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Abstract

CD4+ T cells have been long known to play an important role in the pathogenesis of rheumatoid 

arthritis (RA), but the specific cell populations and states that drive the disease have been 

challenging to identify with low dimensional single cell data and bulk assays. The advent of high 

dimensional single cell technologies – like single cell RNA-seq or mass cytometry – has offered 

promise to defining key populations, but brings new methodological and statistical challenges. 

Recent single cell profiling studies have revealed a broad diversity of cell types among CD4+ T 

cells, identifying novel populations that are expanded or altered in RA. Here we will review recent 

findings on CD4+ T cell heterogeneity and RA that have come from single cell profiling studies 

and discuss the best practices for conducting these studies.

Introduction

Rheumatoid arthritis (RA) is a common autoimmune disorder characterized by chronic 

inflammation of the synovial tissues, leading to joint damage, disability, and increased 

mortality [1,2]. The pathophysiology of RA involves a complex interplay between multiple 
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cell types, including leukocyte populations, synovial fibroblasts, chondrocytes, osteoclasts 

and others [3]. Multiple lines of evidence drawn from genetic, histologic, and clinical 

observations point to key role for CD4+ T cells in directing the autoimmune response in RA. 

Genome-wide association studies (GWAS) have highlighted the major histocompatibility 

complex (MHC) as by far the strongest contributor to disease heritability, driven by variants 

in HLA-DRB1, HLA-DPB1, and HLA-B [4,5]. HLA-DRB1 and HLA-DPB1 are 

components of the MHC class II molecule, which antigen presenting cells use to present 

antigens to CD4+ T cells. We have further demonstrated that genetic risk alleles outside of 

the MHC locus also point to a role for CD4+ T cells, as genes associated with these loci are 

preferentially expressed in effector memory CD4+ T cells [6–8]. In addition, CD4+ T cells 

are frequently found infiltrating the synovium in RA, often in dense lymphocyte aggregates 

[9,10]. Importantly, interfering with T cell activation by blocking costimulatory signals with 

abatacept (CTLA4-Ig) is an effective therapy for clinical RA [3].

While it is clear that T cells play an important role in promoting RA pathology, pinpointing 

the specific T cell phenotypes or functions that are most relevant in this disease has been 

challenging. CD4+ T cells are typically categorized by the level of expression of surface and 

intracellular proteins that reflect functionally distinct cell types [11,12]. However, T cells are 

highly heterogeneous, displaying diverse combinations of surface markers and effector 

functions. This heterogeneity makes it difficult to describe T cell infiltrates as bulk 

populations and has highlighted the value of single cell analyses to resolve this 

heterogeneity.

Single cell analyses by flow cytometry have contributed major insights into T cell 

abnormalities in RA [13,14], yet flow cytometry analyses have been hampered the limited 

number of parameters that can be detected simultaneously, which are often insufficient to 

adequately assess a diverse T cell population. The recent rapid expansion of single cell 

technologies has led to a dramatic advance in the ability to study complex populations in 

large-scale with high dimensionality (Figure 1). This high-dimensional single cell profiling 

may lead to the identification of specific T cell populations or states that are mechanistically 

linked to disease and ideal for therapeutic targeting. In this review, we discuss recent 

advances in single cell immunoprofiling and describe their early application in RA. We will 

then discuss methodological and bioinformatic considerations to maximize the potential of 

single cell technologies in its application to define mechanisms of immune-mediated 

diseases.

Low-dimensional single cell analysis of T cells in RA

Single cell assays have a long history in the field of autoimmunity, beginning in 1969 with 

the initial use of fluorescent assays to label and sort immune cell populations [15–18]. 

