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A New Class of Hash-Chain Based Key Pre-distribution Schemes for WSN

Walid BECHKIT?!, Yacine CHALLAL!, Abdelmadjid BOUABDALLAH!
Université de Technologie de Compiégne, Laboratoire HeuDiaSyc, UMR CNRS 7253, Compiégne, France

Abstract

In the last decade, we witness a proliferation of potential application domains of wireless sensor networks (WSN).
Therefore, a host of research works have been conducted by both academic and industrial communities. Nevertheless,
given the sensitivity of the potential applications that are generally tightly related to the physical world and may be
human beings, a large scale deployment of WSN depends on the dependability provided by these emerging networks.
Particularly, security emerges as a challenging issue in WSN because of the resource limitations. Key management is
one of the required building blocks of many security services, such as confidentiality, authentication, etc. Unfortunately,
public key based solutions, which provide efficient key management services in conventional networks, are unsuitable
for WSN because of resource limitations. Symmetric key establishment is then one of the most suitable paradigms for
securing wireless sensor networks.

In this paper, we tackle the resiliency of symmetric key pre-distribution schemes against node capture. We propose
a hash-based mechanism which enhances the resiliency of key pre-distribution for WSN. Applied to existing key pre-
distribution schemes, our solution gives birth to enhanced schemes which are more resilient against node capture attacks.
We analyze and compare our solution against the existing schemes, with respect to some important criteria such as: the
network resiliency against node capture, secure connectivity coverage, storage requirement, communication overhead and
computation complexity. We show through analytical analysis that our solution enhances the network resiliency without
introducing any new storage or communication overheads. Moreover, we show that our solution introduces insignificant
computational overhead.

Keywords: wireless sensor networks, security, key management, resilience

1. Introduction Key management is a corner stone service for many se-
curity services such as confidentiality and authentication
which are required to secure communications in wireless
sensor networks. The establishment of secure links be-
tween nodes is then one of the most challenging problems
in WSN. The public key based solutions, which provide ef-
ficient key management services in conventional networks,
are unsuitable for wireless sensor networks because of the
energy, computation and storage limitations. Some pub-
lic key schemes have been implemented on real sensors
[2][3], however most researchers believe that these tech-
niques are still too heavyweight over actual sensors’ tech-
nology because they induce an important communication
and computation overhead [4]. Symmetric key establish-
ment is then one of the most suitable paradigms for secur-
ing exchanges in wireless sensor networks. Because of the
lack of infrastructure in WSN, we have usually no trusted
third party which can attribute pairwise secret keys to
neighboring nodes, that is why key pre-distribution is the
most suitable paradigm for wireless sensor networks.

A Wireless Sensor Network (WSN) is a wireless network
which is composed of a set of tiny autonomous sensor nodes
with sensing, computation, and wireless communication
capabilities [1]. The purpose of such networks is to collect
information issued from a controlled environment or a tar-
get object and then send it to a base station usually called
the sink. Because of size factor and cost considerations,
wireless sensor networks suffer from resource constraints
including energy, memory, computation power and com-
munication bandwidth and range. Nowadays, wireless sen-
sor networks are increasingly used in numerous fields such
as military, medical, industrial and environmental sectors;
they are more and more involved in several sensitive appli-
cations which require sophisticated security services. Due
to the resource limitation, existing security solutions for
conventional networks could not be used in wireless sensor
networks. So, the security issues became then one of the
main challenges for the resource restricted environment of
WSN which requires new specific solutions.

Many symmetric key pre-distribution schemes for wire-
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tal secure connectivity coverage and probabilistic schemes
where secure connectivity is not guaranteed and condi-
tioned by the existence of shared keys. In order to evalu-
ate the performances of key pre-distribution schemes, we
consider five main metrics which are: network resiliency
against node capture, secure connectivity coverage, com-
munication overhead, computation complexity and storage
overhead. In this paper, we consider in particular the re-
siliency of symmetric key pre-distribution schemes. Exist-
ing research works which addressed the network resiliency
either introduce an important storage and communication
overhead or degrade the secure connectivity coverage. In
contrast to these solutions, our goal is to enhance the re-
siliency of WSN key management schemes without intro-
ducing any new storage or communication overheads while
maintaining a high secure connectivity coverage.

In this work, we propose a hash-based mechanism which
can be applied to existing pool based key pre-distribution
schemes to enhance the network resiliency. To achieve
this goal, we introduce a new method based on one way
hash chain which conceals keys in such a way that the dis-
closure of some keys reveals only derived versions, which
cannot be used to compromise other links in the network
using backward keys. We call our solution: Hash-Chain
class of key pre-distribution schemes and denote it by HC.
Our class, applied to existing key pre-distribution schemes,
gives birth to new schemes which are more resilient against
node capture attacks. We carried out analytical analysis
to compare the efficiency of our approach against basic
schemes with respect to important performance criteria:
the network resiliency against node capture, the secure
connectivity coverage, the communication overhead, the
computation complexity and the storage overhead. The
obtained results show that our solution enhances the net-
work resiliency and reduces the fraction of compromised
links up to 40% compared to existing schemes while it
guarantees the same secure connectivity coverage, stor-
age and communication performance. Moreover, we show
through analytical analysis and simulations that the in-
duced computational overhead is insignificant and that the
energy consumed by hash computations in our solution is
negligible.

The contributions of our work are many folds and can
be summarized in the following points:

e We review the state of the art of key management
in wireless sensor network. Then, we propose a clas-
sification of symmetric key management schemes for
WSN into two categories: probabilistic schemes and
deterministic ones. We further refine the classifica-
tion into sub-categories with respect to the underly-
ing concepts and techniques used in key exchange and
agreement.

e We introduce a mechanism to enhance the network
resiliency of key pre-distribution schemes for WSN.
The proposed solution is based on lightweight hash

chains and improves the resiliency of existing pool-
based key pre-distribution schemes.

e We analyze and compare our solution against the
existing schemes, with respect to important crite-
ria which are: the network resiliency against node
capture, secure connectivity coverage, storage re-
quirement, communication overhead and computation
complexity. We show through analytical analysis that
our solution enhances the network resiliency without
introducing any new storage or communication over-
heads. Moreover, we show that our solution does not
introduce significant computational overhead.

The remainder of this paper is organized as follows: sec-
tion 2 presents related works on key management for wire-
less sensor networks. We define in section 3 the metrics
used to evaluate our solution and to compare it to exist-
ing schemes. Section 4 gives a general idea of our class of
pool based key pre-distribution schemes. In section 5, we
present the resilient HC(q-composite) scheme issued from
the application of our mechanism to the well known proba-
bilistic g-composite scheme , we compare the performances
of the two schemes and we discuss analytical results. In
section 6, we apply our class to a deterministic scheme
based on the combinatorial design which gives birth to a
more resilient deterministic scheme; we also analyze and
compare their performances. In section 7, we introduce a
new smart attack against our mechanism and propose an
enhanced version as countermeasures against this attack.
Finally, section 8 ends up this paper with some conclu-
sions.

2. Related works:
WSN

key management schemes for

Key management problem in wireless sensor networks
have been extensively studied in the literature and sev-
eral solutions have been proposed. Many classifications
of symmetric key management schemes can be found in
[14][15][16]. In this work, we mainly classify symmetric
schemes into two categories: probabilistic schemes and
deterministic ones. In deterministic schemes, each two
neighboring nodes are able to establish a direct secure
link which ensures a total secure connectivity coverage. In
probabilistic schemes, the secure connectivity is not guar-
anteed because it is conditioned by the existence of shared
keys between neighboring nodes.

