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Abstract—A fundamental challenge in the design of
Wireless Sensor Networks (WSNs) is to maximize their
lifetimes especially when they have a limited and non-
replenishable energy supply. To extend the network lifetime,
power management and energy-efficient communication
techniques at all layers become necessary. In this paper, we
present solutions for the data gathering and routing problem
with in-network aggregation in WSNs. Our objective is to
maximize the network lifetime by utilizing data aggregation
and in-network processing techniques. We particularly focus
on the joint problem of optimal data routing with data
aggregation en route such that the above mentioned objective
is achieved. We present Grid-based Routing and Aggregator
Selection Scheme (GRASS), a scheme for WSNs that can
achieve low energy dissipation and low latency without
sacrificing quality. GRASS embodies optimal (exact) as well
as heuristic approaches to find the minimum number of
aggregation points while routing data to the BaseStation (BS)
such that the network lifetime is maximized. Our results show
that, when compared to other schemes, GRASS improves
system lifetime with acceptable levels of latency in data
aggregation and without sacrificing data quality.

Keywords: Wireless Sensor Networks, Data Aggregation
and Routing, Exact and Heuristic Solutions, Hierarchical,
Clustering.

I. I NTRODUCTION

Wireless Sensor Networks (WSNs) is a class of wireless
ad hoc networks in which sensor nodes collect, process, and
communicate data acquired from the physical environment
to an external Base-Station (BS) [1]. Future WSNs are
envisioned to revolutionize a maintenance free and fault-
tolerant platform for collecting and processing information
in diverse environments. A major technical challenge for
WSNs, however, lies in the node energy constraint and its
limited computing resources, which may pose a fundamental
limit on the network lifetime [1]. Therefore, innovative
techniques to eliminate energy inefficiencies that would
otherwise shorten the lifetime of the network are highly
needed.

In many applications of WSNs (e.g., military battlefields,
target field imaging, intrusion detection, surveillance, and
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inventory control), data collected by many sensors is based
on common phenomena, and hence there is a high proba-
bility that this data has some redundancy (or correlation).
Due to the correlation present in the sensors’ readings,
it is expected that communication approaches that take
into account this correlation, e.g., data aggregation and in-
network processing, will outperform traditional approaches.
The main idea of the data aggregation and in-network
processing approaches is to combine the data arriving from
different sources (sensor nodes) at certain aggregation points
(or simply aggregators) en route, eliminate redundancies
by performing simple processing at the aggregation points,
and minimize the total amount of data transmission before
forwarding data to the external BS. Removing redundancies
results in transmitting fewer number of bits, and hence
reduces energy consumption and increases the sensor nodes’
lifetimes. A number of studies that compared aggregation
scheme, e.g., [4], [5], [6], [24] concluded that enhanced
network throughput and more potential energy savings are
highly possible using data aggregation and in-network pro-
cessing in WSNs.

Aside from the task of efficient design of data aggregation
algorithms, the task of finding and maintaining routes in
WSNs is also nontrivial [2], especially when it includes
the selection of aggregation points and routing through
those points. Many routing and data dissemination with
aggregation protocols have been proposed for WSNs (a
comprehensive survey of the routing techniques in WSNs
can be found in [2]). In [4], C. Intanagonwiwat et. al. pro-
posed a popular data aggregation paradigm for WSNs, called
Directed Diffusion (DD) where aggregation is used to reduce
communication costs. In [6], Heinzelman, et. al. introduced
a hierarchical clustering algorithm for WSNs, called Low
Energy Adaptive Clustering Hierarchy (LEACH). LEACH
is a cluster-based protocol where ClusterHead (CH) nodes
compress data arriving from nodes that belong to the re-
spective cluster, and send an aggregated packet to the BS.
Following these protocols, many other studies focused on
the routing problem [7]-[22]. Among these, [18] introduced
a linear programming formulation to solve the optimal
routing problem in WSNs. The objective was to maximize
the network life time, and the life time was defined as
the network operational time until one of the nodes fails.
Necessary, but insufficient, conditions for the existence of a



solution under arbitrary traffic generation processes werein-
troduced. A heuristic solution was also introduced. However,
no aggregation was assumed. In [19], aggregation was taken
into account, but only full aggregation was considered. That
is, regardless of the number of packets to be aggregated,
a single packet will always be produced. This simplifies
the problem of aggregation significantly. A special case of
partial aggregation, in which the aggregated data size is
equal to the minimum of the original data, and a maximum
size, was considered in [20]. A heuristic was introduced for
this case. In [21], heuristics as well as an approximation
algorithm, were introduced to select the minimum number
of sensors which would form the minimum connected cor-
relation dominating set. Such a set is used to infer readings
from other sensors (with an acceptable error), and also
forward data towards the data collection center. The network
lifetime was not explicitly addressed in this paper. The
authors in [36] proposed a Voronoi detection method that
utilizes distributed Voronoi diagram and genetic algorithms
to gather data in WSNs, while [37] considers maximizing
large scale wireless sensor networks lifetime under energy
constraint via joint relay deployment and adaptation. In [40],
several lossless aggregate repacking algorithms for cluster-
model wireless sensor networks were presented. In [41],
an energy-efficient data gathering scheme that prolongs the
lifetime of battery-powered sensor nodes is considered. The
proposed scheme constructs and maintains a spanning tree
that is based on breadth-first search and has more leaf nodes
in network. Kalpakis et.al. [33] presented algorithms for
the Maximum Lifetime Data Aggregation (MLDA) problem
with the objective of maximizing the system lifetime. A
near optimal algorithm for solving the MLDA problem was
proposed in [33]. Since this algorithm is computationally
expensive for large sensor networks, authors in [33] pre-
sented a clustering based heuristics approaches (CMLDA)
for MLDA in large scale WSNs. Experimental results of
MLDA demonstrated enhanced system lifetime of WSNs.
Other related studies also appeared [32], [34], [35] and
[38]. A recent survey of strategies and protocols for routing
correlated data can be found in [39]. To the best of our
knowledge, the joint optimization of the routing and data
aggregation functions were not carried out in the literature,
especially for the general case of partial aggregation.

In this paper, we present a novel data aggregation and
routing scheme, called Grid-based Routing and Aggregator
Selection Protocol (GRASS). GRASS embodies optimal
(exact) as well as heuristic approaches to find the minimum
number of aggregation points while routing data to the
BS such that the network lifetime is maximized. That is,
GRASSjointly addresses the issues of the selection of data
aggregation points, and the optimal routing of data from
sensors to aggregation points, as well as the routing of the
aggregated data to the BS. While solving these two problems
separately may simplify the problem, the solution may be
far from optimal. Therefore, our proposed solution treats the

two problems jointly in order to reach an optimal solution.
Since this joint problem is not trivial, we adopt a hierarchical
structure in which each group of sensor nodes elect a cluster
head which is responsible for: 1) collecting their sensed data,
2) performing a first level aggregation, and then 3) routing
this data to the next aggregator on its way to the BS. This
first level of aggregation achieves two benefits. First, it offers
the greatest performance benefits in this environment since
nodes in a cluster are most likely to generate correlated data,
and then it simplifies the routing function since only the
cluster head will be in charge of this functionality. Hence,
the hierarchical structure facilitates digests of sensor data.
Indeed, this is a key issue in the design of GRASS. In
GRASS, correlation means that sensors’ readings overlap
statistically as they monitor the same event. This overlap
will be captured in our proposed solutions using aggregation
overlap factor. The factor represents linear as well as non-
linear relations among the gathered data. We propose to
solve the joint aggregator selection and routing problems
in a powerful node, such as the BS, and then dispatch the
results to the sensor nodes. Hence, an optimal solution that
is obtained by the BS will result in an optimal routing and
aggregation strategy.

The rest of this paper is organized as follows. The problem
description and system model are presented in Section II.
Section III presents exact algorithms to solve the problem,
and using two definitions of network lifetime. Section IV
presents several approximate algorithms for the problem
under consideration. Section V presents analysis of energy-
delay tradeoffs due to our aggregation scheme. The perfor-
mance evaluation of the proposed scheme is presented in
Section VI. We conclude with final remarks in Section VII.

