq. (2).

The state of link (i, j), where nj ∈ N
(1)
i , at the beginning of frame f + 1 is

described by three characteristics:

• qf+1
(i,j) is the number of packets (queue length) that node ni has to transmit

to node nj at slot frame f + 1;

• pf(i,j) is the number of cells allocated to link (i, j) at the previous slot

frame f , i.e., pf(i,j) =
S−1
∑

t=0
c
(t,chOf)
(i,j) .

There is no sum over the channels in the equation for calculating pf(i,j) due to

the fact that each node has a single transceiver, so each link can be allocated

only one channel at each time slot.

The dynamics of each link (i, j) are calculated as:

qf+1
(i,j) = max{0, qf(i,j) − pf+1

(i,j)}+ zf(i,j),

pf+1
(i,j) = pf(i,j) + uf+1

(i,j),
(5)

where

• zf(i,j) is the number of new packets received from upper layers or from

neighboring nodes of node ni with a next-hop destination equal to node

nj at frame f ;

• uf+1
(i,j) is the number of cells that are added or released to link (i, j) at

frame f + 1 due to LV.

The objective of the proposed LV algorithm is to schedule link transmissions

in such a way that the minimum maximal (min-max) link delay is achieved.

The algorithm stems from the finding that the shortest delivery time is obtained

when the load is equalized throughout the network. The finding has been proved

in [33] for the case of load balancing in cluster computing, while [8] presents a

similar result for the case of wireless mesh networks with a single channel and

a node scheduling MAC layer. In this paper we extend the result for link

scheduling where the MAC layer follows TSCH mode.

The load of link (i, j) at frame f is defined as the ratio of the queue length

qf(i,j) over the number of allocated cells pf(i,j) as follows:

xf

(i,j) =

qf(i,j)

pf(i,j)
+ 0.5

 , if qf(i,j) > 0,

0, if qf(i,j) = 0,

(6)

where [·] is the round function (rounds a real number to the nearest integer).

Note that by construction of the above definition, the delay at each link (i, j)

(in time slots) can be computed as x(i,j) · |S|, where S is the number of slots in

a slot frame.

In order to semi-equalize or balance the load in the network, neighboring

links can exchange cells as long as Eq. (3) and Eq. (4) are satisfied. The set Ni,j

contains all links that could potentially interfere with link (i, j). This means

that

(l, k) ∈ Ni,j iff nk ∈ N
(1)
i ∨ nl ∈ N

(1)
j .

Definition 1. A conflict-free schedule is link-wise optimal or just optimal, if the

maximum delay per link in the network is smaller or equal than the maximum

delay per link for every other schedule (min-max).

Lemma 1. (Optimal schedules are maximal) An optimal schedule is a (or has

an equivalent) maximal schedule in the sense that1 ∄(i, j) ∈ E such that p(i,j) can

be increased without reducing p(l,k) for at least one other link where (l, k) ∈ E.

1Symbol ∄ denotes the negation of existence ∃

Proof: Consider a schedule that is not maximal. That means there exists

(i, j) ∈ E such that p(i,j) can be increased by one. Cells are not reallocated to

other links, therefore, for the new schedule, the delay for all the other links is

unchanged. For link (i, j), the new delay is x′

(i,j) · |S| =
[

q(i,j)
(p(i,j)+1) + 0.5

]

· |S| ≤

x(i,j)·|S|. It follows that, for every non-maximal schedule, there exists a maximal

schedule that has smaller or equal maximum delay. �

Lemma 2. (Optimal schedules are balanced) Assume that link (l, k) is the most

loaded link in the network, i.e., (l, k) = argmax(x(i,j)), (i, j) ∈ E. For all opti-

mal schedules, it holds that x(l,k) ≤ x(i,j)/(1− 1/p(i,j)) for the load of the most

loaded link (l, k) and the load of every other link (i, j), where (i, j) ∈ Ñ(l,k), and

Ñ(l,k) is the set of neighboring links of link (l, k) that can give at least one cell

to link (l, k), without violating the constraints from Eq. (3) and Eq. (4).

Proof: Assume that an optimal schedule exists where for the most loaded link

(l, k), x(l,k) > x(i,j)/(1 − 1/p(i,j)) where (i, j) ∈ Ñ(l,k). Since (l, k) is the most

loaded link, the maximal delay for such a schedule is x(l,k) ·|S|. Since link (i, j) ∈

Ñ(l,k), it follows that a cell of link (i, j) can be reassigned to link (l, k). After

reassigning, the new load for link (l, k) is x′

(l,k) = [q(l,k)/(p(l,k) + 1) + 0.5], and

the corresponding delay for link (l, k) is [q(l,k)/(p(l,k)+1)+0.5] · |S| < x(l,k) · |S|.

In addition, link (i, j) loses a cell so the new delay for link (i, j) is [q(i,j)/(p(i,j)−

1)+0.5] · |S| = [(q(i,j)/p(i,j))/(1− 1/p(i,j))+0.5] · |S| = [(q(i,j)/p(i,j))+0.5]/(1−

1/p(i,j)) · |S| = x(i,j)/(1 − 1/p(i,j)) · |S| < x(i,j) · |S|. Thus, the new allocation

has a maximal delay that is smaller than or equal to the maximal delay of the

other allocation, so the allocation is not optimal. �

Based on the above reasoning, we design a load balancing strategy with two

goals:

1. the produced schedule should be maximal; and

2. the load in the schedule should be balanced.

It should be noted that, in general, a schedule could be both maximal and

balanced, but still not optimal. This is because there could exist a realloca-

tion of the slots in the network that would produce a larger spectral efficiency.

