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Abstract  

Objective: To show that cortical responses to conditioned stimuli (CS) include intermittently 

induced spatial patterns of amplitude modulation (AM) of beta-gamma oscillation called frames. 

Methods: EEGs were recorded from 8x8 high-density arrays fixed on primary sensory cortices 

of rabbits trained to discriminate CS with reinforcement (CS+) from those without (CS-). EEG 

frames were located with a pragmatic information index, He. The spatial patterns of the first 3 

frames on each of 37-40 trials were measured by the square of 64 analytic amplitudes from the 

Hilbert transform to give points in 64-space. The questions were asked: Did the frames from 

CS+ trials and CS- trials differ within each sequential group? Did the three frames differ from 

each other (form 3 clusters of points)?  

Results: EEG frames that were identified by high He had AM patterns that could be classified 

with respect to CS+ and CS- well above chance levels. Two stages of correct frame classification 

occurred on each trial: 40-130 ms after CS onset with a gamma carrier frequency, and 450-550 

ms with a beta carrier frequency. Peak power in the beta frames was double that in gamma 

frames, and mean pattern surface area of beta frames was nearly four-fold greater.  

Conclusions: Under the impact of a CS on a sensory neocortex the background EEG activity 

reorganized in sequential frames of coordinated activity, first local and modality-specific, 

thereafter global.  

Significance: The size, texture and duration of these AM patterns indicate that spatial patterns of 

human beta frames may be accessible with high-density scalp arrays for correlation with 

phenomenological reports by human subjects.  
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1. Introduction 
 
The intent of this tripartite study is to develop a way to think about neocortex that can describe 
and explain its capacity for rapid, global integration in perception. The problem is exemplified 
by human and animal behaviors in which the glimpse of a face, the crack of a twig, or the scent 
of food or perfume can in a fraction of a second galvanize virtually the entire body into directed 
action or the preparation for action that is based selectively in previous experience. How is it that 
the sensory impact of a few molecules, photons and phonons onto a prepared brain can be 
amplified into the coordinated activity of the entire forebrain in literally the time needed to blink 
an eye? The way proposed here to answer this question is to analyze, classify, and interpret the 
spatial patterns of EEGs from high-density arrays of electrodes on rabbit, gerbil, and cat 
neocortex, because their textures have been found to be related to categories of simple stimuli 
that the subjects had learned to perceive through classical and operant conditioning [Barrie, 
Freeman and Lenhart, 1996; Ohl, Scheich and Freeman, 2001; Freeman, Gaál and Jornten, 
2003].  
 
During an act of perception, the forebrain has been described as generating a sequence of active 
states that can be conceived as frames that constitute a sequence of points in a step-wise 
trajectory through an infinite-dimensional brain state space [Freeman, 2003a,c]. This 
discontinuous mode of function has been described as “cinematographic” [Sacks, 2004]. 
Measurement and analysis of multiple EEGs from an electrode array on a brain surface gave a 
sequence of points that constituted the projection of a staccato trajectory into a finite n-
dimensional subspace, where n was the number of electrodes, here 64. Visualization was by 
further reduction into 2-space using a variety of multivariate statistical techniques for clustering 
including nonlinear mapping [Sammon, 1969]. Clusters of points in n-space to which a brain 
returned repeatedly and reliably (for example, the two clusters in Fig. 3, D) defined a transiently 
‘stable’ brain state that constituted a cinematographic ‘frame’. Some properties derived for a 
frame were the time interval needed for its onset; its latency and duration in ms; its diameter in 
mm; its peak power; the spectral range of its carrier wave in Hz; its spatial patterns of analytic 
amplitude modulation (AM) and phase modulation (PM); and the behavioral correlates, if any, of 
its AM patterns.  
 