II. T HE PROBLEM DESCRIPTION ANDSYSTEM MODEL

We consider a network of fixed, homogeneous, and
energy-constrained sensor nodes that are randomly deployed
in a sensor field (bounded region). Each sensor acquires
measurements which are typically correlated with other
sensors in its vicinity, and these measurements are to be
gathered and sent to the BS for evaluation or decision taking
purposes. We assumeperiodic sensingwith the same period
for all sensors. We also assume that contention between
sensors is solved by the MAC layer1. We assume that the
information collected by various sensors may be correlated,
redundant, and/or of different qualities. Since data correla-
tion in WSNs is strongest among data signals coming from
nodes that are close to each other, we believe that the use of
a clustering infrastructure will allow nodes that are closeto
each other to share data before sending it to the BS. Hence,
the ideas of fixed cluster-based routing [31] together with
application-specific data aggregation techniques will be used

1If the MAC layer is collision based, e.g., CSMA/CA, then it isassumed
that the amount of data will be inflated in order to account forcollisions and
retransmissions. However, estimating the actual amount ofdata is beyond
the scope of this paper since it does not deal with the MAC layer.
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in GRASS to achieve significant energy savings. The virtual
topology used in [31], namely VGA, has been proved to
achieve significant reduction in control overhead and achieve
more energy savings.

The concept of virtual topology presented in [31] has
ramifications on the problem addressed in this paper. There-
fore, we leverage this concept to perform energy efficient
routing in WSNs. The essence of the clustering scheme
presented in [31] is to create a fixed rectilinear virtual
topology, called Virtual Grid Architecture (VGA), on top
of the physical topology. VGA consists of a set of nodes,
namely, ClusterHeads (CHs), that are elected periodically
based on an eligibility criterion, which takes into account
many changing parameters in the network. Each CH is
elected as such inside a zone where we have divided the
network area into fixed and square zones as shown in
Figure 1. The set of CHs form a fixed rectilinear virtual
graph G. New CHs, but not new clusters, are chosen at
periodic intervals to provide fairness, avoid single node
failure, and rotate the energy draining role among sensor
nodes within the cluster. For now, we assume that the total
energy within a zone is the same. However, this assumption
will be relaxed later.
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Fig. 1. The VGA clustering approach used in GRASS. Some nodes
selected to act as aggregators at different levels.

Our scheme, GRASS, consolidates data aggregation and
in-network processing at different levels of the virtual grid2

(see Figure 1). To be more specific, it is assumed that the set
of the selected CHs in VGA perform two functions. First,
they perform the first level of aggregation in each of their
respective zones, hence they will be referred to asLocal
Aggregators(LAs). We assume that the data generated by all

2Although all algorithms presented in this paper make use of the
rectilinear virtual topology as their underlying transmission architecture,
they can be easily extended to deal with any bounded-degree virtual
topology.

sensors in a zone is aggregated by the LA of this zone, and
the rate of this data is known. Second, they relay information
towards the BS. To further minimize energy consumption,
we propose to use further levels of data aggregation using
a subset of LAs. To be specific, we will first introduce
algorithms that create a second-level of data aggregation
through a subset of LAs calledMaster Aggregators(MAs),
where an MA node will also act as an LA for the sensors in
its own zone. We then extend these algorithms to generate a
hierarchy (multi-level) of data aggregation points that further
consolidate data before being forwarded to the BS. To be
more concrete, sensors are at aggregation level 0, LAs are
at aggregation level 1, MAs are at aggregation level 2, and
so on. We study the tradeoffs for each case.

For a realistic scenario, we assume that a set of LAs
which monitor the same phenomenon form agroup, and the
set of LAs is divided into, possibly overlapping,χ groups.
That is, an LA may belong to more than one group. These
groups may be known a priori in manual sensor deployment
or can be constructed using message exchanges in random
sensor deployment. Members of each group,Sg, 1 ≤ g ≤ χ,
are sensing the same phenomenon, and hence their readings
are assumed correlated. Thus, an LA nodei that belongs
to groups j1, j2, . . . , jk, will generatemj1

i , mj2
i , . . . , mjk

i

data units every sensing period3. Such data units are to
be delivered to the base station, BS. However, data units
generated by different sensors in the same group may be
aggregated by master aggregators, MA, on the route to BS.
One MA may act as an aggregator for more than one group
at the same time, but aggregating data belonging to different
groups separately. For example, the MA in zone4 (2,2) in
Figure 1 can act as an MA for the LAs in the group of zones
{(1,1), (2,1), (1,2), (2,2), (1,3), (2,3), (1,4), (2,4)}, and the
LAs in the group of zones{(2,1), (3,1), (4,1), (2,2), (3,2),
(4,2)}.

It is assumed that packets generated by sensor nodes
during a sensing interval are of variable lengths, and hence
require different levels of energy for transmission and recep-
tion. We adopt the first order radio model in [6] which will
be elaborated on in Section VI. However, for now we assume
that the energy required for transmitting and receiving one
byte arewT andwR, respectively. LA numberi has a limited
energy budget,Ei, which is used for sensing, computation
and communication. It is assumed that the energy used
for sensing and computation is negligible compared to the
energy used for communication.

We consider two versions of this problem, and we
formally define them as follows:

(a) Joint Routing/MA Selection Problem in Two-level

3In the ILP and heuristic formulation, it will be assumed thatthese data
units have constant lengths. In the simulation study, the data units will be
taken from an exponential distribution, such that the mean packet length is
equal to that used in the ILP or heuristics.

4A zone is referred to by the x-y coordinates shown in Figure 1.
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Scheme (RSP1):Given a set of LAs, divided into, possibly
overlapping, χ groups, the amount of traffic generated
during a sensing period by each LA in each group, an
external BS, and a maximum number of Master Aggregators
(MAs) equal toM , find a subset of LAs of cardinalityp
(p ≤ M ) that will act as MAs for the LAs, and the routing
from the LAs to the MAs, and from the MAs to the BS, such
that the network lifetime is maximized. No MA can aggregate
data already aggregated by another MA.

(b) Joint Routing/Multi-aggregation Problem in Multi-
level Scheme (RSP2):Given a set of LAs divided into,
possibly overlapping,χ groups, the amount of traffic gen-
erated during a sensing period by each LA in each group,
and an external BS, find a suitable routing structure and
aggregation points that gather data and report it to the BS
such that the network lifetime is maximized. The maximum
number of MAs should not exceed M, and an MA can
aggregate data already aggregated by another LA or MA.

The network life time is defined formally as follows:

Definition 1: The Network Lifetimeis defined as the time
until the first CH node runs out of energy, i.e., the time
until the first initially-populated zone becomes empty, or
the zone has no sensor node with positive residual energy.

Note that our definition of lifetime is dependent on the
total amount of energy in each zone. Recall that nodes in
each zone take turns in serving as CHs according to our
VGA clustering scheme. As the CH election is mainly based
on sensor’s remaining power, it is guaranteed that if a CH
fails in a certain zone then that CH is the one with the
highest power, and hence all other nodes in the zone have
already failed. The definition of the network lifetime will be
revisited in section III-C for more practical scenarios.

It is to be noted that the above objective can be achieved
by maximizing the minimumEi

Pi
over all zones,i, where

Pi is the power consumption of LA nodei ∈ N where
N is the set of LAs in the network graphG, and Ei is
the total amount of energy in zonei. However, although
Ei is an input parameter,Pi is a variable which makes the
problem nonlinear. The problem can be transformed into a
linear one by minimizing the maximumPi

Ei
over all zones,i.

If we assume a system in which the energy of a zone which
is depleted is replenished with the same initial energy, i.e.,
a renewal process, then this last expression is the number
of failures per second, or the rate of failure of zonei.

In the following sections, we present the algorithms of
GRASS in details.

III. EXACT ALGORITHMS: AN ILP FORMULATION

In this section, we present exact (optimal) algorithms for
problems RSP1 and RSP2. For both problems, we introduce
an Integer Linear Program formulation to find optimal routes
with data aggregation performed en route to minimize the

maximum power consumption at each LA node, and hence
maximize the network lifetime.

A. RSP1: Two level Routing/Aggregation Problem

In this section, we focus on problem RSP1, and study
the selection of a set of LAs to serve as MAs such that
the network lifetime is maximized. The problem of optimal
selection of MAs is NP complete (Appendix A provides
a complete proof of the NP-completeness of the problem
RSP1). We now develop an Integer Linear Program (ILP)
that finds the optimal selection of MAs satisfying the
aforementioned objective. Let us label the base-station as
node 0 and label the LA nodes as nodes 1 ton, wheren is
the total number of LAs (The variables and notations used
in the ILP are defined in Table I).

TABLE I
THE ILP PARAMETERS AND VARIABLES FOR PROBLEMRSP1.

Input variables
N the set of LAs in the graphG; with cardinality n=|N | indexed by

1 ≤ i ≤ n.
M the maximum number of MAs that can be allocated.
Fij A binary indicator which is 1 if and only if nodesi and j are

connected by a link.
Pmax the maximum power available for each LA node.
α,
β

two weighting numbers (scalars) andα≫ β.

