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� We present a novel computer assisted EEG interpretation system, based on a combination of eight
quantitative features, to be used during EEG monitoring in the adult ICU.
� Our system provides an initial, reasonably accurate interpretation (85%) of the most common EEG

patterns observed in neurological ICU patients.
� Computer assisted EEG monitoring may improve early detection of seizure activity and ischemia in

critically ill patients.

a b s t r a c t

Objective: The implementation of a computer assisted system for real-time classification of the electro-
encephalogram (EEG) in critically ill patients.
Methods: Eight quantitative features were extracted from the raw EEG and combined into a single clas-
sifier. The system was trained with 41 EEG recordings and subsequently evaluated using an additional 20
recordings. Through visual analysis, each recording was assigned to one of the following categories: nor-
mal, iso-electric, low voltage, burst suppression, slowing, and EEGs with generalized periodic discharges
or seizure activity.
Results: 36 (88%) recordings from the training set and 17 (85%) recordings from the test set were classi-
fied correctly. A user interface was developed to present both trend-curves and a diagnostic output in text
form. Implementation in a dedicated EEG monitor allowed real-time analysis in the intensive care unit
(ICU) during pilot measurements in four patients.
Conclusions: We present the first results from a computer assisted EEG interpretation system, based on a
combination of eight quantitative features. Our system provided an initial, reasonably accurate interpre-
tation by non-experts of the most common EEG patterns observed in neurological patients in the adult
ICU.
Significance: Computer assisted EEG monitoring may improve early detection of seizure activity and
ischemia in critically ill patients.
� 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Evaluation of the brain function in patients from the intensive
care unit (ICU) is important, since these patients are at risk of sev-
eral secondary brain injuries such as (non-convulsive) seizures,
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cerebral ischemia and increased cerebral pressure (Claassen
et al., 2005; Friedman et al., 2009). Clinical examination of these
critically ill patients is however limited, even more so when they
are sedated and ventilated (Jordan, 1999; Scheuer, 2002; Friedman
et al., 2009). Monitoring of the brain in these patients is therefore
highly desirable. Neuroimaging provides good anatomical informa-
tion, but its functional information is very often limited and typi-
cally of a discontinuous nature (Tempelhoff and Yoder, 2008;
Friedman et al., 2009). Since the electroencephalogram (EEG) is
sensitive to changes in brain activity caused by both epileptic
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seizures and ischemia, continuous EEG (cEEG) can provide a useful
tool for real-time brain monitoring (Scheuer, 2002; Hirsch and
Kull, 2004; Jordan, 2004; Claassen et al., 2005; van Putten, 2005;
Oddo et al., 2009; Friedman et al., 2009). Among others, Jordan
evaluated the usefulness and clinical impact of cEEG monitoring
in the neuroscience ICU. They concluded that 86% of all cEEG
recordings in the neuroscience ICU had an impact on clinical man-
agement (Jordan, 1995).

Despite the potential clinical relevance of cEEG monitoring in
the ICU, its use in many ICUs remains limited. One of the main rea-
sons for this involves the complex and time-consuming task of
interpretation of each recording by means of visual analysis
(Claassen et al., 2005; van Putten, 2005; Tempelhoff and Yoder,
2008). Raw EEG can hardly be interpreted by non-experts, which
includes most ICU nurses and ICU physicians. To overcome this
problem, several attempts have been made in computer-assisted
real-time detection of deteriorations in brain function by extract-
ing quantitative EEG (qEEG) features from the raw data. Such
systems make earlier diagnostics and treatment possible. For
example, various qEEG features have been proposed to detect
seizures (Gotman et al., 1997; van Putten et al., 2005; Slooter
et al., 2006; Deburchgraeve et al., 2008), to identify vasospasms
after subarachnoid hemorrhage (Vespa et al., 1997; Claassen
et al., 2004a), to differentiate between patients with good neuro-
logic outcomes and those with poor outcomes after cardiac arrest
(Jia et al., 2008; Wennervirta et al., 2009), and to predict the clin-
ical outcome of (sub-) acute stroke patients (Finnigan et al.,
2004; Finnigan et al., 2007; Sheorajpanday et al., 2009). However,
these features have only focused on specific patient categories.

Ideally, all feature types should be combined into one overall sys-
tem capable of classifying the common EEG patterns observed in the
ICU with reasonable accuracy. This will allow unambiguous inter-
pretation of the EEG by ICU personnel. The patterns to detect in
the adult ICU should include normal EEGs, iso-electric EEGs, low
voltage EEGs, burst suppression patterns, EEGs with regional or dif-
fuse slowing (e.g. due to ischemia in post-anoxic and stroke patients,
contusions in trauma patients or postictal slowing), EEGs with sei-
zure activity, and EEGs with generalized periodic discharges (GPDs).
In addition, an adequate representation of the information is re-
quired, providing relevant information to ICU personnel in a simple
and clear manner, while presenting a more detailed analysis
(including raw EEG data) to the consulting neurologist or clinical
neurophysiologist.