A sequence of AM patterns in frames formed an itinerant trajectory [Tsuda, 1961] in a subspace 
of brain state space; the sequence was regarded as a precursor of perception. Studies of the 
process of perception consisted of measurement and classification of the AM patterns in sensory 
cortical frames that accompanied behavioral discrimination of conditioned stimuli (CS). In these 
sequential cortical frames from high-density EEG arrays [Freeman and Grajski, 1987; Grajski 
and Freeman, 1989; Freeman and Van Dijk, 1987; Barrie, Freeman and Lenhart, 1996; Ohl, 
Scheich and Freeman, 2001; Freeman and Burke, 2003] a significant level of correct 
classification of AM patterns occurred in 1 to 3 time periods starting soon after CS arrival. 
Maximal class ification was usually found in the first period within 40-130 ms of CS onset. The 
reduced level of correct classification in later periods was attributed to greater variation in the 
onset latencies of frames in the 37-40 trials in each session, variation that Tallon-Baudry et al. 
[1996] termed ‘jitter’. Modest improvement in classification rates was obtained by systematic 
variation of the onset times of the samples from the sets of trials about the mean onset time 
across all trials [Freeman, 2003b], or by measurement of the spatial patterns of phase modulation 
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(PM) of the beta-gamma oscillations as markers for the location of frames related to the CS+ and 
CS- [Freeman and Barrie, 2000; Freeman, 2003b].  
 
Recent advances in application of the Hilbert transform to EEGs in the beta and gamma ranges 
[Freeman, 2004a] led to the detection in the EEG of spatial AM patterns having high degrees of 
coherence, stability, and intensity. These epochs were identified with high values of an index, He, 
that Atmanspacher and Scheingraber [1991] labeled ‘pragmatic information’. The epochs with 
high He appeared on average to correspond in location and duration to the peaks of high levels of 
correct classification determined by the Euclidean distance between points in 64-space [Barrie, 
Freeman and Lenhart, 1996]. The latencies and durations of epochs varied across trials. The 
hypothesis is proposed here that the segments identified by high He will serve to locate frames 
that have optimal classification with respect to the CS+ and CS- and therefore have maximal 
information.  
 
Furthermore, the aspect has been emphasized [Freeman, 2003a, 2004a] that the term 
“information” is directed not to the brain activity that implements meaning which is not 
information, rather to the digitized EEG numbers that contain information but have no meaning. 
Clearly brain information must be traced ultimately to the environment. It is well understood that 
information in a sensory stimulus is transformed by receptors first into generator currents and 
then into action potentials. These pulse trains convey the information through further 
transformations by intervening relays to the cortex, where it is injected and can be partially 
retrieved by time-locked averaging of multiple cortical responses to the stimulation. However, it 
is not the case that the relayed information is simply transformed into the non-averaged pattern 
of cortical activity on individual trials whereby feature binding occurs [Singer and Gray, 1995; 
Engel, Fries and Singer, 2001]. Rather the observed pattern is a transformation of the preceding 
background cortical pattern through a state transition, by which the stimulus selects a basin of 
attraction from an attractor landscape. The selected attractor shapes a new pattern that 
incorporates as a small contribution the relayed information carried by the action potentials that 
initiated the state transition. Owing to the predominance of synapses from axons of cortical 
origin over those from afferent axons, the pragmatic information observed in each single-trial 
pattern is shaped mainly by the selected attractor and only secondarily by the new information 
that through one-trial learning modifies the attractor landscape and up-dates it. The experimental 
evidence is the lack of invariance with respect to fixed CS and the context dependence of CS-
related cortical patterns. The basin of attraction provides for generalization to a category, and the 
attractor provides for abstraction by which cortical output signals the class to which a stimulus 
belongs, and which may appear as feature binding. In the event of repeated nonconvergence 
constituting failure to select the basin of an existing attractor, a higher-order state transition may 
initiate formation of a new basin of attraction [Kozma and Freeman, 2001] corresponding to the 
inception of a new category of stimulus through insight learning [Ohl, et al., 2003]. In either case 
the application of information theory to measure the content of successive cortical patterns is 
expected to reveal growth, compared with Shannononian entropic decay expected for cortical 
readings of thalamic messages.  
 
