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Summary of recent advances
The amenability of the zebrafish to in vivo imaging and genetic analysis has fueled expanded use
of this vertebrate model to investigate the molecular and cellular foundations of host-microbe
relationships. Study of microbial encounters in zebrafish hosts has concentrated on developing
embryonic and larval stages, when the advantages of the zebrafish model are maximized. A
comprehensive understanding of these host-microbe interactions requires appreciation of the
developmental context into which a microbe is introduced, as well as the effects of that microbial
challenge on host ontogeny. In this review, we discuss how in vivo imaging and genetic analysis in
zebrafish has advanced our knowledge of host-microbe interactions in the context of a developing
vertebrate host. We focus on recent insights into immune cell ontogeny and function, commensal
microbial relationships in the intestine, and microbial pathogenesis in zebrafish hosts.
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Annotated references
* Niethammer et al., 2009 (ref. 35): Utilizing the optical transparency and genetic tractability of the zebrafish, Niethammer et al.
describe a novel H2O2 gradient responsible for wound to leukocyte signaling created by dual oxidase (duox).
This is the first description of a role for H2O2 in leukocyte signaling.
* Liongue et al., 2009 (ref. 36): Liongue et al. reveal roles for the zebrafish granylocyte colony-stimulating factor and its receptor
(gcsf/gcsfr) in production of myeloid cells during primitive hematopoiesis, as well as a previously unappreciated role in production of
myeloid cells in response to LPS injection (emergency or demand-driven hematopoiesis).
* Sullivan et al., 2009 (ref. 40): Sullivan et al. demonstrate that zebrafish TLR4 paralogs (tlr4a and tlr4b) are not responsive to LPS as
in mammals. This study highlights the evolutionary divergence of immune components between zebrafish and mammals, and the
necessity of functional examination of conserved gene candidates.
** Tobin et al., personal communication: This is the first report of a forward genetic screen to identify zebrafish genes involved in
microbial pathogenesis. Tobin et al. identify leukotriene A4 hydrolase (lta4h) as an important host hyper-susceptibilty locus in
zebrafish M. marinum infection, and discover that polymorphisms at the human LTA4H locus are strongly associated with
susceptibility to TB.
** Volkman et al., 2010 (ref. 46): Volkman et al. show that infecting M. marinum use a single secreted factor, ESAT-6, to induce host
production of matrix metalloproteinase 9 (mmp9) in neighboring epithelial cells in order to promote granuloma formation in zebrafish
hosts. Epithelial expression of mmp9 enhances recruitment of uninfected macrophages to initiate granuloma formation to facilitate
bacterial dissemination.
** Bates et al., 2007 (ref. 58): Bates et al. identify a role for intestinal alkaline phosphatase (iap) in preventing detection of MAMPS
and promoting intestinal bacterial tolerance. They show that iap is responsible for dephosphorylation and detoxification of
lipopolysaccharide produced by the gut microbiota to control homeostatic levels of neutrophils and prevent neutrophilic inflammation
of the gut.
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Introduction
Early zebrafish research was focused heavily on embryogenesis [1], however use of the
zebrafish model has gradually expanded to include study of post-embryonic developmental
and physiological processes [2]. This expanded scope of zebrafish research is exemplified
by the efforts to characterize the zebrafish immune system and its interactions with
pathogenic and commensal microbes [3,4]. Zebrafish have several key features that make it
an attractive model for analyses of host-microbe interactions. First, the optical transparency
of zebrafish embryos and larvae, together with availability of transgenic lines expressing
fluorescent proteins in distinct immune cell lineages, permit high-resolution in vivo
observation of developing host cells and resident microorganisms [5,6]. Second, the small
size and rapid development of zebrafish embryos facilitates forward genetic screens using
chemical or retroviral mutagenesis (Box 1), as well as screening of chemical libraries [2].
Furthermore, sequencing of the zebrafish genome
(http://www.sanger.ac.uk/Projects/D_rerio/) has empowered functional genomic and reverse
genetic techniques (Box 1 and reviewed in [2,7]). Finally, methods for rearing zebrafish
under germ-free or gnotobiotic conditions have been established, thus allowing rigorous
control of the animal's microbial environment [8]. These advantages of the zebrafish system
are maximal during embryonic and larval stages, and analyses of host-microbe interactions
in the zebrafish have consequently focused on this dynamic developmental period of the life
cycle. This experimental platform therefore poses significant challenges and opportunities to
understand host-microbe interactions in the context of a rapidly developing vertebrate host.
Here we review recent progress using the zebrafish model to investigate host-microbe
interactions, including interactions with pathogenic and commensal microorganisms. We
highlight those studies that provide significant novel insights using in vivo imaging and
genetic methods available in embryonic and larval zebrafish.

