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Abstract—A fundamental challenge in the design of inventory control), data collected by many sensors is based
Wireless Sensor Networks (WSNs) is to maximize their gn common phenomena, and hence there is a high proba-

liftetimes especially when they have a limited and non- ity that this data has some redundancy (or correlation).
replenishable energy supply. To extend the network lifetire, Due to the correlation present in the sensors’ readings

power management and energy-efficient communication 7~ )
techniques at all layers become necessary. In this paper, weit iS expected that communication approaches that take
present solutions for the data gathering and routing problen  into account this correlation, e.g., data aggregation @nd i
with in-network aggregation in WSNs. Our objective is to network processing, will outperform traditional approash
maximize the network lifetime by utilizing data aggregation The main idea of the data aggregation and in-network

and in-network processing techniques. We particularly foas - . . .
on the joint problem of optimal data routing with data Processing approaches is to combine the data arriving from

aggregation en route such that the above mentioned objecév different sources (sensor nodes) at certain aggregationspo

is achieved. We present Grid-based Routing and Aggregator (or simply aggregators) en route, eliminate redundancies
Selection Scheme (GRASS), a scheme for WSNs that canpy performing simple processing at the aggregation points,
achieve low energy dissipation and low latency without 5n4 minimize the total amount of data transmission before

sacrificing quality. GRASS embodies optimal (exact) as well . . .
as heuristic approaches to find the minimum number of forwarding data to the external BS. Removing redundancies

aggregation points while routing data to the BaseStation (B) results in transmitting fewer number of bits, and hence
such that the network lifetime is maximized. Our results shav  reduces energy consumption and increases the sensor nodes’

that, when compared to other schemes, GRASS improves Jifetimes. A number of studies that compared aggregation
system I_|fet|me w_lth accept_a_bl_e levels of _Iatency in data scheme, e.g., [4], [5], [6], [24] concluded that enhanced
aggregation and without sacrificing data quality. network throughput and more potential energy savings are

Keywords: Wireless Sensor Networks, Data Aggregation highly possible using data aggregation and in-network pro-
and Routing, Exact and Heuristic Solutions, Hierarchical, cessing in WSNSs.

Clustering. Aside from the task of efficient design of data aggregation
algorithms, the task of finding and maintaining routes in
|. INTRODUCTION WSNs is also nontrivial [2], especially when it includes

Wireless Sensor Networks (WSNs) is a class of Wirele%fée selection of aggregation points and routing through

ad hoc networks in which sensor nodes collect, process, ang-c points. Many routing and data dissemination with

communicate data acquired from the physical environme‘?‘ﬁgregatlon protocols have been proposed for WSNs (a

to an external Base-Station (BS) [1]. Future WSNs arceomprehensive survey of the routing techniques in WSNs

envisioned to revolutionize a maintenance free and fauﬁ‘:jln be found in [2]). In [4], C._Intanagqnwwat et. al. pro-
tolerant platform for collecting and processing infornoati posed a popular data aggregation paradigm for WSNs, called

in diverse environments. A major technical challenge fol?'reCted Diffusion (DD) where aggregationis used to reduce

WSNSs, however, lies in the node energy constraint and &gmmunlcanon costs. In [6], Heinzelman, et. al. introdlice

limited computing resources. which mav pose a fundamen Ihierarchical clustering algorithm for WSNs, called Low
- puting e yP . : nergy Adaptive Clustering Hierarchy (LEACH). LEACH
limit on the network lifetime [1]. Therefore, innovative.

; g e a cluster-based protocol where ClusterHead (CH) nodes
techniques to eliminate energy inefficiencies that wou o

. e . compress data arriving from nodes that belong to the re-
otherwise shorten the lifetime of the network are highl .

pective cluster, and send an aggregated packet to the BS.

needed. Following these protocols, many other studies focused on
In many applications of WSNs (e.g., military battlefields 9 b ! y

! . : : . . : the routing problem [7]-[22]. Among these, [18] introduced

target field imaging, intrusion detection, surveillancada _ . : : .
a linear programming formulation to solve the optimal
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solution under arbitrary traffic generation processes were two problems jointly in order to reach an optimal solution.
troduced. A heuristic solution was also introduced. HowgveSince this joint problem is not trivial, we adopt a hierarzi

no aggregation was assumed. In [19], aggregation was talstructure in which each group of sensor nodes elect a cluster
into account, but only full aggregation was considered.tThaead which is responsible for: 1) collecting their sensed,da
is, regardless of the number of packets to be aggregat2ylperforming a first level aggregation, and then 3) routing
a single packet will always be produced. This simplifiethis data to the next aggregator on its way to the BS. This
the problem of aggregation significantly. A special case difst level of aggregation achieves two benefits. First, fitisf
partial aggregation, in which the aggregated data size the greatest performance benefits in this environment since
equal to the minimum of the original data, and a maximumodes in a cluster are most likely to generate correlatea, dat
size, was considered in [20]. A heuristic was introduced fand then it simplifies the routing function since only the
this case. In [21], heuristics as well as an approximatiaruster head will be in charge of this functionality. Hence,
algorithm, were introduced to select the minimum numbdhe hierarchical structure facilitates digests of sensamad

of sensors which would form the minimum connected coindeed, this is a key issue in the design of GRASS. In
relation dominating set. Such a set is used to infer readinGRASS, correlation means that sensors’ readings overlap
from other sensors (with an acceptable error), and alstatistically as they monitor the same event. This overlap
forward data towards the data collection center. The ndtwowill be captured in our proposed solutions using aggregatio
lifetime was not explicitly addressed in this paper. Theverlap factor. The factor represents linear as well as non-
authors in [36] proposed a Voronoi detection method théhear relations among the gathered data. We propose to
utilizes distributed Voronoi diagram and genetic algarith solve the joint aggregator selection and routing problems
to gather data in WSNSs, while [37] considers maximizingq a powerful node, such as the BS, and then dispatch the
large scale wireless sensor networks lifetime under energsults to the sensor nodes. Hence, an optimal solution that
constraint via joint relay deployment and adaptation. 8][4 is obtained by the BS will result in an optimal routing and
several lossless aggregate repacking algorithms foraertustaggregation strategy.

model wireless sensor networks were presented. In [41],The rest of this paper is organized as follows. The problem
an energy-efficient data gathering scheme that prolongs thescription and system model are presented in Section II.
lifetime of battery-powered sensor nodes is considered. TBection Il presents exact algorithms to solve the problem,
proposed scheme constructs and maintains a spanning tied using two definitions of network lifetime. Section IV
that is based on breadth-first search and has more leaf hogessents several approximate algorithms for the problem
in network. Kalpakis et.al. [33] presented algorithms founder consideration. Section V presents analysis of erergy
the Maximum Lifetime Data Aggregation (MLDA) problemdelay tradeoffs due to our aggregation scheme. The perfor-
with the objective of maximizing the system lifetime. Amance evaluation of the proposed scheme is presented in
near optimal algorithm for solving the MLDA problem wasSection VI. We conclude with final remarks in Section VII.
proposed in [33]. Since this algorithm is computationally

expensive for large sensor networks, authors in [33] pret|. THE PROBLEM DESCRIPTION ANDSYSTEM MODEL

sented a clustering based heuristics approaches (CMLDAM . '
. . d twork of fixed, h , and
for MLDA in large scale WSNs. Experimental results of © consider a newwork ot fixe omogeneous, an

. energy-constrained sensor nodes that are randomly deploye
'(\)/ltl;]DA dTTO;St:afd enlhanced syst(ejmgllzfetlrgj Ofgvg/SNTa a sensor field (bounded region). Each sensor acquires
er related studies also appeared [32], [34], [35] an) easurements which are typically correlated with other

[38]. A recent survey of strategies and protocols for rYtINSensors in its vicinity, and these measurements are to be

correlated data can be .fOL.md.'n [39]. To thg best of o athered and sent to the BS for evaluation or decision taking
knowledge, the jq|nt optimization OT the ro_utmg a_nd dat urposes. We assunperiodic sensingvith the same period
aggreganon functions were not carrleo! out in the I_|tera,turfor all sensors. We also assume that contention between
especially for the general case of partial aggregation. sensors is solved by the MAC lajeMe assume that the

