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Abstract
Genetic alterations and epigenetic dysregulation in cancer cells create a vast array of neoepitopes
potentially recognizable by the immune system. Immune checkpoint blockade has the capacity to
enhance and sustain endogenous immunity against non-mutated tumor-associated antigens as well
as uniquely mutant antigens, establishing durable tumor control. Recent evidence from preclinical
models highlights the pivotal role of the Programmed Death-1 (PD-1) T cell co-receptor and its
ligands, B7-H1/PD-L1 and B7-DC/PD-L2, in maintaining an immunosuppressive tumor
microenvironment. Encouraging early clinical results using blocking agents against components of
the PD-1 pathway have validated its importance as a target for cancer immunotherapy.

INTRODUCTION
Ever since it became clear that all cancer cells express tumor-specific and tumor-selective
antigens derived from genetic alterations and epigenetic dysregulation, the immunology
community has embraced the potential for immune-based therapies to induce targeted anti-
tumor responses. However, skepticism about the clinical value of immunotherapies designed
to specifically enhance T cell-mediated immunity against preselected commonly expressed
tumor antigens, including cancer vaccines and adoptive T cell transfer strategies, has
escalated [1]. A game changer for cancer immunotherapy has emerged in the form of
monoclonal antibodies (mAbs) that block inhibitory receptors on immune effector cells or
their ligands on tumor cells and antigen presenting cells (APCs) – so-called “immune
checkpoints”. Immune checkpoint blockade has the potential to enhance and sustain
endogenous immunity against non-mutated as well as uniquely mutant antigens, establishing
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durable tumor control. Recent evidence highlights the pivotal role of the Programmed
Death-1 (PD-1) T cell co-receptor and its ligands B7-H1/PD-L1 and B7-DC/PD-L2 in
maintaining an immunosuppressive tumor microenvironment. Encouraging early results
from clinical blockade of this pathway have validated its potential as a target for cancer
immunotherapy.

RECEPTOR/LIGAND BIOLOGY
The two checkpoint receptors that have been most actively studied in the context of clinical
cancer immunotherapy, CTLA-4 and PD-1 [2–8], play distinct roles in regulating immunity
(Figure 1). CTLA-4, which regulates the amplitude of early activation of naïve and memory
T cells, is transported to the T cell surface at levels that depend on the strength of the TCR
signal. It acts physiologically as a signal dampener. Its importance in modulating T cell
responses is demonstrated by the rapidly lethal autoimmune/hyperimmune phenotype of
CTLA-4 knockout (KO) mice, which predicted the significant immune toxicity associated
with blockade of this receptor.

In contrast to CTLA-4, the major role of PD-1 is to limit the activity of T cells in the
periphery during an inflammatory response to infection and to limit autoimmunity [5–9].
The basis for this physiology is that the ligands for PD-1, B7-H1/PD-L1 [10,11] and B7-DC/
PD-L2 [12,13], are up-regulated in response to inflammation. B7-H1/PD-L1 is up-regulated
on many cell types – hematopoietic, endothelial and epithelial - in response to
proinflammatory cytokines, notably interferon-gamma, while B7-DC/PD-L2 is upregulated
on dendritic cells and macrophages in response to different proinflammatory cytokines such
as IL-4 [14,15]. PD-1 is expressed to various degrees on activated T cells; thus, the co-
expression of ligand and receptor in inflamed tissues mitigates against collateral tissue
destruction by T cells at these sites. In keeping with this biologic role, PD-1 and B7-H1/PD-
L1 KO mice do not develop spontaneous autoimmune responses in the first year of age, but
do demonstrate exacerbated tissue responses to infection or accelerated disease in
autoimmune-prone strains.

Further complexity to the PD-1/PD-1ligand system was appreciated with the surprising
discovery that B7-H1/PD-L1 binds B7.1 in addition to PD-1 [16]. The binding sites appear
to be adjacent but not overlapping, allowing for anti-B7-H1/PD-L1 mAbs that block one or
both of these interactions. Application of these mAbs in various selective KO models
suggests that interactions between B7-H1/PD-L1 and B7.1 on T cells inhibit T cell activity
independent of interactions with PD-1 [17,18]. These findings suggest that there are three
distinct inhibitory interactions within this pathway and that anti-PD-1 and anti-B7-H1/PD-
L1 antibodies might behave differently owing to their ability to block distinct sets of
interactions (Figure 2).