Mechanisms of immune cell development
Hematopoiesis produces multiple immune cell types that perceive and respond to microbial
stimuli. Zebrafish, like mammals, have distinct waves of hematopoiesis that occur in
discrete yet functionally-analogous sites [3,6,9,10]. Recent in vivo imaging and lineage
tracing studies have disclosed a dynamic pattern of cell seeding events that underlie the
transfer of hematopoiesis between distinct anatomical sites during development (Fig. 1A,B).
The ‘primitive’ wave of zebrafish hematopoiesis occurs in two separate locations in the
embryo. Primitive myeloid precursors arise in the anterior mesoderm (also called rostral
blood island or RBI) and migrate to the yolk, where they differentiate into primitive
macrophages by 22 hours post-fertilization (hpf)[11] and primitive neutrophils by 33hpf
[12]. Primitive erythroblasts arise in bilateral stripes of the ventral mesoderm and migrate to
the midline to form the intermediate cell mass (ICM, analogous to the mammalian yolk sac),
from where they enter circulation ∼24hpf (reviewed in [10]). ‘Definitive’, or multilineage,
hematopoiesis begins ∼24hpf with the formation of a transient population of erythromyeloid
progenitors (EMPs) within the posterior blood island (PBI) which later expands to become
the caudal hematopoietic tissue (CHT; the PBI/CHT is analogous to the mammalian fetal
liver)[13]. As early as 26hpf, cells within the presumptive zebrafish aorta-gonad-
mesonephros (AGM) begin expressing markers of definitive hematopoietic stem cells
(HSCs; e.g., c-myb, runx1, and cd41) [3,9,10]. Lineage tracing studies show these
hematopoietic stem cells (HSCs) have multiple potential destinations. A subset of HSCs
leave the AGM as early as 32hpf and migrate through the blood to colonize the CHT. After
arriving in the CHT, these AGM-derived HSCs produce erythroid and myeloid cells, and
migrate yet again beginning ∼50hpf from the CHT to colonize the sites of definitive
hematopoietic tissues in adults, the pronephros and thymus [14,15]. Other HSCs enter
circulation from the AGM after 40hpf to colonize the thymus, while others migrate
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anteriorly along the pronephric tubules to seed the developing kidney [16,17]. Other HSCs
within the AGM can produce definitive myeloid cells in situ as early as 48hpf [18]. These
early events are followed by initiation of definitive hematopoiesis in the kidney marrow and
lymphopoiesis in the thymus starting ∼4dpf and continuing into adult stages [9]. Therefore,
multiple waves of hematopoiesis in zebrafish occur at distinct anatomical sites analogous to
mammalian hematopoiesis.

Zebrafish hematopoiesis produces largely the same differentiated cell types observed in
mammals. Within the zebrafish myeloid lineage, monocytes, macrophages, neutrophils, and
eosinophils have all been described (reviewed in [3,9]). In addition, mast cells [19] and cells
with cytotoxic properties similar to mammalian natural killer (NK) cells (J. Yoder, personal
communication) have recently been identified in the zebrafish. The innate immune functions
of these cells provide a robust defense beginning early in development (Fig. 1C).
Macrophages and neutrophils can be recruited to a site of infection and phagocytose
invading bacteria as early as 30hpf [11] and 52hpf respectively, though the phagocytic
activity of neutrophils is relatively low [12]. By 4dpf, T and B lymphocyte progenitors begin
undergoing rag-dependent rearrangements within the thymus [20] and pancreas [21],
respectively. However, zebrafish appear to be incapable of mounting an antibody response
until early adulthood ∼4 weeks post fertilization [22], before which they rely exclusively on
innate defense mechanisms. An important challenge for future research is to define the
developmental origin, potency, and sensitivity of HSC populations in these distinct anatomic
sites during zebrafish development, as well as the functions of their derivative lineages.

