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Highlights

Antibacterial activity of GO towards bacteria are concentration and time-dependent.

GO shows differential bactericidal activity towards bacteria.

Mechanical wrapping was noted for Staphylococcus aureus and Enterococcus

faecalis.

Membrane disruptions was observed for Escherichia coli and Pseudomonas

aeruginosa.
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Abstract

The antibacterial nature of graphene oxide (GO) has stimulated wide interest in the medical

field. Although the antibacterial activity of GO towards bacteria has been well studied, a

deeper understanding of the mechanism of action of GO is still lacking. The objective of the

study was to elucidate the difference in the interactions of GO towards Gram-positive and

Gram-negative bacteria. The synthesized GO was characterized by Ultraviolet-visible

spectroscopy (UV-VIS), Raman and Attenuated Total Reflectance-Fourier-transform infrared

spectroscopy (ATR-FTIR). Viability, time-kill and Lactose Dehydrogenase (LDH) release

assays were carried out along with FESEM, TEM and ATR-FTIR analysis of GO treated

bacterial cells. Characterizations of synthesized GO confirmed the transition of graphene to

GO and the antibacterial activity of GO was concentration and time-dependent. Loss of

membrane integrity in bacteria was enhanced with increasing GO concentrations and this

corresponded to the elevated release of LDH in the reaction medium. Surface morphology of

GO treated bacterial culture showed apparent differences in the mechanism of action of GO

towards Gram-positive and Gram-negative bacteria where cell entrapment was mainly

observed for Gram-positive Staphylococcus aureus and Enterococcus faecalis whereas

membrane disruption due to physical contact was noted for Gram-negative Escherichia coli

and Pseudomonas aeruginosa. ATR-FTIR characterizations of the GO treated bacterial cells

showed changes in the fatty acids, amide I and amide II of proteins, peptides and amino acid

regions compared to untreated bacterial cells. Therefore, the data generated further enhance

our understanding of the antibacterial activity of GO towards bacteria.
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1. Introduction

Graphene oxide (GO) is one of the promising materials that has been reported to have

excellent antibacterial properties due to its easy and low cost of preparation and ability to be

produced in a large-scale [1-3]. GO is the preferred nanomaterial in the biomedical field over

other carbon allotropes because of its stability in colloidal form and the reliability of

multi-layered state [4]. Ever since

the first medical application of GO was demonstrated in the field of drug delivery in 2008,

the research initiative in exploring other uses of graphene material in the biomedical field has

been increasing exponentially [5-7].

The prevalence of multidrug-resistant pathogens has reduced the availability of

effective drugs for the treatment of serious bacterial infections. Hence there has been intense

interest to look for antimicrobial agents with alternative mechanisms of action. Metal/metal

oxide nanomaterial such as silver, gold, titanium dioxide and zinc oxide have been used in

the past decade as antibacterial materials to curb antibacterial resistance [8]. Although the

antibacterial action of metal/metal oxide nanomaterials seems relevant in the past, these

nanomaterials are not chemically inert [9]. This inadequacy may affect the stability and the

antibacterial actions of metal/metal oxide nanomaterial, thus it is not recommended for long-

term use especially in the clinical application [10].

One of the current applications is the use of GO as an antibacterial material. The

antibacterial property of GO is attributed to the direct physical and chemical activity of GO

on the bacterial membrane [11]. Loss of microbial membrane integrity and the leakage of

intracellular content have been reported to be one of the key mechanisms of bacterial

inhibition by GO [12]. Therefore, GO may have the potential to be an effective antibacterial

material to reduce the excessive use of antimicrobials [13]. Additionally, the difference in the



cell wall components of the Gram-positive and Gram-negative bacteria also contributes to the

better antibacterial activity of GO towards S. aureus than E. coli [14, 15]. Although the

antibacterial activity of GO is increasingly reported, the detailed mechanism of action is still

lacking and poorly understood [16].