Optimizing the schedule in this sense would require finding a solution for the

NP-complete link scheduling problem. This is not easy, so for the purposes of

this paper, we do not examine ways of escaping local optima and finding the

global optimum. However, the simulation results show that the performance of

LV is still better than the performance of the algorithms that we compare with,

and that optimizing the maximal nodal delay also has a positive impact on the

end-to-end delay.

In the following part we explain LV and the way how uf+1
(i,j) is calculated. LV

triggers the 6top sublayer to add and release cells to link (i, j) at frame f + 1

for uf+1
(i,j) > 0 and uf+1

(i,j) < 0, respectively. The value of uf+1
(i,j) is calculated as:

uf+1
(i,j) =

(

qf(i,j) + zf+1
(i,j)

)

× S

qf(i,j)+zf+1
(i,j)+

∑

(l,k)∈Ni,j

w(i,j,l,k)

(

qf(l,k)+zf+1
(l,k)

)

− pf(i,j),

(7)

where

w(i,j,l,k) =

1, if {i, j} ∩ {k, l} 6= ∅,

1/M, otherwise.
(8)

The value in the round function in Eq. (7) is the number of cells allocated to

link (i, j) at frame f taking into account the new packets from upper layers or

neighboring nodes. As we can see from the term qf(i,j), the number of allocated

cells is proportional to the queue length within the neighborhood of link (i, j),

so it leads to semi-equal load between the neighboring links. Also, we scale to

the total number of time slots that are needed to transmit all queued packets

in the neighborhood of link (i, j), so that the total number of time slots in the

neighborhood is equal to the number of time slots in the frame. The weight

w(i,j,l,k) is used to capture the difference between a primary and a secondary

conflict. In the first case, since all channels are unavailable to the link, the value

is one, but in the second case, since only one of the available channels is blocked,

the value is 1/M .

The rationale of Eq. (7) can be also seen if we calculate the load at the end

of frame f +1. If qf(i,j) > pf+1
(i,j), then we have xf+1

(i,j) =
q
f+1
(i,j)

p
f+1
(i,j)

=
q
f

(i,j)
−p

f+1
(i,j)

+z
f+1
(i,j)

p
f+1
(i,j)

=

q
f

(i,j)
+z(i,j)

p
f+1
(i,j)

− 1. In addition, we have that

pf+1
(i,j) = pf(i,j) + uf+1

(i,j) =

(

qf(i,j) + zf+1
(i,j)

)

× S

qf(i,j)+zf+1
(i,j)+

∑

(l,k)∈Ni,j

w(i,j,l,k)

(

qf(l,k)+zf+1
(l,k)

),

which means that

xf+1
(i,j) =

qf(i,j)+zf+1
(i,j)+

∑

(l,k)∈Ni,j

w(i,j,l,k)

(

qf(l,k)+zf+1
(l,k)

)

S
− 1.

We will show that this quantity is invariant for the links (i, j) and (j, k) that

share the same neighborhood. For {i, j} ∩ {k, l} = ∅, we have

xf+1
(i,j) =

qf(i,j)+zf+1
(i,j)+

∑

(l,k)∈Ni,j

w(i,j,l,k)

(

qf(l,k)+zf+1
(l,k)

)

S
− 1.

By substituting (5) into (7), we get

uf+1
(i,j) =

(

max{0, qf(i,j) − pf+1
(i,j)}+ zf(i,j)

)

× S
(

max{0, qf(i,j) − pf+1
(i,j)}+ zf(i,j)

)

+
∑

(l,k)∈Ni,j
w(i,j,l,k) ×

(

max{0, qf(l,k) − pf+1
(l,k)}+ zf(l,k)

)

−pf(i,j).

(9)

4.1. The Local Voting Algorithm

Alg. 1 presents Local Voting algorithm. All links (edges) are examined se-

quentially at the beginning of each frame. The source node requests for cells,

not the receiver. Since we consider a link scheduling scenario, the destination of

each transmission is known during the scheduling phase. Every link in the net-

work that has a positive queue length calculates a value uf+1 (given in Eq. (7)).

If node ni has packets to send to node nj , the value of uf+1
(i,j) determines the

number of cells that the link (i, j) should ideally gain or release at slot frame

f + 1. If uf+1
(i,j) is a positive value, then LV asks from the 6top sublayer to add

cells to link (i, j). Otherwise, if uf+1
(i,j) is a negative value, then LV requests from

the 6top sublayer to release uf+1
(i,j) cells that have been allocated to (i, j). The

cell reallocation should not cause collisions with respect to Eq. (3) and Eq. (4).

The collision-free constraint is implemented in 6top sublayer which is respon-

sible for collision-free communication. On the other hand, if node ni does not

have packets to send to destination nj and cells have been already allocated to

link (i, j) in the previous frame, then all allocated cells pf(i,j) are released. In

general, cells are removed from links with a lower load and are offered to links

with a higher load.

Algorithm 1 Local Voting

for (i, j) ∈ E do ⊲ Check for all outgoing links (i, j) that originate at node

ni

qsumf+1
(i,j) = (qf(i,j) + zf+1

(i,j)) +
∑

(l,k)∈Ni,j
w(i,j,l,k) × (qf(l,k) + zf+1

(l,k))

if qsumf+1
(i,j) 6= 0 then ⊲ Are there packets in the neighborhood of link

(i, j) to be sent?

Calculate uf+1
(i,j) =

[

(qf
(i,j)

+z
f+1
(i,j)

)×S

qsum
f+1
(i,j)

]

− pf(i,j)

if uf+1
(i,j) > 0 then ⊲ The link requests cells

Request from 6top to add uf+1
(i,j) cells to link (i, j)

else if uf+1
(i,j) < 0 then ⊲ The link releases cells

Request from 6top to delete uf+1
(i,j) cells from link (i, j)

end if

else if pf(i,j) 6= 0 then ⊲ Are there cells allocated to a link with an empty

queue?