Mechanisms of pathogenic host-microbe relationships
The genetic tractability of zebrafish has prompted its use as a host organism for an
expanding number of bacteria and virus pathogenic to fish and mammals (Table 1; reviewed
in [3,4,23]). The majority of these pathogen studies have used microinjection to deliver
pathogens at controlled doses into zebrafish embryos, while others have used static
immersion to mimic natural infection routes [24-26]. Genetic analysis of pathogens in
zebrafish hosts has focused almost entirely on known virulence factors, although systematic
bacterial forward genetic analyses in adult zebrafish hosts have identified novel virulence
determinants in the zoonotic pathogen Streptococcus iniae [27] and the human pathogen S.
pyogenes [28]. Together, these studies are revealing bacterial and host factors mediating
virulence, and in some cases, defining their mechanism of action (Table 1). Although a
discussion of all recent zebrafish microbial pathogenesis studies is beyond the scope of this
review, several emerging themes are discussed below.

The central role of myeloid leukocytes in controlling pathogen infections is one such
emerging theme. Myeloid lineages can be transiently depleted in zebrafish embryos via
morpholino knock-down of the myeloid transcription factor pu.1 [29]. Recent studies have
shown that injection of Pseudomonas aeruginosa, Staphylococcus aureus, or
Mycobacterium marinum into embryos lacking myeloid leukocytes (pu.1 ‘morphant’
embryos) results in increased virulence associated with elevated bacterial burden [30-33].
Moreover, loss of myeloid leukocytes results in restored virulence of several attenuated
pathogen mutants, indicating that those respective virulence factors may function in
phagocyte evasion in zebrafish embryos [30-34]. This requirement for myeloid lineages in
bacterial clearance appears to be relatively specific for pathogens, as wild-type and pu.1
morphants are similarly competent to clear non-pathogenic Escherichia coli infections [33].
Importantly, the role of Pu.1 (and perhaps other host factors) in pathogen clearance may
depend on the site of infection, as virulence of S. aureus was elevated in pu.1 morphants
when injected into the bloodstream, but not into the yolk [31]. Although the mechanisms by
which zebrafish myeloid leukocytes are recruited to sites of infection are not well
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understood, a recent study identified a novel role for H2O2 in the process of leukocyte
recruitment to a wound. Niethammer and colleagues used a genetically encoded H2O2
sensor to reveal a local increase in H2O2 production at the margin of a new wound in 3dpf
zebrafish, which stimulated recruitment of leukocytes to the wound site. The authors used
morpholino knock-down and pharmacological inhibitors to show that dual oxidase, a
NADPH oxidase, is required for the increase in H2O2 production and inflammation at
wound sites [35]. We speculate that similar mechanisms might mediate leukocyte
recruitment to sites of infection.