The finding that B7-H1/PD-L1 is commonly up-regulated on many different tumor types,
where it inhibits local anti-tumor T cell responses [19,20], and that PD-1 is expressed on the
majority of tumor infiltrating lymphocytes [21,22] creates an important rationale for mAb
blockade of this pathway for cancer immunotherapy, as validated by multiple murine tumor
studies [23,24].

The clinical development of PD-1 pathway blockers requires an understanding of the signals
that induce expression of its ligands within the tumor. In the case of the PD-1 ligands,
constitutive oncogene-driven expression of B7-H1/PD-L1 has been suggested. However,
recent findings support an alternative model, that B7-H1/PD-L1 up-regulation on tumor
cells reflects their adaptation to endogenous immune responses directed at tumor antigens –
a process we term adaptive resistance (J. Taube et al., unpublished). In adaptive resistance,
the tumor co-opts the natural physiology of the PD-1 pathway for tissue protection in the
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face of inflammation, to protect itself from an anti-tumor response. Expression of B7-H1/
PD-L1 as an adaptive response to anti-tumor immunity likely occurs because this ligand is
induced on most epithelial cancers in response to interferon-gamma, similarly to epithelial
and stromal cells in normal tissues [25, 26]. In lymphoid malignancies, B7-DC/ PD-L2 is
more commonly up-regulated [27], likely in response to different set of proinflammatory
cytokine signals. The adaptive resistance mechanism directly implies that any treatment that
induces anti-tumor immunity (e.g., vaccination) will provide therapeutic synergy with PD-1
pathway blockade.

PRECLINICAL MODELS
Preclinical evidence for PD-1’s inhibitory role comes from several sources. Knockout mice
develop late-onset, strain specific autoimmunity; on a C57/Bl6 background this manifests as
sporadic glomerulonephritis [28], on a Balb/c background as an antibody-mediated
cardiomyopathy [29]. These findings extend to models of organ-specific autoimmunity; on
the non-obese diabetic (NOD) background, PD-1 KO mice develop accelerated insulitis as
well as increased T cell production of effector cytokines [30]. Taken together, these data
suggest that the PD-1/B7-H1(PD-L1) axis maintains T cell tolerance to persistently
expressed antigens. A similar immunological picture emerges in models of chronic
infection, where persistent pathogen exposure results in a population of “exhausted”
antigen-specific CD8 T cells that express PD-1. In a chronic infection setting, the
importance of this axis was elegantly demonstrated by studies in which blockade of PD-1/
B7-H1(PD-L1) interactions restored the function of non-functional virus-specific CD8 T
cells [31].

While much of this work has focused on CD8+ T cells, recent studies have highlighted a
role for PD-1 on other cell types as well. One interesting set of experiments examined the
acute B cell depletion that occurs during HIV infection, using a primate model. Here, PD-1
was shown to mediate the depletion of activated memory B cells and PD-1 blockade
ameliorated this effect, restoring antibody titers [32]. While expression of PD-1 on B cells
has been previously described, these recent data support a potential role for PD-1 in B cell
immunity - the relative importance of this mechanism in cancer patients has yet to be
explored. Expression of PD-1 on CD4+ T cells may also play a role in their dysfunction; a
recent study used MHC class II tetramers to study HCV-specific CD4 T cell function in
patients with either chronic or resolved infection. Similar to the case for CD8+ T cells, PD-1
blockade partially restored specific CD4 function in chronically infected patients, but TH1
cytokine production was most effectively restored when PD-1 blockade was combined with
TGF-β and/or IL-10 blockade. Finally, PD-1 is highly expressed on induced regulatory T
cells (iTregs), and PD-1: PD-L1 interactions appear to promote the induction/conversion and
maintenance of Tregs, suggesting an additional mechanism for immunosuppression in a
tumor microenvironment rich in PD-1 ligands [33, 34]. These studies reinforce the notion
that PD-1 blockade may affect multiple cell types, a critical observation in understanding the
mechanism of action of antibody-mediated blockade.

