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Abstract 11 

Secondary conformational analysis via Circular Dichroism (CD) and Amide-I FTIR was 12 

applied to preparations of Candida antarctica Lipase B (CALB), subtilisin Carlsberg, and the 13 

Lipase from Thermomyces lanuginosus (TLL) on fumed silica to confirm that the “hardness” and 14 

packing density of the enzymes on the solid fumed silica nanoparticle surface can be used to 15 

rationalize the variable enzyme-dependent changes of catalytic competency with surface 16 

coverage. “Soft” enzymes should be immobilized at a surface coverage where enzyme-enzyme 17 

interactions predominate thereby preventing detrimental structural changes caused by enzyme-18 

support interactions, while “hard” enzymes can be immobilized at low to intermediate surface 19 

coverage with good catalytic performance. Multi-layered coverage reduces the superficial 20 

average catalytic performance in all cases due to mass transfer limitations. 21 
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Introduction 28 

Use of enzymes in non-aqueous media is an alternative avenue for the production of 29 

numerous compounds of commercial interest [1-11]. The exquisite selectivity and 30 

stereoselectivity of enzymes is well recognized. Some additional advantages of enzymatic 31 

catalysis in non-aqueous media include increased solubility and stability of reactants and 32 

products [12-22], reduced complexity for downstream recovery of products and enzyme [12-22], 33 

and improved sterility [12-22]. However, enzymes are essentially insoluble in those organic 34 

solvents that do not denature them [23-26]. Various strategies have been attempted to overcome 35 

this major limitation including the incorporation of lyo- and cryo-protectants [27, 28], 36 

encapsulation in reverse micelles [29, 30], lyophilization in the presence of non-buffer salts 37 

(termed salt-activation) [7, 31], and immobilization on micro- and nano-sized organic and 38 

inorganic materials [23, 24, 26, 32, 33]. These immobilizates are often costly due in part to 39 

expensive solid supports, which ultimately limits industrial applications of non-aqueous 40 

enzymatic catalysis [34, 35]. 41 

We have immobilized enzymes on fumed silica, an inexpensive nanostructured solid support 42 

[24-26], to tackle the cost issue while maintaining or increasing catalytic efficiency. Fumed silica 43 

is a fractal aggregate with large specific surface area (up to 500 m2/g) formed by the fusion of 44 

individual nanoparticles of approximately 10-50 nm in diameter [36-38]. Fumed silica has been 45 

successfully used for adsorbing a wide variety of compounds ranging from polymers to proteins 46 

[39-42]. Our protocol exploits these unique adsorptive properties using a two-step 47 

immobilization strategy. The enzyme molecules are first adsorbed on the nanoparticles from 48 

aqueous solution and then lyophilized to obtain the adsorbates. The lyophilized nanobiocatalysts 49 
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are then ready-to-use in non-aqueous media. Our protocol has been successfully applied to 50 

subtilisin Carlsberg [25, 26] and Candida antarctica Lipase B (CALB) [24].  51 

The maximum observed apparent catalytic activity in hexane reached or even exceeded 52 

results obtained with commercial preparations of CALB, and salt-activated immobilizates for s. 53 

Carlsberg. CALB is a monomeric polypeptide with 317 amino acid residues and belongs to the 54 

family of globular α/β-hydrolase-like fold enzymes [43, 44]. CALB’s structure contains 7 55 

central β-strands flanked by 10 α-helices [43, 44]. In particular, α5 and α10 are found to be 56 

extremely mobile regions that are loosely associated with the rest of the structure [45]. This 57 

flexibility confers a plasticity and dynamism thought to be responsible for broadening its 58 

substrate specificity [46, 47]. Four disulfide bridges help to stabilize CALB’s structure [43]. The 59 

s. Carlsberg enzyme is a single polypeptide chain enzyme with 274 amino acid residues and two 60 

α/β domains that are composed of 7 central β-parallel strands flanked by 5 α-helices [48]. 61 

Relative to CALB, s. Carlsberg’s structure is more packed, which leads to a substantial 62 

reduction in flexibility and dynamism.        63 

The apparent catalytic activity in hexane for our enzyme/fumed silica preparations was found 64 

to depend strongly on the nominal surface coverage (%SC) of the fumed silica by the enzyme 65 

[24, 26]. Surprisingly, enzyme activity levels are dissimilar for s. Carlsberg and CALB at 66 

comparable levels of surface coverage. Apparent catalytic activity increases with increasing 67 

%SC at high surface coverage for both enzymes. CALB’s apparent catalytic activity attains a 68 

maximum at an intermediate %SC but then steeply drops with decreasing %SC. On the other 69 

hand, s. Carlsberg’s activity remains high even at low %SC. This behavior has been explained 70 

by us and others in light of three regimes of surface loading as follows: I. a low surface coverage 71 

regime where enough surface area is provided for the enzyme molecules, therefore, maximizing 72 
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the opportunities for multi-point attachment and detrimental spreading. This will promote 73 

substantial conformational changes and a decrease in flexibility, which in turn leads to a 74 

reduction in activity, II. an intermediate surface coverage regime where the enzyme molecules 75 

are less dispersed thus affording beneficial interactions with neighboring molecules along with 76 

surface interactions to maintain a high population of active conformations, and III. a multi layer 77 

coverage regime where the enzyme molecules are aggregated but mass transfer limitations 78 

reduce the availability of substrate molecules to the catalytic sites. 79 

Integrating proteins with nanomaterials has gained popularity as this approach provides an 80 

avenue for developing new materials with applications in fields as diverse as biomedicine [49-81 