χ Total number of LA groups inG.
Sg The set of LA nodes of groupg, 1 ≤ g ≤ χ.
m

g
i The size (number of traffic units) of the packet sent by LA node

i ∈ Sg during one time period.
Ei Total amount of energy in zonei.
Q A very large number such that (Q > maxg,1≤i≤n(mg

i ))
wT A constant which represents the amount of energy spent in trans-

mitting one byte (joules/byte).
wR A constant which represents the amount of energy spent in receiv-

ing one byte (joules/byte).
ρ The maximum rate of failure among the set of all LA nodes.

Variables determined by the ILP
I

g
ij A binary variable which is 1 iff LA nodei of group g uses LA

nodej as its MA.
p number of MAs allocated by the ILP (p ≤M ).
Z

g
j the maximum of all the lengths of the data units (packets) received

by thejth MA node from members of groupg, where0 ≤ Z
g
j ≤

maxi,I
g
ij

=1(m
g
i )

X
g
j an auxiliary variable such thatXg

j = I
g
jj ∗Z

g
j , hence0 ≤ X

g
j ≤

maxi,g(mg
i
)

Ra
ij a binary indicator which is 1 if and only if LA nodea is on the

route from nodei to nodej.
Y

ij

lk
a binary indicator; is 1 if and only if the traffic stream sourced at
i and destined toj uses the link between nodel and nodek.

Pi total power consumption by LA in zonei, which includes power
consumption for possiblty acting as an MA.

Sometimes, only the summarized information is needed
to serve the purpose of monitoring environmental events.
In this case, the summarization (aggregation) function can
take different forms such as duplicate suppression, averages,
sums, minima, maxima, percentiles, etc. Our ILP can handle
these different summarization functions. Indeed, the ILP can
handle any linear function of the data to be aggregated.
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The ILP can also handle many non-linear functions which
can be mapped to linear functions. As an example, we
select the aggregation function to be themaximum, i.e.,
each MA selects the data unit that has the maximum size
(length) coming from its constituent LAs source nodes. The
maximum function is selected to represent cases when pack-
ets of variable lengths are collected by sensors, and hence
variable energy is consumed in such type of communication.
In one sense, selecting the maximum function represents
a worst case scenario of collecting data with the highest
communication cost.

We have noticed that it is sometimes possible to achieve
the same level of energy consumption with different num-
bers of MAs. For example, we can aggregate four streams
using either two MAs, or just one MA, which results in
a smaller aggregated data, while using more hops to reach
the MA as compared to the two MA case. In a case like
this we opt to use the fewer number of MAs in order to
reduce the computational requirements imposed on MAs due
to aggregation. Also, in order to speed up the execution of
the ILP solver, we limited the search space of the number
of MAs to be about one half of the total number of LAs,
which is the maximum number of second level aggregators
under the two level aggregation assumption.

Objective function:

Minimize : α ∗ ρ + β ∗ p

The objective function minimizes the maximum zone failure
rate over all zones while trying to also minimize the number
of MAs. The carefully selected values ofα andβ will ensure
that the number of MAs will be reduced only if this does not
result in an increase in the power consumption at individual
nodes. Note that the network lifetime is given by1/ρ.

Subject to:
n

∑

j=1

Ig
ij = 1 , ∀g , i ∈ Sg (1)

χ
∑

g=1

∑

j∈Sg

Ig
jj = p (2)

p ≤ M (3)

Ig
ij − Ig

jj ≤ 0 , ∀ 1 ≤ j ≤ n, g, i ∈ Sg (4)

Zg
j ≥ mg

i I
g
ij , ∀ 1 ≤ j ≤ n, 1 ≤ g ≤ χ, i ∈ Sg (5)

Xg
j ≥ QIg

jj − Q + Zg
j , 1 ≤ g ≤ χ, 1 ≤ j ≤ n (6)

Xg
j ≤ Zg

j , 1 ≤ g ≤ χ, 1 ≤ j ≤ n (7)

ρ ≥ Pi/Ei , ∀ i (8)

ρ ≤ 1/Tmin (9)

Constraint (1) ensures that each LA node of groupg is
associated with only one MA node. Constraint (2) ensures
that total number of allocated MAs for all groups isp.
Constraint (3) guarantees that the number of MAs cannot

exceedM . Constraint (4) ensures that an LA nodei of
group g will use LA nodej as its MA only if LA j has
been selected to act as an MAj. Constraint (5) ensures that
the maximum-sized packets are sent to the BS taken over
all the packets generated by the LAs of the groups served
by the jth MA. Constraints (6) and (7) (together with the
minimization of the objective function) setXg

j to the amount
of traffic routed from thejth MA to the BS, i.e., the product
Ig
jj ∗ Zg

jj . Constraint ( 8) finds the maximum failure rate
over all zones (it will be shown below how to evaluate the
power consumption at each LA in order to calculate this
rate). Constraint (9) guarantees a minimum zone lifetime
and limits the maximum power consumption of any node.

The power consumption at each node is also dependent on
the determination of the actual routing of the data traffic, i.e.,
we must find the power consumed by each LA source node
when participating in routing data overG. The following
additional set of constraints are required for performing
route computations needed to find the values ofRa

ij . The
following two constraints ensure that for the connection
going from nodei to nodej, no traffic is coming in (going
out) the sourcei (destinationj), respectively

∑

k,Fki=1,k 6=i

Y ij
ki = 0 ∀i, j ;

∑

k,Fjk=1,k 6=j

Y ij
jk = 0 ∀i, j

The following two constraints ensure that the connection
traffic betweeni and j is originating (terminating) ati(j),
respectively

∑

k,ifFik=1,k 6=i

Y ij
ik = 1 ∀i, j ;

∑

k,ifFkj=1,k 6=j

Y ij
kj = 1 ∀i, j

The following constraint preserves the continuity of connec-
tion traffic on one of multiple possible routes

∑

k,ifFkx=1,k 6=x,k 6=j

Y i,j
kx =

∑

j,ifFxk=1,j 6=x,j 6=s

Y i,j
xk

∀x, (x 6= i, j), i, j (10)

Note that although the above can result in loops, the mini-
mization of power consumption will prevent the formation
of loops, since any loop will lead to greater power consump-
tion.

The following two constraints determine the value ofRa
ij ,

i.e., if LA a is on the route(s) between LAsi andj.

Ra
ij ≥

∑

k

Y i,j
ka /Q ∀ i, j, a, i 6= j, i 6= a, j 6= a (11)

Ra
ij ≤

∑

k

Y ij
ka ∀ i, j, a, i 6= j, i 6= a, j 6= a (12)
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The power consumed by nodea is given by

Pa =
∑

j,g=1

wT Ig
ajm

g
a +

∑

i,j,g

(wT + wR)Ig
ijR

a
ijm

g
i

+

χ
∑

g=1

∑

i∈Sg

wRIg
iamg

i +

χ
∑

g=1

wT Xg
a

+
∑

j,g,j 6=a

(wT + wR)Xg
j Ra

j0 (13)

The five terms in the above equation refer to: 1) the power
consumed by data sourced out from LA nodea; 2) the power
consumed by nodea while relaying for other LAs towards
an MA node, including power consumed in reception and
transmission of data units; 3) the power consumed by an
MA in receiving unaggregated data units from the LAs; 4)
the power consumed by MAa in transmitting the data units
after aggregation; and 5) the power consumed while relaying
for other LAs towards the BS, which includes power for
reception and transmission.

Note that the conjunctionIg
ij ∧ Ra

ij in equation (13) is
mapped to a linear form by definingUga

ij = Ig
ij ∧ Ra

ij and
using the following two constraints, which is a standard
mathematical programming modeling technique:

Uga
ij ≥ Ig

ij + Ra
ij − 1 , (14)

Uga
ij ≤ (Ig

ij + Ra
ij)/2 (15)

Finally, the termXg
j Ra

j0 is a nonlinear term. We introduce
the following approach to linearize this product. We define
V ga

jj = Xg
j Ra

j0, and use the following two linear equations
to evaluateV ga

jj :

V ga
jj ≥ QRa

j0 − Q + Xg
j , (16)

V ga
jj ≤ Xg

j (17)

This is similar to the approach used to evaluateXg
j in

equations (6) and (7). Using equations (14)–(17), the power
consumed by LA nodea can now be expressed as:

Pa =
∑

j,g=1

wT Ig
ajm

g
a + (wT + wR)

∑

i,j,g

Uga
ij mg

i

χ
∑

g=1

∑

i∈Sg

wRIg
iamg

i +

χ
∑

g=1

wT Xg
a

+
∑

j,g,j 6=a

(wT + wR)V ga
jj (18)

It should be noted that the number of variables in the
above formulation is O(n3χ+n2E), whereE is the number
of edges in the network graph. This is based on the number
of the auxiliary variablesUga

ij , and the number of binary
indicators,Y ij

lk , respectively.