In this study, GO was prepared and their antibacterial activity was evaluated against

Gram-positive (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative

(Escherichia coli, Pseudomonas aeruginosa) bacteria. Specifically, cell viability and kinetic

studies were carried out while field emission scanning electron microscopy (FESEM)

techniques were conducted to observe the difference in the bacterial surface morphology

before and after exposure to GO. Transmission electron microscopy (TEM) analysis was

carried out for the treated bacterial cells to determine the effects of GO on cell morphology.

Finally, ATR-FTIR characterizations of untreated and GO-treated bacteria were conducted to

examine their interaction mechanisms.

Although there were many studies on the antibacterial activity of GO against Gram-

positive and Gram-negative bacteria, however the difference in the mechanism was not dealt

with [14, 17-20]. Here, we report the difference in the activity of GO towards Gram-positive

and Gram-negative bacteria based on FESEM, TEM and LDH analyses. To the best of our

knowledge, this is the first report that provides evidence for the dissimilarity in the

mechanistic actions of GO. Additionally, we have described the mechanism of action GO

towards bacteria at molecular level through ATR-FTIR characterizations of untreated and

GO-treated bacteria.



2. Materials and Methods

2.1. Materials

Graphite powder, H2SO4, H2PO4, HCl, H2O2 and KMnO4 were purchased from Sigma-

Aldrich, USA. Phosphate buffered saline (PBS) was prepared using PBS tablets from Sigma-

Aldrich, USA. Tryptic Soy Agar (TSA) and broth (TSB) were prepared using dehydrated

bacterial culture media from BD Difco
TM

, USA. Bacterial cultures S. aureus ATCC 25923, E.

faecalis ATCC 29212, E. coli ATCC 25922 and P. aeruginosa ATCC 27853 were from the

culture collection of Biomedical Science Laboratory, University of Malaya, Kuala Lumpur,

Malaysia.

2.2. Synthesis and characterization of GO

[21, 22]. Ultraviolet

absorption spectra were obtained using Lambda 35 (Perkin-Elmer, USA). An aqueous

solution of GO was used as the sample for UV-Vis and distilled water was used as the

reference. Wavelengths from 200 to 700 nm were used to characterize the GO. Raman

spectra of GO sheets were obtained using a Renishaw inVia Raman microscope (UK) with an

excitation laser wavelength of 325 nm. The excitation was conducted with a He-Ne laser in

the regions of 1000 to 2200 cm
-1

. ATR-FTIR characterization of GO was done using

Spectrum 400 IR spectrometer equipped with diamond crystal (Perkin Elmer, USA). The

ATR-FTIR spectra were recorded with a resolution of
-1

and a scan number of 12 in

the range of 4000 to 400 cm
-1

.

2.3. Bacterial culture conditions

The bacterial stock cultures were revived and streaked on Tryptic Soy Agar (TSA) plates to

check for purity. The culture plates were incubated overnight at



the overnight TSA was picked and used to inoculate 10 mL Tryptic Soy Broth (TSB). The

with agitation (150 rpm).

2.4. Bacterial Viability Assay

An aliquot of 5 mL of bacterial cultures (10
8

cfu) was incubated with GO of varying

mL
-1

for 4 with agitation (150 rpm). At

the end of the designated

diluted (1:10) in 0.8% saline solution. Serially diluted cell suspensions were plated onto the

to determine the bacterial counts (cfu). The assay was

carried out in triplicates of three independent experiments and the results were averaged. The

degree of bacterial inactivation was calculated using the formula: (T0 T)/ T0 where T0 is the

number of bacteria in the GO-free reaction and T is the residual bacteria in the reaction

medium at a certain GO concentration. Three independent replicates were conducted for the

assay.

2.5. LDH Cytotoxicity Assay

The release of LDH cytotoxicity assay was conducted to determine the degree of membrane

damage of bacteria once treated with GO. Membrane integrity of treated bacteria was

evaluated using LDH Cytotoxicity Assay Kit (Thermo Fisher Scientific, Massachusetts,

USA). Bacterial cultures (10
8

cfu) were incubated with GO suspension of varying

concentration ranging from 5
-1

-well plate and

bance was

measured using a microplate spectrophotometer (Epoch-BioTek, Vermont, USA). Untreated

bacterial cultures were regarded as negative control and three independent experiments were

performed with replicates and the results were averaged.