This paper describes the implementation of a real-time EEG clas-
sification system based on a combination of several qEEG features.
The creation of such a system is a first step towards real-time, com-
puter-assisted detection of deteriorations in brain function, includ-
ing seizure activity and ischemia in critically ill patients.
2. Methods

2.1. Patient data

EEG data for training and evaluation was selected from the dig-
ital EEG database of the Medisch Spectrum Twente hospital. All
EEG registrations in the database were classified by experienced
electroencephalographers using standard visual analysis. Both
training and test set contained a representative set of EEG patterns.
At least one 5 min epoch was selected in each EEG, reviewed by an
experienced electroencephalographer (MvP) for a second time, and
assigned to one of the above described categories. Uniform epochs
were used so that each of them contained only a single EEG pat-
tern. In addition, only epochs with minimal or no artefacts were
used (as judged from visual inspection) with the exception of
three. These three epochs contained many artefacts and were used
for an initial training step to detect artefacts. The epoch selection
and second review by the electroencephalographer was done prior
to the automated epoch classification by our system. Therefore, the
classification by the electroencephalographer was blinded to the
output of the system.

All EEGs were recorded with 19 electrodes placed on the scalp
according to the 10–20 system. The impedances were kept below
5 kOhm to reduce polarization effects and the sampling frequency
was either 250 Hz or 256 Hz. All recordings were made using a
BrainLab EEG recording system (OSG BVBA, Belgium) or Neurocen-
ter EEG (Clinical Science Systems, Leiden, Netherlands). The Insti-
tutional Review Board waived the need for medical ethical
assessment and informed consent, since all recordings were per-
formed as a standard procedure in the clinical evaluation of the
patients.

2.1.1. Training set
The training set consisted of 41 EEG epochs with a duration of

5 min each, recorded from 39 different patients. Thirty-five of
these patients were admitted in the ICU, three were healthy outpa-
tients with normal EEGs and one patient was admitted to the
stroke unit. To train the system for artefact detection, three epochs
were included that contained a considerable amount of artefacts.

2.1.2. Test set
An independent test set, containing epochs from different pa-

tients than included in the training set, was used for the evalua-
tion. Seventeen of these recordings were from ICU patients and
three were from outpatients. All selected epochs contained artefact
free, 5 min duration EEG data. To prevent a selection bias, the test
set was selected from the EEG database by a physician who was
naive for the current study. Details of the training and test set
are summarized in Tables 1 and 2.

2.1.3. Evaluation in the ICU
Real-time pilot measurements were performed in four ICU pa-

tients to evaluate the technical feasibility of the classifier during
real-time EEG registrations.

2.2. Feature extraction

The implementation of the system was divided into several
steps. First, all signals were filtered by a zero-phase 6th order but-
terworth bandpass filter (from 0.5 to 30 Hz) and transformed to
both source and longitudinal bipolar montages. Subsequently, eight
qEEG features were calculated. Based on these features, a classifica-
tion was made for every 10 s segment by using a decision tree. Final-
ly, a single interpretation for each 5 min epoch was determined. All
routines were implemented in Matlab (The Mathworks Inc.).

A set of features was calculated for each 10 s segment of EEG.
Most features, except for the Brain Symmetry Index (BSI) and burst
and suppression index were calculated after re-referencing the EEG
to the source montage. To limit the potential contribution of eye
blink artefacts, the two most frontal channels Fp1 and Fp2 were
discarded for these feature types. To calculate the burst and sup-
pression index, all 19 channels (including Fp1 and Fp2) were used.
The longitudinal bipolar derivations F4–C4, C4–P4, P4–O2, F3–C3,
C3–P3, P3–O1, F8–T4, T4–T6, T6–O2, F7–T3, T3–T5, and T5–O1
were used to calculate the BSI. For both the burst and suppression
index and the BSI, a single value was obtained for the complete 10 s
EEG epoch. This is in contrast with the rest of the features, which
provided a value for each individual channel separately.

For the features based on the power spectrum, a power spectral
density was estimated using Welch’s averaged periodogram meth-
od. Each 10 s segment of EEG was windowed for each channel and
detrended using a Hamming window with a length of 512 sample



Table 2
Results of the test set. In column 3, ‘c’ and ‘x’ denotes correctly and incorrectly classified epochs respectively. BS = burst suppression pattern, DS = diffuse slowing, RS = regional
slowing, GPDs = generalized periodic discharges, PAE = post-anoxic encephalopathy.