The test of the hypothesis described in this study is complicated by three factors. First, many 
frames appear to have no demonstrable correlation with the CS, even when they occur in the 
interval between onsets of the CS and the CR. Second, the several parameters of the analysis 
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appear to interact, yet the cumbersome technique of classifier-directed optimization to extract the 
behaviorally related information allows systematic change in only one parameter at a time. 
Third, the classifiability of frames is shown to be frequency-dependent. Whereas root mean 
square (rms) amplitudes can be calculated across frequency ranges of any width, calculation of 
analytic amplitudes by the Hilbert transform for classification requires modest temporal band 
pass filtering. The He frames with earlier latencies that gave optimal classification are shown to 
have carrier frequencies in the gamma range, whereas frames with longer latencies have carrier 
waves in the beta range. The classification of He frames here is by nonlinear mapping [Sammon, 
1969; Barrie, Holcman and Freeman, 1999; König, 2000] preceding and including the previous 
technique of calculating centers of gravity and Euclidean distances in n-space because of its 
greater flexibility in distinguishing frames on CS+ trials from frames on CS- trials in any order, 
as well as sequential frames on the same trials. Unfortunately, neither method supports 
classification across distinctive frequency ranges in a single step. Finally, theoretical 
considerations in deriving He [Freeman, 2004a] require the calculation of power, A2, as distinct 
from amplitude, A. Fortunately the use of A2 is found empirically to give rates of correct 
classification superior to those from using A. The results demonstrate the value of the index He 
for locating frames of beta and gamma activity that are significantly related to behavior.  
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2. Methods 

 

2.1. Subjects, data collection and preprocessing   

Rabbits were implanted each with an 8x8 electrode array having average spacing of 0.79 mm and 

giving a window onto a cortical surface of 5.6x5.6 mm. Data from 2 visual, 3 somatic, and 4 

auditory cortices [Barrie, Freeman and Lenhart, 1996] were used in this study. Two visual 

replicates and one somatic replicate were included for statistical purposes. The rabbits had been 

trained to discriminate conditioned stimuli in the appropriate modality in a classic aversive 

paradigm with reinforcement by a weak electric shock to the cheek as the unconditioned stimulus 

(US). The visual CS was a weak or a strong full field flash. The somatic stimulus was a puff of 

air to the face or to the lumbar region. The auditory stimulus was a brief tone at 500 Hz or 5000 

Hz. The data for each rabbit consisted of 37 to 40 trials with random alternation of CS+ and CS- 

presentations. Each trial lasted 6 s with onset of a CS at 3 s that ended the control period and 

began the test period and the US ended the test period. The 64 EEGs were analog filtered at 0.1 

and 100 Hz, amplified 10K, digitized in 12 bits at 2 ms intervals, and stored in 37-40 blocks of 

3000x64 time series. All computations were done with a MATLAB 6.5 software package 

[Mathworks, Inc., Natick, MA].  

 

2.2. Location of stable AM patterns of high intensity using the Hilbert transform 

Seven steps (Fig. 1, A, upper trace) were required to localize frames in which to calculate feature 

vectors for classification. Step 1: The time series from each channel was demeaned to remove 

channel bias, and the entire trial set of blocks (40x3000x64) was normalized by dividing all EEG 

amplitudes by the global standard deviation (SD, lower trace). Step 2: The 64 amplitudes at each 
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digitizing step in all 37-40x3000 blocks were spatially low pass filtered (Fig. 1, A, lower trace) 

with a 2-D Gaussian filter [Freeman, 2004a, Appendix 1, B]. Step 3: The 37-40x64 EEG signals 

in 3000 time steps were band pass filtered by convolution in the time domain (Fig. 1, B, middle 

trace) with finite impulse response (FIR) filters using Parks-McClellan algorithm of order 200 

and transition bandwidth 4 Hz. [Freeman, 2004a, Appendix 1, A].  