51], biosensors and bioelectronics [50, 52-55], and bioelectrochemistry [56]. One of the major 82 

challenges is to preserve protein functionality in the final biomaterial [49, 57]. This can be 83 

achieved by developing strategies to enhance the conformational stability of the adsorbed 84 

proteins [58, 59].  Numerous studies have described the crucial role of surface chemistry, size, 85 

and curvature of the nanomaterials in the conformational stability of the immobilized proteins 86 

[49, 58-63]. Recent reports have proposed that considerable attention should also be given to 87 

characterizing the different intricate surface-protein and protein-protein interactions during and 88 

after the adsorption process [61, 64, 65]. 89 

Quantifying conformational perturbations for proteins immobilized on solid supports is 90 

challenging due to the scarcity of tools for direct interrogation of the molecular rearrangements 91 

associated with structural fluctuations [66]. The most popular approaches include Fourier 92 

Transform Infrared- (FTIR), Circular Dichroism- (CD), Intrinsic Fluorescence-, Raman optical 93 

activity- and Nuclear Magnetic Resonance- (NMR) spectroscopy. CD and FTIR have been 94 

particularly useful to collect secondary structural information for both proteins in solution and 95 
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immobilized on solids [62, 63, 66-74]. CD spectroscopy relies on the different response of chiral 96 

secondary structural components to circularly polarized light [75, 76]. Therefore, CD can be 97 

successfully applied to estimate the individual contributions of α-helical, β-sheet, and less 98 

ordered secondary structural components. FTIR can be also exploited for the analysis of 99 

secondary structure of proteins, principally, by observing changes in the amide absorptions [67]. 100 

The amide group exhibits 9 vibrational modes that give rise to amide bands A, B, and I-VII [77, 101 

78]. The preferred spectral components for secondary analysis are, however, amide I [79], amide 102 

II [79, 80], and amide III [79, 81-83] due to the simplicity for analysis. Amide I has attracted the 103 

most attention due to its increased sensitivity towards conformational changes in the secondary 104 

arrangement of the protein backbone [84, 85]. This has allowed extensive use for structural 105 

analyses of proteins including folding, unfolding, and aggregation [86-96]. The main challenge 106 

for the analysis is posed by the overlapping of the individual structural components [97]. Two 107 

strategies have been applied to overcome this issue, thereby allowing the extraction of 108 

quantitative information from the spectrum: (i) resolution enhancement (also called band-109 

narrowing) [98-101] followed by curve-fitting [102, 103] and (ii) deconstruction into basis 110 

spectra with a reference calibration set [104, 105]. Here we applied second derivative of the 111 

amide I band as resolution enhancement method to identify the dominant secondary structural 112 

components.  113 

Secondary conformational stability studies of hydrolases with different native “hardness” on 114 

solid fumed silica nanoparticles are performed here for both enzyme adsorbates prepared from 115 

aqueous solution, and the resulting preparations after lyophilization. In both cases, the impact of 116 

varying the surface coverage by the enzyme molecules was evaluated. Perturbation on the 117 

intramolecular hydrogen bonding sustaining the secondary structure by attachment of the 118 
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enzymes to the nanoparticles was inferred from CD spectral information after normalizing with 119 

respect to the native state in aqueous buffer solution. Three regions of secondary conformational 120 

stability were visualized as a function of the surface coverage which correlated well with those 121 

observed previously from tertiary structural analyses. The analysis confirmed also that as 122 

opposed to “hard” enzymes, “soft” enzymes show a marked tendency to denature when sufficient 123 

opportunities for surface interaction are provided. This can however be counteracted by 124 

providing enzyme-enzyme interactions at higher levels of surface coverage. Structure modifiers 125 

were added to further probe the types of interactions prevailing in each region of conformational 126 

stability of immobilized enzymes. The amide I-FTIR analyses in the lyophilized state confirmed 127 

alteration on the secondary structure in the low surface coverage regime and showed that 128 

applying our protocol apparently does not introduce additional perturbations in the secondary 129 

structure relative to those already present in the native lyophilized preparation. The FTIR 130 

analysis for lyophilized preparations obtained under the crowding conditions of surface 131 

coverages below 100%SC and initial enzyme concentrations above 3.0 mg/mL revealed major 132 

conformational changes apparently triggered by association-induced structural transitions. 133 

Emerging applications in nanobiotechnology where preserving protein conformational stability is 134 

a major issue may benefit from the data discussed here [106-108]. 135 

  136 
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Materials and Methods 137 

Materials 138 

Crude CALB (lyophilized; specific activity of 28U/mg solid) and TLL (lyophilized; specific 139 

activity of 1400U/mg solid) were obtained from Codexis, Inc. (Pasadena, CA), stored at 4ºC, and 140 

used as-received. TLL is a glycosylated monomeric protein with 269 amino acid residues, 141 

containing eight central β-sheets (predominantly parallel) flanked by 5 interconnecting α-helices 142 

[74, 109-111]. TLL is used for the interesterification and hydrolysis of vegetable oils and animal 143 

fats [112]. Subtilisin Carlsberg (EC 3.4.21.14; proteinase from Bacillus licheniformis; specific 144 

activity of 8 U/mg solid), fumed silica (purity of 99.8 wt.%, specific surface area 255 m2/g, 145 

primary particle diameter ~7-50 nm, as reported by the manufacturer), ultrapure Guanidine 146 