In this paper, we present a novel data aggregation aimformation collected by various sensors may be correlated
routing scheme, called Grid-based Routing and Aggregatedundant, and/or of different qualities. Since data datre
Selection Protocol (GRASS). GRASS embodies optimébn in WSNSs is strongest among data signals coming from
(exact) as well as heuristic approaches to find the minimunodes that are close to each other, we believe that the use of
number of aggregation points while routing data to the clustering infrastructure will allow nodes that are close
BS such that the network lifetime is maximized. That issach other to share data before sending it to the BS. Hence,
GRASSjointly addresses the issues of the selection of datse ideas of fixed cluster-based routing [31] together with
aggregation points, and the optimal routing of data frompplication-specific data aggregation techniques will $edu
sensors to aggregation points, as well as the routing of the

aggregated data to the BS. While solving these two problerﬂé” the MAC layer is collision based, e.g., CSMA/CA, then itassumed
tel . lify th bl th uti that the amount of data will be inflated in order to accountcfalisions and
separately may simp |fy € problem, the solution may lq’@transmissions. However, estimating the actual amouwatf is beyond

far from optimal. Therefore, our proposed solution tre&ts t the scope of this paper since it does not deal with the MACrlaye



in GRASS to achieve significant energy savings. The virtuaénsors in a zone is aggregated by the LA of this zone, and
topology used in [31], namely VGA, has been proved tthe rate of this data is known. Second, they relay infornmatio
achieve significant reduction in control overhead and aghietowards the BS. To further minimize energy consumption,
more energy savings. we propose to use further levels of data aggregation using
The concept of virtual topology presented in [31] has subset of LAs. To be specific, we will first introduce
ramifications on the problem addressed in this paper. Themdgorithms that create a second-level of data aggregation
fore, we leverage this concept to perform energy efficietitrough a subset of LAs calledaster AggregatorgMAS),
routing in WSNs. The essence of the clustering schermere an MA node will also act as an LA for the sensors in
presented in [31] is to create a fixed rectilinear virtudts own zone. We then extend these algorithms to generate a
topology, called Virtual Grid Architecture (VGA), on top hierarchy (multi-level) of data aggregation points thatlier
of the physical topology. VGA consists of a set of nodesonsolidate data before being forwarded to the BS. To be
namely, ClusterHeads (CHSs), that are elected periodicafiyore concrete, sensors are at aggregation level 0, LAs are
based on an eligibility criterion, which takes into accourdt aggregation level 1, MAs are at aggregation level 2, and
many changing parameters in the network. Each CH $® on. We study the tradeoffs for each case.
elected as such inside a zone where we have divided thd-or a realistic scenario, we assume that a set of LAs
network area into fixed and square zones as shown vifhich monitor the same phenomenon forrgraup, and the
Figure 1. The set of CHs form a fixed rectilinear virtuabet of LAs is divided into, possibly overlapping, groups.
graph G. New CHs, but not new clusters, are chosen dthat is, an LA may belong to more than one group. These
periodic intervals to provide fairness, avoid single nodgroups may be known a priori in manual sensor deployment
failure, and rotate the energy draining role among sensor can be constructed using message exchanges in random
nodes within the cluster. For now, we assume that the tosgnsor deployment. Members of each gratip,1 < g < x,
energy within a zone is the same. However, this assumptiare sensing the same phenomenon, and hence their readings
will be relaxed later. are assumed correlated. Thus, an LA nadéat belongs
to groupsji,jo,...,jk, Wil generatem?', m’*, ..., m*
data units every sensing peribdSuch data units are to
be delivered to the base station, BS. However, data units
generated by different sensors in the same group may be
aggregated by master aggregators, MA, on the route to BS.
One MA may act as an aggregator for more than one group
at the same time, but aggregating data belonging to differen
groups separately. For example, the MA in zbi2,2) in
Figure 1 can act as an MA for the LAs in the group of zones
I ‘ ‘ 8 {(1,1), (2,1), (1,2), (2.2), (1.3), (2,3), (1,4), (2}4)and the
e — - LAs in the group of zoneg(2,1), (3,1), (4,1), (2,2), (3,2),

|| Base-Station

2 : ‘ 1 ‘ (4,2)}.
: |~y § § It is assumed that packets generated by sensor nodes
1 Z QO §O€ ooe |l %% %% g. § durin_g a _sensing interval are of variable Ie.ngt.hs, and hence
e 0Ol 2 | | I } require different levels of energy for transmission andepec
1 2 3 a 5 6 tion. We adopt the first order radio model in [6] which will

,,,,,,,,, be elaborated on in Section VI. However, for now we assume
that the energy required for transmitting and receiving one
Fig. 1. The VGA clustering approach used in GRASS. Some nod&yt€ arewr andwpg, respectively. LA numberhas a limited
selected to act as aggregators at different levels. energy budgetF;, which is used for sensing, computation
and communication. It is assumed that the energy used

Our scheme, GRASS, consolidates data aggregation 4t sensing and computation is negligible compared to the
in-network processing at different levels of the virtuaidgr energy used for communication.
(see Figure 1). To be more specific, it is assumed that the se¥Ve consider two versions of this problem, and we
of the selected CHs in VGA perform two functions. Firstformally define them as follows:
they perform the first level of aggregation in each of their
respective zones, hence they will be referred toLasal
AggregatorgLAs). We assume that the data generated by all

(a) Joint Routing/MA Selection Problem in Two-level

3In the ILP and heuristic formulation, it will be assumed titaése data
2Although all algorithms presented in this paper make use hef t units have constant lengths. In the simulation study, tha daits will be
rectilinear virtual topology as their underlying transsi@ architecture, taken from an exponential distribution, such that the meacket length is
they can be easily extended to deal with any bounded-degigalv equal to that used in the ILP or heuristics.
topology. 4A zone is referred to by the x-y coordinates shown in Figure 1.



Scheme (RSP1)Given a set of LAs, divided into, possiblymaximum power consumption at each LA node, and hence
overlapping, x groups, the amount of traffic generatednaximize the network lifetime.

during a sensing period by each LA in each group, an

external BS, and a maximum number of Master Aggregatcz&s
(MAs) equal toM, find a subset of LAs of cardinality "~
(p < M) that will act as MAs for the LAs, and the routing

RSP1: Two level Routing/Aggregation Problem
In this section, we focus on problem RSP1, and study

from the LAs to the MAs, and from the MAs to the BS, sullte selection of a set of LAs to serve as MAs such that
that the network lifetime is maximized. No MA can aggregaliee network lifetime is maximized. The problem of optimal

data already aggregated by another MA.

selection of MAs is NP complete (Appendix A provides

a complete proof of the NP-completeness of the problem

(b) Joint Routing/Multi-aggregation Problem in Multi-

RSP1). We now develop an Integer Linear Program (ILP)

level Scheme (RSP2)Given a set of LAs divided into,that finds the optimal selection of MAs satisfying the

possibly overlappingy groups, the amount of traffic gen-
erated during a sensing period by each LA in each grou
and an external BS, find a suitable routing structure an|
aggregation points that gather data and report it to the B
such that the network lifetime is maximized. The maximum

aforementioned objective. Let us label the base-station as
ode 0 and label the LA nodes as nodes htavheren is

Ew'e total number of LAs (The variables and notations used

& the ILP are defined in Table I).

TABLE |

number of MAs should not exceed M, and an MA can THeILP PARAMETERS AND VARIABLES FOR PROBLEMRSP1.

aggregate data already aggregated by another LA or MA:

Input variables

The network life time is defined formally as follows:
M
ij

Definition 1: The Network Lifetimeis defined as the time
until the first CH node runs out of energy, i.e., the time

until the first initially-populated zone becomes empty, orPmaz

the zone has no sensor node with positive residual energ)g’
Note that our definition of lifetime is dependent on the
total amount of energy in each zone. Recall that nodes iﬁgg
each zone take turns in serving as CHs according to ouf"
VGA clustering scheme. As the CH election is mainly basedr;
on sensor's remaining power, it is guaranteed that if a CH?
fails in a certain zone then that CH is the one with the””
highest power, and hence all other nodes in the zone havgy
already failed. The definition of the network lifetime wileb
revisited in section 111-C for more practical scenarios. P

the set of LAs in the grapld+; with cardinality n=| N| indexed by
1<i<n.

the maximum number of MAs that can be allocated.

A binary indicator which is 1 if and only if nodes and j are
connected by a link.

the maximum power available for each LA node.

two weighting numbers (scalars) and>> .

Total number of LA groups irG.

The set of LA nodes of group, 1 < g < x.

The size (number of traffic units) of the packet sent by LA node
i € Sy during one time period.

Total amount of energy in zone

A very large number such that)( > maxg,lgign(mf))

A constant which represents the amount of energy spent is-tra
mitting one byte (joules/byte).