2.1. Probabilistic schemes

In probabilistic key management schemes, each two
neighboring nodes can establish a secure link with some
probability. If two neighboring nodes cannot establish a
secure link, they establish a secure path composed of suc-
cessive secure links.

Eschenauer and Gligor proposed in [5] the basic Ran-
dom Key Pre-distribution scheme denoted by RKP. In this



scheme, each node is pre-loaded with a key ring of m keys
randomly selected from a large pool S of keys. After the
deployment step, each node i exchanges with each of its
neighbor j the list of key identifiers that it maintains. This
allows node j to identify the keys that it shares with node
1. If two neighbors share at least one key, they establish
a secure link and compute their session secret key which
is one of the common keys. Otherwise, nodes ¢ and j do
not have common keys. So, they should determine secure
paths which are composed by successive secure links. The
values of the key ring size m and the key pool size |S| are
chosen in such a way that the intersection of two key rings
is not empty with a high probability p. This basic ap-
proach is CPU and energy efficient but it requires a large
memory space to store the key ring. Moreover, if the net-
work nodes are progressively corrupted, the attacker may
discover a large part or the whole global key pool. Hence,
a great number of links will be compromised. This is due
to the fact that a given key may be used to secure different
links if it is common between key rings of different pairs
of nodes.

Chan et al. proposed in [6] a protocol called g-composite
scheme that enhances the resilience of RKP. In this solu-
tion, two neighboring nodes can establish a secure link
only if they share at least ¢ keys. The pairwise session key
is calculated as the hash of all shared keys concatenated
to each other: K;; = Hash(Ks, || Ks,||...|Ks,) where
K, Ks,,...K,, are the q' shared keys between the two
nodes i and j (¢’ > ¢). This approach enhances the re-
silience against node capture attacks because the attacker
needs more overlap keys to break a secure link. However,
this approach degrades the network secure connectivity
coverage because neighboring nodes must have at least ¢
common keys to establish a secure link.

Chan et al. proposed in [6] another pairwise key pre-
distribution scheme in which they aim to ensure a per-
fect resiliency and a given secure coverage probability p.
Authors propose to use a distinct key to secure each link
between each pair of nodes. They assign to each two neigh-
boring nodes ¢ and j a distinct key k; ;. Prior to deploy-
ment, each node is pre-loaded with p* N keys, where N is
the network size (number of nodes in the network) and p is
the desired secure coverage probability. Hence, the prob-
ability that the key k; ; belongs to the key set of the node
i is p. Since we use distinct keys to secure each pair-wise
link, the resiliency against node capture is perfect and any
node that is captured reveals no information about links
that are not directly connected to it. It is obvious that
the main drawback of this scheme is the non scalability
because the number of the stored keys depends linearly on
the network size. In addition, this solution does not allow
the node post-deployment because existing nodes do not
have the new nodes’ keys.

Du et al. proposed in [7] to enhance the secure con-
nectivity and the resiliency of the basic random key pre-
distribution schemes. Their solution requires deployment
knowledge and uses several key pools instead of one. Nodes

are organized in regional groups to which is assigned dif-
ferent key pools and each node selects its m keys from the
corresponding key pool. The key pools are constructed in
such a way that neighboring key pools share more keys
while key pools far away from each other share fewer keys
or no keys at all. This approach allows to enhance the se-
cure connectivity coverage because the key pools become
smaller. Moreover, the resiliency of Du et al. solution is
improved since if some nodes of a given region are cap-
tured, the attacker could discover only a part of the cor-
responding group key pool. However, the application of
this scheme is restrictive since the deployment knowledge
of the wireless sensor network is not always possible.

In [8], Castelluccia and Spognardi adapted the basic
scheme described above to the multi-stage wireless sen-
sor networks where new nodes are periodically deployed
to ensure the network connectivity. With a one-stage de-
ployment, if the network is continuously attacked, the at-
tacker could discover an important part of the global key
pool and new established links will be immediately com-
promised. Authors in [8] proposed the use of keys with
limited lifetimes and which are updated periodically. The
proposed solution divides the lifetime of a node into k£ gen-
erations. Initially, each node has two key rings: a forward
key ring (FKR) and a backward one (BKR). The forward
key rings are updated at each generation using a secure
hash function while the backward ones are updated using
a hash-based Lamport chain, where they start by generat-
ing the keys of the last expected generation. If a node is
deployed at generation ¢ and will last at most until gener-
ation j, it will be configured with the FKR of generation
¢ and the BKP of the generation j. The two key subsets
are updated at each generation thanks to the two hash
functions. Authors in [8] showed that by using limited
lifetime keys, the network self-heals and recovers its initial
state when attacks stop. In the other hand, the ratio of
compromised links remains constant when the network is
constantly attacked in contrast to the basic schemes.

In [9], Liu et Ning proposed a new pool based polyno-
mial pre-distribution scheme for WSN based on previous
work of Blundo et al. [17]. This approach can be con-
sidered as an extension of the basic RKP scheme where
nodes are pre-loaded with polynomials instead of keys. Ba-
sic polynomial key management scheme proposed in [17] is
based on symmetric bivariate A-degree polynomials P(x,y)
generated over a finite field F, where ¢ is prime. The
main property of symmetric bivariate polynomial is that
P(xz,y) = P(y,z). In this scheme, each node i is pre-
loaded with the polynomial P;(y) = P(i,y). In order to
establish a secure link between two neighbors ¢ and j, each
node evaluates its polynomial at the identifier of the other
node. Hence the secret key between two nodes ¢ and j is
K;; = Pi(j) = P;j(i). The node identifiers are supposed
to be unique. This approach was proved to be secure and
A-collusion resistant. In [9], Liu and Ning extended this
approach to wireless sensor networks when they proposed a
pool based polynomial pre-distribution scheme to establish
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Figure 1: Classification of symmetric key management schemes for WSN

secure links. A global pool of symmetric bivariate poly-
nomials is generated off-line and each node is pre-loaded
prior to deployment with a subset of polynomials. If two
neighboring nodes share a common polynomial, they es-
tablish a direct secure link as described above; else, they
try to find a secure path as proposed in the RKP scheme.
This approach allows to compute distinct secret session, so
the resilience against node capture is enhanced. However,
this solution requires more memory to store the symmet-
ric bivariate polynomials and induces more computational
overhead.

In [18], Blom proposed a symmetric key generation
system in which each node i stores a column ¢ and a
row i of size (A + 1) of two matrices G and (D * G)7
respectively where : D(y;1)x(a41) 18 a symmetric matrix,
G(x+1)xn is a public matrix and (D * G)T is a secret
matrix. The matrix of pairwise keys of a group of n
nodes is then K = (D x G)TG. In other terms, each
pair of nodes ¢ and j compute their session key as
K;j = row; x column; = row; * column;. This solution is
proved to be A-secure, which means that keys are secure
if no more than A\ nodes are compromised. The Blom’s
scheme cannot be applied to all the network nodes in a
wireless sensor network because each node needs memory
to store huge vectors. Yu and Guan [10] adapted the
Blom’s scheme to group-based wireless sensor networks
where they assume deployment knowledge. Nodes are
deployed into a grid and each group is assigned a distinct
secret matrix. Using deployment knowledge, the potential
number of neighboring nodes decreases which requires less
memory. We believe that this scheme is only adapted for
some restrictive applications of wireless sensor networks
since deployment knowledge is not always possible.

2.2. Deterministic schemes

Deterministic schemes ensure that each node is able to
establish a pair-wise key with all its neighbors. Many so-
lutions were proposed to guarantee determinism.