Perhaps even more interesting are accumulating data that non-functional CD8+ cells
coordinately express multiple immune checkpoint molecules with PD-1, and that blockade
of several checkpoints may augment anti-tumor (as well as anti-viral) immunity. This notion
was first demonstrated in the chronic LCMV model, where PD-1 was co-expressed with
2B4 and lymphocyte activating gene-3 (LAG-3) [35]. Recent studies extended this concept
to cancer; PD-1/LAG-3 co-expression was documented on tumor antigen-specific CD8+ T
cells in women with ovarian cancer, and dual (but not single) blockade was shown to restore
CD8+ T cell function in vitro [36]. Indeed, PD-1 and LAG-3 may mediate non-overlapping
tolerance-maintaining pathways; an important recent study showed that PD-1/LAG-3 double
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KO mice developed an accelerated autoimmune phenotype not present in either single KO
strain [37]. Another cell surface molecule that may work with PD-1 to maintain tolerance is
Tim-3, which is co-expressed with PD-1 in multiple preclinical models. Indeed, in an animal
model of acute myelogenous leukemia (AML), blockade of PD-1 or Tim-3 alone was
insufficient to rescue mice from cancer progression, while blockade of both pathways
resulted in additive disease protection [38]. Similarly, PD-1/Tim-3 co-expression has been
reported on NY-ESO-1 specific CD8+ T cells from melanoma patients [39], reinforcing the
notion that other checkpoints likely cooperate with PD-1 to control anti-tumor immunity.
Determining the relative expression of relevant checkpoint molecules in the tumor
microenvironment, or in tumor draining lymph nodes, should provide key insights into
combinatorial treatment strategies for clinical exploration.

CLINICAL TRANSLATION
An understanding of PD-1 pathway biology and the preclinical demonstration of its pivotal
role in immunosuppression have fueled the clinical development of PD-1 pathway blockade
for cancer therapy. There are currently four anti-PD-1 agents in the clinic: MDX-1106/
BMS-936558/ONO-4538, CT-011, MK-3475, and AMP-224. The first three are reported to
be PD-1 blocking mAbs, while the last is a B7-DC/IgG1 fusion protein (Table 1).

To date, most clinical experience with PD-1 blockade has been gained with MDX-1106. The
first-in-human phase I trial of this fully human IgG4 mAb employed intermittent dosing in
patients with treatment-refractory metastatic solid tumors, allowing detailed analysis of
pharmacokinetics (PK) and pharmacodynamics over a wide dose range [40]. Clinical
activity was observed in patients with melanoma, renal cell carcinoma, colorectal cancer and
non-small cell lung cancer (NSCLC). Tumor cell surface expression of B7-H1/PD-L1 in
pretreatment biopsies emerged as a potential biomarker of response, consistent with pathway
biology. Unexpectedly, the pharmacodynamic effects of PD-1 receptor occupancy by
MDX-1106 were prolonged well beyond the measured half-life of 12–20 days, indicating
the biological durability of this high-affinity mAb. An ongoing follow-up trial of biweekly
MDX-1106 administration has already shown durable complete or partial tumor regressions
in approximately one-third of patients with advanced melanoma and kidney cancer, with
confirmed activity against NSCLC (M. Sznol et al., abstract 2506 in J Clin Oncol 2010, 28:
suppl 15s). The activity of anti-PD-1 against NSCLC, long thought to be a “non-
immunogenic” tumor, suggests the potential for PD-1 blockade to reactivate endogenous
anti-tumor immunity in a wide spectrum of malignancies. Grade ≥3 adverse clinical events
occurred in approximately 12% of patients, and included immune-related phenomena similar
to those encountered with anti-CTLA-4 therapy (DF McDermott et al., abstract 331 in J Clin
Oncol 2011, 29: suppl 7).

Another PD-1 blocking mAb, MK-3475, recently entered phase I clinical evaluation for
cancer therapy. In contrast to the fully human MDX-1106, MK-3475 is a humanized mAb.
However, similar to MDX-1106, its engineered IgG4 isotype is designed to obviate
antibody-dependent cellular cytotoxicity (ADCC) and complement-mediated cytotoxicity
(CMC).