Cytometry has been thoroughly exploited in the exploration of lymphocyte heterogeneity in 

RA [19–23]. Subsequent improvements in flow cytometry technology have steadily 

increased the number of parameters that can be measured for each cell, provided access to 

cytoplasmic and nuclear protein expression through intracellular staining, and facilitated 

measurement of cell signaling using antibodies specific for the phosphorylation state of 

signaling molecules [24]. Flow cytometric analyses of T cells from RA synovial tissue and 
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fluid have highlighted the dramatic ‘activated’ phenotype of T cells within the RA joint, 

consistent with an ongoing autoimmune response directed at the synovium [25,26]. Synovial 

T cells frequently express CXCR3, suggesting Th1 differentiation, and loss of CD27, 

suggesting a chronically activated state [27–29].

Immunophenotyping of peripheral blood CD4+ T cells from RA patients has also identified 

characteristic changes, including expansion of Th17 cells relative to Tregs [30,31], and an 

expansion of CD28− T cells [22,32]. Unfortunately, studies of peripheral blood T cells in 

RA have often yielded inconsistent results. For example, the abundance of regulatory T cells 

(TREG) in RA peripheral blood has been observed to be reduced or expanded compared to 

healthy controls in different studies [33–37]; in addition, conflicting results have been 

reported concerning the suppressive capability of Treg cells in RA [38–42]. Inconsistent 

results can be partially attributed to variation in markers used across different studies or the 

difficulty of resolving highly heterogeneous populations with bulk cell assays – which 

advancing single cell technologies might help to obviate. However, some of this 

inconsistency is rooted in methodological issues that will need to be addressed as 

investigators begin to apply single cell technologies to autoimmune diseases. Specific issues 

have included the use of small sample sizes, variability in cohorts, technical noise resulting 

in batch effects, publication bias, and the lack of principled statistical methodology and 

criteria.

High-dimensional analyses reveal an expanded view of CD4+ T cell 

heterogeneity

The recent development of mass cytometry - a fusion of mass spectrometry and flow 

cytometry that is capable of the simultaneous acquisition of over 40 parameters on a single 

cell level – has further extended the dimensionality of single cell cytometric assays [43]. 

Mass cytometry relies upon staining cells with the same target-specific antibodies that are 

commonly used in flow cytometry to tag markers of interest; however, in mass cytometry 

antibodies are labeled with pure, non-radioactive rare earth isotopes instead of fluorescent 

proteins. After staining, single cells are analyzed by a time-of-flight mass spectrometer by 

integrating the detection of heavy metal reporter ions to determine expression levels for each 

labeled antibody [44–46].

Single cell immunoprofiling by mass cytometry has already been used to reveal remarkable 

heterogeneity within conventional T cell subsets. Wong et al. used mass cytometry to profile 

CD4+ T cells across eight human tissue types and described 75 different populations, 

including multiple Th1 populations for each TH subset. Many cell populations were tissue-

specific and differed based the expression of trafficking receptors and cytokine production 

[47••]. They observed that certain populations co-expressed “key” cytokines like IFN-γ, 

IL-4, and IL-17A that are typically restricted to a single CD4+ TH subset, in line with 

previous findings highlighting the phenotypic plasticity between CD4+ TH lineages [48–51], 

reviewed in [52]. Other studies have taken advantage of high-dimensional single cell mass 

cytometry analysis to describe multiple populations of TREG and TFH cells [53,54].
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While advances in flow cytometry and mass cytometry enable users to define single cells 

across many parameters, the set of proteins to be measured must be decided a priori, limiting 

the use of these technologies in unbiased discovery studies. In contrast, single cell 

transcriptomic analysis presents an opportunity to define single cell expression profiles 

without relying on prior knowledge. Several different single cell RNA-seq (scRNA-seq) 

methods have been developed over the past decade [55–59] and successfully applied in 

various immunological studies, such as identifying differentiation pathways in immune cell 

lineages [60,61], establishing novel transcriptional regulatory networks [62], and revealing 

functional diversity among lymphoid cell populations [63,64].