Hydrochloride (GdmCl), 2,2,2- trifluoroethanol (TFE), and dithiothreitol (DTT) were from 147 

Sigma-Aldrich (St. Louis, MO), and used as received. Glass vials (24 mL screw-capped, flat-148 

bottom) were used to prepare the enzyme-fumed silica suspensions. 149 

Circular Dichroism Conditions to Monitor Unfolding  150 

Unfolding was monitored in a cylindrical quartz cuvette (1 cm pathlength) by collecting the 151 

far-UV CD spectrum from 190 nm to 300 nm every 0.2 nm with 2 nm bandwidth and at a scan 152 

rate of 50 nm/min (Jasco J-815 spectropolarimeter, Jasco Spectroscopic Co., Hachioji, Japan, 153 

room temperature). The simple point-by-point average of three consecutive full wavelength 154 

scans is reported here. A baseline for the buffer was electronically subtracted from each enzyme 155 

spectrum (after averaging). The CD signal at 222 nm was extracted from the spectra. 156 
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Enzyme in Aqueous Buffer Solution: Unfolding by GdmCl /Urea and Unfolded Fraction 157 

Tracking by CD 158 

When proteins undergo unfolding, the α-helical content decreases, which can be monitored by 159 

tracking the CD signal loss at 222 nm [62, 63]. The GdmCl/Urea-induced unfolding of the three 160 

hydrolases in aqueous buffer solution was normalized based on the degree of signal loss at 222 161 

nm according to [62, 63]: 162 

φ𝐺𝑑𝑚𝐶𝑙 = �
CDS

222 − CDN
222

−CDN
222

� 
 
Equation 1 

 

where φGdmCl is the unfolded fraction (0, native; 1, completely unfolded). 163 

CDS 
222 is the CD signal at 222 nm for enzyme molecule ensembles at any state of unfolding, 164 

and CDN 
222 is the CD signal at 222 nm for ensembles of native enzyme molecules both in 165 

aqueous buffer solution and in millidegrees (mdeg). 166 

The ability of CD spectroscopy to detect unfolding was tested for reference in aqueous buffer 167 

with the powerful denaturants GdmCl and Urea. Typically, the α-helical content decreases upon 168 

exposure of the enzyme to these denaturants while both the β-sheet and random coil contents 169 

increase [72, 73], which is detected by CD due to its sensitivity to subtle changes in the 170 

secondary structure. 171 

Crude enzyme solution was made (0.5 to 4.7 mg enzyme/mL in 10 mM monobasic phosphate 172 

buffer, adjusted to pH 7.8 by KOH 1M). GdmCl with final concentrations in the range of 1M to 173 

6M was added followed by vortexing for about 30 seconds. Buffer solutions with final Urea 174 

concentrations from 1M to 10 M were produced and analyzed in the same manner. Fig. 1 shows 175 

typical CD spectra for the three hydrolases in aqueous buffer solution about 30 seconds after the 176 

denaturant was added. 177 
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TLL and CALB show unfolding with increasing concentration of the denaturant (Fig. 2). The 178 

much more pronounced magnitude of unfolding for TLL compared to CALB at low GdmCl 179 

concentrations may be attributed to TLL’s 5 α-helices vs. CALB’s 10 α-helices. Thus, more 180 

denaturant is initially required per CALB molecule to promote unfolding. The modest increase in 181 

TLL’s unfolding at higher GdmCl concentrations, however, could be correlated with its high 182 

conformational stability. S. Carlsberg shows significant resistant to unfolding (low magnitude) 183 

and a reversal of the trend at high denaturant concentrations perhaps due to the higher energy 184 

penalty associated with introducing the urea into a very rigid “hard” enzyme [113]. Similar 185 

experiments for different enzyme concentrations (not shown) confirm trends and magnitudes in 186 

Fig. 2. 187 

Enzyme Adsorption: Secondary Conformational Changes of Enzymes Interacting with Fumed 188 

Silica Nanoparticles in Aqueous Buffer Solution 189 

Secondary conformational changes of enzymes interacting with fumed silica nanoparticles 190 

were monitored by following the loss of CD signal at 222 nm. Previous studies have shown that 191 

the CD signal is not significantly scattered by the presence of nanoparticles [63, 72, 73]. 192 

CD data at 222 nm (or alternatively 235 nm for s. Carlsberg adsorbates at initial enzyme 193 

concentrations of 3.3 mg/mL and above, see discussion for explanation) were normalized based 194 

on the degree of signal loss according to [62, 63]:  195 

φ𝐹𝑆 = �
CDFS

S
222 − CDN

222

−CDN
222

� 
 
Equation 2 

 

where φFS is the average unfolded fraction for enzyme ensembles in the presence of fumed silica 196 

nanoparticles (0, native; 1, completely unfolded). 197 
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CDFS
S

222 is the net average CD signal at 222 nm of enzyme molecule ensembles interacting with 198 

fumed silica at any state of unfolding in millidegrees, and CDN
222 is the average CD signal at 222 199 

nm for ensembles of native enzyme molecules both in aqueous buffer and in millidegrees 200 