Patient # EEG pattern Results Remarks

1–2 Normal EEG c Measured in outpatients
3–4 Iso-electric c
5 Low voltage EEG, but normal EEG x ECG artefacts were interpreted as bursts
6 Low voltage EEG, but normal EEG x Measured in an outpatient. Most epochs were interpreted as normal and not as low voltage
7–10 BS c Two with long (>20 s) and two with short (<10 s) interburst intervals
11–12 DS in a patient with PAE c
13–14 DS + RS in a neurotrauma patient c
15 DS + RS in a coma patient c
16 DS + RS in a surgical patient c
17 DS + GPDs x GPDs were missed, the DS was classified correct
18 GPDs c
19 Seizure activity and/or GPDs c
20 Non-convulsive status epilepticus c

Table 1
Results of the training set. In column 3, ‘c’ and ‘x’ denotes correctly and incorrectly classified epochs respectively. BS = burst suppression pattern, DS = diffuse slowing,
RS = regional slowing, GPDs = generalized periodic discharges, PAE = post-anoxic encephalopathy.

Patient # EEG pattern Results Remarks

1–4 Normal c One ICU patient and three outpatients
5–7 Iso-electric c Two EEGs had ECG artefacts
8 Low voltage c
9 BS (with several types of artefacts) x Suppressions were missed because of the artefacts. A correct warning

about artefacts was given
10a BS (bursts contains EMG activity) c Interpreted as high frequency artefacts
10b Same EEG as 10a, but after an injection with a muscle

relaxant (Esmeron)
c Interpreted as a burst suppression pattern

11–13 BS c
14 BS x Interpreted as slowing, because most (low amplitude) bursts were

missed
15–16 DS in a patient with PAE c
17a DS + RS in a neurotrauma patient c
17b Same EEG as no. 17a, but a few hours later after further deterioration c
18–22 DS + RS in a neurotrauma patient c
23 DS in a neurotrauma patient x One brain region was interpreted as seizure activity instead of slowing
24 RS in a neurotrauma patient c
25–26 DS + RS in a post-surgical patient c
27 DS + RS in a stroke patient c Measured in the stroke unit
28 DS + RS in a coma patient. c
29 DS + GPDs in a patient with PAE x (Low amplitude) GPDs were missed, the DS was classified correct
30 GPDs in a neurosurgery patient c
31–34 GPDs c
35–36 Non-convulsive status epilepticus. c
37–38 DS + EMG artefacts c
39 DS + high amplitude artefacts x Artefacts were interpreted as seizure activity
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points. The resulting spectra from each segment were averaged
and one spectral density with a resolution of approximately
0.5 Hz was obtained per channel.

2.2.1. Mean amplitude
The mean amplitude of the EEG was primarily used to classify

iso-electric EEGs and low voltage EEGs. In addition, signals with
very high mean amplitudes were interpreted as containing either
seizure activity or artefacts, depending on the outcome of the other
features. The mean amplitude of each channel was calculated as
the mean of the absolute value of that channel.

2.2.2. Frequency analyses
The alpha to delta ratio (ADR) (Claassen et al., 2004a; Finnigan

et al., 2007; Leon-Carrion et al., 2009) and spectral edge frequency
(SEFx) (Tonner and Bein, 2006) were used to detect slowing of the
EEG patterns. The ADR is calculated as the power ratio between the
alpha (8–13 Hz) and delta band (0.5–4 Hz). The SEFx is the fre-
quency below which a certain percentage (denoted by x) of the to-
tal power is located. In this study, the SEF90 was used and the total
power was defined as the power between 0.5 and 15 Hz. To detect
high frequency artefacts such as those caused by muscle contrac-
tions, we introduced a ‘high to low frequency power ratio’: the
power ratio between 25–30 and 0.5–25 Hz.

2.2.3. Burst and suppression index
For the detection of burst suppression patterns and GPDs, a no-

vel burst and suppression index was introduced as illustrated in
Fig. 1. First, the signal was pre-processed with a non-linear energy
operator (NLEO), defined as

/ðnÞ ¼ jðxn�1 � xn�2Þ � ðxn � xn�3Þj; ð1Þ

where xn denotes the current sample of signal x, xn�1 the first sam-
ple before sample n, etc. (Deburchgraeve et al., 2008). This pre-pro-
cessed signal shows which parts of the EEG have a high local energy
(high amplitude and/or high frequency). A moving threshold was
used to detect the energy increases in the signal. The running
threshold was set at four times the mean plus four times the stan-
dard deviation of the preceding 0.5 s of the signal, with a minimum
of 10 lV2. After the detection of a burst, the 0.5 s that followed were