Request from 6top to delete pf(i,j) cells from link (i, j) ⊲ Release the

allocated cells

end if

end for

To summarize, LV requests from the 6top sublayer to add cells to link (i, j)

at slot frame f + 1 when:

• node ni has packets to send to node nj and the value of uf+1
(i,j) for link

(i, j) is positive which means that the link (i, j) has a higher load than its

neighbors.

LV requests from the 6top sublayer to release cells from link (i, j) at slot frame

f + 1 when:

• node ni has packets to send to node nj and the value of uf+1
(i,j) is negative

which means that the link (i, j) has a lower load than its neighbors; or

• node ni does not have packets to send to node nj and cells have been

already allocated to link (i, j).

5. Performance Evaluation

The 6TiSCH simulator is an open-source, event-driven Python simulator

developed by the members of the 6TiSCH WG [34]. Reference [35] discusses

the overall architecture of the 6TiSCH simulator, its use for simulating realistic

scenarios, and published results that use the 6TiSCH simulator for different

purposes. By default, the simulator supports IEEE 802.15.4e TSCH mode [36],

RPL [30], 6top [6], and OTF [10]. In addition to these protocols, we have

added Local Voting and Enhanced OTF (E-OTF) algorithms2 as part of the

work presented in this article. We have implemented two distinct versions of

Local Voting, the original version presented in [37], and the modified version

presented in this paper. The new version, which is marked as ”local voting z”

in the figures, differs from the original by considering the new packets that are

expected to arrive at each slot frame, and not only the current state of the

queues of each link as presented with Eq. (7).

2As an online addition to this article, the source code is available at

https://github.com/djvergad/local_voting_tsch

https://github.com/djvergad/local_voting_tsch

We compare the two versions of LV with OTF [10] and E-OTF [11] for two

threshold values, 4 and 10 cells. We work with the same simulation parameters

as in [10] which have been set according to RFC5673 [5]. The parameters are set

according to a) an industrial environment scenario where traffic can be bursty

and b) a senario where traffic is generated at a steady rate.

For the first case, consider a scenario where a leakage is detected in an oil and

gas system, the sensors transmit at a higher sample rate in order to minimize

the time for detection of the leakage location, to calculate its magnitude, and to

estimate the impact and the evolution of the leakage. The simulation parameters

are summarized in Table 2.

The simulation scenario considers a network with a grid topology of 2km×

2km where 50 nodes are placed randomly. Every link is associated with a Packet

Delivery Rate (PDR) value between 0.00 and 1.00. The PDR value per link is

constant during a simulation run. Each node has at least three neighbors where

the PDR of the links is at least 50%. A node is moved until this condition is

satisfied. The minimum acceptable RSSI value that allows for a packet reception

is −97dBm, while the maximum number of MAC retries is set to 5. The TSCH

schedule contains 101 cells where each time slot has duration of 10ms.

In the bursty scenario, nodes start to generate data at 20s after the begin-

ning of the simulation. Since data is generated in bursts, then the next data

generation is at 60s. We perform simulations where each node generates 1, 5 or

25 packets per burst.

In the steady state scenario the nodes started transmitting at a random time

between 16.9 and 33 seconds, and they send at an interval of 0.1, 0.2, or 0.4

seconds, with a uniform random variance of 0.05 times the interval.

The queue length of all nodes is 100 packets. The presented results are

averaged over 500 simulation runs. A new topology is used for each run.

The metrics used for performance comparison between LV, OTF and E-OTF

are as follows:

• the timestamp for the last packet to reach the root shows the time needed

Table 2: Simulation Setup

Parameter Value

Number of Nodes 50

Deployment area square, 2km× 2km

Deployment constraint 3 neighbors with PDR¿50%

Radio sensitivity −97dBm

Max. MAC retries 5

Length of a slot frame 101 cells

Time slot duration 10ms

Number of channels 16

Burst timestamp 20s and 60s

Number of packets per burst 1, 5, 25, 50, and 80 packets

per node per burst

Packet inter-arrival interval 0.1, 0.2, and 0.4 seconds

Queue length 100 packets

Number of runs per sample 500

Number of cycles per run 100

6top housekeeping period 1s

OTF threshold 4, 10 cells

OTF housekeeping period 1s

RPL parents 3

for the two bursts to be completely received by the root;

• the end-to-end latency, defined as the time from a packet generation until

its reception at the sink;

• the energy consumption, calculated by adding the energy of each trans-

mission/reception/idle listen; and

• end-to-end reliability, defined as the ratio between the number of packets

received by the sink and the total number of packets sent by all nodes;

Additionally, in order to better explain the evolution of the simulation and

to give insights on the reasons for the different performance between the algo-

rithms, we also depict the following values:

• the evolution of the queue fill, defined as the total number of packets in

all buffers in the system; and

• the distribution of load in the system, measured using Jain’s fairness index

and the G-fairness index [38].

5.1. Bursty traffic experiments

In Fig. 3 we can see the timestamp of the last packet that was received for

each algorithm and each scenario. In all cases Local Voting and Local Voting

z deliver the packets for a shorter time than the other algorithms, with E-OTF

achieving the next best performance, and OTF having the worst delay.

Similar results are presented in Fig. 4, where the maximum end-to-end la-

tency is depicted for each algorithm and each scenario. Here we can see that

Local Voting and E-OTF have similar performance for scenarios where the load

is low, but as the load increases, the advantage of the Local Voting algorithm

becomes more apparent.

Regarding the average end-to-end delay (Fig. 5), again Local Voting has the

best performance, though the difference is not as prominent as in the previous

graphs.