(mdeg).  201 

Crude enzymes (i.e., CALB, s. Carlsberg and TLL) were weighed in a glass vial and 10 mM 202 

monobasic phosphate buffer (adjusted to pH 7.8 by KOH 1M) was added followed by vortexing 203 

for about 30 seconds. Fumed silica was then added followed by vortexing until visually 204 

homogeneous suspensions were formed (about 30 seconds) as described elsewhere [24, 26]. 205 

Table 1 shows a summary of the amounts of fumed silica and enzyme used to form the 206 

suspensions at the various nominal surface coverage %SC of enzyme in the final enzyme/fumed 207 

silica adsorbates. The suspensions were transferred to the CD instrument for analysis. 208 

Regions of Secondary Conformational Stability: 3D Filled Contour Plots 209 

The values of unfolding tracked by changes in the CD signal at 222 nm (as a function of total 210 

enzyme molecules present, compositions see Table 1) for each enzyme are plotted as the 211 

elevation (z-direction) of contour plots where the y-axis is the concentration of enzyme in the 212 

solution prior to preparing the adsorbate and the horizontal x-axis represents the expected %SC 213 

by the enzyme molecules in the final adsorbates (Table 1). Fig. 3 shows the unfolding data for 214 

CALB on fumed silica as an example to introduce this type of plot. A total of 20 data points were 215 

used to develop contour plots (see below). An inverse-distance algorithm (SigmaPlot) was 216 

used to interpolate. Fig. 3 indicates that at low surface coverage unfolding becomes very 217 

significant, and appears to be independent of the initial concentrations. Detailed discussions 218 

follow below. 219 
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FTIR Analysis of Lyophilized Adsorbates 220 

The adsorbates at the various %SC were placed in a refrigerator at -20°C for several hours 221 

until frozen. These preparations were then transferred to a lyophilizer where most of the water is 222 

removed by sublimation over approximately 72h as described elsewhere [24, 26]. The 223 

lyophilized powders are removed and stored at 4°C for secondary structure analysis with FTIR. 224 

Samples of approximately 0.5 mg were placed in a Spectrum 100 Fourier Transform Infrared 225 

Spectrometer (FTIR) (PerkinElmer, Waltham, MA). Absorbance IR spectra were collected from 226 

2000 cm-1 to 700 cm-1. The reported spectra were an average of 10 scans at 2 cm-1 resolution. All 227 

spectra were corrected by the automatic subtraction of water vapor and carbon dioxide using the 228 

Atmospheric Vapor Compensation (AVC) algorithm incorporated in the instrument. 229 

Second Derivative Spectral Analysis of Lyophilized Adsorbates 230 

The conformational state of the immobilized enzyme molecules previous to their incorporation 231 

in the reaction media was accomplished by deconstructing the information contained under the 232 

amide I region of the IR spectrum. The resolution of the original IR spectra was enhanced by 233 

taking the second derivative. This approach has been reported to narrow the half-bandwidth of 234 

the Amide I without losing the band frequencies and relative contributions of the structural 235 

components [99, 101, 114-116]. The generated peaks were then assigned to secondary structural 236 

components according to Table 2 [67, 116-120]. The derivative was calculated with the 237 

Savitsky–Golay method (4th grade polynomial, 13 smoothing points) and baseline corrected 238 

using EssentialFTIR v.150.250.  239 

To determine the major secondary structural components for CALB and its preparations, a 240 

sample of crude lyophilized enzyme was interrogated with the FTIR. The spectrum was collected 241 
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3 times and the second derivative calculated as described above. This analysis revealed that 242 

1660±3 cm-1 and 1635±3 cm-1 were the dominant bands. Less intense bands were also detected at 243 

1690±3 cm-1, 1677±3 cm-1, 1642±3 cm-1, 1627±3 and 1622 ±3 cm-1. The assignment to 244 

secondary structural components was prepared with the reported values of Table 2 and is 245 

summarized in Table 3. These assignments agree well with a recent report for CALB 246 

immobilized on titania [121]. 247 

  248 
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Results and Discussion 249 

Unfolding of Enzymes Interacting with Fumed Silica in Aqueous Solution 250 

Fig. 4 panel A shows a comparison of the CD spectrum of native CALB in aqueous buffer 251 

solution with those of the enzyme in the presence of fumed silica nanoparticles at different levels 252 

of surface coverage (%SC). A loss of signal at 222 nm is observed with decreasing %SC and this 253 

indicates loss of the α-helical content with decreasing surface coverage. Based on secondary 254 

structure analysis with CD, Wu and Narsimhan [73] recently reported a similar loss of α-helical 255 

content when lysozyme was absorbed on 90 nm diameter colloidal silica nanoparticles at low 256 

surface coverages. Wu and Narsimhan [72, 73] as well as our data shown here and reported 257 

earlier [122] is also consistent with the findings of Vertegel et al. [123] for lysozyme adsorbing 258 

on 20 nm diameter colloidal silica nanoparticles and FRET measurements [124]. When the initial 259 

enzyme concentration in solution is increased, a substantial loss of α-helical content with respect 260 

to the native enzyme demonstrates an even higher extent of unfolding at low %SC (Panel B in 261 

Fig. 4). This suggests that structural perturbations leading to disruption of the hydrogen bonding 262 

network associated with the secondary structure is likely to be favored in highly crowded 263 

adsorption environments. 264 

Similar CD experiments with s. Carlsberg and TLL at low enzyme concentrations (panels A of 265 

Fig. S1 and Fig. S2 in Supporting Information) confirm stable conformations and substantial loss 266 

of α-helical components at low %SC most likely due to increased interactions with the surface.  267 