2.6. Time-kill assay

Standardized bacterial cultures (10
8

cfu) mL
-1

of GO suspension

with gentle agitation (100 rpm). At the end of selected time periods (2 h, 4 h, 6 h and

8 h), 0.8% saline

solution. Serially diluted cell suspensions were then plated onto the TSA and incubated

overnight . Three independent experiments were carried out in triplicates and the

results were averaged.

2.7. Observation of bacterial cell morphology upon GO treatment

GO treated and untreated bacterial cells were retrieved from respective experiments for

further surface morphology observations. Briefly, suspension (~ 10
8

cfu

mL
-1

) were treated with 4 % glutaraldehyde (GLA) for 30 minutes, washed with cacodylate

buffer and further fixed with 1% Osmium tetroxide for another 30 minutes. The fixed

bacterial cells were then gradually dehydrated with ethanol using increasing concentrations

ranging from 30%, 50%, 70%, 80%, 90%, and finally 100%. Each ethanol wash was

performed for 15 minutes and finally, the completely dried bacterial cells were sputter coated

with gold for FESEM observations (FEI, Quanta FEG 650) at a working distance around 9

mm, with an acceleration voltage of 20kV. The GO treated bacterial isolates were also

observed under TEM (Carl Zeiss, LEO LIBRA 120). For the TEM sample preparation,

treated bacterial cells were fixed with 4 % GLA for more than 4 h and washed with

cacodylate buffer, fixed with 1% Osmium tetroxide for 2 h and washed again with cacodylate

buffer. The bacterial cells were then dehydrated through a graded series of ethanol, treated



using propylene oxide and finally embedded in Epon. Thin sections were cut through

ultramicrotome, stained with uranyl acetate, air-dried and viewed under TEM.

2.8. ATR-FTIR characterizations of GO and bacteria interactions

Bacterial cultures were treated with 10 mL
-1

of GO for 4 h as described in the previous

section. An aliquot of GO-treated and untreated bacterial (control) cultures was

aseptically dropped onto glass slides, respectively and left to dry. The thin film was analyzed

through Spectrum 400 IR spectrometer equipped with diamond crystal (Perkin Elmer, USA).

-1
and scan number of 12 in the range of

4000 to 400 cm
-1

.

3. Results and Discussion

3.1. Characterizations of GO

The m enabled the formation of an oxidized graphite

material that could be further sonicated to form an aqueous suspension of GO. The prepared

GO sheets were characterized using ultraviolet adsorption spectroscopy. As seen from

Fig.1(a), a peak - was observed at around 240 nm due

to sp
2

clusters of the GO and linking units such as C=C, C=O, and C-O bonds. The shoulder

band from 290 nm to 300 nm can be attributed to the n [23,

24], consistent with the findings reported by Gupta et al. [25] and Luo et al. [26]. Raman

spectroscopy is a powerful nondestructive technique and is a very useful optical approach to

distinguish the ordered and disordered structure of carbonaceous materials [27, 28]. The

Raman spectrum of graphene oxide is shown in Fig. 1(b). Two clear bands at 1416 cm
-1

and

1598 cm
-1

are the dominant vibrational modes corresponding to the D and G bands of carbon,



respectively [18]. The intense G band at 1598 cm
-1

is common to all sp
2

carbon forms and is

attributed to the optically allowed E2g phonon. The weak D band at 1416 cm
-1

is ascribed to

-point phonons of A1g symmetry [29], reflecting the degree of defects found

on the structure. Raman spectroscopy is mostly used to acquire structural data on carbon

materials [30]. The strong band (G) is due to the sp2-bonded carbon regions while the weaker

band (D) reflects the degree of defects found on the structure [31].