A constant which represents the amount of energy spent &ivwec
ing one byte (joules/byte).

The maximum rate of failure among the set of all LA nodes.

It is to be noted that the above objective can be achieved

Variables determined by the ILP

by maximizing the minimum% over all zones;, where I}
P; is the power consumptionl of LA node € N where v
N is the set of LAs in the network grap, and E; is  z9¢
the total amount of energy in zone However, although

E; is an input parametef?; is a variable which makes the
problem nonlinear. The problem can be transformed into a¥;
linear one by minimizing the maximurﬁé over all zones;. .
If we assume a system in which the energy of a zone which
is depleted is replenished with the same initial energy, i.e v,/
a renewal process, then this last expression is the numb%r_
of failures per second, or the rate of failure of zane !

A binary variable which is 1 iff LA node of group g uses LA
nodej as its MA.

number of MAs allocated by the ILFh (< M).

the maximum of all the lengths of the data units (packetsgived
by the jth MA node from members of group, where0 < Zj.’ <
maxi,lszl(mg)

an auxiliary variable such thaXJg = I]%’]. * ZJS’, hence0 < Xj,’ <
max;, o ()

a binary indicator which is 1 if and only if LA node is on the
route from nodei to nodej.

a binary indicator; is 1 if and only if the traffic stream soenicat
¢ and destined tg uses the link between nodeand nodek.
total power consumption by LA in zong which includes power
consumption for possiblty acting as an MA.

In the following sections, we present the algorithms of
GRASS in details.

Sometimes, only the summarized information is needed

I1l. EXACT ALGORITHMS:. AN ILP FORMULATION

to serve the purpose of monitoring environmental events.

In this case, the summarization (aggregation) function can
In this section, we present exact (optimal) algorithms fdeke different forms such as duplicate suppression, aestag
problems RSP1 and RSP2. For both problems, we introdusiems, minima, maxima, percentiles, etc. Our ILP can handle
an Integer Linear Program formulation to find optimal routethese different summarization functions. Indeed, the 1&R c
with data aggregation performed en route to minimize thHeandle any linear function of the data to be aggregated.
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The ILP can also handle many non-linear functions whiokxceedM . Constraint (4) ensures that an LA nodeof
can be mapped to linear functions. As an example, vggoup g will use LA nodej as its MA only if LA ;5 has
select the aggregation function to be theaximum i.e., been selected to act as an MAConstraint (5) ensures that
each MA selects the data unit that has the maximum sittee maximum-sized packets are sent to the BS taken over
(length) coming from its constituent LAs source nodes. Thadl the packets generated by the LAs of the groups served
maximum function is selected to represent cases when pabi-the jth MA. Constraints (6) and (7) (together with the
ets of variable lengths are collected by sensors, and hememimization of the objective function) sé;ff to the amount
variable energy is consumed in such type of communicatiauf. traffic routed from thejth MA to the BS, i.e., the product
In one sense, selecting the maximum function represedgg * Z;?j. Constraint ( 8) finds the maximum failure rate
a worst case scenario of collecting data with the highester all zones (it will be shown below how to evaluate the
communication cost. power consumption at each LA in order to calculate this
We have noticed that it is sometimes possible to achiexate). Constraint (9) guarantees a minimum zone lifetime
the same level of energy consumption with different nunand limits the maximum power consumption of any node.

bers of MAs. For example, we can aggregate four streamsthe power consumption at each node is also dependent on
using either two MASs, or just one MA, which results infe determination of the actual routing of the data traffe, i

a smaller aggregated data, while using more hops to reagh muyst find the power consumed by each LA source node
the MA as compared to the two MA case. In a case likghen participating in routing data ovet. The following

this we opt to use the fewer number of MAs in order tgqgitional set of constraints are required for performing
reduce the computational requirements imposed on MAs dy§,ie computations needed to find the valuesigf. The

to aggregation. Also, in order to speed up the execution Rfjjowing two constraints ensure that for the connection

the ILP solver, we limited the search space of the numb§5ing from nodei to nodej, no traffic is coming in (going
of MAs to be about one half of the total number of '—Asout) the source (destination;), respectively

which is the maximum number of second level aggregators
under the two level aggregation assumption.
Objective function: >ooovi=0 vij; > Yi=0 Vij
7 ’ ’ 7 9

Minimize:axp+ Bx*p kyFri=1,k#1 k,Fj=1,k#j

The objective function minimizes the maximum zone failure ) ) )
rate over all zones while trying to also minimize the numbéi€ following two constraints ensure that the connection
of MAs. The carefully selected values efand3 will ensure  traffic betweeni and j is originating (terminating) ai(;),
that the number of MAs will be reduced only if this does ndi€spectively

result in an increase in the power consumption at individual

nodes. Note that the network lifetime is given byp.

Subject to: Z Y =1 Vi,j ; Z V=1 Vij
. yif Fin=1,k#i kyif Fry=1,k#j
Y IG=1, Vg.ies, (1)
j=1

The following constraint preserves the continuity of coome
X tion traffic on one of multiple possible routes

Z Z Ify=» 2) - -

9=14€s, > o vil= > vy

p<M ©) kyif Fro=1,k#x,k#j Gyif Fep=1,j#x,j#s

Ve, (x #14,7),1,] 10
I -1, <0,V 1<j<n, g, i€, 4) (#6555 (19
Z9>miI% V1<j<nl<g<y.ieS, (5) Ngte _that although the above_: can.result in loops, the mini-
J J ' mization of power consumption will prevent the formation

X!>QI, —Q+7Z] 1<g<x,1<j<n (6) of loops, since any loop will lead to greater power consump-
X{<z] 1<g<x1<j<n (7) ton

. The following two constraints determine the valuere;,
pzFi/E; Vi (®) ie., if LA ais on the route(s) between LAsand ;.
p< 1/Tmin (9)

Constraint (1) ensures that each LA node of graus
associated with only one MA node. Constraint (2) ensures

that total number of allocated MAs for all groups js RO <N YU iiai A ;
i H<y v Jai#F jiFajFa  (12)
Constraint (3) guarantees that the number of MAs cannot ! = k

RE>N"VH/Q Y ijai#jitaj#a (1)
k



The power consumed by nodeis given by

Z wrl];m§ + Z(wT +wr) I} Ri;m]

aggregation is harder than the two level aggregation scheme
In other words, The RSP2 problem is harder than RSP1,
and is therefore also NP-complete (the verification of a

j"’_l w39 certificate for RSP2 can also be performed in polynomial
time). However, we anticipate that multilevel aggregation

+ wrllmi +» wpX? . o : A
;lezsj rl ; r will result in further reduction of energy dissipation, and

hence prolong the lifetime more than the two-level data
+ Z (wr +wR)XfR?o aggregation scheme. Our objective here is similar to our
J:9:.7a objective in Section IlI-A, which is to find optimal routes
The five terms in the above equation refer to: 1) the powand a set of aggregation points for each group such that the
consumed by data sourced out from LA ned&) the power network lifetime is maximized. Since with multiple levels
consumed by node while relaying for other LAs towards of aggregations the maximum number of MAS7is— 1,
an MA node, including power consumed in reception angheren is the total number of LAs, we did not impose any
transmission of data units; 3) the power consumed by agper bound on the number of MAs, as this will not provide
MA in receiving unaggregated data units from the LAs; 4any significant reduction in the search space. We have also
the power consumed by MA in transmitting the data units decided not to minimize the number MAs in order to explore
after aggregation; and 5) the power consumed while relayitige full limit of aggregation, and since the number of MAs
for other LAs towards the BS, which includes power fois already much larger than that under two level aggregation
reception and transmission. The ILP formulation presented in this section is generic
Note that the conjunctiod?. A R{; in equation (13) is and can handle arbitrary data aggregation factors and arbi-
mapped to a linear form by def|n|rig9“ = Igj A R§; and trary traffic streams. We defind as the fraction of original
using the following two constraints, “which’is a standartfaffic of a source left after aggregation, when data streams
mathematical programming modeling technique: from k¥ members of group are aggregated. Hence the data
U > 19 4 Re 1 (14) aggregation (or reduction) factor ig ¢ r{). The variables
ij = g i and notations used in the ILP of RSP2 are defined in
Uit < (15 +RY)/2 (15) Table I, while other related notations are already defined

Finally, the termX ¢ R%, is a nonlinear term. We introduce!n Table I. Below, we present the ILP:

the following approach to linearize this product. We define TABLE I
THE ILP PARAMETERS AND VARIABLES FOR PROBLEMRSP2

(13)

Input variables

Vit = XJRY,, and use the following two linear equations
to evaluateV":
a a 7"‘{].
VI > QR -Q+ XY, (1e6) "
Ve < Xt (17)

This is similar to the approach used to evaluaf
equations (6) and (7). Using equations (14)—(17), the powet

€i,j

fraction of original traffic left after aggregation, whentdatreams
from k members of groug are aggregated such thq‘g > TZ+1
andry k< TZ+1*]€+ 1,0 <k < |Sy| with r{ =1 andrf = 0.
A very large number such that)X> |Sy| max, 1<i<n(m?))

the link weight between LA nodes and j, which is assumed
symmetricin graphG.