Another emerging theme suggests that microbial cells and their products can influence
zebrafish immune cell production and function. Many microbial pathogenesis studies in
zebrafish have focused on embryonic stages when hematopoietic development is especially
dynamic (Fig. 1), raising the possibility that immune challenges during these stages could
alter the proliferation, differentiation, and/or maintenance of hematopoietic immune cells.
For example, injection of bacterial lipopolysaccharide (LPS) into 48hpf zebrafish embryos
results in elevated expression of granulocyte colony-stimulating factor (gcsf) and its receptor
(gcsfr), as well as production of a previously-unappreciated gcsfr-dependent hematopoietic
wave (‘demand-driven’ or ‘emergency’ hematopoiesis) [36]. Microbial challenge can also
affect the maintenance of immune cells, as illustrated by the observed decrease in neutrophil
number and subsequent death following injection with S. aureus [31]. In addition to
production and maintenance of hematopoietic cells, microbial products might also influence
their circulation indirectly by affecting cardiovascular development. For example, the P.
aeruginosa extracellular phospholipase PlcHR can inhibit angiogenesis in developing
zebrafish, resulting in reduced numbers of circulating blood cells [37]. These studies
indicate that distinct microbial challenges in developing zebrafish might have specific
effects on hematopoietic immune cell formation and function. Conversely, the virulence of a
given pathogen can vary as a function of the developmental stage at which zebrafish are
infected. For example, virulence of P. aeruginosa mutants defective for quorum sensing or
type III secretion is indistinguishable from wild-type parent strains when injected into
zebrafish at 28hpf when only primitive myeloid cells are present. However, these same
mutants are significantly attenuated when injected into zebrafish at 50hpf after definitive
hematopoiesis has begun [32]. Together, these results indicate that a comprehensive
understanding of any zebrafish-microbe interaction must include appreciation of the
hematopoietic context into which the microbe is introduced, as well as the effects of that
microbial challenge on hematopoietic lineages. Although the importance of developmental
context has been best illustrated in the study of immune cell interactions with pathogenic
bacteria, it is likely that this theme will also be relevant for microbial encounters with other
host cell lineages and tissues.

Several classes of receptors for conserved microbe-associated molecular patterns (MAMPs)
have been identified in the zebrafish. Additionally several downstream signal transduction
cascades appear to be conserved between zebrafish and mammals (reviewed in [3,4,23]).
The zebrafish genome encodes 24 putative variants of the Toll-like receptor (TLR) family,
including homologs of 10 mammalian TLRs [4]. In some cases, the ligand and downstream
signaling cascades of zebrafish TLRs are conserved with mammals. Stockhammer and co-
workers used reverse genetic tests to show that the MAMP flagellin signals via zebrafish
TLR5 homologs (tlr5a and tlr5b) and the MyD88 adaptor protein to induce both pro- and
anti-inflammatory genes [38]. However, recent evidence indicates that TLR sequence
homology may not always equate to functional conservation. Whereas mammalian TLR4
recognizes the MAMP LPS, functional analysis of two zebrafish genes that are paralogous
to mammalian TLR4 (tlr4a and tlr4b) indicated that these receptors do not recognize LPS
[39,40]. These studies underscore that the evolutionary divergence between zebrafish and
mammals has resulted in conservation as well as divergence in immune gene function.
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The unique combination of features available in the zebrafish model provides the potential
to define the molecular and cellular mechanisms underlying host-microbe interaction. At
present, this potential has been best realized in the zebrafish model of M. marinum infection.
M. marinum is a natural pathogen of fish and a close relative of M. tuberculosis, the
causative agent of human tuberculosis (TB). Similar to human TB, infecting M. marinum
recruit and are phagocytosed by host macrophages. Infected macrophages subsequently
migrate to deeper tissues, where they recruit additional macrophages and other immune cells
to form cellular aggregates called granulomas. Injection of M. marinum into zebrafish
embryos results in granuloma formation by 3 days post-infection (dpi) and does not require
adaptive immunity [24]. The effect of M. marinum infection on larval and adult zebrafish
gene expression has been analyzed extensively using both microarray and RNA-seq methods
[41-43]. These studies have identified host genes and pathways responsive to infection that
can serve as useful biomarkers and candidate host resistance/virulence determinants.

M. marinum pathogenesis was the recent focus of the first implementation of forward
genetic analysis to identify zebrafish genes involved in a host-microbe relationship. Tobin
and colleagues conducted an ENU mutagenesis screen to identify zebrafish mutations that
cause hyper-susceptibility or hyper-resistance to M. marinum infection. One hyper-
susceptible mutation was mapped to the leukotriene A4 hydrolase (lta4h) locus, which
encodes an enzyme involved in the production of the chemoattractant and pro-inflammatory
eicosanoid, Leukotriene B4. Loss of lta4h function causes a redirection of eicosanoid
substrates to anti-inflammatory lipoxins, resulting in a decrease of TNFα production and
consequential increases in bacterial growth and macrophage necrosis. The authors
subsequently discovered that polymorphisms at the human LTA4H locus are strongly
associated with susceptibility to TB, demonstrating the potential of forward genetic analysis
in zebrafish to provide novel models and mechanisms of human infectious disease (D.M.
Tobin et al., personal communication).