Fig. 1. Burst and suppression index for one channel. The raw EEG is shown in the upper plot and the middle plot shows the same EEG after applying a NLEO (black) together
with a running threshold (red) for the detection of bursts. The threshold is based on the mean and standard deviation of the previous 0.5 s of the signal. The detected bursts
are marked with blue asterisks. The bottom plot shows the same EEG after the NLEO was applied, but the y-axis is scaled. The thick red line in this figure represents the fixed
threshold for the detection of suppressions. A suppression is detected (marked with a blue asterisk) if the signal is below this threshold for more than 1.5 s. (For interpretation
of the references in color in this figure legend, the reader is referred to the web version of this article.)
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ignored to prevent a single burst from being detected more than
once. This was performed for all 19 channels. A burst was required
to be present in more than 10 channels simultaneously (within a
window of 0.2 s) to be classified as a true burst. Suppressions were
detected in a comparable way. The same NLEO was applied to the
EEG, but the threshold for the detection of suppressions was fixed
Fig. 2. Autocorrelation of an EEG epoch with seizure activity. Intervals between the
zero-crossings of this autocorrelation are regular. The arrows indicate which
intervals are compared (each interval is used twice).
at 5 lV2. If the amplitude of the signal was below this value for
more than 1.5 s in 10 or more channels at the same time, it was
interpreted as a suppression. A 10 s epoch of EEG was interpreted
as a burst suppression pattern if at least one burst and one suppres-
sion were detected in that epoch. GPDs were detected with the
same method as the burst detection method. Generally, GPDs occur
multiple times in a 10 s epoch. Therefore, 10 s of EEG with three or
more bursts and without any suppressions were interpreted as
GPDs.

2.2.4. Nearest neighbor coherence
The nearest neighbor synchronization is the coherence between

a particular electrode and its surrounding (nearest neighbor) elec-
trodes (van Putten, 2005). Since synchronization is often increased
during seizure activity, this feature was chosen as one of the fea-
tures for the detection of seizures. The nearest neighbor coherence
was implemented as the mean coherence between each channel
and its neighbors in the frequency range between 0.5 and 15 Hz.

2.2.5. Periodicity based on autocorrelation analysis
The periodicity of the EEG is often increased during seizures as

well. To detect epochs with an increased periodicity, a measure for
periodicity was used based on autocorrelation. This was done sim-
ilar to the method proposed by Liu et al. (1992) and Deburchgraeve
et al. (2008)). First, the autocorrelation functions for each window
of 5 s were calculated with an overlap of 4 s. This was done for all
channels. The zero-crossings in these autocorrelation functions
were then detected. To be classified as true zero-crossings, the
maximum autocorrelation value and the time interval between
two zero-crossings had to be larger than a given threshold. After
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detecting the zero-crossings, the ratios between different zero-
crossing intervals were calculated. An example of this is shown
in Fig. 2. The mean value of these ratios was used as a measure
for the periodicity. The value approaches 1 for signals with high
periodicity and becomes higher or lower than 1 for signals without
periodicity. If less than four or more than sixty zero-crossings were
present, the signal was considered as non-periodic, and the mea-
sure of periodicity was not calculated. Also, epochs with very low
energy (mean value of a signal of less than 2 lV2 after applying
NLEO) were ignored. The measure for periodicity was calculated
for each channel and for each 5 s window. The measures for each
window in a single epoch were averaged per channel and the ig-
nored epochs were discarded. This resulted in a single value per
channel per epoch. In some cases, all windows of a channel were
ignored in the calculation. These channels were then interpreted
as non-periodic.

2.2.6. Brain Symmetry Index
The Brain Symmetry Index (BSI) was designed to detect asym-

metries between the left- and right hemispheres of the brain
(van Putten and Tavy, 2004; van Putten, 2006; van Putten, 2007).
In this study, we used a pair-wise derived variant of the BSI com-
parable to the variant recently introduced by Sheorajpanday
et al. (2009). For this variant, the BSI is defined as

BSIðtÞ ¼ 1
MK

XM

ch¼1

XK

n¼1

Rn;chðtÞ � Ln;chðtÞ
Rn;chðtÞ þ Ln;chðtÞ

����

����; ð2Þ

with Rn;chðtÞ ¼ a2
n;chðtÞ for channels in the right hemisphere, and a

similar expression for channels in the left hemisphere. Here, K is
the number of Fourier coefficients and M is the number of channel
pairs, while an;chðtÞ denotes the Fourier coefficient with index n of
channel ch evaluated at time t. Hereby, t corresponds to a particular
epoch [t � T, t] with duration T. A period of 10 s was used for T and
the BSI was calculated in the frequency range from 0.5 to 25 Hz
with a spectral bandwidth of 0.5 Hz. The BSI is bounded in range be-
tween zero (perfect symmetry for all channels) and 1 (maximum
asymmetry). The pairwise variant of the BSI was used to increase
the sensitivity for abnormalities that affect different regions in both
hemispheres (for example patients with traumatic brain injury). In
contrast to the study of Sheorajpanday et al., we used a bipolar lon-
gitudinal montage in the calculation of the pair-wise derived vari-
ant of the BSI.