Variables determined by the ILP

consumed by LA node can now be expressed as: X7

S wrllmg + or +un) USRS
g, g,l 0.9 75’

9%

>3 wathmt + 3 wr X

g=11i€8, g=1
g9
+ Z (wr +wr)V (18) M;
J:9,J#a

B number of data units coming from members of grauand sent

by node: to nodej, and after aggregation if any.

the amount of power utilized at LA node

a binary indicator; is 1 if and only if the traffic stream soenicat
node s of group g uses the link between nodésnd nodej.

a binary indicator; is 1 if and only if the number of LA source
nodes in groupy that are sending data through the link from node
i to nodej is < k.

5 a binary indicator; is 1 if and only if the link going from node

to nodej carries the traffic by at least one source of graup

It should be noted that the number of variables in the
above formulation is w3y +n2E), whereFE is the number
of edges in the network graph. This is based on the number
of the auxiliary variables/7,

indicators,Y;;/, respectively. rate

Objective function:

Minimize p

and the number of binary The objective function minimizes the maximum zone failure

Subject to:

B. RSP2: Multi-level Routing/Aggregation Problem

In this section, we extend the ILP presented in the pre
ous section to handle multiple levels of data aggregatio
The problem of optimal selection of multiple levels of

The following two constraints find the maximum power
\ﬁonsumpnon over all LA nodes, while respecting the max-
imum power consumption limit of any LA node,

p>P/E;

Vi (19)



p < 1/Tonin (20) > oM<, Vg, (30)

. . j, if Fyy=1
The following constraint ensures that the power consumed !

at each LA node is sufficient to send the amount of required The guarantee of a minimum lifetime of an LA node is
traffic to the other nodes. highly dependent on the determination of the actual routing
of the data traffic, i.e., we must find the power consumed by
P > Z Z Xg wr + Z Xj?-w each LA source node_vyhen participating m_routlng data over
o\ i et G. The following additional set of constraints are required
SV o for performing route computations.
Vg ,i (21) A . ,
The following two constraints ensure that for the traffic
The following two constraints ensure thatfif is the number from sources to the base statiorf), no traffic is going in
of members of grou@] sending data from nodéto node (going out) the source (destination0), respectively
4, then the value oqu’ is 1 for all the values ok that are

greater than or equal t&’; otherwise it will be 0. oo TE=0; > Tgf=0 Vg seS,
1S, i,if Fys=1,s71 J,if Foj=1,j#0
ZIQ’ > T = [S,|+1, Vg, 4, i,if F;; =1(22) The following two constraints ensure that the traffic fram
s€Sg andO0 is originating (terminating) at (0), respectively
& k1 L
Izgj SIZ ,vg,0§k§|Sg|—1,l,j, if E]Zl(zg) Z T;]g: Z ngfl Vg, SES
The following two constraints together give the exactif Fs;j=1,5#j i,if if Fio=1,570

amount of traffic sent by nodé to nodej, once nodei

. The followi traint th tinuity of
has aggregated the data coming from members of group © Tofowing constrain®. preserves the continuily of conne

tion traffic on one of multiple possible routes

X§ > Il > " mITS9, Vg, 5 ki, it Fij = 1(24) > Teo > oy
$€S, - / i N o Taj
0,if Fip=1,i#x,s7#1 Jif Fpj=1,j7x,j#s
<z<
ij < T'Z*ngTs’q—i-Q*Iq’ k_ZT&q’ Va,9, s€8g, (1<xz<n,z#s) (32)
$ES, $€ES, Finally, we point out that the number of variables used in
Vg,j, ki, If Fi; =1 (25) this formulation is @n?y + xE max, |S,]), which is based

g 8,9 g,k ;
However, constraints (24) and (25) are nonlinear. We i the number ofX; andT;;” (or I;7), respectively.

troduce an approach to linearize these constraints, wisich i

illustrated by the following two equations: C. Extension to the Network Partitioning Condition
Xf] > Qx Ifj —Q+r* Z mngJ’q , In the above formulation, it was assumed that the network
5€S, lifetime is limited by the failure of any single zone, i.e.,
Vg ,j .k, if Fj; =1 (26) all sensors in a zone. In some situations, this may not
be a practical condition. A zone may fail, but the rest of
Xig_j < TZ * Z mng§9+Q|Sg| (1 _]fj-rk) the network may still operate. However, we realize that
s€S, ‘ the network lifetime may be limited by its capability to

deliver data to the base station. Therefore, in this seatien
introduce an alternative definition of the network lifetime
, . *€5 Definition 2: The Network Lifetimeis defined as the time
Vg.i ki, it Fyy =1 (27) " period from the instant when the network starts functioning
Only whenk = K that the above equations will reduce toto the instant when the network becomes partitioned, i.e.,
when thefirst CH node that acts as a router for other CHs
rpe Y miTH < XE <rfx Yy miTY, runs out of energy.
$€5 $€5 This requires the identification of those zones in which
which is the desired aggregated bandW|dth This holds sing: LA serves as a router, which is done through the

g,k 5,9
+Q*kx [77 —Q * ZTij ,

I "=1land(k= >ses, Tiy?) for k = following binary variable:
The following three constralnts ensure that the aggregatedl: a binary variable that is equal to 1, if and only if the
traffic streams will not be split on the way to the BS: LA in zone: acts as a router.
8, CoL b; can be set to 1 if the energy consumed by the LA in
MZ = Z T q/Q ’ Vg, 51 5 1 Fij =1 (28) zonei exceeds the energy required for the transmission of
$€5 data generated within this zone.
M < Z T, Vg, i, j, if Fj=1 (29) This indicates that this zone is involved in routing other
$E€S, data. Therefore, the following two constraints will evakia



b 1 sal 1Sgi=6
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[a[4[2] 9 8 B Bla]a]2 EHEEERNE
X Chromosome (Solution Representation) Source nodes={1,4,6,8,9,14}
bz S (Pl — Z wT * mf) A Vi (32) (a) Solution Representation
9=1 BDEREERNNEEFEENN 3[4 64 Fn
P =X wrsxm? 14325 3[41854FJ---- SEEREERN
b > — 2= S (33) 1484 b [3[2%45 BEEERE
A Generation 1 Generation 2 Generation n
A in these two equations is a very large number which s (b) generations and regeneration
chosen such that whenevey > Z;‘Zl w*m?, the right- Cross-Over Site

hand side in equation (32) is greater than or equal to 1, arwst /’h

Solution

. - . . ; HEEEREN
the right hand side in equation (33) is a non-negative numbey, -

far | ;w
less than or equal to 1. Finally, equation (19) is replaced by «[2[2 4 & 2" HEREEN.
the following constraint ! (c) Cross-Over
p=P/E —(1-b)-A, (34) 2346k [[d5354%
where A in this case is chosen to be greater than the largest (d) Mutation

value of P;. This constraint means thatis an upper limit ‘ o _ _

on the rate failure only for those zones which also providdd: 2- representation of solution in multi-level aggregatscheme
. in the form of routing structure.

data relay service to other zones.