The ATR-FTIR spectrum of GO is shown in Fig. 1(c). The presence of the bands in

this spectrum is associated with the functional groups of GO. Vibration modes that are based

on the configuration of oxygen which include the OH, C-OH, COOH and C-O functional

groups are observed in the GO spectrum. The peak observed at 3224 cm
-1

could be attributed

to the presence of carboxyl O-H stretching vibration mode. This peak appeared broad as it

overlaps with absorption peaks that correspond to O-H stretching due to the presence of

absorbed water molecules and alcohol groups [32]. The asymmetric CH2 stretching of GO

appears at 2930 cm
-1

and the band that appears as a shoulder peak at 1735 cm
-1

is attributed to

C=O stretch of carboxyl group [33]. The bands at 1397 cm
-1

and 1053 cm
-1

corresponds to C-

OH and C-O stretching vibrations, respectively [34].



Fig. 1. Characterization of synthesized GO using UV-Vis and Raman spectroscopy. (a) UV-

Vis spectrum of GO; absorbance peak of - is observed at 240 nm. (b) Raman

spectrum of GO; G band arises due to the sp2-bonded carbon regions and the D band reflects

the degree of defects found on GO. (c) ATR-FTIR spectrum of GO; Functional groups of

OH, COOH, C-OH and C-O are indicated at 3224 cm
-1

, 1735 cm
-1

, 1397 cm
-1

and 1053 cm
-1

,

respectively.



3.2. Concentration-dependent activity of GO

The antibacterial activity of GO was assessed by exposing selected Gram-positive and

Gram-negative bacteria to various concentrations of an aqueous suspension of GO ranging

mL
-1

for a fixed time-period (4 hours). The line graph in Fig. 2(a) clearly

depicts the reduction in the number of cells with an increasing GO concentration for all

bacterial strains. The cfu counts indicated that GO has almost completely inhibited the

bacterial growth of all strains as seen in the line graph, but the inactivation rate differed

among individual bacteria at lower concentrations. Increasing concentrations of GO nearly

inactivated 99.9% of all bacteria, whereas S. aureus was almost fully inactivated at GO

mL
-1

compared to other strains. More than 99.9% reduction (> 3 log

reductions) in colony counts signifies the bactericidal effect of the GO sheets. Similar

observations were made by Akhavan et al [14] who reported that S. aureus cells have higher

susceptibility to GO nanowalls compared to E. coli. They reported that the RNA efflux was

higher for S. aureus than for E. coli when exposed to the same concentrations of GO [14].

Additionally, membrane integrity of GO treated bacterial cultures was measured by

monitoring the release of LDH into the reaction medium after treatment. LDH cytotoxicity

assay is commonly used to evaluate the loss of membrane integrity of cells after treatment

with toxic compounds [35]. It was found that exposure of bacteria to increasing

concentrations of GO enhanced the levels of LDH detected in the medium. This was noted

for all bacteria for increasing GO concentrations however differences in the levels of

detectable LDH among the bacterial cultures were noted as shown in Fig. 2(b). Higher release

of LDH was observed for the Gram-positive isolates (S. aureus and E. faecalis) compared to

the Gram-negative isolates (E. coli and P. aeruginosa L
-1

of GO, 92% and

83.3% of cytotoxicity level were noted for S. aureus and E. faecalis respectively while



cytotoxicity levels of 66.7% and 58.3% were noted for E. coli and P. aeruginosa

respectively.

In this study, we have tested two Gram-positive bacteria S. aureus and E. faecalis and

two Gram-negatives E. coli and P. aeruginosa. Our study indicated that the degree of

bacterial inactivation followed the order; S. aureus > E. faecalis > E. coli > P. aeruginosa in

a descending trend. Evidently, membrane structure plays a definite role in determining the

antibacterial activity of GO [14]. Increasing GO concentrations resulted in a reduction in the

viability of all strains and enhanced release of LDH, most notably for S. aureus and the least

towards P. aeruginosa, therefore the bactericidal activity of GO is concentration-dependent.

This observation concurred with other reports [23, 36, 37]. The higher concentrations of GO

provided increased contact with bacterial cells in which the abundant GO sheets could entrap

bacterial cells through the wrapping mechanism.

The wrapping mechanism explains that GO separates the bacterial cells from the

nutrients that are present in the growth medium, thus inhibiting cell proliferation resulting in

cell death [31, 38]. As GO concentrations of 10 mL
-1

was able to inactivate more than

60% of live cells, this concentration was selected for subsequent experiments. A similar study

also mL
-1

of GO suspension was able to exert toxic effects towards

bacteria as higher concentrations would possibly cause indirect toxic effects through cell

entrapment mechanism which separates bacterial cells from the reaction medium [10].