LEAP [11] make use of a common transitory key which is
preloaded into all nodes prior to deployment of the WSN.
The transitory key is used to generate pairwise session keys
and is cleared from the memory of nodes by the end of a
short time interval after their deployment. LEAP is based
on the assumption that a sensor node, after its deployment,
is secure during a time T},;, and cannot be compromised
during this period of time. LEAP is vulnerable to node
compromise. For instance, if the transitory initial key is
discovered, the entire network could be compromised.

In [12], Camtepe and Yener proposed a deterministic
pool based key pre-distribution scheme. Instead to select
randomly a subset of keys from the global key pool, they
propose a new construction methodology based on combi-
natorial design theory. The main purpose is that each two
subsets of keys share exactly one common key which en-
sures a total secure connectivity coverage. To achieve this
goal, authors make use of particular combinatorial design
which is the Symmetric Balanced Incomplete Block De-
sign theory. This scheme is presented with more details in
section 6.

In [19], authors propose to use the Camtepe scheme for
key management in grid group WSN. Authors divide the
deployment area into square regions. In each region, they
propose to use the symmetric Balanced Incomplete Block
Design based key pre-distribution in order to ensure the
intra-region secure communications. Inter-region commu-
nications are guaranteed thanks to special nodes having
plentiful resources and called agents. Furthermore, au-
thors propose to enhance the Camtepe scheme in order to
avoid key identifier exchanges. For this purpose, they in-
dex all nodes and keys and propose a mapping between



node indexes and key indexes.

Perrig et al. proposed in [20][21] a security suite for
WSN having two blocks: i) SNEP which provides data
confidentiality, two-party data authentication, and data
freshness and ii) uTESLA which provides authenticated
broadcast. SPINS propose to use the base station (Sink)
as a trusted third party (TTP) in order to establish
secure links between nodes. If a node ¢ wants to establish
a session secret key with node j, it sends a request
message to node j. Upon receiving this message, the
node j sends a message to the sink (TTP) which verifies
the authentication, generates the secret session key and
sends it to the nodes ¢ and j. The use of the sink
as a third trust party leads to an important commu-
nication overhead and degrades the network performances.

We focus in this paper on probabilistic and determinis-
tic pool based key management schemes as illustrated in
figure 1. In what follows, we propose a mechanism to en-
hance the resilience of these schemes by concealing keys
through the use of an efficient hash chaining mechanism.
Our approach can be applied to any pool based key pre-
distribution scheme including [5], [6], [7], [8], [12] and all
schemes derived from them. This allows to define a new
resilient class of pool based key pre-distribution schemes.
In this paper, we apply our class to two schemes: the well
known probabilistic g-composite scheme proposed by Chan
et al. [6] and the deterministic scheme based on Symmet-
ric Balanced Incomplete Block Design theory proposed by
Camtepe and Yener [12]. We evaluate our hash chain class
and compare it against the basic schemes with respect to
important performance metrics that we define in the next
section.

3. Evaluation Metrics

In this work, we consider five metrics to evaluate
performances of wireless sensor network key management
schemes:

Network resiliency against node capture : Due to
the resource limitations in WSN, sensor nodes are usually
not tamper resistant. If an adversary compromises a node,
he can read all secret information from its memory. Such
an attack can compromise not only adjacent links of com-
promised links but also external links that are independent
of the compromised nodes. We define the resilience against
node capture R, as the fraction of uncompromised exter-
nal links when x sensor nodes are compromised. We note
that we consider in a first time the oblivious attacks where
nodes are randomly captured. We discuss later in section
7, possible smart attacks as well as countermeasures.

Secure connectivity coverage : We define the secure
connectivity coverage as the fraction of secured direct links
among possible links in the network which is the proba-
bility that a given pair of neighboring nodes are able to
establish a secure link. Note that we focus in our metric

on the direct (one hop) secure link establishment; some so-
lutions propose to establish a multi-hop secure path when
the direct secure link establishment fails which we do not
consider in this metric.

Computation complexity : Some key management
schemes like [6], [9], [10] and the approach that we propose
in this work require to perform additional computational
operations such as hash functions or modulo multiplica-
tions. The additional processing may consume more en-
ergy and may induce a computational delay. We calculate
in this metric the average number of additional operations
required to establish secure links.

Communication overhead : The communication
overhead measures the size of data exchanged between a
pair of nodes in order to establish direct secure links. This
metric has a significant influence on the energy consump-
tion because the most of the consumed energy is due to
communication.

Storage overhead : Because of their small size, sensor
nodes are very constrained in term of memory resource.
In what relates to key management schemes, we focus on
the memory required to store the keys.

The proposed classification of key pre-distribution
schemes into deterministic schemes and probabilistic ones
is based on the secure connectivity coverage metric. Deter-
ministic schemes are those which ensure a total secure con-
nectivity coverage (the probability of establishing direct
secure links is one). However, the probabilistic schemes
are those which have not a total secure connectivity cov-
erage.

4. Our Solution: HC(x) A resilient class of hash-
chain based key pre-distribution schemes

As introduced before, we consider in this work the re-
siliency of symmetric key pre-distribution schemes against
node capture. We propose a resilient class of key pre-
distribution protocols that we denote by HC(x) for Hash-
Chain(x), where x is an existing pool based key pre-
distribution protocol. This class of protocols enhances the
resilience of existing schemes through a lightweight hash
chaining technique that conceals the same keys pre-loaded
in different sensor nodes. A preliminary work and few dis-
cussions on the network resiliency were presented in [22].
To conceal keys, we apply a one way hash function to the
pre-distributed keys before deployment: a hash function h
is applied to each node keys a number of times depending
on the node identifier. As known, the main characteristic
of hash functions is that knowing a value of the chain it
is computationally infeasible to determine the backward
values. So, with our approach, when an attacker corrupts
one or more keys it can only discover a derived version
(forward values).

Let us consider two neighboring nodes ¢ and j. Node
1 applies i times the hash function h to each key of its
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Figure 2: Illustration of the hash-chain based approach

key ring. Node j applies j times the hash function A to
each key of its key ring. When nodes ¢ and j discover a
common key identifier id, the common key between ¢ and
4 is then h™**() (K, 4)). Node min(i, j) can calculate the
common key by applying the hash function h, |i — j| times
to the key having the identifier id. Figure 2 illustrates
these steps applied to two nodes whose identifiers are 3,
and 7 respectively. We notice that key having the identifier
5 is common to both nodes 3 and 7. The common key is
then h7(K35) and node 3 can then calculate this common
key by applying again the hash function h, |3 — 7| = 4
times to its key h3(Ks).

The application of this version of our class in large scale
wireless sensor network may introduce an important hash
computation overhead. Indeed, nodes may have high iden-
tifiers and should then apply the hash function a large
number of times. In order to reduce the computation over-
head, we introduce a parameter called L. Each node i ap-
plies the one way hash function h to their keys (i mod L)
times instead of ¢ times, the number of hash computation
is then bounded by L. We discuss later how to choose the
L parameter and its impact on the network resiliency and
the hash computation overhead.

We show in what follows that we enhance the network
resiliency against node capture where the computational
overhead remains insignificant. Our approach can be ap-
plied to any pool based key pre-distribution scheme. To
facilitate the explanation of the concepts behind our ap-
proach, we have chosen to apply our mechanism to two
concrete schemes. A probabilistic scheme which is the g-
composite scheme [6] and a deterministic one which is the
Symmetric Balanced Incomplete Block Design scheme [12].