Single cell RNA-seq technologies provide an orthogonal approach to cytometry-based 

methods for establishing CD4+ T cell heterogeneity. As CD4+ T cell subsets are 

differentiated by their putative functionality, quantifying of transcript expression on the 

single cell level can be used to identify gene expression programs that underlie those 

functional divisions. Single cell sequencing of T cells isolated from patients with liver 

cancer identified 11 distinct CD4 and CD8 T cell populations, some of which were 

expanded in hepatocellular carcinoma and marked by specific gene signatures [65••]. The 

functional diversity of natural killer T (NKT) cells is difficult to characterize using 

cytometry alone; however, single cell RNA-seq analysis revealed differential patterns of 

gene expression that resolve NKT subsets and indicate potential functions [66]. Single cell 

transcriptomic profiling is also particularly useful for understanding T cell differentiation 

and proliferation, as the expression of key transcription factors and other regulatory genes 

can be easily ascertained and used to assign cells to differentiation trajectories [67,68].

Early high-dimensional analyses of T cells in RA

These same technologies are already being used in RA tissue and blood to define key 

features of pathogenic CD4+ T cell populations in RA. We have recently applied mass 

cytometry to evaluate the heterogeneity of CD4+ T cells that infiltrate RA synovium [69]. 

With this high-dimensional analysis, we identified a T ‘peripheral helper’ (TPH) cell 

population that is markedly expanded in RA synovium, constituting ~25% of synovial CD4+ 

T cells. TPH cells, characterized as PD-1hi CXCR5− CD4+, display a unique capacity to 

infiltrate inflamed tissues and enhance local B cell antibody production and differentiation 

into plasma cells. A preliminary single-cell RNA-seq analysis of a single RA synovial 

sample has also demonstrated multiple T cell subsets, including a population of TPH cells, in 

the RA T cell infiltrate [70].

In a distinct approach, Ishigaki and colleagues used parallel single cell transcriptomics and T 

cell receptor (TCR) sequencing to identify and analyze expanded CD4+ T cell clones in RA 

patients [71••]. Expanded memory CD4+ T cells in both the synovium and periphery are 

phenotypically similar in expression to senescent T cells, upregulating Granzyme B and 

downregulating CD28. Intriguingly, the majority of expanded memory T cell clones did not 

belong to the well-defined TH1 or TH17 subsets despite their established association with 

RA [31,72–74]. Although the findings are limited by the small number of donors studied, 

this study suggests that as yet undefined CD4+ T cell populations may undergo expansion in 

RA and may be relevant to RA pathology.
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One potential benefit of characterizing the extent of CD4+ T cell diversity with high-

dimensional analyses is that it may provide a means to differentiate between pathogenic and 

non-pathogenic variants of known T cell subsets. For example, single cell RNA-seq was 

used to define a spectrum of pathogenicity for TH17 cells isolated from mice with 

experimental autoimmune encephalomyelitis (EAE) and identify key genes involved in the 

process [75]. Similarly, immunoprofiling of TREG cells in RA described the discovery of a 

novel senescent-like TREG cell population characterized by the loss of CD28 expression and 

increased numbers of double stranded DNA breaks. Compared to standard TREG cells, 

CD28− TREG cells had impaired suppressive function and produced higher amounts of 

proinflammatory cytokines IFN-γ and TNF [76•].

Identifying biomarkers through cell phenotyping

As the diversity, precision, and cost of therapeutics in RA has increased, the importance of 

being able to determine the option best-suited for a given patient up front has become 

increasingly clear. There is now a major need for biomarkers to predict response to therapies 

with distinct mechanisms of action; however, efforts using multiplexed cytokine profiling 

and genetic variation have not yet led to clinically applicable tools [77,78]. The increased 

resolution of single cell assays is an asset for revealing disease biomarkers, as the ability to 

characterize the diversity of lymphocyte populations can be leveraged to monitor the 

abundances of multiple populations longitudinally or in a case-control context. Changes in 

the frequency of disease-associated populations that can be easily measured in peripheral 

blood can be used as a powerful readout of disease state in less accessible compartments.