D. A Note on Optimality this section especially for the multi-level aggregationesme

It is obvious that the optimal approaches above set mpesented in this paper.
static routes which are used for the entire network lifetime
Therefore, an argument may be raised that repeating the ILP
periodically, or according to different criteria, may réstn ~ A. A Genetic Algorithms Approach
extending the network lifetime. However, we note that the ) _
objectives of the optimal formulations to problems RSP1 and W& déveloped a genetic algorithm strategy to solve both
RSP2 above is to minimize the rate of energy depletion p@e RSPlla.nd RSP2 problems. The major step in GA IS to
zone. The ILP, in fact, attempts to equate those rates, an(fi an efficient way to represent the solution. The detailed
turns out that in the nuemrical results the energy depleti@Reration of GAis well-known and can be found in [25]. For
rates are almost equal, and if there are differences, th €xtended problem (RSP2), our solution representation
differences are very small. Such an observation has alsp b@& @n individual is shown in Figure 2. For each group
made in [32]. Therefore, it is very difficult to achieve any wherel < g < Y, the solution is represented as a
better performance using any different approach. MoreovéF”ng of length[S,|, where|S,| is the number of LAs

repeating the ILP is not practical because of its high tinf@ 9roup g. Th? ith cell in the s?ring contains the route
complexity. number that will be used by thé&h source of groupy,

which has an integer value between 0 aRf},,., R.,..
denotes the number of routes from thie source to BS. We
assume that this number is known and can be found by any
In the previous section, we presented optimal solutions fg§te discovery technique, e.g. reactive protocols. Hetiee
bothRSPlandRSP2problems using an ILP formulation. Injndividual is a routing structure for each group. First, we
practice, WSNs are large networks with hundreds of nodggenerate an initial population of randomly created, and thu
which the ILPs cannot handle with reasonable computationgiferent, routing structure for each grouyp The generated
facilities. Therefore, a more efficient, albeit less optimapopylation is subjected to the typical GA evolution process
scheme is highly desirable. In this section, we present g re 2(b),(c), and (d) shows the process of reproducing
heuristic approaches to find near optimallsqlutions for b?anerations, crossover, and mutation, respectively.
RSP1and RSP2 problems. The first heuristic approach is e tg the lack of space, we omit the details of the genetic
based on genetics algorithms [25]. The other heuristic 8 qrithms approach, which are available in [42]. Results
proach aims at balancing power consumption among sengdkeqd on this algorithm will be shown in Section V.
nodes in order to prolong the network lifetime in both the

two- and multi-level approaches. We have also designed and
tested other heuristics, e.g., a modifiedneans clustering
algorithm and a simple greedy algorithm for the two-lev
aggregation scheme (see [23]). However, we will neither In this section, we present a heuristic that balances the
present the details nor the results fsmeans and the greedypower consumption at sensor nodes for the sake of maxi-
approach since they are inferior to the heuristics preskinte mizing the network lifetime in a multi-level data aggregati

IV. HEURISTIC APPROACHES

el?' The Balanced Power Consumption Heuristic Approach



schemes are heterogeneous, and start with different power budgets,
The heuristic, called Clustering-Based Aggregatiothen the above selection criterion can be revised to

Heuristic (CBAH), is inspired by some observations taken .

from the ILPs developed earlier. After running the ILPs for roas i?éﬁ{ié?vlfi)(&)}

many scenarios, we noticed that, when the amount of enefg

in the non-empty zones is the same, the power consumed

by different LA nodes is almost always the same. In Oth?ifeti

ere B, is the remaining power budget at LA nodeThis
achieve the same objective of maximizing the network

ds, if we defi me.
worcs, It we detine Now, we describe the operation of CBAH. A high level
A =max(|P; — Pj|) ,Vi,j € N,i#j description of CBAH is shown in Figure 3. Let be the
%,J

adjacency matrix of the virtual grapfy, where the entry
as the maximum absolute difference in the power consumgp;;) is 1 if there is a link from LA node to its adjacent
tion levels between any two LA nodes,and j, in the LA node j; otherwise it is 0. LetP; = 0 be the initial
graphG, then the value ofA should almost always equal tototal power consumption within each LA noden graph
zero. This indicates that the optimal solution also actgeve;. Also, defineaggregator[g][n] as the set of aggregator
balanced power consumption among all LA nodes in owibdes which is initially empty. Letoutes[g][s] be the set
scheme. And, in the case of unequal amounts of energlysemi-disjoint routes from source to the BS, which is
for different zones, the optimal solution equalizes theezonnitially empty. The heuristic CBAH will cycle through each
failure rates. Therefore, we make use of this fundamenigoup and for each source in a group, it finds a route to
observation to develop a simple and efficient heuristi@S (node 0) such that power consumption at the network
namely, CBAH, which can be used to solve for large WSN$# balanced, and hence the network lifetime is prolonged.
The heuristic CBAH will find routes on the gragh for The set of discovered routes for each source node is stored
each source node of each group such that power consunp-a list called routegg][s]. The list routes[g][s] is 3-
tion in the network is balanced. In order to achieve balancefimensional list that stores groups, sources of each group,
power consumption and extend network lifetime, a souremd the discovered routes for each source node. The details
node should select a route that minimizes the maximum totgke as follows.
power consumptionK;) at each individual nodé in the A sources starts finding its available routes to BS by
route taken over all feasible routes for that source nodeyoking a function called FIND-ROUTE]. Figure 4 shows
while allowing for data aggregation en route. To achievihe operation of FIND-ROUTE]. The first step is to inspect
this goal, CBAH will use the information about the totathe neighboring LA nodes of. The set of neighbors are
power consumption experienced at each LA node so fardiored in a list called theandidate-list which will be
addition to the required transmission pofieNote that a expanded during the route search process. Each member of
node with high total power consumption or low remaininghis list is used to initiate the next hop during the route
energy should be avoided when performing routing. search process. The importance of temdidate-listis that
To be formal, let each source nodein each groupg, it allows one to quickly select the next LA node needed to
1 < g < x search for a route oveG. Indeed, many expand the route search for a certain source node. In each
disjoint and non-disjoint routes to the destination (BS) caexpansion step, the contents e#ndidate-listare refreshed
be found inG for any sources. However, to limit the by using an auxiliary list calleshew-candidate-listwhich
complexity of the problem, we consider routing through aontains the nodes that will be used for the next step in
limited number ofsemi-disjointpaths, where those pathsroute search. Each time, one candidate is pulled from the lis
share the least common nodes. The term semi-disjoint walhd its four (potential) neighbors are examined for possibl
be further defined below. LeR be the set of these semi-expansion of the route search. Whenever a node is inserted
disjoint paths. Denote by (r;) the set of nodes on routein the new-candidate-list CBAH keeps a pointer to the
rs, s € R for source nodes. CBAH will select for each predecessor node, which is required to backtrack the rgute(
source nodes of each groupg, 1 < g < x, a route,r, to the source node in case this node falls on the selected
among all possibl&R routes such that, route. By repeating the route discovery phase, CBAH may
r = arg min { max (P)} find m_ul_tiple disjoint paths by ma_rking nodes which h_ave
ro€R ieN(r)' beenvisited thus forbidding the visited nodes from being

The objective of selecting such a route is to smooth the uat of more than one route for the same source node. This
approach may restrict the number of routes found for each

of the battery of each node and extend its lifetime. If LA%ource node, especially if the graph of LAs is sparse. An

5We developed a two level aggregation approach for the RSetlgm,  €Xtension to this approach i§ to allow the alire.ady visited
which we call the Load Balancing Approach (LBA), which is aeded as nodes to be inspected again, i.e., an already visited nade ca

a special case of the heuristic of this section. _ still be visited from nodes that are only labeled as un-ggit
This also applies to the case when sensor nodes have diffiaigal Thi I heckina f ¢ dh find bett
energy levels (heterogeneous network). In this case, tim@ireng energy 'S_a OWS chec 'ng_ or more routes, an ence 'n_ etter

at each node can be used. semi-disjointroutes, if available. In our implementation of



Input: A, n, m, x, Sg;
Output: A set of routes and aggregation points to maximize th

network lifetime.; Input: ;. : :
. Output: if a route toward the BS is found, the 'route-foundriable
Algorithm CBAH: il b .
Initialize; Functi truEH\JD ROUTE(s)
H ” i unction - s);
Label all LA nodes as "un-visited”; candidate-list[[4 4}

SetP;=0.0; 1 < i < n, aggregatof][n]={#}, N2={¢}, _candidate-i :
routesp][s]={¢}, Rmax=4, route-found=false, num-sources=0; \r/]vivi\llec?g (%dr?(t;/vl-lzgafjsiééte-listﬂo
gzl;i’:\:mse;;l;s;lrgggre]\tr.ldidate-list[l, new-candidate-list[], nbr, /*BS'is not reached*/:

candidate-list— new-candidate-list;
for (¢g=1 to x) do <_

- new-candidate-listfp};

for (7:1 t,? |S[) do - for (elemente candidate-list)do

r=1 Ffor gach source nodg."/; for (each nbr of elementjo

s:hg_let-ID(i), q * nbr is obtained fromA*/;

while (r < R) 0_ . /*The nbr node is located above, below, at the left or
route-found =FIND-ROUTE(s); at the right of a node/;

i (ror%tfég)gkq?a)éﬁn ): if (nbr is "un-visited”) || (element is "un-visited” &&
9 nbr is "visited”) then

Insert-routeft,g,s); set this neighbor as "visited”;

end - . . .