In summary, protein-protein interactions appear to minimize the structural perturbations that 268 

are observed at low coverage. Increased initial enzyme concentrations roughly doubled the 269 

maximum extent of unfolding of both s. Carlsberg and TLL (panels B of Fig. S1 and Fig. S2 in 270 

Supporting Information). 271 
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Regions of Secondary Conformational Stability for Enzyme/Fumed Silica Adsorbates 272 

The secondary structure is assembled with the aid of a hydrogen bonding network along the 273 

enzyme backbone. A general view of secondary conformational stability for s. Carlsberg and 274 

CALB adsorbing on fumed silica was obtained by conducting multiple unfolding experiments to 275 

map secondary conformational stability of s. Carlsberg and CALB adsorbates on fumed silica 276 

(Table 1). Conformational maps are produced (see [122] for details on this approach) to identify 277 

three regions of secondary conformational stability. 278 

Two regions of conformational stability are observed in Fig. 5 at surface coverages above 279 

approximately 250%SC (highly stable, region III, lighter shading) and below 250%SC 280 

(significant unfolding, region I, darker shading) with a transition (region II). Values of unfolding 281 

near unity indicate that some adsorbed enzyme molecules approach to complete denaturation. 282 

The inset in Fig. 5 demonstrates that the catalytic competency of lyophilized adsorbates on the 283 

diagonal line in Fig. 5 (main figure) is better at concentrations where the conformation is 284 

retained after adsorption. This also supports our hypothesis that the surface loading regimes are 285 

essentially determined during the initial adsorption step of our immobilization protocol. 286 

As shown in Fig. S3 in Supporting Information, three regions of secondary conformational 287 

stability were also identified for s. Carlsberg. When carefully examined, however, the lower 288 

section of region I (i.e., below 0.7 mg/mL) shows less unfolding compared to CALB in the same 289 

region. This could be seen as support for our hypothesis that “hard” s. Carlsberg has a less 290 

pronounced tendency to unfold in the presence of abundant surface area than “soft” CALB. The 291 

presence of these highly stable and functional conformations in region I is most likely 292 

responsible for the high catalytic competency in hexane of the lyophilized adsorbates in this 293 

regime (inset in Fig. S3, below 200%SC). 294 
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In summary, our findings confirm that the three regions of conformational stability previously 295 

identified by probing the structure at the residue scale with Trp fluorescence spectroscopy [122] 296 

are supported by CD spectroscopy. It appears, therefore, that the structural perturbations upon 297 

adsorption at low %SC are strong enough to disrupt the hydrogen bonding network responsible 298 

for stabilizing the secondary structure of the analyzed hydrolases. Additionally, the usefulness of 299 

conformational diagrams is validated here for designing coverage schemes that produced highly 300 

active and stable nanobiomaterials. Our findings also corroborate the importance of the enzyme 301 

“hardness” in defining the physical arrangement and ultimately the functionality of enzyme 302 

molecules immobilized on solid surfaces. 303 

Impact of Structure Modifiers for Enzymes Interacting with Fumed Silica in Aqueous Buffer 304 

Solution 305 

Structure modifying additives to the enzyme solutions were used to further investigate the 306 

intricate enzyme/fumed silica interactions. 307 

Fig. 6 panel A demonstrates that disrupting the hydrophobic regions of CALB by addition of 308 

30% (v/v) TFE leads to increased unfolding at higher surface coverages compared to the 309 

experiments with untreated enzymes most likely due to the higher affinity of the expose groups 310 

for the surface. At lower surface coverages, however, the flexible unfolded state of CALB 311 

molecules is likely to have a reduced molecular dynamism that leads to fewer opportunities for 312 

unfolding. This agrees with our previous data observed by following Trp fluorescence spectral 313 

shifts under the different adsorption loading schemes [122] and a recent report that suggests a 314 

positive correlation between reduced mobility on surfaces and a suppression of the tendency to 315 

spread [124]. 316 
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Disrupting the disulfide bridges of CALB (0.5 mg/mL DTT) promotes unfolding even at lower 317 

surface coverage because the exposed segments by unfolding are likely to promote a very rapid 318 

and rather detrimental attachment to the abundant surface provided in this regime. 319 

The impact of disrupting hydrophobic areas of s. Carlsberg (Fig. 6, panel B) shows initially 320 

increased unfolding at low surface coverages most likely due to the tendency of the rigid 321 

unfolded ensemble of s. Carlsberg to rapidly attach to the abundant surface area. At intermediate 322 

surface coverages, however, the unfolding is reduced most likely due to beneficial protein-323 

protein interactions outweighing surface-protein interactions. At high surface coverages and 324 

perhaps due to the association-induced conformational transitions, substantial unfolding is 325 

detected. Similar trends to those described in the presence of TFE were observed for s. Carlsberg 326 

in the presence of DTT (Fig. 6, panel B). This is somewhat surprising due to the absence of 327 

disulfide bridges in s. Carlsberg’s structure. Apparently, additional interactions of DTT with the 328 

secondary structure may promote intramolecular instabilities that may lead to the disruption of 329 

the hydrogen bonding network and ultimately to unfolding. This behavior was not detected 330 

previously in the Trp fluorescence spectroscopy studies [122]. 331 

Secondary Conformational Changes for Lyophilized Adsorbates 332 

Fig. 7 shows that the FT-infrared absorbance increases with increasing surface coverage 333 

towards the absorbance of native lyophilized CALB with no silica present. Because the silica 334 

does not absorb in this region of the spectrum, the observed FTIR signal emerges only from the 335 

enzyme and corroborates an increasingly higher surface packing density with increasing surface 336 

coverage. 337 

The position and number of the secondary structural components for the preparations obtained 338 

at 2%SC and 1250%SC are shown in Fig. 8 panel A and B, respectively. These components 339 
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were determined with the second derivative and assigned according to Table 3. The 1250%SC 340 

lyophilized preparation clearly shows two dominant bands at 1636.4 cm-1 and 1656.8 cm-1. These 341 

two bands can be attributed to the β-sheets and α-helices, respectively, representing aspects of 342 