In vivo imaging in the zebrafish-M. marinum model has provided novel insights into the
function of macrophages and granulomas during mycobacterial infection. Clay and co-
workers found that macrophages were required to both curtail bacterial growth during early
infection of zebrafish embryos, and to disseminate infecting bacteria into deeper tissues
[33]. This indicated that infecting mycobacteria tolerate sub-optimal growth conditions
within macrophages in exchange for access to deeper tissues where granulomas are formed.
Granulomas have long been considered to serve as host protective structures that physically
isolate the infecting bacteria. Davis and Ramakrishnan recently used the zebrafish-M.
marinum model to show that the granuloma can benefit the infecting mycobacteria by
facilitating their expansion and dissemination. M. marinum-infected macrophages residing
in granulomas recruit uninfected macrophages which then phagocytose dying infected cells
and consequently become infected. These newly infected macrophages have the potential to
seed new granulomas [44]. Insights into the mechanism by which mycobacteria promote
granuloma formation have been provided by analysis of a M. marinum strain lacking the
ESX-1/RD1 locus (ΔRD1) encoding a specialized secretion system that promotes virulence
in both M. marinum and M. tuberculosis [45]. ΔRD1 M. marinum can survive within
macrophages during early infection of zebrafish embryos, but have attenuated initial
granuloma formation [45], and recruitment and infection of new macrophages to existing
granulomas [44]. These results indicate that infecting mycobacteria use RD1-dependent
mechanisms to promote granuloma formation and also to exploit the granuloma environment
to enhance pathogenesis. To identify host mechanisms co-opted by RD1-competent M.
marinum, Volkman and co-workers compared host gene expression in zebrafish infected
with wild-type or ΔRD1 M. marinum. Infection of zebrafish embryos induced RD1-
dependent expression of host matrix metalloproteinase 9 (mmp9), and wild-type M.
marinum infection of mmp9 morphant embryos caused a phenotype similar to ΔRD1
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infection of wild-type hosts. Although mmp9 is expressed by multiple cell types including
leukocytes, RD1-dependent mmp9 induction surprisingly occurred only in epithelial cells
proximal to infected macrophages. Moreover, RD1-dependent induction of epithelial mmp9
expression did not require myeloid cells, and could be stimulated by injection of a single
secreted product of the RD1 locus ESAT-6 [46]. These results establish that M. marinum
residing within infected macrophages secrete ESAT-6 to induce mmp9 expression in
neighboring epithelial cells, which in turn promotes granuloma formation to facilitate further
bacterial dissemination. Together, these studies have defined novel molecular and cellular
mechanisms underlying mycobacterial pathogenesis, and demonstrate the potential of the
zebrafish for elucidating similar mechanisms in other host-microbe relationships.

Mechanisms of commensal host-microbe relationships
Although individual pathogens can have salient effects on vertebrate biology, the vast
majority of host-microbe interactions are non-pathogenic. The epithelial surfaces of
zebrafish and all other vertebrates are colonized at birth by large communities of
microorganisms (microbiota) that form commensal or mutualistic relationships with their
hosts [47,48]. The majority of these microbes reside in digestive tract communities, where
they influence a broad range of host biological processes. The zebrafish digestive system
shares extensive homology with that of mammals, including a liver, gall bladder, endocrine
and exocrine pancreas, and an intestine with proximal-distal functional specification. Initial
morphogenesis is completed by 3dpf, however further differentiation and remodeling
continue into later stages (reviewed in [49-51]). Zebrafish larvae hatch from the axenic
environment within their protective chorion around 3dpf, and the intestine is colonized by
microbes within 12-24 hours [52,53]. 16S rRNA sequence-based surveys have revealed that
the zebrafish gut microbiota is dominated at all ages by members of the bacterial phylum
Proteobacteria, with Firmicutes and Fusobacteria comprising additional dominant phyla at
larval and adult stages respectively [54-56] (E. Mittge et al., unpublished). This is in marked
contrast to the mammalian gut microbiota, which is dominated by members of the Fimicutes
and Bacteroidetes phyla [57]. A recent comparison of the gut microbiota from adult
zebrafish raised in different aquaculture facilities or collected in the wild disclosed minimal
compositional differences, suggesting that the microbial community assembly in the
zebrafish intestine is strongly shaped by deterministic forces within the intestinal habitat (E.
Mittge et al., unpublished).