5. HC(g-composite):
composite scheme

A highly resilient ¢-

In this section, we develop a highly resilient key manage-
ment solution by applying our solution to the g-composite
scheme [6]. The proposed protocol which we denote by
HC(g-composite) is more resilient against node capture as
we demonstrate in the following analysis.

Before the deployment of the WSN, a large pool S of
keys and their identifiers are generated off-line. Each node
is preloaded with a key ring of m keys randomly selected
from the key pool S. Before the deployment phase, we
apply a hash function h, (i mod L) times to the pre-loaded
keys of each node, where 7 is the node identifier and L is a
parameter of our class, which allows to reduce the number
of hash operation as explained before. So, each node i is

preloaded with the set of keys KR’ such us:

KRi — {hz mod L(Kl),hi mod L(Kg), hz mod L(Km)}
where K7, Ks,...K,, are the randomly selected keys from
S.

After the deployment phase, each two neighboring nodes
can establish a secure link only if they share ¢ or more
common keys. The pairwise secret key between two neigh-
boring nodes is computed as the hash of all their shared
keys concatenated to each other.

Let us assume that the node i shares ¢’ keys (¢ >= q)
with its neighbor j and that (i mod L) > (j mod L).
The node i computes its shared secret key with j as fol-
lows:

Ky = Hash(KL, | K2 K )
where K! K

o K, K, are the common keys with the

node j.

The node j computes its key as :
Kj' — Hash(h(l mod L)—(j mod L)(Kgl)H
i mod L)—(j mod L j
ot =0 mod D) (1) |
||h(1 mod L)—(j mod L)(Kg ))

where Kgl,K§2,...,K§q, are the common keys with the
node i. Indeed, node j which have the minimum iden-

tifier may apply the hash function (i mod L) — (j mod L)
times to each shared key (K gp) in order to compute the
key having the same identifier and pre-loaded in node
which is (K;p) The session key between i and j is then
K@j = Kﬂ

5.1. Example:

To illustrate our idea, let us refer to the figure 3. To
simplify the comprehension, we apply our approach to the
1-composite scheme (g-composite scheme with q=1) and
we consider a network of seven nodes, a key pool contain-
ing six keys (|S| = 6) and each node is pre-loaded with
m = 2 keys. In the basic 1-composite scheme (Figure
3(a)), the corruption of nodes 4 and 7 induces the disclo-
sure of the keys K1,K3 and K35, and then the compromise
of the three external links (1,2),(2,3) and (5,6).

Using our protocol HC(1-composite) (Figure 3(b)), keys
are hashed before the deployment phase (we assume in the
example that L = 5). So the node 4 is pre-loaded with the
keys h*(K1) and h*(K3) instead of K; and K3, the node 7
is pre-loaded with the keys h?(K3) and h?(K35) instead of
K3 and K5 and so on. If we consider the same scenario as
above, the corruption of the two nodes 4 and 7 induces the
disclosure of the derived keys h*(K;), h*(Ks), h?(K3) and
h?(Ks). In this case, the link (2,3) can be compromised
because the attacker can compute h3(K3) knowing h?(K3).
However, the two other external links (1,2) and (5,6) can-
not be compromised because it is infeasible to calculate
h?(K1) knowing h*(K;) and h(K3) knowing h?(K3).
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5.2. Analysis

In this section, we will evaluate the performance of our
protocol HC(q-composite), we compare it to the basic q-
composite scheme with respect to the metrics defined in
section 3. We recall in table 1 the main symbols that we
use in what follows:

Table 1: SUMMARY OF NOTATIONS

S | The global key pool
|S| | The size of the global key pool

m | The size of the node key ring

q | The minimum number of common keys required
to establish a secure link
The probability that two nodes share exactly k
keys in their subset of keys
p | The probability that two nodes can establish a
secure link
L | The parameter of the HC approach
n | The network size (number of nodes)

5.2.1. Network resiliency against node capture

In this section, we compare the network resiliency of
the two schemes: g-composite and HC(q-composite). As
stated before, we define the network resiliency R, as the
fraction of uncompromised links when x nodes are cap-
tured, we have then:
R,=1—-P(LC|NC;)
where :

e LC is the event that a link is compromised

e NC, is the event that x nodes are compromised

Let us compute R, when we use the g-composite and
the HC(g-composite) scheme and let us first compute
P(LC|NC;) in the two cases. We recall that we consider
only external links which are independent of the compro-
mised nodes.

When z nodes are captured, all their keys are com-
promised. In the two schemes, g-composite and HC(q-
composite), each external secure link is computed as the
hash of k keys concatenated to each other where ¢ < k <
m. The probability of a link compromise when z nodes
are captured is then given as follows :

P(LC|NC,) = f: P(LCy|NCL)P(LSy) (1)

k=q
where:

e L(CY} is the event that a link secured with k£ keys is
compromised

e LS} is the event that a secure link is secured with k
keys

Proposition 1. In the basic g-composite scheme, the
probability of link compromise when x nodes are captured
- m . kp(k)

P(LCINC,) =) (1—(1— E) ) e

k=q

ProOF. In the basic g-composite scheme, the probabil-
ity that a key is compromised when a node is captured
is c = % because each node is pre-loaded with m keys
selected randomly from the global key pool S.

The fraction of uncompromised keys is then 1 — ¢. When
x nodes are compromised, the fraction of uncompromised
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keys is (1 — ¢)*. So, the probability that a given key has
been known is then 1 — (1 — ¢)*.

As a result, the probability that a given link is compro-
mised when it is secured with k shared keys and when x
nodes are compromised is:

P(LCINC,) = (1= (1 = o))" (2)

On the other hand, p(k) which is the probability that
two nodes share exactly k keys was given in [6] as :

BIEENEE
kEJ\2(m—k) m—k
p(k) = P
S|
m
The probability that two given nodes can establish a

secure link is then: p = 7" p(k) and the probability
that a secure link is secured exactly with k keys is:

p(k)

P(LSy) = 3)

From equation (2) and (3) the equation (1) becomes:

=S a-a-n Bt

P(LC|NC,) L
p

k=q
O

The resulting formula (4) is similar to the one calculated
by Chan et al. in [6]. Let us now compute P(LC|NC;)
of our HC(g-composite) scheme.

Lemma 1. Using the hash chain class with L > 1, The
probability that a given key is known when a node is ran-
domly captured is:

L+1m

%= 20 78]

ProoOF. For any discovered key, it is initially hashed [
times (0 < [ < L — 1) with a probability % . When the

initial key is hashed [ times, the probability that a key hav-
ing the same identifier can be discovered is LT’Z Indeed,
forward values can be computed when it is impossible to
compute backward values.

Thus, we find that the probability to disclose a key having

the same identifier with a compromised key is :

L+1

L L 2L

Since each node has m keys, the probability that a key
has been discovered when a node is compromised is ¢, =
L+l m 0

2L |S]*

Proposition 2. In the HC(q-composite) scheme, the
probability of link compromise when x nodes are randomly
captured is :

m

=>_a

k=q

_Lrimy, " p(k)
2L |S] p

~

P(LC|NC,)

PROOF. Based on the lemma 1 and following the same
steps of the proof of proposition 1, we find that using our
HC(q-composite) scheme, the fraction of compromised
links when x nodes are captured is :

L+1 p(k

P(LC|NC,) = TE) ) e

(5)

O

Propositions 1 and 2 show that the probability of link com-
promise is reduced when we apply our hash chain mech-
anism. Thus, our scheme is more resilient than the basic
one. As we have defined resiliency against node capture
as the fraction of uncompromised links when x nodes are
compromised, we plot in the figure 4 the fraction of uncom-
promised links depending on the number of captured nodes
with the two schemes (g-composite and HC(q-composite)
when q=1,2 and 3. In this analysis, we fixed |\S| = 1000,
m = 40 and L = 10 (we discuss the choice of L’s value



later). This figure shows clearly that the resilience against
node capture attacks is better when using our approach.
For instance, with ¢ = 3, when the number of compro-
mised nodes is between 50 and 100, our approach reduces
the fraction of compromised links up to 40%. The figure
shows also that higher is the ¢ value, better is the improve-
ment.