CALB’s native conformation [121]. This support the notion that at high %SC attachment to the 343 

nanoparticles in single or perhaps multiple layers does not alter the secondary structure 344 

significantly. The 2%SC preparation, however, has a dominant broad band that peaks at 1645.1 345 

cm-1. This band has been ascribed to disordered components most likely resulting from 346 

rearrangements within the enzyme secondary structure as expected upon spreading on the 347 

surface. Bands at 1672.4 cm-1 and at 1628.1 cm-1 can be ascribed to turns and β-sheets, 348 

respectively, which are also present when significant rearrangements occur in the secondary 349 

structure [121]. 350 

In summary, the amide I-FTIR analysis confirms the substantial loss of α-helical content 351 

relative to the native state that was detected with CD for adsorbates obtained at low %SC, and 352 

supports the idea of very well maintained structures at high %SC. 353 

Prevention of conformational changes to maintain catalytic competency is clearly an important 354 

issue. It has been suggested that increasing the enzyme concentration in the aqueous phase 355 

during immobilization would be beneficial to reduce detrimental conformational changes [125]. 356 

The results from CD and fluorescence spectroscopy suggest that at low %SC this approach leads 357 

to substantial conformational changes in both the secondary (upper part of region I in Fig. 5 and 358 

Fig. S3, darker areas) and tertiary structure. This approach is therefore tested below for the 359 

17%SC preparation obtained at different initial enzyme concentrations. 360 

Adsorbates with 17%SC were obtained from enzyme solutions with initial concentrations 361 

ranging from 0.3 mg/mL to 4.7 mg/mL. The adsorbates were then lyophilized and the amide I 362 
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FTIR spectra collected (data not shown). The occurrence of secondary structure conformational 363 

changes was examined further via FTIR spectra and the second derivative of these spectra for the 364 

preparations obtained from 0.3 and 4.7 mg enzyme/mL solution, Fig. 9 panels A and B, 365 

respectively. Band assignments were according to Table 3. 366 

As shown in Fig. 9 panel A, two dominant bands that peak at 1660.5 cm-1 and 1649.0 cm-1 367 

were detected for the 0.3 mg/mL case, which can be assigned to α-helix and disordered 368 

components, respectively. Less intense signals were detected at 1673.5 cm-1 and 1627.7 cm-1, 369 

that are normally attributed to turns and β-sheets. This suggests partially folded structures since 370 

the α-helical ordered components are still relatively abundant. 371 

Fig. 9 panel B shows the second derivative for the 4.7 mg enzyme/mL case. A substantial loss 372 

of signal at 1660.0 cm-1 was detected relative to that observed at low concentration. This can be 373 

explained by a significant decrease in the α-helical content. The contribution of disordered 374 

components (1644.0 cm-1), turns (1673.5 cm-1), β-aggregates (1626.5 cm-1), and β-sheets (1635.5 375 

cm-1) significantly increased. Similar results were obtained for 2 and 10 %SC preparations (data 376 

not shown). This suggests that obtaining adsorbates under crowding conditions and especially in 377 

the region of low %SC should be avoided as it may lead to considerable unfolding. 378 

Similar studies for lyophilized preparations have identified a loss of α-helical components 379 

concomitantly with an increase in the β-sheet, turns, and disordered components and suggested 380 

association-induced conformational transitions occurring either pre- or post- immobilization as a 381 

possible trigger mechanism [126-129]. 382 

  383 
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Conclusions 384 

We have confirmed that the existence of three regions of conformational stability for 385 

hydrolases adsorbing on fumed silica as a function of the nominal surface coverage (%SC) can 386 

be seen at the secondary structural level upon disruption of the well organized intramolecular 387 

hydrogen bonding network of these enzyme molecules. Unfolding data was inferred from far-UV 388 

CD spectra of adsorbing hydrolases on fumed silica. At low %SC, enzyme molecules were seen 389 

to undergo major conformational changes. This region of low conformational stability is thought 390 

to occur due to increased interactions of the enzyme molecules with excess silica surface area. 391 

This phenomenon was exacerbated for CALB, which is an enzyme with a loosely packed or 392 

“soft” structure. The loss in catalytic activity in hexane for fumed silica based CALB 393 

nanobiocatalysts prepared in this region can be, therefore, correlated with this surface-induced 394 

structural distortion as it may ultimately lead to disruption of the active site. The “hard” s. 395 