Several studies have suggested the potential ability to identify specific lymphocyte 

populations whose peripheral frequencies are predictive of treatment response in order to 

guide therapeutic decisions. Tracking CD4+ T cell populations by flow cytometry in patients 

with early RA receiving methotrexate and healthy controls revealed that higher abundances 

of naïve CD4+ T cells are significantly associated with increased chances of remission [79]. 

Response to treatment with tocilizumab, an IL-6 receptor inhibitor, is associated with higher 

baseline frequencies of natural killer (CD3− CD56+) cells [80] and higher increases in the 

frequencies of TREG cells in the periphery [81]. A case-control study of RA patients and 

healthy controls demonstrated that IL-10+ producing LAG3+ TREG cells are specifically 

increased after treatment with abatacept, and that the magnitude of this increase is correlated 

with the strength of response [82]. Immunoprofiling studies have also revealed changes in 

the function of lymphocyte populations in response to therapy: for example, RA patients 

who respond well to anti-TNF treatment have higher production of GM-CSF from T cells 

[83]. Response to TNF inhibition therapy is also associated with a higher abundance of 

CD8+ T cells that are specifically reactive to apoptotic epitopes [84]. Studies such as these 

fuel hope for the development of predictive cellular biomarkers, though none have been 

prospectively validated and adopted for use clinically to date.

The Future of Single Cell Immunoprofiling

Recent advances in availability and throughput have made single cell technologies a 

practical choice for conducting immunoprofiling studies to understand mechanisms of 
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disease and define predictive biomarkers. The application of these methods in RA include 

the profiling of blood, as many studies that we refer to above already have done, but also 

performing immunoprofiling in human tissue. We and others are pursuing these goals in 

Accelerating Medical Partnerships Rheumatoid Arthritis/Systemic Lupus Erythematosus 

(AMP RA/SLE network; URL: https://www.niams.nih.gov/Funding/Funded_Research/

AMP_RA_Lupus/), which involves obtaining, disaggregating, and performing single cell 

profiling on synovial tissue from cases and controls to query both immune infiltration and 

stromal adaptions. For human immunology to successfully leverage the large quantities of 

observational data that emerge from single cell queries of the immune system, we will need 

to develop and reliably apply robust statistical methods and study design principles in single 

cell studies. Taking full advantage of the power of single cell analysis will require 

overcoming technical, methodological, and bioinformatic challenges.

Among the many considerations that must be taken into account when designing single cell 

immunophenotyping experiments, one of the most prominent is determining how to handle 

batch effects. Here we use the term ‘batch’ to refer to a set of samples processed together in 

a single experimental run, and the term ‘batch effect’ to refer to variation in a dataset caused 

by technical variation in the processing of different batches of samples. Large-scale 

microarray assays powerfully illustrated the dramatic effects that differences in machine 

sensitivity, preparation or handling of samples, or protocol variations can have on the results 

of transcriptomic analyses [85–87]. Single-cell technologies such as mass cytometry and 

scRNA-seq are even more vulnerable to confounding from batch effects due to extensive 

intra-individual and inter-individual heterogeneity of expression among single cells. 

Application of single cell profiling to human tissues, where cases and controls may respond 

differently to sample processing and manipulation, could provide an additional source of 

batch effects.

Indeed, Hicks et al. has demonstrated that variable detection rate and other technical effects 

account for much of the “biological” variation that has been presented in some of the early 

single cell transcriptomic studies [88••]. Careful experimental design can partially alleviate 

the influence of batch effects in single cell profiling studies; however, we note that Tung et 

al. have shown that common normalization methods for scRNA-seq like spike-in controls 

and the use of unique molecular identifiers (UMIs) are insufficient for fully removing 

technical variation [89]. For single cell transcriptomic studies, critical steps include applying 

quality control methods to remove poorly captured cells and quantifying transcripts to 

determine cell expression levels. In single cell cytometry studies, quality control is 

effectively performed by selecting cells for analysis based upon forward and side scatter 

parameters (flow cytometry) or DNA content (mass cytometry) and inclusion of a live/dead 

marker, while marker expression quantification is normally provided by onboard software.