5.2.2. Secure connectivity coverage

Since we maintain the same common key discovery
phase based on the key identifier exchange, the secure con-
nectivity coverage of the network when we use hash chain
g-composite scheme is the same as the basic g-composite
scheme. Indeed, each two neighbors can establish a se-
cure link only if they share at least ¢ keys. The secure
connectivity is then given as:

m
Pconnect =P = Zp(k)
k=q

We plot in figure 5 (a) the secure connectivity cover-
age depending on the key ring size m when q=1 ,2 and 3
and |S| = 1000. The figure shows that the secure connec-
tivity coverage increases when the key ring size increases
because the probability of sharing at least q keys increases.
Moreover, the figure shows that higher is ¢ worse is the se-
cure connectivity coverage. For instance, with ¢ = 1 and
m = 40, we ensure a network secure connectivity coverage
of 80%. To reach the same connectivity, we need about 55
keys per ring when ¢ = 2 and about 65 keys when ¢ = 3.
Indeed, the g value represents the minimum required num-
ber of common keys to establish secure links.

In addition to the secure connectivity coverage, we plot
also in figure 5 (b) the network resiliency when 50 nodes
are compromised (Rs0) depending on the key ring size m
when ¢ = 2, |S| = 1000 and L = 10. This figure shows
that the network resiliency decreases when m increases.
It shows clearly that our solution is more resilient against
node capture attacks depending on the key ring size. In-
deed, the network resiliency is improved up to 40% when
m > 60.

5.2.3. Computation overhead

In the basic g-composite scheme, nodes apply a hash
function one time on the common keys concatenated to
each other in order to compute the secret key. With
our solution, the node having the minimum hash degree
should apply the hash function i a number of times before
computing the secret key. In the example 3 (b) where
L =5, the node 7 for example should apply two times the
hash function to compute h*(K5) because it is initially
pre-loaded with h%(K3).
In order to evaluate this extra-computation overhead, we
calculate the average number of times that a node applies
the hash function per secure link in the initialization
phase of our approach.

Lemma 2. Using the hash chain approach with (L > 1),
if two nodes can establish a secure link, then they have to
apply on average N Hgyg = LG—L times the hash function
on their common keys before computing the session secret
key.

PROOF. Let us assume that two nodes 7 and j can estab-
lish a secure link (which means that they share ¢’ keys
with ¢ > ¢ ).So, the node i is pre-loaded with keys
hashed (i mod L) times where the node j is pre-loaded
with keys hashed (j mod L) times. One of the nodes i or
j would have to apply |(i mod L) — (j mod L)| times the
hash function on their ¢’ common keys. Note that ¢ and j
are natural numbers chosen randomly, which means that
(i mod L) and (j mod L) are uniformly distributed over
Zy,. The average number of hash computation is then:

L—1
1
NHgapy = 5Zk><P(|(z'nde)—(jmodL)|:
k=0
L—1
1 2(L — k)
= gl k)
k=1
L—1
= kx L — Zk2
k:l
1 L*L-1) L(L—1)(2L—1)
= o 6 )
_L?-1
6L
O

Proposition 3. In the HC(q-composite) scheme, Given
L and m, if two nodes can establish a secure link, then
they have to apply on average ;1 _y (kX p(k)) hash
functions.

PRrOOF. Following the lemma 2, when using the HC(q—
1

composite) scheme, each node apphes on average 6;
times the hash function on all the ¢’ shared keys where
q" > q. Since 2k) ig the probability that an established
link is secured with k keys, the overall average number of
hash computation is then:

i(ngl xkxp(k)):

k=q k=q

In table 2, we summarize the average number of hash
computations for 1 < L < 15, when q=1, 2 and 3. Note
that with L = 1 we have exactly the basic scheme where
the pre-loaded keys are not hashed. This table shows
that the average number of hash computations remains
reasonable when L < 15.

k)
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Table 2: Average number of hash computation in HC(q-composite)

L NHaug HC(q-composite)
q=1 q=2 q=3
1 0.0 0.0 0.0 0.0
2 0.25 0.493 | 0.659 | 0.861
3 0.444 0.877 | 1.171 | 1.531
4 0.625 1.233 1.646 | 2.152
5 0.8 1.578 | 2.107 | 2.755
6 0.972 1.918 | 2.561 | 3.348
7 1.143 2.255 3.01 3.936
8 1.313 2.589 | 3.457 4.52
9 1.481 2.923 | 3.902 | 5.102
10 1.65 3.255 | 4.346 | 5.682
11 1.818 3.587 | 4.789 | 6.261
12 1.986 3.918 | 5.232 6.84
13 2.154 4.249 | 5.673 | 7.417
14 2.321 4.58 6.115 | 7.994
15 2.489 4.91 6.556 | 8.571

Energy consumption overhead :

We were interested in evaluating the energy consumed due
to the execution of hash functions over a mote’s processor.
For this end, we developed a nesC component of SHA1
hash function [23]. Then, we compiled the component for
a Mica2 platform [24] using TinyOS [25]. We used the
AVRORA simulator [26] to simulate and evaluate the con-
sumed energy due to SHA1 calculation over a 160 bits
string. The obtained results confirm our claims regarding
the negligible induced energy overhead. Indeed, we found
that the SHA1 calculations consume only 0.4 mJ. We also
found that this is equivalent to only 4% of the energy con-
sumed by a idle Atmel processor of a Mica2 node during
1 second. This means that 25 SHA1 executions consume
only the equivalent energy required to maintain the node’s
processor idle during 1 second.

We have also evaluated the energy consumed by the ra-
dio module to send 128 bytes using 8 x 16 TOS messages.
We found that the consumed energy is around 40 times
the energy consumed by a hash function computation. We
notice that this transmission takes about 600 milliseconds.
In figure 6, we plot the average consumed energy by hash
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Figure 6: Energy consumption overhead of HC(q-composite)

computations when using the HC(qg-composite) scheme
with q=1, 2 and 3. The figure shows that this energy is
negligible compared to the energy consumed by the radio
when sending 128 bytes. In addition, the hash function
computation is done only one time during the common
key discovery phase.

Choice of L’s value:
As we have shown in the figures 4 and 5, our approach
enhances the network resiliency. In addition, we notice
from the proposition 2 that higher is L, better is the re-
silience. When L is too high, the value £ approaches
1 so the optimal resiliency with our approach is reached

oL
92
when &t1

o approaches % However, we notice from proposi-
tion 3 that higher is L higher is the induced computational
overhead. Indeed, the average number of hash computa-
tions depends linearly on the L value. We propose then
to choose L = 10 which allows to approach the optimal
resiliency (4 = 0.55 which is close to 1/2), while the in-
duced computational overhead is reasonable. For instance,

with L = 10 the average hash computation is insignificant



(3.255 for q=1, 4.346 for =2 and 5.682 for q=3).