B. RSP2: Multi-level Routing/Aggregation Problem

In this section, we extend the ILP presented in the previ-
ous section to handle multiple levels of data aggregation.
The problem of optimal selection of multiple levels of

aggregation is harder than the two level aggregation scheme.
In other words, The RSP2 problem is harder than RSP1,
and is therefore also NP-complete (the verification of a
certificate for RSP2 can also be performed in polynomial
time). However, we anticipate that multilevel aggregation
will result in further reduction of energy dissipation, and
hence prolong the lifetime more than the two-level data
aggregation scheme. Our objective here is similar to our
objective in Section III-A, which is to find optimal routes
and a set of aggregation points for each group such that the
network lifetime is maximized. Since with multiple levels
of aggregations the maximum number of MAs isn − 1,
wheren is the total number of LAs, we did not impose any
upper bound on the number of MAs, as this will not provide
any significant reduction in the search space. We have also
decided not to minimize the number MAs in order to explore
the full limit of aggregation, and since the number of MAs
is already much larger than that under two level aggregation.

The ILP formulation presented in this section is generic
and can handle arbitrary data aggregation factors and arbi-
trary traffic streams. We definerg

k as the fraction of original
traffic of a source left after aggregation, when data streams
from k members of groupg are aggregated. Hence the data
aggregation (or reduction) factor is (1 − rg

k). The variables
and notations used in the ILP of RSP2 are defined in
Table II, while other related notations are already defined
in Table I. Below, we present the ILP:

TABLE II
THE ILP PARAMETERS AND VARIABLES FOR PROBLEMRSP2

Input variables
r

g

k
fraction of original traffic left after aggregation, when data streams
from k members of groupg are aggregated such thatr

g

k
≥ r

g

k+1
andr

g

k
∗k≤ r

g

k+1*k + 1, 0 ≤ k ≤ |Sg| with r
g
1 = 1 andr

g
0 = 0.

Q A very large number such that (Q > |Sg|maxg,1≤i≤n(mg
i ))

ei,j the link weight between LA nodesi and j, which is assumed
symmetricin graphG.
Variables determined by the ILP

X
g
i,j number of data units coming from members of groupg and sent

by nodei to nodej, and after aggregation if any.
Pi the amount of power utilized at LA nodei.
T

s,g
ij a binary indicator; is 1 if and only if the traffic stream sourced at

nodes of groupg uses the link between nodesi and nodej.
I

g,k
ij a binary indicator; is 1 if and only if the number of LA source

nodes in groupg that are sending data through the link from node
i to nodej is ≤ k.

M
g
ij a binary indicator; is 1 if and only if the link going from nodei

to nodej carries the traffic by at least one source of groupg.

Objective function:

Minimize ρ

The objective function minimizes the maximum zone failure
rate

Subject to:
The following two constraints find the maximum power

consumption over all LA nodes, while respecting the max-
imum power consumption limit of any LA node,

ρ ≥ Pi/Ei , ∀ i (19)
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ρ ≤ 1/Tmin (20)

The following constraint ensures that the power consumed
at each LA node is sufficient to send the amount of required
traffic to the other nodes.

Pi ≥
∑

g





∑

j ,if Fij=1

Xg
ijwT +

∑

j, if Fji=1

Xg
jiwR





∀g , i (21)

The following two constraints ensure that ifK is the number
of members of groupg sending data from nodei to node
j, then the value ofIg,k

ij is 1 for all the values ofk that are
greater than or equal toK; otherwise it will be 0.

|Sg|
∑

k=0

Ig,k
ij +

∑

s∈Sg

T s,g
ij = |Sg|+1 , ∀g, j, i, if Fij = 1(22)

Ig,k
ij ≤ Ig,k+1

ij , ∀g, 0 ≤ k ≤ |Sg|−1, i, j, if Fij = 1(23)

The following two constraints together give the exact
amount of traffic sent by nodei to nodej, once nodei
has aggregated the data coming from members of groupg:

Xg
ij ≥ Ig,k

ij ∗rg
k∗

∑

s∈Sg

mg
sT

s,g
ij , ∀g, j, k, i, if Fij = 1(24)

Xg
ij ≤ rg

k ∗
∑

s∈Sg

mg
sT

s,g
ij + Q ∗ Ig,k

ij (k −
∑

s∈Sg

T s,g
ij ),

∀g, j, k, i, if Fij = 1 (25)

However, constraints (24) and (25) are nonlinear. We in-
troduce an approach to linearize these constraints, which is
illustrated by the following two equations:

Xg
ij ≥ Q ∗ Ig,k

ij − Q + rg
k ∗

∑

s∈Sg

mg
sT

s,g
ij ,

∀g , j , k , i, if Fij = 1 (26)

Xg
ij ≤ rg

k ∗
∑

s∈Sg

mg
sT

s,g
ij + Q|Sg| ∗ (1 − Ig,k

ij )

+Q ∗ k ∗ Ig,k
ij − Q ∗

∑

s∈Sg

T s,g
ij ,

∀g , j , k , i, if Fij = 1 (27)

Only whenk = K that the above equations will reduce to:

rg
k ∗

∑

s∈Sg

mg
sT

s,g
ij ≤ Xg

ij ≤ rg
k ∗

∑

s∈Sg

mg
sT

s,g
ij ,

which is the desired aggregated bandwidth. This holds since
Ig,k
ij = 1 and (k =

∑

s∈Sg
T s,g

ij ) for k = K.
The following three constraints ensure that the aggregated

traffic streams will not be split on the way to the BS:

Mg
ij ≥

∑

s∈Sg

T s,g
ij /Q , ∀g, , i, j, if Fij = 1 (28)

Mg
ij ≤

∑

s∈Sg

T s,g
ij , ∀g, , i, j, if Fij = 1 (29)

∑

j, if Fij=1

Mg
ij ≤ 1 , ∀g , i (30)

The guarantee of a minimum lifetime of an LA node is
highly dependent on the determination of the actual routing
of the data traffic, i.e., we must find the power consumed by
each LA source node when participating in routing data over
G. The following additional set of constraints are required
for performing route computations.

The following two constraints ensure that for the traffic
from sources to the base station,0, no traffic is going in
(going out) the sources (destination0), respectively

∑

i,if Fis=1,s6=i

T s,g
is = 0 ;

∑

j,if F0j=1,j 6=0

T s,g
0j = 0 ∀ g, s ∈ Sg

The following two constraints ensure that the traffic froms
and0 is originating (terminating) ats (0), respectively

∑

j,if Fsj=1,s6=j

T s,g
sj = 1

∑

i,if if Fi0=1,s6=0

T s,g
i0 = 1 ∀g, s ∈ Sg

The following constraint preserves the continuity of connec-
tion traffic on one of multiple possible routes

∑

i,if Fix=1,i6=x,s6=i

T s,g
ix =

∑

j,if Fxj=1,j 6=x,j 6=s

T s,g
xj

∀ x, g, s ∈ Sg, (1 ≤ x ≤ n, x 6= s) (31)

Finally, we point out that the number of variables used in
this formulation is O(n2χ+χE maxg |Sg|), which is based
on the number ofXg

ij andT s,g
ij (or Ig,k

ij ), respectively.

C. Extension to the Network Partitioning Condition

In the above formulation, it was assumed that the network
lifetime is limited by the failure of any single zone, i.e.,
all sensors in a zone. In some situations, this may not
be a practical condition. A zone may fail, but the rest of
the network may still operate. However, we realize that
the network lifetime may be limited by its capability to
deliver data to the base station. Therefore, in this sectionwe
introduce an alternative definition of the network lifetime:
Definition 2: The Network Lifetimeis defined as the time
period from the instant when the network starts functioning
to the instant when the network becomes partitioned, i.e.,
when thefirst CH node that acts as a router for other CHs
runs out of energy.

This requires the identification of those zones in which
the LA serves as a router, which is done through the
following binary variable:
bi: a binary variable that is equal to 1, if and only if the

LA in zone i acts as a router.
bi can be set to 1 if the energy consumed by the LA in

zonei exceeds the energy required for the transmission of
data generated within this zone.

This indicates that this zone is involved in routing other
data. Therefore, the following two constraints will evaluate
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bi:

bi ≤ (Pi −

χ
∑

g=1

wT ∗ mg
i ) · A ∀i (32)

bi ≥
Pi −

∑χ

g=1 wT ∗ mg
i

A
∀i (33)

A in these two equations is a very large number which is
chosen such that wheneverPi >

∑χ

g=1 w ∗ mg
i , the right-

hand side in equation (32) is greater than or equal to 1, and
the right hand side in equation (33) is a non-negative number
less than or equal to 1. Finally, equation (19) is replaced by
the following constraint

ρ ≥ Pi/Ei − (1 − bi) · A , (34)

whereA in this case is chosen to be greater than the largest
value ofPi. This constraint means thatρ is an upper limit
on the rate failure only for those zones which also provide
data relay service to other zones.