2.3. Classification: decision tree

To preserve relevant information about localization and time,
our system classified each 10 s epoch in four defined brain regions:
left anterior, left posterior, right anterior and right posterior. The
left anterior region consisted of channels F8, F4, Fz, T4, C4 and
Cz, the left posterior region T3, C3, Cz, T5, P3, Pz and O1, the right
Table 3
The most common EEG patterns and the quantitative EEG features used to classify
these patterns. The features are listed in the same order as they appear in the decision
tree.

EEG pattern Quantitative EEG feature

Iso-electric Mean amplitude
Low voltage Mean amplitude
Artefacts High to low frequency ratio, mean amplitude
Burst suppression Burst and suppression index
GPDs Burst and suppression index
Seizure activity Autocorrelation, nearest neighbor synchronization,

mean amplitude
Slowing Spectral edge frequency and alpha to delta ratio
Normal –
anterior region F7, F3, Fz, T3, C3 and Cz, and the right posterior
region T4, C4, Cz, T6, P4, Pz and O2. To obtain a classification per
region, the feature values of all channels in that region were aver-
aged and used in the decision tree. Since the periodicity measure
did not necessarily have a value for each channel, the third lowest
value of all non-discarded channels in each brain region was used.

A decision tree was constructed based on the prior knowledge
about EEG patterns in several conditions as encountered in ICU pa-
tients. In this way, we tried to mimic the way a neurologist would
describe the EEG. After the initial design, the decision tree was im-
proved by using EEG recordings from the training set. In several
steps, the boundary values and the order of the features were
adapted to improve the outcome of the classified training set. For
each step, we analyzed which EEG patterns were classified incor-
rectly and for what reason. Focus was not only placed on the per-
centage of falsely classified patterns, but we also considered the
severity of a misclassification in clinical practice. For example,
the detection of patterns with seizure activity and slowing was
implemented with a cut-off value which had a relatively high sen-
sitivity (and lower specificity), while it was decided to be more
conservative with the definition of an iso-electric EEG by limiting
the sensitivity for that category. Table 3 shows which features
were eventually used to classify each pattern. The final version of
the decision tree was applied on the training set again, and after-
wards on the independent test set.

In general, the most discriminating features should appear first
in the decision tree (Russell and Norvig, 1995). For our system, the
mean amplitude was the most discriminating feature; EEGs with
very low mean amplitudes can only be iso-electric or low-voltage
and almost all other features cannot be defined reliably. Similarly,
EEGs with high mean amplitudes typically contain burst suppres-
sion patterns, seizure activity or (high amplitude) artefacts. The
mean amplitude was therefore the first feature evaluated in the
tree. Subsequently, EEG epochs with an increased ‘high to low fre-
quency power ratio’ were classified as epochs with artefacts, since
further classification of signals with many artefacts is unreliable.
Then, the presence of bursts and suppressions was evaluated to de-
tect burst suppression patterns and GPDs. If the signal did not con-
tain any bursts, the EEG was tested for seizure activity by
evaluating the synchronization, periodicity and amplitude. The sei-
zure activity check was performed after the detection of GPDs,
since GPD patterns can also have an increased amplitude, synchro-
nization and periodicity. Two less specific features were the SEF
and ADR. Although they are very sensitive for the detection of
slowing, these features are only useful when other EEG abnormal-
ities (such as seizure activity) are excluded. For this reason, the SEF
and ADR values were placed at the bottom of the tree, to distin-
guish slowed EEG patterns from normal EEG registrations. Dia-
grams of the full decision tree are presented in Figs. 3 and 4.