However, since batch variability is difficult to completely eliminate post hoc, careful 

experimental design is essential. First, the importance of minimizing variation in 

experimental procedure cannot be overstated. Best practices include ensuring that samples 

are collected from the same source, handled in the same fashion, and assayed using the same 

protocols to the extent that it is possible. Ideally, samples would be prepared using the same 

lot of reagents; however, this can be difficult to achieve, and steps such as RNA preparation 
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or antibody staining should be performed in a limited number of batches. Second, as large-

scale studies typically require performing assays in batches, sample randomization is crucial. 

Interspersing cases and controls within each batch guards against the possibility of 

discovering biological associations that are perfectly confounded with batch. Finally, 

ensuring that sample processing is done in a short window of time and that samples are 

assayed using the same equipment also minimizes technical variation. For example, the 

AMP RA/SLE network significantly reduced batch effects by processing and assaying 

samples in a single location, as opposed to trying to analyze data obtained at different sites.

The choice of tools for computational analysis of high-dimensional data is another important 

consideration in conducting single cell immunoprofiling studies. Although produced using 

very different technologies, both transcriptomic and cytometric single cell data can be 

analyzed similarly by treating the data as matrices where rows represent single cells and 

columns represent expression measurements for transcripts or proteins. In the context of 

studying disease association, analysis of single cell immunoprofiling data can be split into 

two steps: clustering, where the goal is to identify groups of cells that are related by 

similarity of expression, and association testing, where the goal is to determine significant 

changes in the abundance or character of immune cell populations in disease.

While many different algorithms have been applied to the analysis of single cell data, we 

believe that the following methods represent some of the best tools for use with single cell 

immunophenotyping. Seurat is an R package that contains multiple methods for clustering 

and visualizing single cell sequencing data, as well as performing differential expression 

testing between groups and finding associations [51]. One particularly intriguing application 

of Seurat is to use single cell transcriptomic data to reconstruct the spatial organization of 

cells, which has been demonstrated in zebrafish embryos [90••]. Multiple clustering methods 

have been developed for the analysis of flow cytometry [91,92] and mass cytometry [46,93–

97]; a recent comparison of these methods identified FlowSOM [96] and PhenoGraph [97] 

as the best performers [98].

While the set of algorithms available for clustering single cell data is rapidly expanding, 

there is a relative paucity of methods designed to perform association testing with cytometry 

data [99,100]. We have recently presented MASC (mixed-effect Modeling of Associations of 

Single Cells), which accepts user-identified populations regardless of clustering method, 

directly reports the significance of case-control associations for each cluster, provides an 

estimate of the effect size of the association itself, and incorporates both technical covariates 

(e.g. batch) and clinical covariates when modeling associations, a key feature when 

analyzing high-dimensional datasets of large disease cohorts[113••]. In comparison, the 

association testing method Citrus uses nested hierarchical clustering and penalized 

regression models to identify features (defined here as clusters of single cells or median 

expression levels of markers within a cluster) that are predictive of clinical endpoints; 

however, Citrus requires down-sampling cells from each sample and does not retain single 

cell resolution, which impedes the interpretation of clusters found to be predictive. Tools 

such as these now empower investigators to efficiently identify novel cell phenotypes 

associated with a disease state.
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Given the high levels of inter-individual variability in the human immune system, the ability 

to aggregate data across multiple studies is an attractive goal for conducting well-powered 

analyses. Currently, data aggregation is challenging due to the high dimensionality of single 

cell data and the difficulty of overcoming different datasets for analysis which include 

differences in the use of specific sequencing protocols, technical batch effects, and 

differences in sample handling. Standardization of normalization and quality control 

methods will be key, as small differences in data processing can overpower biological 

signals in the noisy context of immunoprofiling; for example, the use of different software 

pipelines for processing single cell RNA-seq data will impede combined analysis. One 

important question is whether the use of imputation-based techniques will be effective to fill 

in missing data and meta-analyze across multiple studies in single cell analyses. These 

approaches have been critical in allowing human genetic studies to scale rapidly, and have 

supported meta-analysis of different data sets obtained on different platforms. While 

methods for single cell RNA-seq data have been recently described, the effectiveness of 

imputation is an active question in the field [101–103]. Finally, given the identifiable nature 

of single-cell transcriptomic sequencing data in particular, a framework to support data 

sharing while protecting patient privacy is essential.