5.2.4. Storage overhead

The storage memory required by the g-composite
scheme is mainly the memory used to store the m pairs
(key identifier, secret key) where the keys are selected
randomly from S. If we neglect the ¢ value storage
memory, the required storage memory is then Mg;.. =
m X (Kgize + Isize) where K, is the size of a given key
and Iy, is the size of the key identifier (/5. = log, |S]
bits). Our solution requires exactly the same storage mem-
ory as the basic scheme in addition to the L value which
is a short integer.

5.2.5. Communication overhead

The communication overhead depends linearly on the
value of m. Indeed, each node must exchange the key
identifiers and its own identifier in order to determine the
common keys and then establish the secure link. The num-
ber of exchanged bits in the basic g-composite scheme is
mX (log, |S]) if we neglect the node identifier. As we main-
tain the same common key discovery phase with the basic
scheme and which is based on the key identifier exchange,

our scheme induces exactly the same communication over-
head.

6. HC(SBIBD): A resilient combinatorial design-
based key management scheme

In this section, we present a deterministic pool based
key management scheme highly resilient against node
capture. The latter results from the application of our
hash chain class to the Symmetric Balanced Incomplete
Block Design scheme proposed by Camtepe and Yener
[12]. First, we present the basic scheme, then we explain
how to apply our hash chain class to this scheme, and
finally we compare the performances of the two schemes.

In [12], Camtepe and Yener introduced the use of combi-
natorial design for key pre-distribution in WSN. In order
to guarantee the determinism when using a pool based
key management scheme, authors made use of a particu-
lar combinatorial design which is the Symmetric Balanced
Incomplete Block Design (SBIBD).

Given a finite set X of v objects, a Balanced Incomplete
Block Design (BIBD) is defined to be a set of k-distinct
element subsets of X, called blocks, constructed is such a
way that each object occurs in exactly r different blocks
and every pair of distinct objects appears together in A
blocks. The number of resulting blocks is b. A BIBD
(v, b,r, k, A) two properties: (i) A(v—1) =r(k—1) and (ii)
bk = vr. It can then be identified by (v, k, \).

A BIBD is called symmetric when b = v and in conse-
quence r = k. A Symmetric BIBD (SBIBD) has the prop-
erties:

e every block contains k elements;

11

Table 3: Mapping from symmetric design to key distribution

SBIBD Key distribution

X: Object set S : Key pool
v: Size of the object set X |S|: Size of the key pool S
Blocks Key rings

Objects in a Block (k) Keys in a key ring (m)

Number of generated key
rings (|S| =b=m? —m +1)

number of generated blocks
b=v=k—k+1)

Two blocks share (A = 1) ob- | Two key rings share (A = 1)

ject key

e cach element occurs in exactly k blocks;
e cach pair of elements occurs in A blocks;
e each pair of blocks intersects in A elements.

Let’s take the example where we have 7 objects
{1,2,3,4,5,6,7} (v 7). With (k 3) and
A = 1, a configuration of the SBIBD blocks can be:
{1,2,3}{1,4,5}{1,6,7}{2,4,6}{2,5,7}{3,4,7}{3,5,6}.
We have then 7 blocks (b = v = 7). Each block contains
k = 3 distinct objects. Each object appears in r = k = 3
blocks, each pair of distinct elements occurs in A = 1
block, and each pair of blocks intersects in exactly (A = 1)
object.

Camtepe and Yener introduce in [12] a mapping from
the SBIBD to the pool based key distribution. In this
mapping, to each object is associated a distinct key, to
the global set of objects is is associated the key pool and
to each block is associated the node key ring (see table
3). We can then generate from a global key pool of |S]
keys, |S| key rings of m keys in such a way that each two
key rings shares exactly A\ keys. Note that this generation
has the property A(]S| — 1) m(m — 1). Therefore,
|S| = m? —m + 1 when A = 1. In other terms, thanks to
the symmetric design we can generate m? — m + 1 key
subsets of m keys each one in such a way that each two
key rings share exactly one common key. We use for that
a global key pool S of m? — m + 1 keys. This approach
guarantees a total connectivity coverage when nodes are
pre-loaded with the generated subsets of keys.

The application of our hash chain-based approach to
the SBIBD scheme gives birth to a deterministic key pre-
distribution scheme which enhances the resiliency while
ensuring a total connectivity coverage. Before the deploy-
ment step, |S| key rings are generated from the key pool S
where |S| = m? —m + 1. Instead of pre-loading each node
with a distinct key ring, we propose to apply a hash func-
tion h, (i mod L) times on all the pre-loaded keys of each
node, where i is the node identifier and L is a parameter
of our class.

Thanks to the symmetric balanced incomplete block de-
sign (with A = 1), any two neighboring nodes 7 and j
share exactly one key having the same identifier. Let us
consider s the identifier of the common key between the
key rings of the neighboring nodes ¢ and j. In the basic
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scheme, the link secret key is ks = k% = kJ. So, equation (6) becomes:
In our scheme HC(SBIBD), the node ¢ is initially pre- S
loaded with k! = h* ™°¢ L(k,) where the node j is pre- 1 R
s T o (k) J P P(LCING,) = ————— > P(LC*ING,) (8)
loaded with kJ = h (ks). The common secret key m2—m+1 p

is then kJ if we suppose that (i mod L) > (j mod L).
Then, the node i computes its secret key with the node j
as follows: k;; = h(0 mod L)=(5 mod L) (j¢iy,

6.1. Analysis

In this section, We compare the performance of
our scheme HC(SBIBD) against the basic SBIBD-based
scheme with respect to the metrics defined in section 3.

6.1.1. Network resiliency against node capture

In the two schemes, each secure link is composed of one
secret key. The fraction of compromised external links
when x nodes are compromised is given as follows:

m2—m+1

P(LCINC,)= > P(LC¥INC,)P(Ly)
k=1

(6)

where:
e LC is the event that a link is compromised
e NC, is the event that x nodes are compromised

e LCF is the event that a link secured with the key
having the identifier k is compromised.

e [ is the event that a link is secured with a key having
the identifier k.

Since keys having the identifier k occurs exactly in m
key rings, the fraction of links secured with a key having
the identifier k is then:

m
2 1

(m2—m+1) m2—m+1
2

P(Ly) = (7

~—

12

Proposition 4. Using the basic SBIBD scheme, the prob-
ability that an external link is compromised when x nodes

are compromised is:
P(LC|NC;) =1-

x—1

t=0 (1 -

m
m2—m+1—t)

PROOF. The probability that a link secured with the key
having the identifier £ is compromised when z nodes are
compromised is the probability that the key k occurs one or
more times in the x discovered key rings. Let us denote by
B4, By, B3, ... and B, the x discovered key rings. Applying
the bayes’ theorem, we find that the probability that the
key k occurs one or more times in the x discovered key
rings is:

P(LC*|NC,) 1-P(Kr¢ Bin..Nk; ¢ B,)
1 - P(Ky ¢ By) %

P(Kk ¢ Bg|Kk ¢ Bl) X ...

P(K), ¢ Bo|(Ki ¢ BiN..N Ky & By_1))

Since the key k occurs exactly in m key rings from the
2

m* —m + 1 possible key rings, we have:
m
P(LC*INC,) = 1—((1-
(LCHINC,) (1= ) X
m
l—-—————— ) x ...
( mz—m—kl—l)><
m
1—
x( mz—m—|—1—(x—1)))
r—1
m
g( m2—m—|—1—t)

By replacing in equation (8), we find that the probability
that an external link is compromised when z nodes are
compromised is:

P(LC|NC,)=1- (1-

r—1

T )
t=0 m2—m+1—t



Table 4: Average hash computation in HC(SBIBD)

L | NH,,, | HC(SBIBD)
1 0.0 0.0
2 | 025 0.25
3 | 0444 0.444
4 | 0625 0.625
5 0.8 0.8
6 | 0972 0.972
7 | 1.143 1.143
8 | 1.313 1.313
9 | 1.481 1.481
10 | 1.65 1.65
11| 1.818 1.818
12 | 1.986 1.986
13 | 2.154 2.154
14 | 2321 2.321
15 | 2.489 2.489

We give in appendix A another proof which is similar
to the one given by Camtepe and Yener in [12].