2.4. User interface

The output of the decision tree is displayed in a novel user inter-
face. The user interface of two epochs of the test set are shown to-
gether with a small part of the raw EEG in Fig. 5. The upper left part
of the interface consists of four plots, one for each brain region,
with the output of the decision tree as a function of the epoch
number. In the two upper figures on the right side, the trend of
the BSI and the power spectrum of both hemispheres are shown.
Since asymmetries can only be measured when the activity of left
and right hemispheres are compared, the BSI cannot be calculated
for each brain region separately and is therefore displayed sepa-
rately. In the bottom part of the interface, the interpretation of
the preceding 5 min recording is presented in a textbox for each
brain region separately. This interpretation is equal to the most
prevalent output of the decision tree for each brain region in this



Fig. 3. Structure of the decision tree for the classification of the EEG per 10 s epoch and per brain region (left anterior, left posterior, right anterior, right posterior). In this
figure, the gray colored ‘Seizure Activity Tree’ blocks represent a smaller decision tree (Fig. 4). ECG artefacts can increase the mean amplitude of an iso-electric EEG
significantly. Therefore, the boundary for the mean amplitude between ‘extremely low’ and ‘decreased’ is increased to 1 lV in EEG signals with a high correlation to the ECG
signal. All other boundaries in the decision tree are fixed. ADR = alpha to delta ratio, SEF = spectral edge frequency.

Fig. 4. Decision tree for the detection of seizure activity. This tree represents the gray colored ‘Seizure Activity Tree’ blocks in the overall decision tree of Fig. 3. This smaller
decision tree is used to detect whether an epoch contains seizure activity, and its output is either ‘No’ (no seizure activity) or ‘Yes’ (seizure activity). This decision is made
based on a combination of synchronicity, periodicity and mean amplitude of the EEG signal. After this decision, the remainder of the overall decision tree (Fig. 3) is used for
the final categorization of the epoch.

M.C. Cloostermans et al. / Clinical Neurophysiology 122 (2011) 2100–2109 2105
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time frame. Two exceptions are made for iso-electric EEGs and
burst suppression patterns with long suppressions. To classify an
EEG as iso-electric, all four brain regions have to be iso-electric
for the complete 5 min. If not, the EEG is interpreted as low voltage.
If most of the epochs were interpreted as iso-electric or low volt-
age, and a few as burst suppression, the EEG was interpreted as a
burst suppression pattern with long interburst intervals.

In addition to these outputs, a range of possibilities was intro-
duced for the interpretation of the BSI: EEGs were classified as
‘symmetric’, ‘slightly asymmetric’ or ‘asymmetric’. In a diffuse slo-
wed EEG, the degree of diffuse slowing (‘severe slowing’, ‘slowing’
or ‘moderately slowing’) was displayed as well. Finally, the com-
Fig. 5. Two examples of the user interface showing the results for two registrations of th
are displayed in the interface as trend curves (upper panels) and in text (lower left pa
norm = normal, slow = slowing, burst S = burst suppression, low V = low voltage, iso = iso-
with diffuse slowing (patient # 14). B: User interface of an EEG epoch containing GPDs
puter interpretation of the last 5 min was illustrated using a color
coded head. This head displays a brain region as red for seizure
activity or GPDs, gray for normal EEGs, blue for slowing, burst sup-
pression or low voltage EEGs, or black for iso-electric EEGs.

2.5. Implementation for real-time analysis

Our interpretation algorithms were implemented into the Neu-
rocenter EEG monitoring system of the Medisch Spectrum Twente
(Neurocenter EEG, Clinical Science Systems, Netherlands). Instead
of using Matlab, the scripts were executed in the GNU Octave open
source platform (http://www.octave.org).
e test set, together with a small part of the raw EEG. The results of the decision tree
nel). (ART = artefact, seiz = seizure activity, GPDs = generalized periodic discharges,
electric and BSI = Brain Symmetry Index). A: User interface of a neurotrauma patient
(patient # 18).

http://www.octave.org


Fig. 6. The user interface of a long EEG registration (>4 h) for patient #1. Initially, the EEG shows a diffuse slowed pattern with many EMG artefacts. After a few hours it
evolves into GPDs and an occasional burst suppression pattern. The conclusion (represented as the color coded map and in text) is based on the preceding 5 min of EEG.
(ART = artefact, seiz = seizure activity, GPDs = generalized periodic discharges, norm = normal, slow = slowing, burst S = burst suppression, low V = low voltage, iso = iso-
electric and BSI = Brain Symmetry Index).
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3. Results

The results obtained from evaluating the training set with the
final version of the decision tree are given in Table 1. In the
training set, 36 out of 41 EEGs (88%) were classified correctly.
Two out of the five misclassifications can be explained by arte-
facts. One of them was an EEG with a burst suppression pattern.
The suppressions were not detected due to artefacts in the sig-
nal, although a correct warning about the presence of artefacts
was given. In the other EEG, artefacts were wrongly interpreted
as seizure activity instead of high amplitude artefacts. Two other
misclassifications were caused by either missing bursts or GPDs
with low amplitudes. The final EEG was misclassified in a single
brain region, where slowing of the EEG was classified as seizure
activity, the other three brain regions were classified correctly as
slowing.