Fig. 2. Viability curve and LDH cytotoxicity analyses of bacteria after exposure to GO for 4

h. (a) L
-1

and

deteriorates further as the concentration of GO increases. (b) Increased levels of LDH was

measured for increasing concentrations of GO.

3.3. Time-dependent activity of GO

Time-dependent assays were performed for 8 h with a 2-hour interval time at a fixed

mL
-1

) for all the tested strains. Loss of viability increased with a

longer period of incubation as all strains recorded the highest amount of cell death at the 8
th

hour (Fig. 3). This time-dependent assay also followed the same order of inactivation; S.

aureus > E. faecalis > E. coli > P. aeruginosa. A large portion of cell death occurred at 4 h of

incubation and this time-period was used in the subsequent investigations in this work to

explore the interactions of GO. Furthermore, Gurunathan et al. [23] and Liu et al. [37] also

described that a major proportion of cell death occurred in the early hours of incubation time

which is consistent with our study. This phenomenon suggests that increasing incubation time

contributes to longer interaction time and improved contact of GO sheets towards bacterial

cells. Although more than 60% viability loss were seen at the 4
th

hour, better contact mediates

enhanced antibacterial activity and this has resulted in major cell loss especially at the 8
th

hour of incubation. Additionally, with increasing time of contact, the overall proliferation of

bacteria may be hindered because a large proportion of bacteria were rendered non-viable at

early hours of incubation time. Therefore, our results indicated that the antibacterial activity

of GO is concentration- and time-dependent.



Fig. 3. Time kill assay of bacteria after exposure to GO for several time periods (2 h, 4 h, 6 h

and 8 h). Increase in the incubation time improves bacterial cell contact with GO and this

leads to higher percentage of cell death.



3.4. Visualization of the bacterial cell upon exposure to GO

FESEM characterizations were conducted to investigate the interactions between the

bacterial cell membrane and GO sheets. Fig. 4A 4D represent untreated bacterial cells while

Fig. 4E - 4H show the treated cells. FESEM images revealed that untreated bacterial cells

were observed to have intact cell membrane compared to bacterial cells that were treated with

GO. Treated bacteria cells showed deformed shapes for all strains which indicated

compromised membrane integrity and resulted in eventual cell death.

Besides, TEM analyses were carried out to monitor morphological changes in the

bacterial cells after treatment with GO. Fig. 5A 5D show the TEM images of untreated

bacteria while Fig. 5E 5H indicate the mechanism of interaction of GO towards bacterial

cells. The degree of membrane disruptions and mechanism of action vary according to the

type of bacteria. A clear difference in the degree of membrane damage and methods of GO

interactions could be observed in the FESEM and TEM images between Gram-positive and

Gram-negative bacteria. Large clusters of Gram-positive S. aureus and E. faecalis appeared

to be entrapped by numerous GO sheets in both the FESEM and TEM images. The wrapping

mechanism of bacterial cells via GO sheets is a documented antibacterial mechanism of

action where the cells are actively isolated from the nutrient medium and undergo cell death

[31]. In our study, this mechanism was observed clearly for the Gram-positive cells only. As

Gram-positive bacteria (S. aureus and E. faecalis) are usually present in clusters, this

increased the surface area of exposure to GO sheets and these cells get trapped leading to the

higher death rate. The total surface area of the Gram-positive cells exposed to GO sheets is

higher as these bacterial cells (S. aureus and E. faecalis) usually occur in clusters. Hence

more cells are trapped, leading to higher cell death.