In Figs. 6–9 we can the evolution over time of the number of packets that

have reached the root. In all cases the black and red lines are above the other

ones, that indicates that with Local Voting a larger number of packets have

(1, 3) (5, 3) (25, 3) (50, 3) (80, 3)
Parameters: (packets per burst, num of parents)

0

20

40

60

80

100
tim

e
fo

r l
as

t p
ac

ke
t t

o
re

ac
h

ro
ot

eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 3: Time for last packet to reach root.

been received at each timestamp. The largest difference appears in Fig. 6, due

to the higher traffic load, while the smallest difference is in Fig. 9.

Another important aspect of the performance of the algorithms is the energy

that is consumed for the delivering the data to the root. Fig. 10 depicts the

energy that is used per received packet, i.e., the fraction of the consumed energy

over the number of packets that were successfully delivered to the root. As

expected, as the number of packets per burst increases, the energy per packet

reduces. We can also see that for small burst sizes OTF has the highest energy

consumption per packet, whereas for large burst sizes, E-OTF consumes the

most energy per packet. Similar results are depicted in Fig. 11, where the total

energy consumption per simulation is depicted. Here the energy consumed

increases as the number of packets per burst increase, which is expected, since

there are more data transmissions. We show again that for larger numbers of

packets per burst, the E-OTF algorithm consumes significantly more energy

than the Local Voting and the OTF algorithms. The evolution of the energy

(1, 3) (5, 3) (25, 3) (50, 3) (80, 3)
Parameters: (packets per burst, num of parents)

0

5

10

15

20

25

30

35

40
m
ax

 e
nd

-to
-e
nd

 la
te
nc

y
(s
)

eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 4: Maximum end-to-end latency.

(1, 3) (5, 3) (25, 3) (50, 3) (80, 3)
Parameters: (packets per burst, num of parents)

0

1

2

3

4

5

6

av
er

ag
e

en
d-

to
-e

nd
 la

te
nc

y
(s

)

eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 5: Average end-to-end latency.

0 20 40 60 80 100
time (slotframe cycles)

0

1000

2000

3000

4000

5000

6000

7000

8000
ap

pR
ea

ch
es
Da

gr
oo

t_
cu
m

otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 6: Number of packets that reach the root as a function of time, 80 packets per burst.

0 20 40 60 80 100
time (slotframe cycles)

0

1000

2000

3000

4000

5000

ap
pR

ea
ch

es
Da

gr
oo

t_
cu

m

otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 7: Number of packets that reach the root as a function of time, 50 packets per burst.

0 20 40 60 80 100
time (slotframe cycles)

0

500

1000

1500

2000

2500
ap

pR
ea

ch
es

Da
gr
oo

t_
cu

m
otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 8: Number of packets that reach the root as a function of time, 25 packets per burst.

0 20 40 60 80 100
time (slotframe cycles)

0

100

200

300

400

500

ap
pR

ea
ch

es
Da

gr
oo

t_
cu

m

otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 9: Number of packets that reach the root as a function of time, 5 packets per burst.

(1, 3) (5, 3) (25, 3) (50, 3) (80, 3)
Parameter : (packet per bur t, num of parent)

10−2

10−1

ch
ar
ge

 c
on

 u
m
ed

/p
ac

ke
t r

ec
ei
ve

d
x1

e5
eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 10: Energy consumption per received packet.

consumption over time is given in Figs. 12–15. This confirms that E-OTF uses

more energy than the other algorithms, whereas Local Voting and OTF have

similar consumption. The conclusion is that Local Voting has performance in

terms of delay similar to E-OTF, but with an energy consumption similar to

OTF, so it combines both good delay performance and energy efficiency.

Fig. 16 shows the average queue sizes among all nodes in the network during

the entire simulation, for each algorithm and for each scenario. A more detailed

view is available in Figs. 17 –19, where it is evident that the increased efficiency

of Local Voting makes the queue sizes to be reduced more rapidly and all of

the packets to reach their destinations faster. In all cases the Local Voting

algorithm achieves the smallest queue sizes, which is the reason that it exhibits

lower delay than the other algorithms. This smaller queue size is also the reason

behind the increased reliability of the Local Voting algorithm compared to OTF

and E-OTF.

In Fig. 20–23, we can see the average fairness between the nodes in the

(1, 3) (5, 3) (25, 3) (50, 3) (80, 3)
Parameters: (packets per burst, num of parents)

0

20

40

60

80

100

120
ch

ar
ge

 c
on

su
m
ed

 x
1e

5
eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 11: Energy consumption

0 20 40 60 80 100
time (slotframe cycles)

0

20

40

60

80

100

120

ch
ar
ge

Co
ns

um
ed

 x
1e

5

otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 12: Evolution of the energy consumption over time, 80 packets per burst

0 20 40 60 80 100
time (slotframe cycles)

0

10

20

30

40

50

60

70

80
ch
ar
ge

Co
ns
um

ed
 x
1e

5
otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 13: Evolution of the energy consumption over time, 50 packets per burst

0 20 40 60 80 100
time (slotframe cycles)

0

10

20

30

40

50

60

ch
ar
ge

Co
ns

um
ed

 x
1e

5

otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 14: Evolution of the energy consumption over time, 25 packets per burst

0 20 40 60 80 100
time (slotframe cycles)

0

10

20

30

40

50

ch
ar
ge

Co
ns

um
ed

 x
1e

5
otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 15: Evolution of the energy consumption over time, 5 packets per burst

(1, 3) (5, 3) (25, 3) (50, 3) (80, 3)
Parameters: (packets per burst, num of parents)

0

2

4

6

8

10

av
er
ag

e
qu

eu
e
siz

e
(p
ac

ke
ts
)

eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 16: Average queue size (packets) for the entire simulation.