——T new-candidates-list=new-candidates-list{ nbr}
end ' set predecessor ofbr to element;
SELECT-ROUTE(j, routesp][4], num-sources); end =
Label all nodes in as "un-visited”; if (”b?”t == P) then
num-sources++; | returntrue;

’ end
end
end

num-sources=0;

end end

end

Fig. 3. A high level description of the CBAH heuristic for R&problem. ) , . .
Fig. 4. A high level description of the function FIND-ROUTE CBAH.

CBAH, we used this latter option. In CBAHsemi-disjoint
routes means those routes that share the least common
nodes. As described in Figure 5, when the destination nodgnPut: s; _
. . Output: A route froms to BS is selected.;
(node 0) is reached, the functidracktracké,g) traverses  pynction SELECT-ROUTES, routes][s], num-sources);

each discovered route back to the source node by using theegin

pointers set up earlier. selectrs= arg min,. ¢, outes(g)[s] (Maxge N g (Pr));
.. . if (num-sources> 1) then
After finding the set of routes for each soursein | aggregatorf][s]|= COMPARE-ROUTES (s routesh][ 1);

a groupg (routesp][s]) and in order to determine what end _
route among these routes the sourcewill use, CBAH Compule power consumption
) gt ’ ] - my=m{ *w [Fw is as defined in ILP*/;
invokes a function called select-route(.), and describied i N#= get-route-nodes(rs,routes|][));
Figure 5. During this process, CBAH interactively checks Update-Powed;:,m.) /*including relay powet;
the allocated routes of other sources of the same group and, .
enforces aggregation at common intermediate LA nodes, i.€. ) — ) )
. . Fig. 5. A high level description of the function select-reuh CBAH.
determine aggregator nodes for that group, using anothét
function calledcompare-routes()) that is depicted in Fig-
ure 6. The functiorompare-routes() starts by finding the
best aggregation points, which sometimes can be the closest
node to the source. The route will be trimmed to reach the Input: rs; o
; ; i« Output: Aggregator node for source s.;

aggreg_ator point only_ since the rest of the path to BS IS £ nction COMPARE-ROUTESfs, routesi][):
saved in the aggregation point. The set of these aggregatioRegin
points will then be saved in the list{gregator[g][s]). The List aggregators {¢}; .
aggregated data stream follows the same path till anothelgr(;‘hng/.common points with routes of other sources within theesam
source node of the same group joins this path at a lateraggregators = Find-common-points( routesg][):
point, where the process repeats, i.e., further aggregatio if (aggregators-size()> 1) /*if more than one common point are
is performed at this aggregator node, and the new data®und: then select the closest the _

. ) myaggregator = select-closest(aggregators);
aggregate is sent along one route to the BS. This means thatTyim the source route to reach the aggregator point 8hly
once data of multiple streams is aggregated at a certain nodeoute-trims);
no splitting of the aggregate is allowed. That is, CBAH will ;ew_”‘ myaggregator;
fuse routes of the source nodes at a shared common negde———— — : :
and then unify the rest of the route. This last process fig. 6. A high level description of the function comparet@in CBAH.

executed in the functionompare-routes().
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What is left is the case when a source node falls in @ Aggregation Delay Under Two-Level Aggregation

overlapping region, i.e., belongs to more than one group. 'nAssume that the ILP, or any of the approximation algo-

this case, CBAH holds a registry for those source nodes Iji[thS for the two level scheme have been executed and
order to distinguish between their sent data. Once a royfg, et of MAs M. have been allocated in the two-level

r is selected for a source nodg the function Update- aggregation scheme and the set of routes and the set of

Power(s,N(r)) which is called from within the function aggregation points for each group have been determined.

select-route()will update the amount of total power CON-Acsume thatS’ is the set of LA source nodes in group
sumption at each nodé in the router, P;, ¢ € N(r) g

X ) o g, g = 1,2,...,x, associated with thgth MA node,
by adding the link cosb(_z,y) to the current value of?;. .~ 1,2,....p. Let dii be the distance (in terms of the
Note that each node, which acts as an aggregator, consu g

i ) ber of hops) of the path going from the LA source
additional power when relaying aggregated data for OthﬁBdei c SZ to its assignedjth MA node in the graph

nodes. CBAH updates those nodes as well by inspectigg Let D/ andD’ . be the maximum and the minimum

1 max .
the list (a.ggregqtor[g][sl)' After the rqutes and _the set Olcdistance over all values af with respect tojth MA node,
aggregation points for each source in a certain group are. ectively. i.e g
selected, all LA nodes must be cleaned by resetting the labar” Y, 1€

of each node tain-visitedoefore another group is served. At~ D/ | = maxd} D;,mm = min d

the end of CBAH execution, a set of routes as well as a set i€sy i€y

of aggregator nodes are determined for each source nodg Duplicate suppression:

in each group of the graply. The algorithm CBAH has If the aggregation function is duplicate suppression,

a worst case time complexity of @(R...), and a space the aggregation delay incurred by grogp T, will

complexity of Qn|S,|). be simply the maximum time needed to receive the

first unique packet at an MA node calculated over the

V. ENERGY-DELAY TRADEOFFANALYSIS set of all MA nodes. Each node only passes the first

Although data aggregation results in fewer data trans- Unique packet and suppresses subsequent packets with
missions, there is a tradeoff between energy savings and identical sequence numbers. Hence,
the delay due to the aggregation process. This potential Tus :%%[?Sﬁ dij)
delay may occur because_data frqm closer sources may Max, min, and average aggregation:
have to be buffered_at an mterm_edlate MA node in order In the case of general aggregation functions (e.g.
to be aggregated with data coming from sources that are maximum, minimum, average), the aggregation delay
farther away. Therefore, the amount of delay mtrodpce_d incurred, T, will be the maximum of the difference
by aggregatlon_needs to be evaluated, and an application in number of hops between an LA source node and
dependent ma_X|mum_de_Iay ShO.UId b_e enforced. Recgll that its assigned MA node evaluated over all pairs of LA
we are assuming per|0(_j|c sensing with the same period for source-MA nodes. Hence,
all sensor nodes. For simplicity, we assume that all sensors B i j
in the same group are synchronized, and all measurements Toa = jeﬁéfexwg,maw = Dy min]
are taken by all sensors in the same group at the same time.
However, asynchronous operation can be accounted for _ . .
adding atimgfactorthat ac?:ounts for this mode of operatio .yAggreganon Delay Under Multi-Level Aggregation

In our scheme, the aggregation delay occurs at two levels|n the multi-level aggregation scheme, the latency will
local and global. In the local aggregation process, delay che proportional to the number of hops between the data
be considered negligible since source nodes are in the samggregation point from the farthest LA source node repgrtin
zone and they are able to communicate with their peer Ldata to the last aggregation node in the aggregation tree
nodes directly. Hence, the aggregation delay is mainly démr each group taken over the set of all groups. Let the
to the global data processing at farther aggregation poingéggregation function be the duplicate suppression.A%t
To find the total delay, however, the aggregation delay mus¢ the final aggregation point for all traffic coming from
be added to the total processing and communication delaysup g € x. Let (t9) be the maximum time required to
required to reach the BS from that MA node. Neverthelesgach noded? from all LA sources in groupy, and define
we are only interested in finding the aggregation delay, that., as the maximum delay time due to aggregation taken
is, the delay incurred by reporting data from different LAover all groups in the grap&'. Let D, (i) be the delay time
source nodes located at different distances from a certaiken by data coming frorith LA source node of group
aggregation node. Note that processing delays at aggoegato reach nodeﬁl?. The delayD, (i) is computed by finding
points will be small when compared to the delay incurrethe number of hops taken by LA source nodé € S, to
in communicating data to the BS. We will now analyze theeach the last aggregation poim-;’c, for the groupg. Then,
aggregation delays associated with the two- and multiHewhe overall maximum aggregation delay is given by
aggregation schemes presented in the previous sections. ¢4, = maxge,(t9) and 9 = max;es, (Dgy(i))
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In the case of general aggregation functions (e.g. maxhe transmitter or receiver circuitry and,,,,=100pJ/bit/n?
mum, minimum, average), the aggregation delay incurredfer the transmitter amplifier Thus, the energy consumed
evaluated as in the 2-level scheme except that the minimdoyn a sensor nodeé in receiving a 1000-bit data packet
and maximum are found with respect to the last aggregatiesn 1000*50 nJ/bit= 50J, while the energy consumed in
point. transmitting a data packet from sengdo sensor; is given

by T' = 50u.J + 100n.J/m? x d;. A link transmission rate
VI. PERFORMANCEEVALUATION of 1 Mbps is assumed. We make the assumption that the