In contrast, the Gram-negative bacteria suffered hollows and dents on their membrane

surface and did not appear to be severely trapped under GO sheets, unlike the Gram-positive

cells as observed in Fig. 4G and 4H. Although membrane corrugations have been mainly

observed for the Gram-negative bacteria only, loss of viability among E. coli and P.

aeruginosa were lower compared to Gram-positive bacteria. In addition, the TEM images of

the Gram-negative bacteria in Fig. 5G and 5H were observed to display a decrease in

intracellular density which indicated minor loss of cellular components. This type of

membrane damage is the effect of physical disruption where destructive extraction of lipid

molecules may have occurred. A similar observation was reported by Tu et al. [39] that GO

treated bacterial cells suffered lower surface phospholipid density due to partial membrane

damage. For instance, E. coli has been observed to display a slight loss in cytoplasmic

content where gaps existed between the cytoplasm and cell wall in the TEM images (Fig.

5G). Similar observations were made by Hu et al. [40] and Li et al. [41] where bacterial cells

treated with GO appear to have suffered a loss in cellular integrity along with leakage of

cytoplasmic content. Liu et al. [37] indicated that the membrane damage happens only after a

direct contact with graphene-based materials and the damage appears to be irreversible. The

difference in the loss of viability between Gram-positive and Gram-negative bacteria may be

explained by the tendency of the Gram-positive bacteria to form cell clusters besides the

apparent difference in the cell wall structure. In contrast, Gram-negative bacteria are usually

present in single or paired cells, thus a lesser number of bacterial cells will be exposed to GO

at any given time, hence lower viability loss for the Gram-negative bacteria was found in this

study [42]. Therefore, the antibacterial potential of GO is influenced by the degree of contact

between bacterial cells and GO sheets. Similarly, a study conducted by Perreault et. al. [31]

also reported that the close contact between the GO sheets and bacteria cells could

compromise the integrity of bacterial membranes.



Fig. 4. FESEM images of bacteria cells before and after exposure to GO. A to D represent

untreated bacteria and E to H represent GO-treated bacterial cells. (A and E; S. aureus, B and

F; E. faecalis; C and G; E. coli, D and H; P. aeruginosa.) Yellow arrows indicate membrane

damage that was observed under FESEM analysis for GO-treated cells only.



Fig. 5. TEM analysis of bacterial cells before and after exposure to GO. A - D represent

untreated bacteria and E to H represent GO-treated bacteria. (A and E; S. aureus, B and F; E.

faecalis; C and G; E. coli, D and H; P. aeruginosa). Yellow arrows indicate attachment of

GO sheets onto bacterial cells to potentiate antibacterial mechanism. White arrows show

detachment of cell membrane that may have been caused by leakage of cell content. Black

arrows indicate lower density of lipids that may have been caused by partial membrane

damage.



3.5. ATR-FTIR characterizations of GO and bacteria interactions

ATR-FTIR spectra of bacterial cells are usually conducted to analyze the surface

chemistry and functional groups that are present on the cell walls of the bacteria [43]. This

technique is commonly used for the identification, detection and classification of bacteria [44,

45]. It is also used to detect changes at the molecular level in bacterial cell wall structure. The

ATR-FTIR spectra of untreated and GO-treated bacterial cells were analyzed to deduce the

different actions of GO on Gram-positive and Gram-negative bacteria.

Amongst the bands that exhibited clear differences, the 2344 cm
-1

band in GO-S.

aureus was assigned to the O-H stretching due to the carboxylic acid which is also present in

the GO framework [46]. However, the intensity of the peak was reduced and the peak was

observed to be shown at 2260 cm
-1

in the bare GO spectrum (Fig. 6). The primary and

secondary amides (region II) of S. aureus occurred at 1622 cm
-1

and 1538 cm
-1

, respectively

due to the stretching vibrations of C=O and N-H [47]. The intensity of both C=O and N-H

bands decreased after the introduction of GO. Additionally, the presence of amino acid

functional group at 517 cm
-1

(region V) which is due to the COO
-
and the symmetric C=O

stretching of amino acids at 1392 cm
-1

(region III) were diminished in the GO-S. aureus

spectrum as shown in Fig. 6(a) [48]. The exposure of GO in the S. aureus culture has

introduced changes in the carboxylic group of fatty acids, primary and secondary amides of

proteins, peptides and amino acids. This might have played a role in causing more damage to

the cell wall of these bacteria. The ATR-FTIR spectra of E. faecalis and GO-E. faecalis are

shown in Fig. 6(b). The presence of the characteristic bands of C-H asymmetric of CH2 in

fatty acids at 2939 cm
-1

in GO-E. faecalis spectrum has almost disappeared [46].