D. A Note on Optimality

It is obvious that the optimal approaches above set up
static routes which are used for the entire network lifetime.
Therefore, an argument may be raised that repeating the ILP
periodically, or according to different criteria, may result in
extending the network lifetime. However, we note that the
objectives of the optimal formulations to problems RSP1 and
RSP2 above is to minimize the rate of energy depletion per
zone. The ILP, in fact, attempts to equate those rates, and it
turns out that in the nuemrical results the energy depletion
rates are almost equal, and if there are differences, the
differences are very small. Such an observation has also been
made in [32]. Therefore, it is very difficult to achieve any
better performance using any different approach. Moreover,
repeating the ILP is not practical because of its high time
complexity.

IV. H EURISTIC APPROACHES

In the previous section, we presented optimal solutions for
bothRSP1andRSP2problems using an ILP formulation. In
practice, WSNs are large networks with hundreds of nodes,
which the ILPs cannot handle with reasonable computational
facilities. Therefore, a more efficient, albeit less optimal,
scheme is highly desirable. In this section, we present two
heuristic approaches to find near optimal solutions for both
RSP1 and RSP2 problems. The first heuristic approach is
based on genetics algorithms [25]. The other heuristic ap-
proach aims at balancing power consumption among sensor
nodes in order to prolong the network lifetime in both the
two- and multi-level approaches. We have also designed and
tested other heuristics, e.g., a modifiedk-means clustering
algorithm and a simple greedy algorithm for the two-level
aggregation scheme (see [23]). However, we will neither
present the details nor the results fork-means and the greedy
approach since they are inferior to the heuristics presented in

far
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Fig. 2. representation of solution in multi-level aggregation scheme
in the form of routing structure.

this section especially for the multi-level aggregation scheme
presented in this paper.

A. A Genetic Algorithms Approach

We developed a genetic algorithm strategy to solve both
the RSP1 and RSP2 problems. The major step in GA is to
find an efficient way to represent the solution. The detailed
operation of GA is well-known and can be found in [25]. For
the extended problem (RSP2), our solution representation
of an individual is shown in Figure 2. For each group
g, where 1 ≤ g ≤ χ, the solution is represented as a
string of length |Sg|, where |Sg| is the number of LAs
in group g. The ith cell in the string contains the route
number that will be used by theith source of groupg,
which has an integer value between 0 andRi

max, Ri
max

denotes the number of routes from theith source to BS. We
assume that this number is known and can be found by any
route discovery technique, e.g. reactive protocols. Hence, the
individual is a routing structure for each group. First, we
generate an initial population of randomly created, and thus
different, routing structure for each groupg. The generated
population is subjected to the typical GA evolution process.
Figure 2(b),(c), and (d) shows the process of reproducing
generations, crossover, and mutation, respectively.

Due to the lack of space, we omit the details of the genetic
algorithms approach, which are available in [42]. Results
based on this algorithm will be shown in Section VI.

B. The Balanced Power Consumption Heuristic Approach

In this section, we present a heuristic that balances the
power consumption at sensor nodes for the sake of maxi-
mizing the network lifetime in a multi-level data aggregation
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schemes5.
The heuristic, called Clustering-Based Aggregation

Heuristic (CBAH), is inspired by some observations taken
from the ILPs developed earlier. After running the ILPs for
many scenarios, we noticed that, when the amount of energy
in the non-empty zones is the same, the power consumed
by different LA nodes is almost always the same. In other
words, if we define

∆ = max
i,j

(|Pi − Pj |) , ∀ i, j ∈ N, i 6= j

as the maximum absolute difference in the power consump-
tion levels between any two LA nodes,i and j, in the
graphG, then the value of∆ should almost always equal to
zero. This indicates that the optimal solution also achieves
balanced power consumption among all LA nodes in our
scheme. And, in the case of unequal amounts of energy
for different zones, the optimal solution equalizes the zone
failure rates. Therefore, we make use of this fundamental
observation to develop a simple and efficient heuristic,
namely, CBAH, which can be used to solve for large WSNs.

The heuristic CBAH will find routes on the graphG for
each source node of each group such that power consump-
tion in the network is balanced. In order to achieve balanced
power consumption and extend network lifetime, a source
node should select a route that minimizes the maximum total
power consumption (Pi) at each individual nodei in the
route taken over all feasible routes for that source node,
while allowing for data aggregation en route. To achieve
this goal, CBAH will use the information about the total
power consumption experienced at each LA node so far in
addition to the required transmission power6. Note that a
node with high total power consumption or low remaining
energy should be avoided when performing routing.

To be formal, let each source nodes in each groupg,
1 ≤ g ≤ χ search for a route overG. Indeed, many
disjoint and non-disjoint routes to the destination (BS) can
be found in G for any sources. However, to limit the
complexity of the problem, we consider routing through a
limited number ofsemi-disjointpaths, where those paths
share the least common nodes. The term semi-disjoint will
be further defined below. LetR be the set of these semi-
disjoint paths. Denote byN(rs) the set of nodes on route
rs, rs ∈ R for source nodes. CBAH will select for each
source nodes of each groupg, 1 ≤ g ≤ χ, a route,r,
among all possibleR routes such that,

r = arg min
rs∈R

{ max
i∈N(r)

(Pi)}

The objective of selecting such a route is to smooth the use
of the battery of each node and extend its lifetime. If LAs

5We developed a two level aggregation approach for the RSP1 problem,
which we call the Load Balancing Approach (LBA), which is regarded as
a special case of the heuristic of this section.

6This also applies to the case when sensor nodes have different initial
energy levels (heterogeneous network). In this case, the remaining energy
at each node can be used.

are heterogeneous, and start with different power budgets,
then the above selection criterion can be revised to

r = arg max
rs∈R

{ min
i∈N(r)

(Bi)}

whereBi is the remaining power budget at LA nodei. This
will achieve the same objective of maximizing the network
lifetime.

Now, we describe the operation of CBAH. A high level
description of CBAH is shown in Figure 3. LetA be the
adjacency matrix of the virtual graphG, where the entry
(i,j) is 1 if there is a link from LA nodei to its adjacent
LA node j; otherwise it is 0. LetPi = 0 be the initial
total power consumption within each LA nodei in graph
G. Also, defineaggregator[g][n] as the set of aggregator
nodes which is initially empty. Letroutes[g][s] be the set
of semi-disjoint routes from sources to the BS, which is
initially empty. The heuristic CBAH will cycle through each
group and for each source in a group, it finds a route to
BS (node 0) such that power consumption at the network
is balanced, and hence the network lifetime is prolonged.
The set of discovered routes for each source node is stored
in a list called routes[g][s]. The list routes[g][s] is 3-
dimensional list that stores groups, sources of each group,
and the discovered routes for each source node. The details
are as follows.

A sources starts finding its available routes to BS by
invoking a function called FIND-ROUTE(s). Figure 4 shows
the operation of FIND-ROUTE(s). The first step is to inspect
the neighboring LA nodes ofs. The set of neighbors are
stored in a list called thecandidate-list, which will be
expanded during the route search process. Each member of
this list is used to initiate the next hop during the route
search process. The importance of thecandidate-listis that
it allows one to quickly select the next LA node needed to
expand the route search for a certain source node. In each
expansion step, the contents ofcandidate-listare refreshed
by using an auxiliary list callednew-candidate-list, which
contains the nodes that will be used for the next step in
route search. Each time, one candidate is pulled from the list
and its four (potential) neighbors are examined for possible
expansion of the route search. Whenever a node is inserted
in the new-candidate-list, CBAH keeps a pointer to the
predecessor node, which is required to backtrack the route(s)
to the source node in case this node falls on the selected
route. By repeating the route discovery phase, CBAH may
find multiple disjoint paths by marking nodes which have
beenvisited; thus forbidding the visited nodes from being
part of more than one route for the same source node. This
approach may restrict the number of routes found for each
source node, especially if the graph of LAs is sparse. An
extension to this approach is to allow the already visited
nodes to be inspected again, i.e., an already visited node can
still be visited from nodes that are only labeled as un-visited.
This allows checking for more routes, and hence find better
semi-disjointroutes, if available. In our implementation of
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Input: A, n, m
g
i , χ, Sg ;

Output: A set of routes and aggregation points to maximize the
network lifetime.;
Algorithm CBAH:
Initialize;
Label all LA nodes as ”un-visited”;
SetPi=0.0; 1 ≤ i ≤ n, aggregator[g][n]={φ}, Ns

r ={φ},
routes[g][s]={φ}, Rmax=4, route-found=false, num-sources=0;
Define set of structcandidate-list[], new-candidate-list[], nbr,
element, path-element;
for (g=1 to χ) do

for (j=1 to |Sg|) do
r=1 /*for each source nodej.*/;
s=get-ID(j);
while (r ≤ R) do

route-found =FIND-ROUTE(s);
if (route-found)then

rt=backtrack(s,g);
Insert-route(rt,g,s);

end
r=r+1;

end
SELECT-ROUTE(j, routes[g][i], num-sources);
Label all nodes inG as ”un-visited”;
num-sources++;

end
num-sources=0;

end

Fig. 3. A high level description of the CBAH heuristic for RSP2 problem.