The performance of the algorithms of GRASS were testéadio channel is symmetric such that the energy rgquired to
with various experimental scenarios which were simulat rnsmit ?hmessage from_ LQ tnc>td4e to L'tA node 5 is tfhe LA
using the NS-2 simulator [44]. Each experiment corresponagrgegs E:nergyj;quuwef % rlansm| a Ir_nel.\(ss_age r%m
to a random placement of sensors in a fixed netwoPde B to node A. As for delay on a fink, it can be

area. We assume a single base-station attempting to ga Pulated as units of time. On a 1 Mbps link, a 1000 bit

information from a number of data sources in the netwoﬂ??ssage can be transmitted in 1ms. We assume that e:_;\ch
nit of delay corresponds to 1ms time. Hence, the delay is

area. The location of the base-station can be arbitra(g& i h 1000 bit ¢ itted. The BS |
chosen. Unless stated otherwise, the BS is located at lo nit for each. It message transmitted. € IS
rp%\ced at the middle of the network area.

edge of the grid (0,0). We randomly place sensor nodes i i
50mx50m square field while always insuring that the initial e ignore edge effects where smaller zones on the bound-
distribution of sensor nodes always results in a connect@y of the sensor field may exist. For each data aggregation
graph, as will be explained below. We also experiment&§heme, the resulting virtual topology (the set of LAs) is
with larger sensor fields to test the performance of variodiden fed into the ILP and heuristic algorithms. In both
heuristics in large networks. It is assumed that the sensifigheémes, the algorithms will find the set of routes and MAs
range is the same as the transmission range which was sePfdhe two-level (2L) aggregation scheme as well as the set
a default value of 20 meters. The sensor field is divided inff routes and aggregation points for the multi-level (ML)
the appropriate number of zones, which is 30. We Consid@ggregaﬂpn scheme as dgscrlbed earlier. '_I'he ILP problem is
four scenarios corresponding to the distribution of semsoolved using the CPLEX linear programming package [45].
in the sensing field, which result i nonempty zones In the real problem, the ILP and the heuristics can be solved

(clusters) forming a connected virtual gragh In the four at thg BS node. The set of routes and the aggregat.ion pqints
scenariosy takes values of 6, 8, 10, and 15, respectively. mbtamed for _both schemes are used for further simulation
each nonempty zone, there are on average 10 sensor ndd@griments in order to evaluate the energy-delay tradeoff
monitoring the area of that zone. We assume that sens8fisWill be explained later in this section. We performed
generate data packets of variable sizes such that the paggRarate sets of experiments to investigate the impact of
size is exponentially distributed with mean value of 100@ifferent parameters (all reported results are averageu ov
bits. In another setting, we fixed the packet size generatkdruns). In particular, we studied the following perforran
by all nodes for the sake of comparison with other schemé3Sues:
In all settings, the aggregation function was based on ¢akifggregation versus No-AggregationWe consider the life-
the packet size with the maximum length. time of the network without aggregation to be the baseline
Each sensoi has a battery with finite, non_replenishab|@etW0rk lifetime, which is taken as 1. We also define the
energy, which was set to an initial energy of 2 Jouleperformance metrid. as the ratio of the system lifetime
Whenever a sensor transmits or receives a data packetGhieved using aggregation to that obtained without using
consumes some energy from its battery. The base statRggregation. We refer td, as the lifetime extension ratio.
has an unlimited amount of energy. The choice of the MA®/e performed separate sets of experiments for both 2L and
protocol can completely dominate energy consumptions. W aggregation schemes. The results are shown in Table il
assume that energy-conscious protocols like PAMAS [28r the 2L scheme for different values ef and number of
or TDMA-based MAC [6] are used for long-lived sensoMAs M, and in Table IV for the ML scheme for different
networks. Our energy model for the sensors is based on t@ues ofn and number of groupg.
first order radio models [6], [27] in which a fixed amount As shown in Table Ill, all schemes with aggregation result
of energy is spent in transmitting and receiving a packét prolonging the lifetime of the sensor network. The value
in the electronics, and an additional amount proportiooal of lifetime extension ratiof) is the highest with the optimal
the distance between tow nodes is spent in transmittingapproach, which can be as large as 5, and sometimes even
packet. The radios can perform power control and hentager. Out of the group of the approximate approaches,
use the minimum required energy to reach the intendéte LBA approach has the best results. However, the GA
recipients. Due to attenuation with distance, an energypproach is not very far behind, which makes it a good
loss model withd;; is used for relatively short distancescandidate for use. Table IV shows values fofor different
where d;; is the distance between sensor nodesnd j. values of LA nodespn, and when the number of groups,
More precisely, a radio dissipates.;..=50 nJ/bit to run vy, is varied for every value of. with multiple levels of
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TABLE Il

LIFETIME EXTENSION RATIO(L) FOR DIFFERENT2L AGGREGATION Energy-Delay Tradeoffs Results:In this part, we measure
APPROACHES AND FOR DIFFERENT VALUES OFn AND M, x = 3. the aggregation delay incurred due to the aggregation pro-
[n [ M [ No Aggregation] GA | LBA [ ILP | cess for various schemes, as defined earlier. We studied the
5 | 3 1 245 ] 2.83 | 3.01 delay while varying the number of sensor nodes in the field.
101 5 1 3.97] 433 | 5.03 We setr = 20 meters and varied from 6 to 15.M was
%g ; i i;g jgg i'gg set ton/2, and the number of groups was 3. Figure 8 shows
TABLE IV : : the aggregation delays as the number of LA nodes increases
LIFETIME EXTENSION RATIO(L) FOR DIFFERENT VALUES OFn AND under the 2L and ML aggregation schemes, and as evaluated
X IN ML SCHEMES using exact, and heuristic approaches. The increase in the
[ n [ x [ NoAggregation| GA | CBAH [ ILP | node density helps to fill the zones in the virtual architegtu
8 i i ié-gi ﬁgg 1‘2‘-8‘1‘ and increases the node density, and hence the connecfivity o
013 1 536 1224 1534 the virtual graph. Therefore, the aggregation delay deaga
5 1 17.69 | 17.97 | 19.98 for the 2L aggregation as the number of hops to reach the
151 5 1 10.25| 11.63 | 14.97 second-level aggregation point decreases. However, g ca
6 1 21.22] 2215 | 24.57 is not true for ML aggregation, where many source nodes of
the same group may share several aggregation points along
Lifetime extention factor vs. number of MAs the route to BS, and hence more aggregation delays can
be experienced. It can therefore be concluded that if the
1 sensor network is designed for time critical applications,
5 21 two-level aggregation scheme would perform better on the
g1 expense of additional power consumption. If data gathering
g 8 and reporting delay is not a concern, multi-level aggremati
8 6 schemes would be a good choice in this case as these
fap—e schemes consume less power and hence allow for longer
7 2 network lifetime.
’ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘ 10
Number of MAs (p) 7 ——GA 2-level
5 14 +—— —=—GA Multi-level
Lol | .
Fig. 7. The effect of increasing the number of MAs on S 101 | e i /
the extension of the network lifetime whem=15 under 2L 8 /
aggregation scheme. g 8 — /
g 6 —
é 4 L\N N
g
aggregation allowed. The value éf can be as large as 24 z ‘ ‘ ‘
using the ILP especially with a greater number of groups 6 8 15

and sometimes even larger. As noted, the valué édr 2L
scheme is lower than the ML_ scheme. Th'_s indicates thlgb. 8. Aggregation delays when two- and multi-level datgragation
further levels of data aggregation can result in greatezlfeV are used in small networks; = 3.

of power savings. From the results in Table IV, it is cleaittha

the performance of CBAH and GA are not far away fronComparison with other data aggregation schemesin

the optimal performance obtained when the ILP is usethis part, we compare our two-level and multi-level routing
However, CBAH runs much faster than the ILP especiallyith data aggregation schemes to some related work in
for large values ofn. the literature. In particular, we compare CBAH to Directed
Effect of number of MAs: we study the effect of varying Diffusion (DD) framework [4], Pegasis [7], MLDA [33], and

the number of MAs,M, for a fixed value ofn on the LEACH [6]. For comparisons with [4], [7], [6], we have
increase in the network lifetime in the 2L aggregationniformly distributed 100, 200, and 300 sensor nodes in a
scheme. For this purpose, we fixedto 15 nodes so that 200x200m? fixed sensor field. We set transmission range
most of the network field is covered and connected. Theto, 40 meters. Hence, the sensor field has 25 zones (clusters)
we varied the values of/ from 3 to 10 and measured theregardless of the number of nodes used. The number of
value of L. Figure 7 shows the lifetime extension factogroups in CBAH were set to 2, 4, and 6 respectively. To
(L) versus the number of MAs. As shown in the figuregompare CBAH to [33], CMLDA was used since CBAH
when the number of MAs increases, the lifetime is increasedidd CMLDA are both hierarchical. The same parameters and
until p = 7 where no further improvement in the lifetime issettings as described [33] were used, where axi@Dn?
obtained. In most cases, it was observed that increaking fixed sensor field was simulated with BS at (50, 300)m, 1
beyond3 does not result in any significant increaselin  joul/node, a packet size was fixed to 1000 bit data and 120
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and vertical directions, while in DD a query propagates
EM-Level (CBAH) throughout the whole network field before some paths are
mireel(Gh re-enforced. Second, our scheme searches for routes that

balance the power consumption in the network, while DD
makes no distinction between routes used that will carry
data to the BS.