Proposition 5. Using the HC(SBIBD) scheme, the prob-
ability that an external link is compromised when x nodes
are compromised is:
P(LC|NC;) =1-—

r—1
t=0

L+1

(1_ 2L

m
Pk )

PrROOF. As proved in section 5.2.1, if a key having the
identifier k£ is compromised, then the average fraction of
discovered keys having the same identifier is % (the at-
tacker discovers only derived versions). Similar to the
proof of proposition 4 and following the same steps, we
find that the probability that an external link is compro-
mised when z nodes are compromised in the HC(BIBD)
scheme is:
(1-

P(LOING,) =1 —I{Zy (1 - %

Lrl ______ﬂl______)
2L m2—m+1—t

O

From propositions 4 and 5, we notice that our solution
reduces the fraction of compromised links, the resiliency
is so enhanced. We plot in figure 7 the resiliency of the
two schemes, SBIBD and HC(SBIBD) depending on the
number of compromised nodes (R, = 1 — P(LC|NC3)).
We choose m respectively: 20 (a), 40 (b) and 60(c). No-
tice that the size of the global pool (|S]) is therefore 379,
1559 and 3539 respectively. We have chosen L = 10 when
using our hash chain scheme. The figure shows that the
network resiliency against node capture is better when us-
ing the HC(SBIBD) scheme. For instance, with m = 40
we enhance the resilience up to 20% when z is between 40
and 80.

6.1.2. Secure connectivity coverage

As explained before, the use of SBIBD theory ensures a
total secure connectivity coverage. Each two nodes share
exactly one key in their key subsets. When using our hash
chain approach, we have also this property. The only dif-
ference is that the node having the low hash degree should
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apply the hash function a number of times on its shared
key. Therefore, the two schemes ensure a total secure cov-
erage (secure connectivity coverage = 1) thanks to the
SBIBD based construction.

6.1.3. Computation overhead

After the common key discovery phase in the basic
scheme, each two neighboring nodes determine their com-
mon shared key which is unique. This key is then the
secret pairwise key used to secure the link.

With our solution, each two neighboring nodes deter-

mine, after the common key discovery phase, the identifier
of their shared key. However, the node having the mini-
mum hash degree should apply the hash function kA a num-
ber of times to compute the common secret key. We have
proved in lemma 2 that nodes have to apply in average
NHuy = Lzzl times the hash function on the their set of
common keys before computing the secret key, where L is
the parameter of our class. Using the SBIBD with A =1,
each two nodes share exactly one key. Hence, nodes ap-
ply in average N H,4 times the hash function on the single
common key. In the table 4, we compute the average num-
ber of hash computations when (1 < L < 15). Note that
L =1 represents the basic scheme because we do not ap-
ply at all the hash function. This table shows that the
number of hash computations is negligible when L < 15.
Since the energy consumption due to computation is neg-
ligible, we believe that the application of our solution to
the SBIBD key management schemes does not degrade its
performances.
In order to confirm our claim, we have evaluated the
energy consumed by the hash function computation of
HC(SBIBD) over a mote’s processor. We simulated the
computation of SHAT hash function [23] over a Mica2 plat-
form [24] using TinyOS [25]. We used the AVRORA sim-
ulator [26] to simulate and evaluate the consumed energy
due to SHA1 calculation over a 160 bits string.

In figure 8, we plot the average consumed energy by hash
computations when using the HC(SBIBD) scheme. This




figure shows that this energy is negligible compared to the
energy consumed by the radio when sending 128 bytes.
We notice also that the consumed energy in HC(SBIBD)
is lower than the energy consumed by hash computations
when applying HC to probabilistic schemes. Indeed, the
hash function in HC(SBIBD) is applied on only one key
during the common key discovery phase.

As explained before, we propose to choose L = 10 to
achieve a good tradeoff between the resilience improve-
ment and the computational overhead.

6.1.4. Storage overhead

We give the memory required to store the pairs (key
identifier, secret key) in the basic SBIBD scheme as:
Mgize = m X (Kgize + Isize), where K., is the size of a
given key and ;.. is the size of the key identifier: Ig;,. =
log, |m2 —m+ 1‘ bits. We summarize in table 5 the re-
quired storage memory when Kj;,. = 128 bits (16 bytes)
and when m is between 10 and 100. Notice that our scheme
requires exactly the same storage memory in addition to
the L value which is a short integer.

Table 5: Required storage memory in SBIBD & HC(SBIBD) schemes

m Isize Isize Msize
(bits) (bytes) (bytes)

10 7 1 170
20 9 2 360
30 10 2 540
40 11 2 720
50 12 2 900
60 12 2 1080
70 13 2 1260
80 13 2 1440
90 13 2 1620
100 14 2 1800

6.1.5. Communication overhead

The communication overhead depends linearly on the
value of m. In fact, each node must exchange the key
identifiers and its own identifier in order to find the only
common key and then establish the secure link. The num-
ber of exchanged bits in the basic SBIBD scheme is then
m X (logy ‘m2 —m+ 1‘) if we omit the node identifier.
When applying our hash chain class, we maintain the
same common key discovery phase with the basic scheme;
our scheme induces then exactly the same communication
overhead compared to the basic one.

7. Extensions and Enhancements

As shown above, the mechanism that we propose allows
to enhance the resiliency of existing key pre-distribution
schemes against oblivious node capture attacks. Neverthe-
less, the proposed scheme may incur unbalanced calcula-
tion overhead. Indeed, some nodes might hash their keys
many times to deduce the shared key while others do not.
Moreover, a smart attacker which captures nodes having
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the lowest values (i mod L) would allow a largest link com-
promise. In this section, we tackle these two issues and we
propose countermeasures against both the smart attacks
and the unbalanced overhead.

7.1. Smart node capture attacks:

The selective node capture attacks or smart attacks were
proposed for the first time by Pietro et al. in [27]. Au-
thors proposed in this paper a new attack where the ad-
versary greedily uses the information disclosed by compro-
mised nodes in order to choose the next node to capture.
Authors defined a random variable called key information
gain G(s) for each potential node s. This variable is equal
to the number of keys in the key ring of s which are not
yet compromised. At each step, the attacker chooses the
next node to compromise as the node which maximizes
E[G(s)|I(s)], the expectation of the key information gain
G(s) given the information I(s) that the attacker knows on
the key ring of sensor s. This approach allows maximizing
the number of useful keys to collect at each step.