CBAH, we used this latter option. In CBAH,semi-disjoint
routes means those routes that share the least common
nodes. As described in Figure 5, when the destination node
(node 0) is reached, the functionbacktrack(s,g) traverses
each discovered route back to the source node by using the
pointers set up earlier.

After finding the set of routes for each sources in
a group g (routes[g][s]) and in order to determine what
route among these routes the sources will use, CBAH
invokes a function called select-route(.), and described in
Figure 5. During this process, CBAH interactively checks
the allocated routes of other sources of the same group and
enforces aggregation at common intermediate LA nodes, i.e.,
determine aggregator nodes for that group, using another
function calledcompare-routes()) that is depicted in Fig-
ure 6. The functioncompare-routes() starts by finding the
best aggregation points, which sometimes can be the closest
node to the source. The route will be trimmed to reach the
aggregator point only since the rest of the path to BS is
saved in the aggregation point. The set of these aggregation
points will then be saved in the list (aggregator[g][s]). The
aggregated data stream follows the same path till another
source node of the same group joins this path at a later
point, where the process repeats, i.e., further aggregation
is performed at this aggregator node, and the new data
aggregate is sent along one route to the BS. This means that
once data of multiple streams is aggregated at a certain node,
no splitting of the aggregate is allowed. That is, CBAH will
fuse routes of the source nodes at a shared common node
and then unify the rest of the route. This last process is
executed in the functioncompare-routes().

Input: s;
Output: if a route toward the BS is found, the ’route-found’ variable
will be true.;
Function FIND-ROUTE(s);
candidate-list[]={φ};
new-candidate-list[]={s};
while (0 * new-candidate-list)do

/*BS is not reached*/;
candidate-list← new-candidate-list;
new-candidate-list={φ};
for (element∈ candidate-list)do

for (each nbr of element)do
/* nbr is obtained fromA*/;
/*Thenbr node is located above, below, at the left or
at the right of a node.*/;
if (nbr is ”un-visited”) ‖ (element is ”un-visited” &&
nbr is ”visited”) then

set this neighbor as ”visited”;
new-candidates-list=new-candidates-list∪ {nbr};
set predecessor ofnbr to element;

end
if (nbr == 0) then

return true;
end

end
end

end

Fig. 4. A high level description of the function FIND-ROUTE in CBAH.

Input: s;
Output: A route froms to BS is selected.;
Function SELECT-ROUTE(s, routes[g][s], num-sources);
begin
selectrs= arg minr∈routes[g][s](maxk∈Ns

r
(Pk));

if (num-sources> 1) then
aggregator[g][s]= COMPARE-ROUTES(rs,routes[g][ ]);

end
Compute power consumption;
mr=m

g
s ∗ w /*w is as defined in ILP*/;

Ns
r = get-route-nodes(s,rs ,routes[][]);

Update-Power(Ns
r ,mr) /* including relay power*/;

Ns
r ={φ};

end;

Fig. 5. A high level description of the function select-route in CBAH.

Input: rs;
Output: Aggregator node for source s.;
Function COMPARE-ROUTES(rs, routes[g][]);
begin
List aggregators ={φ};
/* find common points with routes of other sources within the same
group*/;
aggregators = Find-common-points(rs, routes[g][]);
if (aggregators-size()> 1) /*if more than one common point are
found, then select the closest one*/;
myaggregator = select-closest(aggregators);
/*Trim the source route to reach the aggregator point only*/;
route-trim(rs);
return myaggregator;
end;

Fig. 6. A high level description of the function compare-route in CBAH.
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What is left is the case when a source node falls in an
overlapping region, i.e., belongs to more than one group. In
this case, CBAH holds a registry for those source nodes in
order to distinguish between their sent data. Once a route
r is selected for a source nodes, the functionUpdate-
Power(s,N(r)) which is called from within the function
select-route()will update the amount of total power con-
sumption at each nodei in the router, Pi, i ∈ N(r)
by adding the link coste(i, j) to the current value ofPi.
Note that each node, which acts as an aggregator, consumes
additional power when relaying aggregated data for other
nodes. CBAH updates those nodes as well by inspecting
the list (aggregator[g][s]). After the routes and the set of
aggregation points for each source in a certain group are
selected, all LA nodes must be cleaned by resetting the label
of each node toun-visitedbefore another group is served. At
the end of CBAH execution, a set of routes as well as a set
of aggregator nodes are determined for each source node
in each group of the graphG. The algorithm CBAH has
a worst case time complexity of O(nχRmax), and a space
complexity of O(n|Sg|).

V. ENERGY-DELAY TRADEOFFANALYSIS

Although data aggregation results in fewer data trans-
missions, there is a tradeoff between energy savings and
the delay due to the aggregation process. This potential
delay may occur because data from closer sources may
have to be buffered at an intermediate MA node in order
to be aggregated with data coming from sources that are
farther away. Therefore, the amount of delay introduced
by aggregation needs to be evaluated, and an application
dependent maximum delay should be enforced. Recall that
we are assuming periodic sensing with the same period for
all sensor nodes. For simplicity, we assume that all sensors
in the same group are synchronized, and all measurements
are taken by all sensors in the same group at the same time.
However, asynchronous operation can be accounted for by
adding a time factor that accounts for this mode of operation.

In our scheme, the aggregation delay occurs at two levels,
local and global. In the local aggregation process, delay can
be considered negligible since source nodes are in the same
zone and they are able to communicate with their peer LA
nodes directly. Hence, the aggregation delay is mainly due
to the global data processing at farther aggregation points.
To find the total delay, however, the aggregation delay must
be added to the total processing and communication delays
required to reach the BS from that MA node. Nevertheless,
we are only interested in finding the aggregation delay, that
is, the delay incurred by reporting data from different LA
source nodes located at different distances from a certain
aggregation node. Note that processing delays at aggregation
points will be small when compared to the delay incurred
in communicating data to the BS. We will now analyze the
aggregation delays associated with the two- and multi-level
aggregation schemes presented in the previous sections.

A. Aggregation Delay Under Two-Level Aggregation

Assume that the ILP, or any of the approximation algo-
rithms for the two level scheme have been executed and
the set of MAs,M, have been allocated in the two-level
aggregation scheme and the set of routes and the set of
aggregation points for each group have been determined.
Assume thatSj

g is the set of LA source nodes in group
g, g = 1, 2, . . . , χ, associated with thejth MA node,
j = 1, 2, . . . , p. Let dij

g be the distance (in terms of the
number of hops) of the path going from the LA source
node i ∈ Sj

g to its assignedjth MA node in the graph
G. Let Dj

max andDj
min be the maximum and the minimum

distance over all values ofdij
g with respect tojth MA node,

respectively, i.e.,

Dj
g,max = max

i∈S
j
g

dij
g , Dj

g,min = min
i∈S

j
g

dij
g

• Duplicate suppression:
If the aggregation function is duplicate suppression,
the aggregation delay incurred by groupg, T ds

g , will
be simply the maximum time needed to receive the
first unique packet at an MA node calculated over the
set of all MA nodes. Each node only passes the first
unique packet and suppresses subsequent packets with
identical sequence numbers. Hence,

Tds = max
j∈M

[min
i∈Sj

dij ]

• Max, min, and average aggregation:
In the case of general aggregation functions (e.g.
maximum, minimum, average), the aggregation delay
incurred,Tga, will be the maximum of the difference
in number of hops between an LA source node and
its assigned MA node evaluated over all pairs of LA
source-MA nodes. Hence,

Tga = max
j∈M,g∈χ

[Dj
g,max − Dj

g,min]

B. Aggregation Delay Under Multi-Level Aggregation

In the multi-level aggregation scheme, the latency will
be proportional to the number of hops between the data
aggregation point from the farthest LA source node reporting
data to the last aggregation node in the aggregation tree
for each group taken over the set of all groups. Let the
aggregation function be the duplicate suppression. LetAg

f

be the final aggregation point for all traffic coming from
group g ∈ χ. Let (tg) be the maximum time required to
reach nodeAg

f from all LA sources in groupg, and define
tmax as the maximum delay time due to aggregation taken
over all groups in the graphG. Let Dg(i) be the delay time
taken by data coming fromith LA source node of groupg
to reach nodeAg

f . The delayDg(i) is computed by finding
the number of hops taken by LA source nodei, i ∈ Sg to
reach the last aggregation point,Ag

f , for the groupg. Then,
the overall maximum aggregation delay is given by

tmax = maxg∈χ(tg) and tg = maxi∈Sg
(Dg(i))
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In the case of general aggregation functions (e.g. maxi-
mum, minimum, average), the aggregation delay incurred is
evaluated as in the 2-level scheme except that the minimum
and maximum are found with respect to the last aggregation
point.