Two anti-PD-1 agents with IgG1 isotypes may coordinately activate T cell-mediated and
innate anti-tumor immunity. CT-011, a humanized mAb, was first tested in a single-dose
regimen in 17 patients with advanced hematologic malignancies [41], and was generally
well-tolerated. A complete response in a previously untreated patient with follicular B cell
lymphoma and a minor response in a patient with refractory AML were reported. CT-011 is
currently undergoing further testing in next-generation clinical trials for patients with
advanced hematologic malignancies and a variety of solid tumors. In vitro studies have
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demonstrated its capacity to activate human NK cells against multiple myeloma, suggesting
engagement of the innate immune system [42]. Finally, AMP-224, a recombinant protein
fusing the extracellular domain of human B7-DC/PD-L2 to IgG1, also commenced phase I
clinical testing in 2011 for patients with treatment-refractory metastatic cancers. Based on its
composition, AMP-224 has the potential to block the inhibitory B7-DC:PD-1 interaction
while engaging NK cells.

A blocking antibody against the ligand B7-H1/PD-L1 (MDX-1105/BMS-936559) is also
currently in phase I clinical testing in patients with advanced solid tumors, and it has shown
preliminary evidence of activity against melanoma, kidney cancer and NSCLC. These
complementary results further validate the PD-1 pathway as a target for immunotherapy.

CONCLUSIONS
Despite early successes with monotherapies blocking PD-1 pathways, preclinical models
indicate that combinatorial therapies will deliver maximum clinical impact. Several clinical
trials are already planned or in progress, combining anti-PD-1 mAbs with cancer vaccines
(melanoma, prostate cancer, renal cell carcinoma, AML), anti-tumor mAbs (lymphoma), or
chemotherapies (pancreatic cancer, NSCLC). These synergistic treatment strategies will
provide a foundation for the next generation of clinical investigations.

Highlights

1. PD-1/B7-H1 are pivotal in maintaining an immunosuppressive tumor
microenvironment.

2. PD-1 and CTLA-4 play distinct roles in regulating immunity.

3. B7-H1 up-regulation on tumor cells likely reflects “adaptive resistance”.

4. PD-1 blockade is active against NSCLC, thought to be a “non-immunogenic”
tumor.

5. Monotherapies blocking PD-1 may be more effective in combinatorial regimens.
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Figure 1.
PD-1 and CTLA-4 play distinct roles in regulating T cell immunity. CTLA-4 modulates the
early phases of activation of naïve or memory T cells in response to TCR stimulation by
MHC-peptide complexes displayed by antigen presenting cells (“signal 1”). In contrast,
PD-1 is expressed on antigen-experienced T cells in the periphery, and serves to limit the
activity of T cells at the time of an inflammatory response, thereby protecting normal tissues
from collateral destruction. DC, dendritic cell.
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Figure 2.
Anti-PD-1 and anti-B7-H1/PD-L1 antibodies (mAbs) might behave differently owing to
their ability to block distinct sets of inhibitory interactions. Anti-PD-1 mAbs can block its
binding to both B7-H1/PD-L1 and B7-DC/PD-L2, abrogating an inhibitory PD-1-mediated
signal in T cells; however, the inhibitory interaction of B7-H1/PD-L1 with B7.1 on T cells is
not affected. Conversely, anti-B7-H1/PD-L1 mAbs can block its interactions with both B7.1
and PD-1, but will not block the inhibitory interaction of B7-DC/PD-L2 with PD-1. Both
anti-PD-1 and anti-B7-H1/PD-L1 mAbs could potentially block transmission of a retrograde
pro-survival signal through B7-H1/PD-L1 into tumor cells [43]. APC, antigen presenting
cell.
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Table 1

PD-1 and B7-H1/PD-L1 blocking agents currently in clinical testinga

Target Molecule

Source PD-1 B7-H1/PD-L1

Amplimmune Inc./GlaxoSmithKline AMP-224 (B7-DC/IgG1 fusion protein) N/A

Bristol-Myers Squibb MDX-1106/BMS-936558/ONO-4538 (fully human IgG4
mAb)

MDX-1105/BMS-936559 (fully
human IgG4 mAb)

CureTech/Teva CT-011 (humanized IgG1 mAb) N/A

Merck MK-3475 (humanized IgG4 mAb) N/A

(a)
Information about clinical trials can be found at ClinicalTrials.gov, http://www.clinicaltrials.gov.
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