0 20 40 60 80 100
time (slotframe cycles)

0

500

1000

1500

2000

2500

3000

3500

4000
tx
Qu

eu
eF

ill
otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 17: Evolution over time, 80 packets per burst.

0 20 40 60 80 100
time (slotframe cycles)

0

500

1000

1500

2000

2500

tx
Qu

eu
eF

ill

otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 18: Evolution over time, 50 packets per burst.

0 20 40 60 80 100
time (slotframe cycles)

0

200

400

600

800

1000

1200
tx
Qu

eu
eF

ill
otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 19: Evolution over time, 25 packets per burst.

network, calculated on the load of each node (i.e. the ratio of queue length over

slot allocation), using two fairness metrics, namely Jain’s fairness index and the

G fairness index. The local voting algorithm has the best fairness in terms of

load, which is expected, since by design it tries to equalize the load throughout

the congested areas of the network.

5.2. Uniform traffic experiments

This subsections contains the results of the uniform traffic experiment, where

the nodes transmit at a constant rate, with some variability in the traffic gen-

eration time to avoid synchronization issues.

In Fig. 24 we can see the maximum latency for each scenario. We can see

that in this scenario the advantage of local voting z over the previous version

of local voting in terms of maximal delay. Specifically, local voting z has the

smallest maximum delay compared to all the other algorithms. This can be

explained, since for local voting a large queue is necessary for increasing the

(1, 3) (5, 3) (25, 3) (50, 3) (80, 3)
Parameters: (packets per burst, num of parents)

0.0

0.2

0.4

0.6

0.8

1.0
Lo
ad
Al
lJa
in

eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 20: Fairness in load distribution, with Jain’s fairness index, average.

0 20 40 60 80 100
time (slotframe cycles)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ad

Al
lJa

in

otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 21: Fairness in load distribution, with Jain’s fairness index, over time, 80 packets per

burst.

(1, 3) (5, 3) (25, 3) (50, 3) (80, 3)
Parameters: (packets per burst, num of parents)

0.0

0.2

0.4

0.6

0.8

1.0
Lo
ad
Al
lG

eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 22: Fairness in load distribution, with G fairness index, average.

0 20 40 60 80 100
time (slotframe cycles)

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ad

Al
lG

otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 23: Fairness in load distribution, with G fairness index, over time, 80 packets per burst.

(3, 0.1) (3, 0.2) (3, 0.4)
Parameters: (num of parents, pkPeriod)

0

1

2

3

4

5

6

7
m

ax
 e

nd
-to

-e
nd

 la
te

nc
y

(s
)

eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 24: The maximum average latency for the different scenarios.

slot allocation, whereas in the case of local voting z, the slot allocation also

tracks the new packets that are generated at each round, so that the buffer-

bloat problem can be avoided. In a sense local voting z considers the ongoing

rate of traffic that must be delivered, in addition to the current buffer size,

whereas local voting (without z) only considers the buffer. The difference is

even more apparent in Fig. 25, where the average latency is depicted.

The evolution over the latency over time may be seen in Fig.26. Similar

results are available for the other scenarios as well.

However, the improved performance in terms of latency comes at a cost of

larger energy consumption (Fig. 27, 28).

The reliability of all algorithms except OTF was perfect in all cases (Fig. 29.

The lower delay of the local voting z algorithm can be easily explained by

seeing Fig. 30, Fig. 31, and Fig. 32, where it is apparent that the queue sizes

are much smaller for local voting z, resulting in the reduction of the latency.

(3, 0.1) (3, 0.2) (3, 0.4)
Parameters: (num of parents, pkPeriod)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
av

er
ag

e
en

d-
to

-e
nd

 la
te

nc
y

(s
)

eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 25: The average latency for the different scenarios.

0 20 40 60 80 100
time (slotframe cycles)

0

1

2

3

4

5

6

en
d-
to
-e
nd

 la
te
nc

y
(s
)

otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 26: The average latency over time for an packet inter-arrival time of 0.1 seconds.

(3, 0.1) (3, 0.2) (3, 0.4)
Parameters: (num f parents, pkPeri d)

10−2

6)10−3

7)10−3

8)10−3

9)10−3

ch
ar
ge

 c
 n

su
m
ed

/p
ac
ke
t r
ec
ei
ve
d
x1

e5
e tf, thr=10
e tf, thr=4
l cal_v ting
l cal_v ting_z
 tf, thr=10
 tf, thr=4

Figure 27: The charge consumed per received packet for the different scenarios.

(3, 0.1) (3, 0.2) (3, 0.4)
Parameters: (num of parents, pkPeriod)

0

50

100

150

200

250

ch
ar
ge
 c
on
su
m
ed
 x
1e
5

eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 28: The total charge consumed for the different scenarios.

(0.1, 3) (0.2, 3) (0.4, 3)
(num of parents, pkPeriod)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

en
d-
to
-e
nd

 re
lia
bi
lit
y

eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 29: The reliability (ratio of generated packets that reach their destination) for the

different scenarios.

(3, 0.1) (3, 0.2) (3, 0.4)
Parameters: (num of parents, pkPeriod)

0

10

20

30

40

50

m
ax

 a
vg

 q
ue

ue
 si

ze
 (p

ac
ke

ts
)

eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 30: The maximum average queue size for the different scenarios.

(3, 0.1) (3, 0.2) (3, 0.4)
Parameters: (num of parents, pkPeriod)

0

5

10

15

20

25

av
er

ag
e

qu
eu

e
siz

e
(p

ac
ke

ts
)

eotf, thr=10
eotf, thr=4
local_voting
local_voting_z
otf, thr=10
otf, thr=4

Figure 31: The average queue size for the different scenarios.