Carlsberg enzyme at low %SC showed a relatively higher tolerance to surface-induced 396 

unfolding, which appeared to correlate well with the high activity in hexane of lyophilized 397 

adsorbates at low %SC. At an intermediate %SC of about 250%, a region of transitional stability 398 

was identified where enzyme molecules have stable conformations and clustering appears to be 399 

absent. This region appears to be correlated with an optimum in catalytic activity for CALB in 400 

hexane. At high %SC, enzyme structure is well maintained which could be attributed to a 401 

different energy landscape where strong interactions with the surface are suppressed and protein-402 

protein interactions dominate. This region is characterized by enzyme multilayer packing on the 403 

surface, which resulted in a substantial loss of catalytic activity of nanobiocatalysts in hexane 404 

due principally to mass transfer limitations. 405 
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TFE (30% v/v) incubation revealed the importance of hydrophobic segments in maintaining 406 

the CALB’s structure at high %SC. At low %SC, however, this approach seemed to support the 407 

idea that suppression of protein dynamics could be a useful strategy to avoid spreading on 408 

surfaces. The static structure of s. Carlsberg is postulated to be responsible for the even higher 409 

levels of unfolding in the presence of TFE at low %SC. DTT addition increased the unfolding 410 

levels of CALB for all %SC cases, which suggested that the exposed regions had increased 411 

affinity for the surface as well as poor mobility. 412 

Amide-I FTIR secondary analysis for CALB lyophilized adsorbates with low %SC showed a 413 

marked decrease in the α-helical component signal. This further supported the notion of induced 414 

structural perturbation when sufficient surface area is provided for immobilization. Filled 415 

contour conformational maps suggested that an increase in the initial enzyme concentration at 416 

low %SC gives rise to a pronounced unfolding most likely due to association-induced 417 

conformational transitions. The FTIR analysis corroborated that for the lyophilized adsorbates of 418 

CALB with low %SC, turns and β-sheets dominated over α-helical components. 419 

  420 
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Tables 752 

Table 1  753 

Summary of the amounts of fumed silica and enzyme employed to form the suspensions with 754 
different nominal surface coverages. The protein concentration for each suspension was varied 755 
from 0.5 mg/mL to 4.70 mg/mL. 756 

  Mass fumed silica (g) 
Enzyme Enzyme mass (mg) 2%SC* 17%SC 100%SC 230%SC 400%SC 1250%SC 
CALB 7 0.718 0.092 0.016 0.0068 0.0039 0.0013 
TLL 5 0.350 0.040 0.010 0.0030 0.0018 0.0006 

s. Carlsberg 5 0.315 0.036 0.009 0.0027 0.0016 0.0005 
* The Nominal Surface Coverage (% SC) was calculated as follows: 757 

%𝑆𝐶 =  𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑒𝑛𝑧𝑦𝑚𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐹𝑢𝑚𝑒𝑑 𝑆𝑖𝑙𝑖𝑐𝑎

∗ 100 Equation 3 758 

The projected area of enzyme is calculated assuming a spherical shape for the enzyme molecules. The diameter of 759 
the enzyme molecules from crystallographic data were 6.4 nm [28], 5.0 nm [58], and 4.2 nm [29] for CALB, TLL 760 
and s. Carlsberg, respectively. The nominal surface area of fumed silica is as provided by the manufacturer: 761 
255m2/g. 762 

 763 

Table 2 764 

Band assignments for proteins in the infrared amide I region of the spectrum [121] 765 

Wavenumber [cm-1] Assignment 

1620-1628 Intermolecular β aggregates 

1629-1632 β-sheet 

1636-1640 β-sheet, antiparallel β-sheet 

1645-1657 Disordered 

1648-1652 α-helix 

1655-1658 α-helix 

1668-1674 Turns 

1681-1683 Turns 

1684-1696 β-sheet 

 766 
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Table 3 767 

Band assignments for CALB in the infrared amide I region of the spectrum [121] 768 

Wavenumber [cm-1] Assignment 

1622±3 Intermolecular β aggregates 

1627±3 β-sheet 

1636±3 β-sheet, antiparallel β-sheet 

1643±3 Disordered 

1660±3 α-helix 

1677±3 Turns 

1690±3 β-sheet 

  769 
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Figure Captions 770 

Fig. 1 CD spectra for native enzymes in aqueous buffer at an enzyme concentration of 0.7 771 
mg/mL. CALB (●), s. Carlsberg (○), TLL (▼). The signal at 222 nm can be used as baseline to 772 
estimate the α-helical content in the presence of denaturants. Similar plots were obtained for 773 
enzyme solutions with other concentrations. 774 

Fig. 2. Chemically-induced unfolding of enzymes. Equation 1 was employed to compute the 775 
unfolded fraction based on signal loss at 222 nm. The unfolding pathways in the presence of 776 
denaturants are similar to those reported previously based on intrinsic fluorescence spectroscopy. 777 
The relatively modest unfolding for s. Carlsberg and TLL after an initial unfolding can be 778 
attributed to their high conformational stabilities. 779 

Fig. 3. Unfolding data for CALB on fumed silica (z-axis) as a function of initial enzyme 780 
concentration (y-axis) and nominal surface coverage (x-axis). These data will be shown in 3D 781 
contour plots to identify regions of conformational stability and to subsequently correlate them 782 
with surface loading regimes previously postulated for the lyophilized adsorbates. This approach 783 
was introduced in the first part of this series for tertiary unfolding data [122]. 784 