Comparison of zebrafish larvae (6-8dpf) raised in the absence of microorganisms (germ-free
or GF) and age-matched controls colonized with a normal zebrafish microbiota, revealed
that the zebrafish gut microbiota impacts upon a wide range of host biological processes,
including many that are similarly influenced in rodent models [8,53,54]. Conserved host
responses include fortification of innate immune defenses, enhancement of nutrient
digestion, regulation of intestinal glycan expression, and stimulation of epithelial cell
renewal [53-55]. Intriguingly, the presence of a gut microbiota in zebrafish larvae stimulates
expression of the neutrophil biomarker myeloperoxidase [54,55] and increased neutrophil
infiltration into the intestine [58], suggesting that production and/or activity of immune cells
can be regulated by commensal as well as pathogenic microbes. Consistent with this notion,
disease severity in a zebrafish model of oxazolone-induced enterocolitis was recently shown
to be sensitive to the composition of the gut microbiota [56]. The roles of the gut microbiota
on host biology are therefore similar between zebrafish and mammals, despite salient
differences in the bacterial composition of their intestinal microbiotas.

To facilitate host tolerance to the gut microbiota, animals have evolved mechanisms to
prevent detection of MAMPS as illustrated by the activity of intestinal alkaline phosphatase
(Iap). Iap is a brush border enzyme expressed by enterocytes that acts to dephosphorylate
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and thereby detoxify the lipid A moiety of LPS, the source of LPS endotoxic effects. Bates
and colleagues showed that colonization of GF zebrafish with a gut microbiota stimulates
intestinal epithelial expression of the iap gene. Morpholino knock-down of iap in zebrafish
results in LPS hypersensitivity and neutrophilic inflammation of the gut. Genetic tests
revealed that microbial induction of iap and its anti-inflammatory activity are dependent on
the TLR adapter protein Myd88 as well as TNFα signaling [58]. Iap therefore promotes
mucosal tolerance to commensal gut microbes by reducing the pro-inflammatory potential of
LPS in the gut lumen.

Host responses to microbial encounters frequently involve communication between multiple
host cell lineages and tissues. It is therefore important to not only identify the signaling
mechanisms that facilitate a host response, but also the temporal and spatial pattern in which
those signaling events occur. The NF-ΚB pathway integrates a variety of microbial and
physiological stimuli to regulate gene expression. We recently exploited the amenability of
the zebrafish to in vivo imaging and transgenesis to define the temporal and spatial pattern of
zebrafish NF-ΚB activity. We generated transgenic reporter zebrafish expressing GFP under
control of a NF-ΚB-responsive cis-element, and used it to reveal that the zebrafish
microbiota induces NF-ΚB activity in multiple tissues including intestine, liver, and dorsal
root ganglia. Microbial stimulation of NF-ΚB activity was associated with NF-ΚB-dependent
induction of acute phase and complement genes in those same tissues, indicating that the gut
microbiota can regulate innate immune responses in intestinal as well as extraintestinal sites
(M. Kanther et al., unpublished).