0 20 40 60 80 100
time (slotframe cycles)

0

250

500

750

1000

1250

1500

1750

tx
Qu

eu
eF

ill

otf_4
otf_10
eotf_4
eotf_10
local_voting
local_voting_z

Figure 32: The average queue size over time for an packet inter-arrival time of 0.1 seconds.

Additional results are available at github repository3, that are omitted in

this paper due to space limitations.

6. Conclusions

We proposed a new distributed bandwidth reservation algorithm called Lo-

cal Voting which balances the load between links in 6TiSCH networks. The

algorithm calculates the number of cells to be added or released by 6top while

considering the collision-free constraints. In this way, it adapts the schedule

to the network conditions in 6TiSCH networks, equalizes the load in congested

areas, that as expected provides efficient resource allocation. We showed that

optimal schedules are maximal and balanced, and these are the two design goals

of LV. Extensive simulation results show that LV combines the good delay per-

formance of E-OTF and the energy efficiency of OTF, while outperforming them

in terms of reliability and fairness. To summarize, we proved the advantage of

load balancing when performing link scheduling in 6TiSCH networks, proposed

Local Voting for distributed bandwidth reservation in 6TiSCH networks, and we

demonstrated by simulations that the Local Voting algorithm shows an overall

very good performance in comparison with other state-of-the-art algorithms. In

addition, the new variant of the algorithm, named local voting z, achieves lower

latency that the other algorithms we compared with, even in the steady-state

scenario.

References

References

[1] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey,

Computer Networks 54 (15) (2010) 2787 – 2805.

3As an online addition to this article, the source code is available at

https://github.com/djvergad/local_voting_tsch

http://www.sciencedirect.com/science/article/pii/S1389128610001568
https://github.com/djvergad/local_voting_tsch

doi:http://dx.doi.org/10.1016/j.comnet.2010.05.010.

URL http://www.sciencedirect.com/science/article/pii/S1389128610001568

[2] D. Evans, The internet of things how the next evolution of the internet is

changing everything, Cisco 1.

[3] D. Guglielmo, G. Anastasi, A. Seghetti, From ieee 802.15.4 to ieee

802.15.4e: A step towards the internet of things, in: Advances onto the

Internet of Things, Vol. 260, Springer, 2014, pp. 135–152.

[4] T. Watteyne, M. R. Palattella, L. A. Grieco,

Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement,

RFC 7554 (May 2015). doi:10.17487/rfc7554.

URL https://rfc-editor.org/rfc/rfc7554.txt

[5] K. Pister, P. Thubert, S. Dwars, T. Phinney,

Industrial Routing Requirements in Low-Power and Lossy Networks,

IETF Standard RFC 5673 (2009). doi:10.17487/rfc7554.

URL https://rfc-editor.org/rfc/rfc7554.txt

[6] Q. Wang, X. Vilajosana, 6TiSCH Operation Sublayer (6top), Internet-

draft, Internet Engineering Task Force, work in Progress (Nov. 2015).

[7] Q. Wang, X. Vilajosana, T. Watteyne,

6TiSCH Operation Sublayer Protocol (6P), Internet-Draft draft-ietf-

6tisch-6top-protocol-12, Internet Engineering Task Force, work in Progress

(Jun. 2018).

URL https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-6top-protocol-12

[8] D. J. Vergados, N. Amelina, Y. Jiang, K. Kralevska, O. Granichin, Towards

optimal distributed node scheduling in a multihop wireless network through

local voting, IEEE Transactions on Wireless Communications 17 (1) (2018)

400–414. doi:10.1109/TWC.2017.2767045.

[9] D. J. Vergados, N. Amelina, Y. Jiang, K. Kralevska, O. Granichin,

Local voting: Optimal distributed node scheduling algorithm for mul-

http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://www.sciencedirect.com/science/article/pii/S1389128610001568
https://rfc-editor.org/rfc/rfc7554.txt
http://dx.doi.org/10.17487/rfc7554
https://rfc-editor.org/rfc/rfc7554.txt
https://rfc-editor.org/rfc/rfc7554.txt
http://dx.doi.org/10.17487/rfc7554
https://rfc-editor.org/rfc/rfc7554.txt
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-6top-protocol-12
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-6top-protocol-12
http://dx.doi.org/10.1109/TWC.2017.2767045

tihop wireless networks, in: IEEE Conf. on Computer Commu-

nications Workshops (INFOCOM WKSHPS), 2017, pp. 1014–1015.

doi:10.1109/INFCOMW.2017.8116537.

[10] M. R. Palattella, T. Watteyne, Q. Wang, K. Muraoka, N. Accettura, D. Du-

jovne, L. A. Grieco, T. Engel, On-the-fly bandwidth reservation for 6tisch

wireless industrial networks, IEEE Sensors Journal 16 (2) (2016) 550–560.

doi:10.1109/JSEN.2015.2480886.

[11] F. Righetti, C. Vallati, G. Anastasi, S. K. Das, Analysis and im-

provement of the on-the-fly bandwidth reservation algorithm for 6tisch,

in: IEEE 19th International Symposium on ”A World of Wire-

less, Mobile and Multimedia Networks” (WoWMoM), 2018, pp. 1–9.

doi:10.1109/WoWMoM.2018.8449793.

[12] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, G. Boggia, Traffic

aware scheduling algorithm for reliable low-power multi-hop ieee 802.15.4e

networks, in: 2012 IEEE 23rd International Symposium on Personal, In-

door and Mobile Radio Communications - (PIMRC), 2012, pp. 327–332.

doi:10.1109/PIMRC.2012.6362805.

[13] A. Tinka, T. Watteyne, K. Pister, A decentralized scheduling algorithm for

time synchronized channel hopping, in: J. Zheng, D. Simplot-Ryl, V. C. M.