VI. PERFORMANCEEVALUATION

The performance of the algorithms of GRASS were tested
with various experimental scenarios which were simulated
using the NS-2 simulator [44]. Each experiment corresponds
to a random placement of sensors in a fixed network
area. We assume a single base-station attempting to gather
information from a number of data sources in the network
area. The location of the base-station can be arbitrarily
chosen. Unless stated otherwise, the BS is located at lower
edge of the grid (0,0). We randomly place sensor nodes in a
50m×50m square field while always insuring that the initial
distribution of sensor nodes always results in a connected
graph, as will be explained below. We also experimented
with larger sensor fields to test the performance of various
heuristics in large networks. It is assumed that the sensing
range is the same as the transmission range which was set to
a default value of 20 meters. The sensor field is divided into
the appropriate number of zones, which is 30. We consider
four scenarios corresponding to the distribution of sensors
in the sensing field, which result inz nonempty zones
(clusters) forming a connected virtual graphG. In the four
scenarios,n takes values of 6, 8, 10, and 15, respectively. In
each nonempty zone, there are on average 10 sensor nodes
monitoring the area of that zone. We assume that sensors
generate data packets of variable sizes such that the packet
size is exponentially distributed with mean value of 1000
bits. In another setting, we fixed the packet size generated
by all nodes for the sake of comparison with other schemes.
In all settings, the aggregation function was based on taking
the packet size with the maximum length.

Each sensori has a battery with finite, non-replenishable
energy, which was set to an initial energy of 2 Joules.
Whenever a sensor transmits or receives a data packet, it
consumes some energy from its battery. The base station
has an unlimited amount of energy. The choice of the MAC
protocol can completely dominate energy consumptions. We
assume that energy-conscious protocols like PAMAS [26]
or TDMA-based MAC [6] are used for long-lived sensor
networks. Our energy model for the sensors is based on the
first order radio models [6], [27] in which a fixed amount
of energy is spent in transmitting and receiving a packet
in the electronics, and an additional amount proportional to
the distance between tow nodes is spent in transmitting a
packet. The radios can perform power control and hence
use the minimum required energy to reach the intended
recipients. Due to attenuation with distance, an energy
loss model withd2

ij is used for relatively short distances,
where dij is the distance between sensor nodesi and j.
More precisely, a radio dissipatesEelec=50 nJ/bit to run

the transmitter or receiver circuitry andεamp=100pJ/bit/m2

for the transmitter amplifier Thus, the energy consumed
by a sensor nodei in receiving a 1000-bit data packet
is 1000*50 nJ/bit= 50µJ, while the energy consumed in
transmitting a data packet from sensori to sensorj is given
by T = 50µJ + 100nJ/m2 × d2

ij . A link transmission rate
of 1 Mbps is assumed. We make the assumption that the
radio channel is symmetric such that the energy required to
transmit a message from LA nodeA to LA nodeB is the
same as the energy required to transmit a message from LA
nodeB to LA node A. As for delay on a link, it can be
calculated as units of time. On a 1 Mbps link, a 1000 bit
message can be transmitted in 1ms. We assume that each
unit of delay corresponds to 1ms time. Hence, the delay is
1 unit for each 1000 bit message transmitted. The BS is
placed at the middle of the network area.

We ignore edge effects where smaller zones on the bound-
ary of the sensor field may exist. For each data aggregation
scheme, the resulting virtual topology (the set of LAs) is
then fed into the ILP and heuristic algorithms. In both
schemes, the algorithms will find the set of routes and MAs
for the two-level (2L) aggregation scheme as well as the set
of routes and aggregation points for the multi-level (ML)
aggregation scheme as described earlier. The ILP problem is
solved using the CPLEX linear programming package [45].
In the real problem, the ILP and the heuristics can be solved
at the BS node. The set of routes and the aggregation points
obtained for both schemes are used for further simulation
experiments in order to evaluate the energy-delay tradeoffs
as will be explained later in this section. We performed
separate sets of experiments to investigate the impact of
different parameters (all reported results are averaged over
10 runs). In particular, we studied the following performance
issues:
Aggregation versus No-Aggregation:We consider the life-
time of the network without aggregation to be the baseline
network lifetime, which is taken as 1. We also define the
performance metricL as the ratio of the system lifetime
achieved using aggregation to that obtained without using
aggregation. We refer toL as the lifetime extension ratio.
We performed separate sets of experiments for both 2L and
ML aggregation schemes. The results are shown in Table III
for the 2L scheme for different values ofn and number of
MAs M , and in Table IV for the ML scheme for different
values ofn and number of groupsχ.

As shown in Table III, all schemes with aggregation result
in prolonging the lifetime of the sensor network. The value
of lifetime extension ratio (L) is the highest with the optimal
approach, which can be as large as 5, and sometimes even
larger. Out of the group of the approximate approaches,
the LBA approach has the best results. However, the GA
approach is not very far behind, which makes it a good
candidate for use. Table IV shows values forL for different
values of LA nodes,n, and when the number of groups,
χ, is varied for every value ofn with multiple levels of
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TABLE III
L IFETIME EXTENSION RATIO (L) FOR DIFFERENT2L AGGREGATION

APPROACHES, AND FOR DIFFERENT VALUES OFn AND M , χ = 3.

n M No Aggregation GA LBA ILP

5 3 1 2.45 2.83 3.01
10 5 1 3.97 4.33 5.03
15 7 1 3.75 4.86 5.69
20 9 1 4.25 4.30 4.98

TABLE IV
L IFETIME EXTENSION RATIO (L) FOR DIFFERENT VALUES OFn AND

χ IN ML SCHEMES.

n χ No Aggregation GA CBAH ILP

8 3 1 11.98 12.03 14.04
4 1 10.64 11.13 12.01

10 3 1 12.36 12.24 15.34
5 1 17.69 17.97 19.98

15 5 1 10.25 11.63 14.97
6 1 21.22 22.15 24.57

Lifetime extention factor vs. number of MAs
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Fig. 7. The effect of increasing the number of MAs on
the extension of the network lifetime whenn=15 under 2L
aggregation scheme.

aggregation allowed. The value ofL can be as large as 24
using the ILP especially with a greater number of groups,
and sometimes even larger. As noted, the value ofL for 2L
scheme is lower than the ML scheme. This indicates that
further levels of data aggregation can result in greater levels
of power savings. From the results in Table IV, it is clear that
the performance of CBAH and GA are not far away from
the optimal performance obtained when the ILP is used.
However, CBAH runs much faster than the ILP especially
for large values ofn.
Effect of number of MAs: we study the effect of varying
the number of MAs,M , for a fixed value ofn on the
increase in the network lifetime in the 2L aggregation
scheme. For this purpose, we fixedn to 15 nodes so that
most of the network field is covered and connected. Then,
we varied the values ofM from 3 to 10 and measured the
value of L. Figure 7 shows the lifetime extension factor
(L) versus the number of MAs. As shown in the figure,
when the number of MAs increases, the lifetime is increased
until p = 7 where no further improvement in the lifetime is
obtained. In most cases, it was observed that increasingM
beyondn

2 does not result in any significant increase inL.

Energy-Delay Tradeoffs Results:In this part, we measure
the aggregation delay incurred due to the aggregation pro-
cess for various schemes, as defined earlier. We studied the
delay while varying the number of sensor nodes in the field.
We setr = 20 meters and variedn from 6 to 15.M was
set ton/2, and the number of groups was 3. Figure 8 shows
the aggregation delays as the number of LA nodes increases
under the 2L and ML aggregation schemes, and as evaluated
using exact, and heuristic approaches. The increase in the
node density helps to fill the zones in the virtual architecture
and increases the node density, and hence the connectivity of
the virtual graph. Therefore, the aggregation delay decreases
for the 2L aggregation as the number of hops to reach the
second-level aggregation point decreases. However, the case
is not true for ML aggregation, where many source nodes of
the same group may share several aggregation points along
the route to BS, and hence more aggregation delays can
be experienced. It can therefore be concluded that if the
sensor network is designed for time critical applications,
two-level aggregation scheme would perform better on the
expense of additional power consumption. If data gathering
and reporting delay is not a concern, multi-level aggregation
schemes would be a good choice in this case as these
schemes consume less power and hence allow for longer
network lifetime.
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Fig. 8. Aggregation delays when two- and multi-level data aggregation
are used in small networks;χ = 3.