 

 
Fig. 1. The algorithms are illustrated that were used to locate each stable spatial frame in which 

to calculate its feature vector for classification. A. Average (upper curves) and SD (lower 
curves) of 64 EEGs from one trial in a 500 ms segment extending across CS arrival at 0 ms; 
Step 1, after channel demeaning and amplitude normalization; Step 2, before and after low 
pass spatial filtering at 0.3 c/mm.  

 
B. Upper curve: Step 3, average EEG after temporal band pass filtering at 20-80 Hz. Lower 

curve: Step 4, spatial average, A2(t), of the analytic amplitude squared, Aj
2(t), averaged over 

channels, j = 1, 64, at each digitizing step, t. The increase in A2(t) was not due to an increase 
in synchrony, which was shown to increase to a maintained level before A2(t) began to rise 
[Freeman, 2004a].  



Neural frame classification 9 Walter J Freeman 
 

 
C.  Step 5: The 64 values of Aj

2(t) gave a 1x64 feature vector, A2(t), that specified an AM pattern 
and a point in 64-space. The Euclidean distance, De, between successive points, A2(t) - A2(t-
1), gave the rate of change in the AM pattern. Successive low values indicated pattern 
stability.  

 
D. Step 6: The pragmatic information was given by the ratio He = A2(t)/De(t). Qualifying 

segments were identified by the criteria that He remained above a threshold, here te = 2, 
longer than a minimal duration, here me = 10 ms, in segments shown by the bars across the 
curve representing log10 He. Step 7: In each qualifying segment the maximum of A2(t) and its 
time of occurrence, tmax, were calculated (triangles). The 1x64 feature vector used for 
classification of each AM pattern by the Hilbert method was given by the 64 values of peak 
power.     

 
 

Step 4: The Hilbert transform was applied with a Hanning window to the EEG from every 

channel on each 6 s trial after spatial and temporal filtering to get the analytic amplitudes, Aj(t), j 

= 1,64. The square of the analytic amplitude was calculated at each digitizing step, t, on all 

channels, j = 1, 64. The mean square, Aj
2(t), was calculated for the time series on each channel 

over the duration a moving window, we, that was centered at each digitizing step [see Table 1.1 

in Freeman, 2004a for notation]. The 64 mean squared amplitudes formed a 64x1 feature vector, 

A2(t), which specified the AM spatial pattern at that time, t, as a point in 64-space. The 

arithmetic mean of the 64 values, A2(t), expressed the  normalized energy of the AM pattern 

(Fig. 1, B, lower trace).  

 

Step 5: The frame given by each feature vector, A2(t), was renormalized by dividing its 64 values 

by the mean, A2(t),  The increment with each time step in renormalized spatial pattern was a 

scalar, De(t), that was calculated by the Euclidean distance between successive pairs of points in 

64-space at t and t-1. This parameter showed periods of large rates of change in spatial patterns 
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(Fig. 1, C) that bracketed periods of low rates of change indicating episodic pattern stability 

[Freeman, 2004a].  

 

Step 6: The quantity termed ‘pragmatic information’ and denoted He was given by the ratio of 

the pattern intensity to the rate of pattern change estimated from the difference in normalized 

patterns [Freeman, 2004a]:  

   He = A2(t) / De(t).        (1) 

High values of He (Fig. 1, D) reflected steps at which the rate of pattern change was low and the 

pattern intensity was high. Time series plots showed occasional high peaks having long duration 

that emerged from a highly irregular baseline. Displays of the time series (Fig. 1, D) and the 

distributions were facilitated by plotting the values of log10He [Freeman, 2004a] Peaks for He 

were located by setting a threshold value, te. A peak began when He rose above te and ended 

when it fell below te. Some minimal duration, me, was required to remove peaks that proved to be 

too brief to have informational value.  

 

Step 7: The classification by nonlinear mapping was done using the feature vectors specified by 

the normalized patterns of analytic amplitudes squared, A2(t), at the time points of maximal 

mean vector length, A2(t).  