Leung (Eds.), Ad Hoc Networks, Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2010, pp. 201–216.

[14] N. Accettura, E. Vogli, M. R. Palattella, L. A. Grieco, G. Boggia,

M. Dohler, Decentralized traffic aware scheduling in 6tisch networks: De-

sign and experimental evaluation, IEEE Internet of Things Journal 2 (6)

(2015) 455–470. doi:10.1109/JIOT.2015.2476915.

[15] S. Duquennoy, B. Al Nahas, O. Landsiedel, T. Watteyne,

Orchestra: Robust mesh networks through autonomously scheduled tsch,

in: Proceedings of the 13th ACM Conference on Embedded Networked

http://dx.doi.org/10.1109/INFCOMW.2017.8116537
http://dx.doi.org/10.1109/JSEN.2015.2480886
http://dx.doi.org/10.1109/WoWMoM.2018.8449793
http://dx.doi.org/10.1109/PIMRC.2012.6362805
http://dx.doi.org/10.1109/JIOT.2015.2476915
http://doi.acm.org/10.1145/2809695.2809714

Sensor Systems, SenSys ’15, ACM, New York, NY, USA, 2015, pp.

337–350. doi:10.1145/2809695.2809714.

URL http://doi.acm.org/10.1145/2809695.2809714

[16] E. Municio, S. Latré, Decentralized broadcast-based scheduling for dense multi-hop tsch networks,

in: Proc. of the Workshop on Mobility in the Evolving Internet Architec-

ture, 2016, pp. 19–24. doi:10.1145/2980137.2980143.

URL http://doi.acm.org/10.1145/2980137.2980143

[17] R. H. Hwang, C. C. Wang, W. B. Wang,

A distributed scheduling algorithm for ieee 802.15.4e wireless sensor networks,

Comput. Stand. Interfaces 52 (C) (2017) 63–70.

doi:10.1016/j.csi.2017.01.003.

URL https://doi.org/10.1016/j.csi.2017.01.003

[18] M. A. Kafi, J. B. Othman, A. Ouadjaout, M. Bagaa, N. Badache,

Refiacc: Reliable, efficient, fair and interference-aware congestion control protocol for wireless sensor networks,

Computer Communications 101 (2017) 1 – 11.

doi:https://doi.org/10.1016/j.comcom.2016.05.018.

URL http://www.sciencedirect.com/science/article/pii/S0140366416302353

[19] K. Muraoka, T. Watteyne, N. Accettura, X. Vilajosana, K. S. J.

Pister, Simple distributed scheduling with collision detection in

tsch networks, IEEE Sensors Journal 16 (15) (2016) 5848–5849.

doi:10.1109/JSEN.2016.2572961.

[20] T. P. Duy, T. Dinh, Y. Kim, Distributed cell selection for scheduling function in 6tisch networks,

Comput. Stand. Interfaces 53 (C) (2017) 80–88.

doi:10.1016/j.csi.2017.03.008.

URL https://doi.org/10.1016/j.csi.2017.03.008

[21] R. Soua, P. Minet, E. Livolant, Wave: A distributed scheduling algorithm for convergecast in ieee 802.15.4e tsch networks,

Trans. Emerg. Telecommun. Technol. 27 (4) (2016) 557–575.

doi:10.1002/ett.2991.

URL https://doi.org/10.1002/ett.2991

http://dx.doi.org/10.1145/2809695.2809714
http://doi.acm.org/10.1145/2809695.2809714
http://doi.acm.org/10.1145/2980137.2980143
http://dx.doi.org/10.1145/2980137.2980143
http://doi.acm.org/10.1145/2980137.2980143
https://doi.org/10.1016/j.csi.2017.01.003
http://dx.doi.org/10.1016/j.csi.2017.01.003
https://doi.org/10.1016/j.csi.2017.01.003
http://www.sciencedirect.com/science/article/pii/S0140366416302353
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2016.05.018
http://www.sciencedirect.com/science/article/pii/S0140366416302353
http://dx.doi.org/10.1109/JSEN.2016.2572961
https://doi.org/10.1016/j.csi.2017.03.008
http://dx.doi.org/10.1016/j.csi.2017.03.008
https://doi.org/10.1016/j.csi.2017.03.008
https://doi.org/10.1002/ett.2991
http://dx.doi.org/10.1002/ett.2991
https://doi.org/10.1002/ett.2991

[22] R. Soua, P. Minet, E. Livolant, DiSCA: A distributed scheduling for convergecast in multichannel wireless sensor networks,

in: IFIP/IEEE International Symposium on Integrated Network Manage-

ment, IM 2015, Ottawa, ON, Canada, 11-15 May, 2015, 2015, pp. 156–164.

URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7121095

[23] A. Aijaz, U. Raza, Deamon: A decentralized adaptive multi-hop scheduling

protocol for 6tisch wireless networks, IEEE Sensors Journal 17 (20) (2017)

6825–6836. doi:10.1109/JSEN.2017.2746183.

[24] G. Daneels, B. Spinnewyn, S. Latre, J. Famaey,

Resf: Recurrent low-latency scheduling in ieee 802.15.4e tsch networks,

Ad Hoc Networks 69 (2018) 100 – 114.

doi:https://doi.org/10.1016/j.adhoc.2017.11.002.

URL http://www.sciencedirect.com/science/article/pii/S1570870517302019

[25] D. Dujovne, L. A. Grieco, M. R. Palattella, N. Accettura,

6TiSCH 6top Scheduling Function Zero (SF0), Internet-draft, Inter-

net Engineering Task Force, work in Progress (Mar. 2016).