Comparison with other data aggregation schemes:In
this part, we compare our two-level and multi-level routing
with data aggregation schemes to some related work in
the literature. In particular, we compare CBAH to Directed
Diffusion (DD) framework [4], Pegasis [7], MLDA [33], and
LEACH [6]. For comparisons with [4], [7], [6], we have
uniformly distributed 100, 200, and 300 sensor nodes in a
200×200m2 fixed sensor field. We set transmission range
to 40 meters. Hence, the sensor field has 25 zones (clusters)
regardless of the number of nodes used. The number of
groups in CBAH were set to 2, 4, and 6 respectively. To
compare CBAH to [33], CMLDA was used since CBAH
and CMLDA are both hierarchical. The same parameters and
settings as described [33] were used, where a 100×100m2

fixed sensor field was simulated with BS at (50, 300)m, 1
joul/node, a packet size was fixed to 1000 bit data and 120
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Fig. 10. Aggregation delays in both our multi-level data aggre-
gation schemes and the Directed Diffusion scheme.

bit control packet. Also, the aggregation energy consumption
was assumed to be 5nj/bit. We vary the number of groups
in CBAH to be 3, 5, and 6 groups, respectively, where
one event is reported by a subset of sensor nodes within
each group. The sensor subsets are selected randomly. Our
objective is to study the impact of different numbers of
sources and different numbers of groups on the network
lifetime and the amount of aggregation delays experienced
in the network. For the sake of comparison with these
schemes, the duplicate suppression aggregation function
is used. Notice also that DD does not need any upfront
knowledge about network configuration and data sizes, nor
does it require a centralized solution like other schemes.

Figures 9 and 10 plot the lifetime extension ratio (L)
and aggregation delays for our approximate schemes and
the DD paradigm, respectively, as the number of LA source
nodes increases. Our simulation results demonstrate that
the clustering based heuristic (CBAH) can achieve larger
increase in the lifetime of WSNs when compared to DD
even that the algorithm is centralized. For a fixed number
of LA source nodes and a fixed number of groups, our
schemes consume less energy than DD, and hence extends
the network lifetime. This is due to two reasons. First,
query flooding in our scheme is confined to only horizontal

and vertical directions, while in DD a query propagates
throughout the whole network field before some paths are
re-enforced. Second, our scheme searches for routes that
balance the power consumption in the network, while DD
makes no distinction between routes used that will carry
data to the BS.

For other schemes, Table V shows a network lifetime
comparison between CBAH and other schemes, namely,
LEACH and PEGASIS for both cases when aggregation and
no aggregation are used. Table VI shows a network lifetime
comparison between CBAH and CMLDA. In conclusion,
our experimental results demonstrate that the CBAH can
increase the system lifetime of large WSNs, when compared
to the CMLDA. Note that both CBAH and MLDA (or
CMLDA) are centralized where the BS is responsible of
clusters formation and routes construction, i.e., algorithm
implementation. Also, CBAH is called only once at the
startup phase and the same settings (routes and clusters) will
remain fixed for the whole network lifetime. However, the
aggregated trees used in MLDA changes with time which
may lead to synchronization and coordination problems
between the sensor nodes. Hence, CBAH is much simpler
than MLDA and requires much less time to converge making
it more scalable.

TABLE V
NETWORK L IFETIME FOR VARIOUS SCHEMES WITH AGGREGATION AND

NO AGGREGATION USED.

n χ CBAH LEACH PEGASIS

100 2 Aggregatn. 10994 6735 5373
100 2 No Aggreg. 2525 1549 2314

200 4 Aggregatn. 19544 6494 3798
200 4 No Aggreg. 2266 982 1339

300 6 Aggregatn. 27489 6158 4175
300 6 No Aggreg. 2014 964 2023

TABLE VI
NETWORK L IFETIME IN CBAH AND MLDA

n Nodes/Cluster LAs χ CBAH CMLDA

100 10 10 3 4233 3611
200 10 20 5 5648 4512
300 15 20 6 7568 5560
400 20 20 6 8995 6142
500 25 20 6 10439 6577

We also collected the aggregation delays for various
schemes as summarized in Table VII. For most cases, CBAH
is able to minimize aggregation delays while at the same
time largely enhances the network lifetime.

TABLE VII
NETWORK AGGREGATION DELAYS IN VARIOUS SCHEMES

n CBAH LEACH PEGASIS CMLDA

100 2.0 2.10 2.60 2.4
200 3.6 2.74 4.35 3.91
300 4.5 3.80 5.96 5.43
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We also plot the data aggregation delay experienced in
our heuristic schemes and in the DD (see Figure 10) when
the number of LAs increases. As shown in the figure, our
schemes experience lower aggregation delays than DD. This
is because in DD data forwarding paths from different
sources may cross or overlap with each other anywhere in
the network area, thus there is more interference when the
number of sources is large, whereas in our scheme each LA
source node sends data on the virtual grid, thus data flows on
the grid faster and the routes are selected to balance power
consumption in the network.

VII. CONCLUSIONS

In this paper, we studied the maximum lifetime data
gathering and routing problem in WSNs. We showed that
cluster-based algorithms along with data aggregation and in-
network processing can achieve significant energy savings in
WSNs. This has a direct effect on prolonging the network
lifetime. In particular, we developed GRASS (Grid-based
Routing and Aggregator Selection Scheme), a scheme for
WSNs that combines the ideas of fixed cluster-based routing
together with application-specific data aggregation in order
to enhance the wireless sensor network performance in terms
of extending the network lifetime, while incurring acceptable
levels of latency under data aggregation. Within GRASS,
we have presented optimal as well as heuristic algorithms
that solve the joint problem of optimal routing with data
aggregation for the sake of maximizing the network lifetime.
Our results show that, when compared to other approaches
in the literature, the proposed scheme is able to improve the
network lifetime while incurring acceptable levels of latency
and without sacrificing quality. Hence, GRASS can attain
the energy and latency efficiency needed for wireless sensor
networks.
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APPENDIX

APPENDIX A: PROOF OFNP-COMPLETENESS OFRSP1

In this appendix we prove the NP-completeness of the
decision version of theRSP1 problem. We construct an
instance of theRSP1 problem in which:

1) The power consumption to transmit a unit of data from
any LA to any other LA is constant and the same for
all LAs. This is taken as unity for simplicity.

2) That no aggregation is performed, i.e., the aggregation
ratio is 1.

3) ThatM = 2, and that we have already solved the MA
selection problem by choosingLAj andLAk, where
the power (per byte) required to deliver data from the
selected MAs to the BS isw∗, and fromLAl to the
BS is wl, such that

w∗
∑

i∈S

mi < wlmi for l 6= j, k,∀i .

That is, delivering all data generated in the network
from either of these two MAs to the BS requires an
amount of power which is less than delivering data
from a single traffic stream from any other LA to the
BS.

The decision version ofRSP1 in this case would be:Is
there an assignment of theLAs to the twoMAs such that
the power consumption at both MAs is the same?

Theorem 1. ProblemRSP1 is NP-complete

Proof: Given a certificate which corresponds to a
solution of theRSP1 decision problem, it can be verified in
polynomial time whether this solution will satisfy the power
consumption requirement by straightforward substitution.

Now, we show that RSP1 is NP-hard by reducing the
set partitioningproblem, which is an NP-complete problem
[43], to the constructed instance of RSP1 given above in
polynomial time. That is, we show that

set partitioning ≤p RSP1

Given an instance of the set partitioning problem represented
by the set,S = {si : 1 ≤ i ≤ N, si > 0, si ∈ Z

+},
we would like to partitionS into two subsetsS1 and S2,
such thatS = S1

⋃

S2, S1

⋂

S2 = φ, and
∑

si∈S1
si =

∑

si∈S2
si. We map each elementsi to the amount of

traffic mi generated byLAi. This mapping can be done
in polynomial time.

Therefore, if there is a YES answer to the constructed
instance of theRSP1 problem, there will be a YES answer
to the set partitioning problem, and this will solve the
set partitioning problem. Therefore, RSP1 is NP-hard. The
above two parts prove that RSP1 is NP-complete.
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