Fig. 4. CD spectra for CALB adsorbing on fumed silica nanoparticles at different %SC and at 785 
initial enzyme concentrations of: (A) 0.7 mg/mL and (B) 3.3 mg/mL. (∆) Native, (●) 2%SC, (○) 786 
100%SC, (▼) 400%SC. The signal loss at 222 nm is higher at low %SC for both low and high 787 
enzyme concentrations. This was attributed to reduced α-helical content. These results support 788 
the notion that increased surface interactions may lead to substantial conformational changes. 789 

Fig. 5. Regions of secondary conformational stability for CALB/Fumed Silica adsorbates. The 790 
dotted vertical line at ~250%SC separates two different regions of conformational stability: 791 
Region I delimited by a long-dash-dot line where adsorbates exhibit low conformational 792 
stability, and Region III delimited by a short-dash-dot line where highly stable enzyme 793 
ensembles are adsorbed on the surface. The presence of these two regions is likely to be 794 
responsible for the observed catalytic activity (r0) of the lyophilized adsorbates in hexane (inset). 795 
The poor catalytic competency observed at low %SC can be linked to Region I while low 796 
activities at high %SC are linked to Region III where catalysis is severely reduced by mass 797 
transfer limitations. The maximum in activity between those two regions can be attributed to an 798 
optimal arrangement on the surface where the structure is relatively well maintained without 799 
excessive clustering (Region II, delimited by a dotted line). A very similar conformational 800 
diagram was previously found from intrinsic fluorescence spectroscopy experiments. 801 

Fig. 6. Secondary unfolding of (A) CALB and (B) s. Carlsberg adsorbing on fumed silica 802 
nanoparticles in the presence of 30% (v/v) TFE and 0.5 mg/mL DTT. Unfolding with respect to 803 
the untreated enzyme was calculated according to ∆φFS = φFS in the presence of TFE or DTT -φFS for untreated 804 
enzyme. The unfolded fractions (φFS) were calculated according to Equation 2. 805 

Fig. 7. FTIR spectra in the amide I and II regions of native lyophilized CALB (□) and 806 
lyophilized CALB/Fumed silica adsorbates: (▫▫) 2%SC, (*) 100%SC, (○) 150%SC, ( ∆) 807 
230%SC, (▪▪) 300%SC, and (◊) 1250%SC. A clear progression in the surface loading is 808 
evidenced by the higher signal intensities as the surface coverage increases. 809 
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Fig. 8. Second derivative of the amide I-FTIR spectra of CALB/Fumed silica lyophilized 810 
adsorbates. (A) 1250%SC and (B) 2%SC. The secondary structural components associated with 811 
the resolution-enhanced bands obtained are subsequently identified according to Table 3. 812 

Fig. 9. FTIR spectra and second derivative in the amide I and II regions of lyophilized 813 
CALB/Fumed silica adsorbates with 17%SC. Lyophilized nanobiocatalysts were prepared from 814 
enzyme solutions with initial concentrations of (A) 0.3 mg/mL and (B) 4.7 mg/mL. The 815 
secondary structural components associated with the resolution-enhanced bands are subsequently 816 
identified according to Table 3. 817 

  818 
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Supporting Information 819 

Conformational Changes and Catalytic Competency of Hydrolases Adsorbing on Fumed Silica 820 

Nanoparticles: II. Secondary Structure  821 

Juan C. Cruz1, Peter H. Pfromm1*, John M. Tomich2, Mary E. Rezac1  822 

(1) Department of Chemical Engineering, Kansas State University, 1005 Durland Hall, 823 

Manhattan, KS 66506 - 5106, USA. 824 

(2) Department of Biochemistry and Biotechnology/Proteomics Core Facility, Kansas State 825 

University, Burt Hall, Manhattan, KS 66506 - 5106, USA. 826 

Fig. S1. CD spectra for s. Carlsberg adsorbing on fumed silica nanoparticles at different %SC 827 
and at initial enzyme concentrations of: (A) 0.7 mg/mL and (B) 3.3 mg/mL. (∆) Native, (●) 828 
2%SC, (○) 100%SC, (▼) 400%SC. As for CALB, the signal loss at 222 nm is higher at low 829 
%SC for the two concentrations under consideration. This was attributed to a reduction in the α-830 
helical content due to conformational changes upon contact with the surface. 831 

Fig. S2. CD spectra for TLL adsorbing on fumed silica nanoparticles at different %SC and at 832 
initial enzyme concentrations of: (A) 0.7 mg/mL and (B) 3.30 mg/mL. (∆) Native, (●) 2%SC, (○) 833 
100%SC, (▼) 400%SC. At low enzyme concentration, there is an observable loss of signal at 834 
222 nm for 2%SC and 100%SC. When the enzyme concentration is increased, there is no 835 
significant loss of signal for 100%SC and 400%SC. This is most likely due to TLL’s 836 
conformationally stable structure. 837 

Fig. S3. Regions of secondary conformational stability for s. Carlsberg/Fumed Silica adsorbates. 838 
The dotted vertical line at ~250%SC separates two different regions of conformational stability. 839 
Region I and III of low and high conformational stability, respectively. In this case, the catalytic 840 
activity (r0) of the lyophilized adsorbates in hexane (inset) is constantly increasing. It appears 841 
that the extent of unfolding while operating in the lower part of Region I is less than that 842 
observed for CALB in the same region. This resilience to denaturation could be seen as a 843 
plausible explanation for the higher activities in this regime of surface loading compared with 844 
CALB. 845 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. S1 
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Fig. S2 
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Fig. S3 
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