Furthermore, the O-H stretching vibration due to carboxylic acid at 2319 cm
-1

stretching vibration of monoalkyl acetylene at 2132 cm
-1

have also been reduced in GO-E.



faecalis spectrum [34]. The decrease in the intensity of the peaks from region II to region V

reflects the chemical transformation taking place after the treatment of E. faecalis with GO.

Fig. 6(c) shows the ATR-FTIR spectra of E. coli and E. coli treated with GO. The

peak at 2923 cm
-1

in E. coli spectrum is due to the presence of C-H stretching in aliphatic

compounds of cell walls such as lipids mainly along with a minor contribution from proteins,

carbohydrates and nucleic acids [34]. This peak, however, has intensified in the GO - E. coli

and GO -P. aeruginosa spectra as well. The intensity of amide II (protein N-H bend, C-N

stretch) peak at 1535 cm
-1

in GO-E. coli spectrum has noticeably reduced [49]. Moreover, the

peak attributed to COO- symmetric stretch in amino acid side chains and fatty acids at 1391

cm
-1

slightly reduced and have shifted to 1378 cm
-1

. Furthermore, a P=O asymmetric

stretching band which appeared at 1228 cm
-1

is mainly due to nucleic acids with some

influence from phospholipids [50]. These peaks do not fluctuate before and after the

treatment. The strong absorption band that appeared at 1059 cm
-1

may be associated with

PO
2-

symmetric stretching from nucleic acids and phospholipids and this band decreases in

intensity after GO treatment [51]. Similarly, the PO
2-

symmetric stretching band appeared at

1070 cm
-1

for P. aeruginosa and this band decreased in intensity after GO exposure. The

ATR-FTIR spectra of P. aeruginosa and GO-P. aeruginosa is shown in Fig. 6(d). In contrast

to other bacteria, the amide I and amide II bands of P. aeruginosa after the GO treatment

have intensified. Therefore, the results clearly demonstrated the differential effects of GO on

the functional groups on the surface of the bacterial cell walls.





3.6. Mechanism of action of GO towards bacteria

Our study showed that the antibacterial effects of GO on Gram-positive bacteria were

greater compared to Gram-negative bacteria. Additionally, ATR-FTIR characterizations of

untreated and treated bacterial isolates confirmed molecular interactions that occurred

between the bacterial cell and GO sheets. Briefly, the exposed part of the bacteria that is

available for the GO to immediately act on is the outer membrane layer for Gram-negative

bacteria and the peptidoglycan layer for Gram-positive bacteria [52]. This dissimilarity plays

a role in determining the type of interactions that occur between the two classes of bacteria

with GO. Similar observations were made by Deokar et al. [15] who reported that Gram-

positive S. aureus was more susceptible towards the antibacterial activity of carbon nanotube

compared to Gram-negative E. coli. The authors suggested that Gram-positive bacteria

interacted with these nanomaterials through electrostatic or hydrogen bonding besides

physical piercing of cell membrane while Gram-negative bacteria interacted with the

nanomaterial through direct physical contact only [15].

The thick peptidoglycan layer in Gram-positive bacteria and additional presence of

teichoic acids, lipoids and amino acids on the surface of these bacteria may have contributed

to the added interaction between the Gram-positive bacteria and GO [15, 53]. The

peptidoglycan layers have an adherence characteristic which may have caused this layer to

behave as a chelating agent [54] and this can be attributed to the presence of surface proteins

such as teichoic acids and adhesins [55]. In general, Gram-positive bacteria such as S. aureus

and E. faecalis are commensal bacteria on humans where the former resides on the skin and

the latter resides in the gastrointestinal tract [56, 57]. However, these bacteria are also

opportunistic pathogens which could cause invasive infections when there is a breach in the

epithelial lining by adhering to the host tissues to initiate bacterial colonization [55].

Therefore, we propose that similar adhering mechanism has prompted interactions with the



GO sheets, whereby the surface proteins on the peptidoglycan layer have interacted with GO.