After optimizing the decision tree with the training set, an eval-
uation was done on a new independent test set. The outcome of
this evaluation is shown in Table 2. Seventeen out of 20 EEGs
(85%) were classified correctly. Of the three incorrect interpreted
EEGs, two were low voltage EEGs. One of the low voltage EEGs con-
tained many ECG artefacts and these were interpreted as bursts.
This caused the EEG to be misclassified as a burst suppression pat-
tern. The second low voltage EEG was classified as normal. The last
misclassified EEG was caused by missing GPDs with low
amplitude.
The real-time implementation of our system was evaluated in
four ICU patients. Simulations in a Matlab environment showed
that the algorithm was fast enough for real-time implementation;
however the Octave implementation of Neurocenter was much
slower. In fact, the current Octave version of the classifier allowed
analysis of only the first 10 s of each 30 s in real-time, while the
other 20 s had to be discarded. The raw EEG data was stored with-
out interruption to be available for review by the consulting neu-
rologist. No other technical problems occurred during the
measurements. For each of the four registrations, the classifier
showed satisfying correspondence between our system and human
interpretation. An example of the interface in a long term (4 h) reg-
istration is shown in Fig. 6. At the beginning of the registration, the
EEG was mainly diffuse slowed with superimposed muscle con-
traction artefacts. At the end of the EEG, the pattern showed GPDs
and periods of burst suppression which was interpreted correctly
by the classification algorithm. In this particular case, this was ini-
tially noted by the interpretation of the user interface. Subsequent
reviewing of the raw EEG data indeed showed GPDs. The patient
was treated for a non-convulsive status epilepticus and recovered
well.
4. Discussion

Monitoring brain function in the ICU is very important, since
ICU patients are at high risk of various secondary brain injuries
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such as seizures or cerebral ischemia. Although the EEG is very
sensitive in detecting changes in the neurological status of pa-
tients, cEEG monitoring in the ICU is limited due to the fact that
the signals are difficult to interpret by non-experts. A reliable
real-time classification system will reduce the drawback of the vi-
sual interpretation burden and will facilitate the use of cEEG in the
ICU. This should allow earlier diagnosis of ischemic events and sei-
zure activity. With the current availability of treatments for acute
ischemia, the early detection of cerebral ischemia (in a reversible
state) has great potential for infarct prevention (Hirsch and Kull,
2004). Seizures after brain injury are associated with a less favor-
able clinical outcome (Vespa, 2005; Oddo et al., 2009), and early
detection and treatment can most likely improve the outcome.
Early detection of seizures with cEEG is therefore very relevant
to protect the brain from seizure-related injury in critically ill pa-
tients (Claassen et al., 2004b; Vespa, 2005).

In this study, we present an EEG classification system for mon-
itoring ICU patients, based on a combination of eight qEEG fea-
tures. Thirty-six EEG epochs out of 41 (88%) and 17 epochs out of
twenty (85%) were classified correctly in the training and test set
respectively. These results indicate that the system can have a
significant impact in the clinical setting. For example, the group
of slowed EEGs was classified very well, showing that early detec-
tion and treatment of ischemic events is possible. Although our
algorithms do not yet reach the classification accuracy of an
experienced electroencephalographer, it does allow for an initial
evaluation by non-EEG experts and facilitates the use of cEEG
monitoring in the ICU. A regular review of the EEG data by electro-
encephalograhpers remains of course an essential part in the deci-
sion making process.

The two low voltage, but otherwise normal EEGs included in the
test set were both misclassified, most likely because of insufficient
training the decision tree on low voltage EEGs: only one low
voltage EEG was included in the training set. Because of this, the
chosen boundary for the mean amplitude between normal and
low-voltage might have been chosen too low. In one of the misclas-
sified low voltage EEGs, many ECG artefacts were interpreted as
bursts and this was misclassified as a burst suppression pattern.
The second low voltage (but normal) EEG was classified as normal;
therefore the misclassification would have had minimal clinical
impact. Although great care was taken to select artefact-free
epochs, various registrations included in the test set did contain
artefacts. Most of the misclassifications were caused by the pres-
ence of these artefacts or by missing low amplitude bursts or GPDs.
We tried to train the system in handling EEGs with artefacts by
including three registrations with artefacts in the training set.
However, we are well aware that the number of different artefacts
is much larger than three and that the present system is not suffi-
ciently trained for all artefact types. As the reliable detection of
artefacts is highly relevant in the daily use of a system in the
ICU, additional improvements for the detection of artefacts are
required.