For immunological applications, a key initial step should be to better characterize human 

lymphocytes using single cell data. Building a reference map of the human immune system 

is a difficult and complicated task; however, the dendritic cell atlas or the work of Wong et 

al. characterizing T cells across tissues provide examples of the power of this approach 

[57••, 104•]. Incorporating data on from multiple assays to define lymphocyte profiles will 

be essential for understanding their functional impact, as shown by multiple studies that 

utilize repertoire sequences or expression data in combination with single cell cytometry to 

identify disease-relevant populations [71••,105•,106,107]. The development of new peptide-

MHC multimeric complexes supports the detection and isolation of antigen-specific 

lymphocytes at much lower frequencies [108] than was previously feasible. New methods 

have been recently developed to provide high-throughput single cell repertoire sequencing of 

B and T lymphocytes [109•,110].

Beyond integrating data across studies and across assays, the next stage of advancement for 

single cell technologies will be the simultaneous acquisition of transcriptomic and proteomic 

data from a single cell. Multiple methods for conducting such analyses have been described 

[111, ••112] but have yet to be applied in any large-scale immunoprofiling efforts. The 

ability to obtain this type of data would allow research into the temporal dynamics of 

transcription and protein expression as well as provide higher-resolution definition of single 

cells.

Conclusions

The advent of single cell technologies has the potential to revolutionize the study of RA by 

offering an unbiased approach to detecting and characterizing cell heterogeneity in blood 

and tissue. High-dimensional single cell analyses of RA synovium have revealed novel 

lymphocyte and stromal cell populations that are pathologically expanded in the joints of 

RA patients. These cell populations may now be evaluated as potential therapeutic targets. 
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Single cell transcriptomics and TCR repertoire sequencing have enabled detailed 

characterization of the specific clones of CD4+ T cells that are expanded in RA and may 

highlight new cell phenotypes to pursue as therapeutic targets or biomarkers.

However, the current absence of rigorous standards for experimental design and analysis 

significantly limits the value of single cell assays. The increased resolution of single cell 

analyses will be wasted without defining a set of standards for experiments that enable 

combining experimental data across batches, assays, and studies. This will be particularly 

important for studying CD4+ T cells in RA, where heterogeneity among both cell types and 

patients has yielded conflicting and contradictory results. As the magnitude of data that is 

produced by single cell immunoprofiling increases and reveals unprecedented levels of 

diversity among immune cell, methodological rigor will be critical for deciphering 

mechanisms of disease.
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Highlights

• Single cell immunoprofiling reveals extensive heterogeneity among CD4+ T 

cells.

• Multidimensional analyses identify novel CD4+ T cell populations associated 

with rheumatoid arthritis.

• Single cell disease association studies require careful attention to study design 

to avoid confounding technical effects.

• New analysis methods are emerging to take full advantage of complex single 

cell datasets.
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Figure 1. Advances in Single Cell Cytometry
The number of unique molecules that can be simultaneously characterized for a single cell 

has progressively increased. The introduction of new fluorchromes has improved 

polychromatic flow cytometry and enabled the development of 18-color assays. Mass 

cytometry, which uses stable isotopes of non-biological rare earth metals linked to 

antibodies to detect protein epitopes, is currently capable of acquiring 44 markers 

simultaneously. Current equipment for mass cytometry supports the acquisition of over 100 

markers, but experiments are limited by the availability of isotopically pure reagents.
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