The interactions of GO with Gram-positive bacteria may have contributed to the mechanical

wrapping of GO sheets onto S. aureus and E. faecalis as indicated in Fig. 7(A) and 7(B).

Thus, the peptidoglycan layer tends to interact with GO sheets once it is in close proximity

and this necessitates adherence of GO onto the bacterial membrane.

FESEM images in Fig. 4 show that GO sheets are observed to entrap S. aureus and E.

faecalis, however, this is not the case for Gram-negative E. coli and P. aeruginosa. The outer

membrane layer on Gram-negative bacteria forms an extra protective layer for these bacteria

from interacting closely to GO sheets. Although membrane damage to E. coli and P.

aeruginosa have been observed, mechanical wrapping of these cells was not observed in the

FESEM or the TEM images. Therefore, variation in the degree of damage on the bacterial

membrane among the Gram-positive and Gram-negative bacteria may be contributory to the

type of interaction that occurred during contact between bacteria and GO sheets [15]. The

outer membrane is essential to the survival of Gram-negative bacteria as this layer offers

protection to the bacteria in a hostile environment including in the presence of antibiotics and

it is one of the key reasons that Gram-negative bacteria are generally resistant towards

antibiotics [58]. The lipopolysaccharide (LPS) that is found on the outer leaflet of the outer

membrane plays a role in the effective exclusion of hydrophobic molecules [55, 59]. It was

suggested LPS molecules may contribute to the overall repulsive forces on Gram-negative

bacteria through steric repulsion [60].

It has been noted that interaction between the bacteria and GO are mainly repulsive as

reported by et al. [61] who investigated the effects of GO - functionalized atomic

force microscopy (AFM) probe puncture on E. coli cell wall. The repulsive force may have

arisen from the electrostatic repulsion from the negatively charged bacterial outer membrane

and deprotonated carboxylic acid groups existing on GO [62, 63]. However, sporadic



adhesions were measured upon AFM probe pull-off and it was suggested to be due to LPS

stretching effects which bridges cell surface and AFM tip upon pull-off [61]. In our study,

similar events may have occurred where LPS on the cell surface of Gram-negative bacteria

were stretched upon the ensuing repulsive force during interactions between bacteria and GO

in the reaction medium. The bridging effects of LPS may have been responsible for the

indentations that are observed on the surface of Gram-negative bacteria in the FESEM

images in Fig. 4. Correspondingly, an investigation that was conducted to study the

puncturing effects of AFM tip on the Gram-negative Salmonella Typhimurium managed to

survive after multiple puncturing of their cell wall. Lipid bilayers and peptidoglycan layer of

the bacteria are suggested to be self-repairing as it retains the integrity, viability and

reproductive ability even after repeated puncturing of cell membrane [64].



Fig. 7. Schematic diagram of the possible mechanism of action of GO towards Gram-positive

and Gram-negative bacteria. (A) mechanical wrapping in Gram-positive bacteria and (B)

membrane damage in Gram-negative bacteria.



4. Conclusion

The antibacterial activity of GO towards S. aureus, E. faecalis, E. coli and P.

aeruginosa indicated that antibacterial activity of GO was concentration and time-dependent.

Surface morphology of bacterial cells after exposure of GO showed evidence of membrane

disruptions and bacterial entrapment under GO sheets that have contributed to cell death.

Additional characterization with ATR-FTIR analysis proved that the interaction of GO with

bacterial membrane occurs upon contact, resulting in changes in the IR spectra of untreated

and treated bacterial culture. The antibacterial mechanism of GO towards bacteria differed

between Gram-positive and Gram-negative bacteria, where the majority of bacterial

inactivation of Gram-positive bacteria occurs through bacterial wrapping mechanism. On the

other hand, inactivation of Gram-negative bacteria mainly occurs through physical contact

which leads to membrane damage. The outer membrane layer in Gram-negative bacteria

acted as a protective barrier against GO compared to Gram-positive bacteria. As the

antibacterial effects of GO have enormous potential for antimicrobial applications, the

mechanism of action of GO towards bacteria must be clearly elucidated to ensure complete

bacterial inactivation.
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