This kind of vulnerability is due mainly to the exchanges
of key identifiers which may allow an attacker to know
which keys are pre-loaded in which node. Therefore, coun-
termeasures must hide key identifiers while allowing nodes
to determine the shared keys. A lot of solutions were pro-
posed. For instance, the challenge response solution intro-
duced in [5] and used later in many schemes, consists of
encrypting a challenge o with each key of a node. After re-
ceiving the encrypted values, the second node can deduce
the shared keys by trying to decrypt the challenge o with
its own keys. This solution is known to be secure but in-
duces a high communication and computation complexity
of order O(m?) where m is the key size. In pseudo-random
key index transformation, used in [28] for instance, each
node generates the key indexes using a pseudo-random
generator initialized with a given node seed. Even this
solution is communication efficient, it is not secure since
the attacker can generate key indexes knowing the pseudo-
random generator and the seeds which are usually sup-
posed to be public. Authors in [19] propose to enhance the
Camtepe scheme in order to avoid key identifier exchanges
and counter active attacks. For this purpose, they index
all nodes and keys and propose a mapping between node
indexes and key indexes. This solution remain efficient as
long as the mapping algorithm is not known, otherwise, an
attacker can easily reveal the key identifers knowing the
node identifier.

Pietro et al. proposed in [27][29] an efficient and secure
shared key discovery way trading off communications for
local computations. In the proposed solution, each node
1 is pre-loaded with keys from the global pool such as :
fy(i][Ku) = 0 mod (%g) where f, is a one way pseudo-
random function having y as a seed. So, each node can
deduce the shared keys with a neighbor by verifying the
relation on its own keys.

When using our hash function based mechanism, all
the proposed countermeasures, presented above, can be



adapted to face this kind of attacks. In addition, a par-
ticular smart attack can be launched and should be con-
sidered: the attacker may target nodes having lower hash
degree (i mod L) in order to compute a larger number
of derived keys and hence compromise more links. In the
worst case, the attacker could target only the nodes hav-
ing the identifier ¢ such that (i mod L) = 0, in this case
the attacker will have original keys which can be used to
compute derived versions and so nullifies the effect of our
solution.

7.2. Unbalanced calculation overhead

We proved in previous sections that the average intro-
duced computational overhead, due to hash calculations,
is insignificant. Nevertheless, it is obvious that the lim-
ited introduced workload is unbalanced. Indeed, most cal-
culations are shifted to nodes having a low hash degree
(i mod L), , where i is the node identifier and L is the pa-
rameter of our approach. Using the proposed mechanism
HC, a node i have to perform hash computations with a

probability M which is unbalanced.

7.8. Balanced and smart-attack free extension

We propose in this subsection an improvement of our
hash-based mechanism which alleviates both the smart at-
tack presented above and the computation overhead un-
balance. For analysis simplicity, we assume that the key
ring size m is an even number, we assume also that the
key identifiers are totally ordered and that the keys within
a key ring are distinct.

In order to balance hash computations and render the
above smart attack inefficient, we divide the original keys,
to be pre-loaded in each node i, to two subsets of size 3
each. The first subset contains the keys having the lower
identifers while the second one contains the keys having
the higher identifers. Before de deployment, we propose
to apply a hash function h, (i mod L) times to the keys
of the lower subset and ((L — 1) — (i mod L)) times to the
keys of the higher subset. Thus, each node i is preloaded
with the set of keys K R’ such as:

KR' = LKR'U HKR' where:

LKR" = {hi ™ L(Ky),...,h" ™? L(Kw)} and

HKR' = {hL—l—(i mod L) (K%+1)7 . hL—l—(i mod L) (Km)}
where K1, Ks,...K,, are the distinct original keys to be
pre-loaded in node ¢ totaly ordered with respect to their
identifiers.

After the deployment step, each node can determine
the hash degree of a shared key thanks to the common key
discovery phase. Hence, each node can deduce whether it
applies the hash function on the stored key or it uses this
key without hash computation.

The use of this enhanced version allows to balance the
hash function computations between nodes. Indeed, for
any given two nodes i and j, the node i will perform the
hash function with probability % if we assume that any
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given shared key belongs to the lower set or the higher
subset with the same probability %

Let us assume that s is the identifier of a given shared
key and that (¢ mod L) # (j mod L) and that (i mod L) #
L —1—(j mod L). The probability that the node i has to
apply the hash function is then given by :

P = P(K;€LKR' NK,€LKR’) x
P(imod L < j mod L)
+ P(Ks€ LKR'NK, € HKR’) x

(
(
(
P(imod L < L—1—(j mod L))
(
(
(
(

+
)

Ks€ HKR'N K, € LKR?) x

L—1—(imod L) < j mod L)

+ P(Ks€ HKR'NK € HKR’) x
P(L—1—(imod L) < L—1—(j mod L))

“U

—_

= Zx[P(imodL<jmodL)+
P(L—1—(imod L) < L —1—(j mod L))]

+ = x[P@imod L<L—1-(jmodlL))+

(L—1— (i mod L) < j mod L)]

N = Ny o=

Following a similar reasoning, we find that when
(¢ mod L) = (j mod L) or (i mod L) =L —1—(j mod L)
exclusively, the probability that the node 7 has to ap-
ply the hash function is also equal to % Finally, if
(¢ mod L) = (j mod L) and (i mod L) = L—1—(j mod L),
both nodes do not perform hash computations.

In addition to load balancing hash computations, the
proposed enhancement allows to counteract the smart at-
tack presented above. Indeed, when using the basic solu-
tion, the probability that a key is compromised following
the capture of a node i is M% In other words,
the capture of nodes having low values (i mod L) reveals a
high number of pre-loaded keys while the capture of nodes
having high values (i mod L) reveals low number of keys.
The above smart attack relies on this unbalanced revealing
of keys following a node capture.

When using the enhanced version presented in this
subsection, the probability that a given key is compro-
mised following the capture of a node i is equal to

M X grer due to the capture of the lower subset
plus L_[(L_l)_L(i mod L)] argr due the capture of the high-

est subset (the two subsets within a key ring are assumed
to be distinct). Therefore, the capture of one node reveals
a fraction of % I%I of keys independently of its identifier.
Hence, the smart attack described above can no more be
conducted against this enhanced scheme, since the num-
ber of keys revealed following a node capture is the same

whatever the identifier of the node.



8. Conclusion

Asymmetric key management schemes are likely to be
unsuitable for WSN because of resource limitations. More-
over, because of the lack of infrastructure in WSN, it
is difficult to assume the existence of a trusted third
party which can attribute pairwise secret keys to neigh-
boring nodes. This is why symmetric key pre-distribution
schemes are the most suitable paradigm for wireless sensor
networks to secure exchanges.

In this paper, we presented a hash chain class of key
management schemes highly resilient against node cap-
ture. We enhance resilience by concealing keys through the
use of an efficient hash chaining mechanism. Our class can
be applied to any pool based key pre-distribution scheme.
In this work, we applied it to the well known probabilistic
g-composite scheme in a first time and to the determinis-
tic Symmetric Balanced Incomplete Bock Design scheme
in a second time. The analytical study showed that our
approach may enhance resiliency up to 40% without in-
troducing any new storage or communication overheads,
it induces an insignificant computational overhead.
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Appendix A. proof of proposition 4

When using the SBIBD scheme, the probability that a
link secured with the key having the identifier k£ is com-
promised when x nodes are compromised is the probability
that the key k occurs one or more times in the = discov-
ered key rings. Since the key occurs exactly in m key rings
among the possible m? — m + 1 key rings, we have:

(o)

xT

m2—m+1
T
<m2—2m—|—1>
T
l= =
m* —m+1
T

B (m?—=2m+1)! (m?> —m+1—x)

1—

P(LC*|NC,)

!

= 1
(m2—=m+1)! (m2m+1-—2x)!
. l_ﬁm2—2m+1—t
N m2—m+1—1t
t=0
z—1 m
= 1- 1-— "
tl:[o( m2—m+1—t)
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Following the equation (8), we find that the probability
that an external link is compromised when x nodes are
compromised is:

x—1
m
PUCING) =1 =11 0= o=
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