It is well known that critically ill patients with GPDs have a poor
prognosis for survival, but at present it is not clear if treating or
preventing GPDs will lead to an improved outcome in these pa-
tients (Chong and Hirsch, 2005; Claassen et al., 2007; Oddo et al.,
2009; San-Juan et al., 2009). There is no consensus regarding the
need to treat GPDs or how aggressively they should be treated
(Hirsch et al., 2005). Therefore, the clinical consequences of miss-
ing GPDs by the classifier are unclear.

A novel interface for our classification system was presented.
The text output and color coded head in the interface allow a quick
interpretation by non-EEG experts. Extra panels in the interface
present additional information to the neurologist and clinical
neurophysiologist, and the raw EEG data can still be reviewed by
the consulting neurologist or clinical neurophysiologist. The
dynamics of longer EEG registrations can be seen with a single
glance at the four time-curves representing the output of the deci-
sion tree for each of the four brain regions.

In the comparison with the clinical evaluation, we used the
output of the classifier. Therefore, there was no additional visual
interpretation of the trend curves in the user interface. Of
course, it is possible that the EEG shows significant changes
within 5 min which may limit the performance of the classifier.
Therefore, for our present evaluation we decided to use uniform
EEG epochs.

The system was implemented in a dedicated EEG monitor suit-
able for real-time analysis in the ICU. Pilot measurements performed
in four neurological ICU patients showed that the real-time use of the
classification system at the bedside of the patient is technically fea-
sible. However, we note that the current real-time implementation
of the classifier allowed analysis of the first 10 s of each 30 s epoch
only, while the other 20 s had to be discarded for computational rea-
sons. With more efficient routines, faster software, and higher pro-
cessing speeds, skipping epochs should not be necessary. Given the
typical time scales during which changes occur however, this does
not seem to be a critical issue. The evaluation of our system in four
real-time registrations was satisfying. Our first impression was that
the performance in these registrations was similar to those obtained
in the offline analysis. An extended evaluation in a larger group of
ICU patients is currently in progress.

Similar to the observations presented in the study of Claassen
et al. (2004b), recordings in our patients showed that continuous
monitoring is highly relevant to reliably detect seizure activity.
The use of cEEG registrations and computer interpretation had an
impact on the clinical decision making in all four of the patients
who were monitored in the ICU.

The classification accuracy of the test set and the results of the
real-time pilot measurements are encouraging, but it is clear that
an evaluation on a larger group of EEGs is needed for additional
testing and improvements. The addition of an alarm mechanism
to the real-time monitor may also further improve the clinical im-
pact of the system. Integration with other clinical measures such as
blood pressure, temperature, intracranial pressure (Jordan, 1995),
near-infrared spectroscopy (Calderon-Arnulphi et al., 2007), drug
intake and video (Hirsch and Kull, 2004; Kull and Emerson, 2005)
can further contribute to improved brain monitoring in the ICU,
ultimately resulting in the realization of a multidimensional mon-
itoring system (Wartenberg and Mayer, 2005).

The main focus of our study was to explore whether computer
assisted EEG diagnostics can assist in the visual interpretation by
experienced electroencephalographers. We did not evaluate the
reproducibility of the EEG classification, although this is an impor-
tant issue. Since the system has been trained by labeled EEG data
from the same department, it cannot excluded that there is a par-
ticular bias in the classification. Therefore, training and evaluating
the system using a larger dataset of different centres may improve
the performance of the classifier.

In closing, we remark that most existing real-time EEG systems
focus on the detection of seizures or one specific EEG pattern. Par-
ticularly in neonates, several automatic seizure detection systems
have been proposed (Liu et al., 1992; Gotman et al., 1997; Celka
and Colditz, 2002; Aarabi et al., 2006; Deburchgraeve et al.,
2008). However, the EEG in neonates is not comparable to the
EEG in adult patients. What makes our system unique is that
the classification of most common EEG patterns encountered in
the adult ICU is combined into one system. In addition, the classi-
fier is patient independent and no patient specific boundaries or
parameters have to be set.

In conclusion, we present a decision tree using eight qEEG fea-
tures to classify the most common EEG patterns in the adult neu-
rological ICU. This allows us to differentiate between the most
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common EEG patterns: normal, iso-electric, low voltage, burst sup-
pression, focal or diffuse slowing, GPDs and seizure activity. At
present, we achieve a satisfying classification accuracy of 85%.
The monitoring system allows real-time classification and subse-
quent interpretation by ICU personnel. Ultimately, this can contrib-
ute to an increased use of real-time EEG monitoring in ICU
patients, thereby allowing early detection of neurological derange-
ments and introducing the potential for early interventions.
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