Gnotobiotic zebrafish provide opportunities for reductionist analysis of host-bacterial
interactions. To this end, we have shown that colonization of GF zebrafish with individual
bacterial species can induce host responses normally evoked by the commensal gut
microbiota. Among several primary bacterial isolates and laboratory strains representing the
normal zebrafish or mouse gut microbiota, P. aeruginosa was the most robust inducer of
innate immune and nutrient metabolic responses [55]. Although P. aeruginosa is pathogenic
when injected into zebrafish embryos, immersion of zebrafish larvae in P. aeruginosa
results in a robust colonization of the intestinal lumen without overt pathogenesis [32,52]. In
vivo imaging of GFP-labeled P. aeruginosa in the zebrafish intestine revealed features of
intestinal bacterial community assembly, as well as an unanticipated diversity of bacterial
behaviors within the intestine. We found that P. aeruginosa strains harboring mutations in
genes required for flagella assembly or rotation elicited attenuated innate immune responses
in zebrafish hosts, but elicited normal nutrient metabolic responses similar to wild-type P.
aeruginosa [52]. These results demonstrate that genetic analysis in model gut bacteria can
be conducted in gnotobiotic zebrafish hosts to reveal bacterial factors regulating host-
microbe relationships.

Prospectus
The developing zebrafish continues to provide attractive opportunities to investigate the
mechanisms underlying host-microbe relationships. With the production of new transgenic
reporters of specific host cell lineages and host signaling events, in vivo imaging in
transparent developing zebrafish will provide improved spatial and temporal resolution of
immune system development and function as well as dynamic host-microbe interactions.
Expanded use of forward and reverse genetic analysis in zebrafish hosts and individual
microbes can be expected to reveal novel factors regulating distinct aspects of host-microbe
interaction. Likewise, the zebrafish provides useful platforms for small molecule screens to
identify chemical regulators of specific host-microbe interactions. These approaches should
be similarly applicable to the analysis of individual pathogens as well as representative
members of the commensal microbiota. As research on host-microbe interactions in the
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zebrafish continues to grow, it will become increasingly important to appreciate the
developmental context in which a given microbial encounter occurs, as well as the effects of
that microbial challenge on host ontogeny and physiology.

Box 1

Common methods for testing zebrafish gene function

Morpholinos

Small modified oligonucleotides injected into zebrafish embryos to induce targeted gene
knockdown during early development. Morpholinos can be designed to either block
translation initiation of both maternal and zygotic transcripts, or correct splicing of
zygotic transcripts of a target gene. Morpholino efficacy is limited to embryonic and
early larval stages, and controls for non-specific effects must be included [99,100]

Ethylnitrosourea (ENU) mutagenesis

ENU is an alkylating agent often used as a zebrafish mutagen. Male zebrafish are treated
with ENU and used to generate F1 animals containing random heterozygous germline
mutations. To facilitate forward genetic screens, ENU-induced mutants can be identified
by phenotypic screening, then the causative lesion identified by positional cloning
[101,102]. Additionally, libraries of DNA and sperm from ENU-mutagenized fish can be
stored and used in reverse genetic analysis to identify mutations in a selected gene of
interest through direct sequencing or CEL1 nuclease assays in a process known as
targeting induced local lesions in genomes (TILLING) [103].

Insertional mutagenesis

Pseudotyped retroviral particles are injected into blastula-stage embryos where they
integrate into the host genome. These founder animals are then outcrossed to generate F1
germline mutants. For forward genetic analysis, retrovirus-induced mutants can then be
identified by phenotypic screening. Retroviral insertion sites can be easily identified
using PCR primers specific to the retroviral vector. For reverse genetic analysis, libraries
of DNA and sperm from injected founders or F1 progeny can be stored and used to
screen by DNA sequencing for insertions in or near a selected gene of interest [104,105].

Zinc-finger nucleases

This reverse genetic technique exploits double-strand break repair pathways to generate
small targeted mutations in a gene of interest. Fusion proteins constructed from the Fok1
restriction enzyme and three (or more) zinc-finger motifs are designed to recognize
specific DNA target sequences in a selected gene of interest. Matched pairs of zinc finger
nuclease RNAs are injected into zebrafish blastulas resulting in germline mutations in the
target gene that can be propagated into subsequent generations [7].