For other schemes, Table V shows a network lifetime
comparison between CBAH and other schemes, namely,
LEACH and PEGASIS for both cases when aggregation and
no aggregation are used. Table VI shows a network lifetime
comparison between CBAH and CMLDA. In conclusion,
our experimental results demonstrate that the CBAH can
increase the system lifetime of large WSNs, when compared

=
o
)

]

[
N

=
o
L

Lifetime extension ratio (L)

o N A O
S R

100 200 300
Number of LAs

Fig. 9. Lifetime extension ratio I{) for our multi-level data

aggregation schemes and Directed Diffusion (DD). M-Lelaiiti- to the CMLDA. NOt_e that both CBAH _and MLDA (Or
Level. CMLDA) are centralized where the BS is responsible of
- clusters formation and routes construction, i.e., altaonit
implementation. Also, CBAH is called only once at the
3129 ‘\/ startup phase and the same settings (routes and clustérs) wi
£ 10+ remain fixed for the whole network lifetime. However, the
%ﬂ; 8 o aggregated trees used in MLDA changes with time which
s 6l / may lead to synchronization and coordination problems
g / between the sensor nodes. Hence, CBAH is much simpler
¢ 4 ——M-Level (CBAH) —— . . .
5 —m— MLevel (GA) than MLDA and requires much less time to converge making
<2 —4—0D — it more scalable.
0
100 200 300 TABLE V
Number of LAs NETWORKLIFETIME FOR VARIOUS SCHEMES WITH AGGREGATION AND
NO AGGREGATION USED

Fig. 10. Aggregation delays in both our multi-level data [r [x] | CBAH | LEACH | PEGASIS|
gagti'on écher?ﬁ%s %nd the Dil};cted Diffusion scheme. 9 188 g ﬁg%gg?ég 12%92954 %ig ggﬁ
200 | 4 | Aggregain. | 19544 | 6494 3798
200 | 4 | No Aggreg. | 2266 982 1339
bit control packet. Also, the aggregation energy consuompti 300 | 6 | Aggregatn. | 27489 | 6158 2175
was assumed to be 5nj/bit. We vary the number of groups | 300 | 6 | No Aggreg. | 2014 964 2023
in CBAH to be 3, 5, and 6 groups, respectively, where
one event is reported by a subset of sensor nodes within
each group. The sensor subsets are selected randomly. Our TABLE VI
objective is to study the impact of different numbers of NETWORK LIFETIME IN CBAH AND MLDA
sources and different numbers of groups on the network [n | Nodes/Cluster] LAs | x | CBAH | CMLDA |
lifetime and the amount of aggregation delays experienced [100 10 10 | 3 | 4233 3611
in the network. For the sake of comparison with these 200 10 20 | 5 | 5648 4512
schemes, the duplicate suppression aggregation function 43188 ;g 28 g ;ggg 2?461(2)
is used. Notice also that DD does not need any upfront &g 55 50 16 | 10439 | 6577

knowledge about network configuration and data sizes, nor
does it require a centralized solution like other schemes.

Figures 9 and 10 plot the lifetime extension ratib) (  We also collected the aggregation delays for various
and aggregation delays for our approximate schemes aithemes as summarized in Table VII. For most cases, CBAH
the DD paradigm, respectively, as the number of LA sourge able to minimize aggregation delays while at the same
nodes increases. Our simulation results demonstrate ttiate largely enhances the network lifetime.
the clustering based heuristic (CBAH) can achieve larger
increase in the lifetime of WSNs when compared to DD TABLE VI

. . . . NETWORK AGGREGATION DELAYS IN VARIOUS SCHEMES
even that the algorithm is centralized. For a fixed number
of LA source nodes and a fixed number of groups, our [n__| CBAH | LEACH | PEGASIS| CMLDA |

100 | 2.0 2.10 2.60 2.4
schemes consume less energy than DD, and hence e_xtends 00 T 36 574 775 301
the network lifetime. This is due to two reasons. First, 300 | 45 3.80 5.06 543

query flooding in our scheme is confined to only horizontal
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We also plot the data aggregation delay experienced 9] A. Manjeshwar and D. P. AgarwalAPTEEN: A hybrid protocol for

our heuristic schemes and in the DD (see Figure 10) when
the number of LAs increases. As shown in the figure, oy,
schemes experience lower aggregation delays than DD. This
is because in DD data forwarding paths from different

sources may cross or overlap with each other anywhere 1!
the network area, thus there is more interference when the
number of sources is large, whereas in our scheme each 1A

source node sends data on the virtual grid, thus data flows on

efficient routing and comprehensive information retrieiralireless
sensor networkproceedings of IEEE IPDPS 2002, Page(s): 195-202.
V. Rodoplu and T. H. Meng, Minimum energy mobile wireless
networks IEEE Journal Selected Areas in Communications, vol. 17,
No. 8, Aug. 1999, Page(s): 1333-44.

S. Bandyopadhyay, E. Coyl#&n energy efficient hierarchical clus-
tering algorithm for wireless sensor networkgroceedings of INFO-
COM 2003, Vol. 3, Page(s): 1713-1723.

L. Li, and J. Y. Halpern Minimum energy mobile wireless networks
revisited IEEE International Conference on Communications (ICC)
2001. Vol. 1, Page(s): 278-283.

the grid faster and the routes are selected to balance poyer Q. Li and J. Aslam and D. Rusfierarchical power aware routing in

consumption in the network.

[14]
VIl. CONCLUSIONS

In this paper, we studied the maximum lifetime datas)
gathering and routing problem in WSNs. We showed that
cluster-based algorithms along with data aggregation and [16
network processing can achieve significant energy savimgs i
WSNSs. This has a direct effect on prolonging the network
lifetime. In particular, we developed GRASS (Grid—baseW]
Routing and Aggregator Selection Scheme), a scheme for
WSNSs that combines the ideas of fixed cluster-based routing
together with application-specific data aggregation ineord!*®!
to enhance the wireless sensor network performance in terms
of extending the network lifetime, while incurring accepa  [19]
levels of latency under data aggregation. Within GRASS,
we have presented optimal as well as heuristic algorithmg)
that solve the joint problem of optimal routing with data
aggregation for the sake of maximizing the network lifetimd2]
Our results show that, when compared to other approaches
in the literature, the proposed scheme is able to improve tl2éel
network lifetime while incurring acceptable levels of laty
and without sacrificing quality. Hence, GRASS can attain
the energy and latency efficiency needed for wireless sen§si
networks.
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APPENDIX
APPENDIXA: PROOF OFNP-COMPLETENESS OFRSP1

In this appendix we prove the NP-completeness of the
decision version of theRSP1 problem. We construct an
instance of theRSP1 problem in which:

1) The power consumption to transmit a unit of data from
any LA to any other LA is constant and the same for
all LAs. This is taken as unity for simplicity.

2) That no aggregation is performed, i.e., the aggregation
ratio is 1.

3) ThatM = 2, and that we have already solved the MA
selection problem by choosinbA; and LA, where
the power (per byte) required to deliver data from the
selected MAs to the BS is*, and fromLA; to the
BS isw;, such that

w*Zmi <wym; forl+# j,k,Vi.
ies
That is, delivering all data generated in the network
from either of these two MAs to the BS requires an
amount of power which is less than delivering data
from a single traffic stream from any other LA to the
BS.
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