URL https://datatracker.ietf.org/doc/html/draft-dujovne-6tisch-6top-sf0-01

[26] T. Chang, T. Watteyne, X. Vilajosana, Q. Wang,

Ccr: Cost-aware cell relocation in 6tisch networks, Transactions on

Emerging Telecommunications Technologies 29 (1) (2018) e3211.

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3211,

doi:10.1002/ett.3211.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3211

[27] D. Guglielmo, S. Brienza, G. Anastasi, Ieee 802.15.4e: A survey,

Computer Communications 88 (2016) 1 – 24.

doi:http://dx.doi.org/10.1016/j.comcom.2016.05.004.

URL http://www.sciencedirect.com/science/article/pii/S0140366416301980

[28] R. Hermeto, A. Gallais, F. Theoleyre,

Scheduling for ieee802.15.4-tsch and slow channel hopping mac in low power industrial wireless networks: A survey,

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7121095
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7121095
http://dx.doi.org/10.1109/JSEN.2017.2746183
http://www.sciencedirect.com/science/article/pii/S1570870517302019
http://dx.doi.org/https://doi.org/10.1016/j.adhoc.2017.11.002
http://www.sciencedirect.com/science/article/pii/S1570870517302019
https://datatracker.ietf.org/doc/html/draft-dujovne-6tisch-6top-sf0-01
https://datatracker.ietf.org/doc/html/draft-dujovne-6tisch-6top-sf0-01
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3211
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3211
http://dx.doi.org/10.1002/ett.3211
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3211
http://www.sciencedirect.com/science/article/pii/S0140366416301980
http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2016.05.004
http://www.sciencedirect.com/science/article/pii/S0140366416301980
http://www.sciencedirect.com/science/article/pii/S0140366417301147

Computer Communications 114 (2017) 84 – 105.

doi:https://doi.org/10.1016/j.comcom.2017.10.004.

URL http://www.sciencedirect.com/science/article/pii/S0140366417301147

[29] S. Kharb, A. Singhrova, A survey on network formation and scheduling algorithms for time slotted channel hopping in industrial networks,

Journal of Network and Computer Applications 126 (2019) 59 – 87.

doi:https://doi.org/10.1016/j.jnca.2018.11.004.

URL http://www.sciencedirect.com/science/article/pii/S1084804518303631

[30] T. W. et al., RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks,

RFC 6550 (Mar. 2012). doi:10.17487/rfc6550.

URL https://rfc-editor.org/rfc/rfc6550.txt

[31] T. Watteyne, M. R. Palattella, L. A. Grieco,

Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement,

Internet Engineering Task Force.

URL https://hal.inria.fr/hal-01208395

[32] A. Morell, X. Vilajosana, J. L. Vicario, T. Watteyne,

Label switching over IEEE802.15.4e networks, Trans. Emerging Telecom-

munications Technologies 24 (5) (2013) 458–475.

URL http://dx.doi.org/10.1002/ett.2650

[33] N. Amelina, A. Fradkov, Y. Jiang, D. J. Vergados, Approximate

consensus in stochastic networks with application to load balanc-

ing, IEEE Trans. on Information Theory 61 (4) (2015) 1739–1752.

doi:10.1109/TIT.2015.2406323.

[34] T. Watteyne, K. Muraoka, N. Accettura, X. Vilajosana, The 6tisch simu-

lator, https://bitbucket.org/6tisch/simulator/src.

[35] E. Municio, G. Daneels, M. Vučinić, S. Latré, J. Famaey, Y. Tanaka,

K. Brun, K. Muraoka, X. Vilajosana, T. Watteyne, Simulating 6tisch net-

works, Transactions on Emerging Telecommunications Technologies (2018)

e3494.

http://dx.doi.org/https://doi.org/10.1016/j.comcom.2017.10.004
http://www.sciencedirect.com/science/article/pii/S0140366417301147
http://www.sciencedirect.com/science/article/pii/S1084804518303631
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2018.11.004
http://www.sciencedirect.com/science/article/pii/S1084804518303631
https://rfc-editor.org/rfc/rfc6550.txt
http://dx.doi.org/10.17487/rfc6550
https://rfc-editor.org/rfc/rfc6550.txt
https://hal.inria.fr/hal-01208395
https://hal.inria.fr/hal-01208395
http://dx.doi.org/10.1002/ett.2650
http://dx.doi.org/10.1002/ett.2650
http://dx.doi.org/10.1109/TIT.2015.2406323

[36] IEEE, IEEE Standard for Local and Metropolitan Area Networks-Part

15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amend-

ment 1: MAC Sublayer, IEEE Std 802.15.4e-2012 (Apr. 2012).

[37] K. Kralevska, D. J. Vergados, Y. Jiang, A. Michalas, A load bal-

ancing algorithm for resource allocation in ieee 802.15.4e networks,

in: IEEE International Conference on Pervasive Computing and

Communications Workshops (PerCom Workshops), 2018, pp. 675–680.

doi:10.1109/PERCOMW.2018.8480306.

[38] Wikipedia, Fairness measure — Wikipedia, the free encyclopedia,

http://en.wikipedia.org/w/index.php?title=Fairness%20measure&oldid=847782798,

[Online; accessed 16-December-2018] (2018).

http://dx.doi.org/10.1109/PERCOMW.2018.8480306
http://en.wikipedia.org/w/index.php?title=Fairness%20measure&oldid=847782798

	1 Introduction
	2 Related Works
	2.1 6TiSCH scheduling protocols
	2.2 6TiSCH bandwidth reservation algorithms

	3 Network Model and Problem Formulation
	4 Local Voting Bandwidth Reservation Algorithm
	4.1 The Local Voting Algorithm

	5 Performance Evaluation
	5.1 Bursty traffic experiments
	5.2 Uniform traffic experiments

	6 Conclusions