Alterations in gene expression

Wild-type, mutant, or dominant-negative forms of a selected gene can be misexpressed
either by injection of mRNA or DNA expression constructs into zebrafish embryos.
Whereas mRNA injections are only efficacious through embryonic stages, injection of
expression constructs permit mosaic analysis through adult stages as well as
establishment of stable transgenic lines. Transgenesis efficiency in zebrafish has been
recently improved through the use of the Tol2 transposon system [106]. Tissue-specific
or ubiquitous expression can be achieved by placing the selected gene under control of a
defined cis-regulatory sequence. Conditional gene expression is possible by using
inducible promoter systems (e.g., GAL4/UAS, Cre/lox, and heat-shock promoters)[107].
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Figure 1. Developmental milestones in zebrafish host-microbe interactions
Schematic depiction of anatomical sites (A) and approximate durations (B) of hematopoietic
activity in developing zebrafish. The eye (e), yolk (y) and gastrointestinal tract (gray) are
indicated in A. Relocation of definitive hematopoietic stem cells (HSCs) between sites is
represented by arrows in B. Primitive erythropoiesis occurs in the intermediate cell mass
(ICM, blue) which is active ∼11-30hpf [59], whereas primitive myelopoiesis begins in the
rostral blood island (RBI) and later the yolk (pink) from ∼12-40hpf [11]. HSCs appear in the
aorta-gonad-mesonephros region (AGM, red) ∼26hpf until ∼3dpf [15,16]. These HSCs are
mobilized to seed the caudal hematopoietic tissue (PBI/CHT; green) and pronephros
(brown) as early as 32hpf, and the thymus (purple) as early as 48hpf [14-17]. Definitive
hematopoiesis in the CHT begins de novo ∼24hpf [13] and continues until at least 14dpf
[14]. Cells from the CHT contribute to the pronephros and thymus as early as 48hpf [14,15].
B cell development initiates in the pancreas (orange) starting 4dpf [21], although the
hematopoietic origins of these cells remain unknown. The thymus, pancreas, and
pronephros/kidney subsequently serve as sites of definitive hematopoiesis into adult stages
[9,10]. (C) Within this dynamic developmental context, important milestones relevant to
zebrafish immunity and microbial interactions are indicated and referenced.
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Table 1
Microorganisms used for in vivo experimental analysis in zebrafish hosts

Bacterium Reference

Aeromonas hydrophilaa,b [54,55,60]

Aeromonas salmonicida b [61]

Aeromonas veronii b [53]

Bacillus subtilusa [11]

Burkholderia cenocepaciaa [62]

Edwardsiella ictaluria [63]

Edwardsiella tarda a,b [26,64,65]

Escherichia coli MG1655 b [52,55]

Escherichia coli O157:H7 b [66]

Flavobacterium columnare a,b [67]

Flavobacterium johnsoniae a,b [67]

Francisella spp. a [68]

Leptospira interrogansa [69]

Listeria monocytogenesa [70,71]

Listeria spp. a [70]

Listonella anguillarum a,b [72]

Mycobacterium haemophiluma [73]

Mycobacterium marinum a,b [24,33,34,41-46,74-77] (D.Tobin et al., personal communication)

Pseudomonas aeruginosa a,b [30,32,37,52,54,55,78]

Pseudomonas fluorescens b [53]

Salmonella arizonaea [24]

Salmonella typhimuriuma [38,79,80]

Staphylococcus aureusa [31,61]

Steptococcus ininaea [27,81,82]

Streptococcus pyogenesa [28,81,83-85]

Vibrio anguillarum b [25]

Virus Reference

Herpes simplex virus type 1 (HSV-1) a [86]

Infectious hematopoietic necrosis virus (IHNV) a [87,88]

Infectious pancreatic necrosis virus (IPNV) a [87,89]

Infectious spleen and kidney necrosis virus (ISKNV) a [90,91]

Nervous necrosis virus (NNV) a [92]

Snakehead rahabdovirus (SHRV) a,b [64,93-97]
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Bacterium Reference

Spring viremia of carp virus (SVCV) a [88,98]

Viral hemorrhagic septicemia virus (VHSV) a,b [99]

Microbial consortia Reference

Intestinal microbiota b [52-55,58**] (M.Kanther et al., unpublished)

a
Microbe introduced by injection.

b
Microbe introduced by static immersion, with or without wounding
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