 

Thus the parameters to be optimized were the temporal and spatial cut-off frequencies, the 

window, we, the threshold, te, and the minimal duration, me. Starting guesses were provided by 

preliminary analyses. Optimal values were found by constructing tuning curves (Fig. 2, A), in 

which a selected parameter was varied in small steps across an appropriate range, and the 
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number of correctly classified frames in the session was calculated at each parameter step in 

search of the maximum number. A single criterion was adopted by combining the three 64x1 

feature vectors from the first 3 frames into a 192x1 vector that specified a single point in 192-

space for each trial (Fig. 2, B). Any trial in which there were less than 3 frames in the control 

period or test period was omitted. If more than two trials were defective, that value of the 

parameter was disallowed. This method was also used to optimize spatial and temporal filters for 

each subject, as previously described in detail [Fig. 3 in Freeman, Burke and Holmes, 2003]. 

Each tuning curve was computer-intensive; a Macintosh G4 Powerbook required about 14 hours 

to complete the calculations for each session for one subject, so the method allowed variation of 

only one parameter in a run.  

 

Preliminary assays on the present data showed that two pass bands were optimal, covering and 

extending beyond the beta range (8-40 Hz) and the gamma range (20-80 Hz). The window, we, 

was fixed at 64 ms for the gamma band and at 80 ms for the beta band, while the minimal 

duration, me, was fixed respectively at 20 ms for gamma and 30 ms for beta in all cases. Then the 

most critical parameter that required individuation, the threshold te, was evaluated for each case 

and pass band (Fig. 2, A). Given that value as an initial guess, the three screening parameters, 

window duration, we, minimal duration, me, and information threshold, te, were fine-tuned by 

constructing a 3x3x3 tensor with an optimized value at the center and 26 values ±50% of the 

center value and repeating the nonlinear mapping and classification procedures 27 times to 

employ all combinations, followed by selection of the triad with the highest number of correct 

classification for the 192x1 feature vector. This fine-tuning also required about 14-16 hours for 

each subject and trial set. The outcome was a set of EEG segments designated by start latency 
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and duration that were designated as frames in respect to the cinematographic hypothesis. After 

parameter optimization using the 192x1 feature vectors, the final step was to determine whether 

preprocessing the frames with Sammon’s algorithm could help to reveal the high level of 

information in the 64x1 feature vectors by classifying the 3 frames on each trial with respect to 

the presence of a CS+ or CS- on randomly alternated trials.  

 

 
Fig. 2, A. The method for optimizing the threshold, te, is demonstrated.  
 
B. The multidimensional scaling technique of nonlinear mapping [Sammon, 1969] projected 

clusters from 64-space into 2-space, optimizing their separation while preserving the relative 
distances between all of the data points. Two clusters were specified in this example: the 
1x192 feature vector from the first three 1x64 feature vectors in the CS+ trials, and the 1x192 
feature vector from the first three 1x64 feature vectors in the CS-. The circles representing 
the standard deviations (SD) of the clusters were calculated in the display plane. 

 

2.3. Classification by Euclidean distance or by Sammon’s nonlinear mapping 

Classification in preceding studies was by the Euclidean distance method applied to rms 

amplitudes of fixed-length segments in a moving window time-locked across all trials, which 

required division of a session set into even and odd trials: a training set to calculate two centers 

of gravity and a test set to calculate the distance in n-space of each point to the two centers, then 
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repeating with reversal for cross-validation. Classification was judged to be correct when the 

distance of a frame on a CS+ trial was shorter to the CS+ center than to the CS- center, and so 

on. The binomial probability was used to compute the likelihood that the number of correct 

frames out of the total number of frames could have occurred by chance. This method was 

limited to two clusters and gave no visualization of the distributions of points.  

 

The alternative method selected for preprocessing prior to classification was by nonlinear 

mapping [Sammon, 1969]. The mapping worked unsupervised to project the N points in L-space 

(L = 192 or 64) representing the whole set of N frames into a visualization plane for display, 

while preserving to a good approximation the distances between the points. An initial plane was 

defined by the two coordinate axes with largest variances of the data. The N(N – 1)/2 Euclidean 

distances were calculated between the points in L-space and between the points projected into 

the plane. An error function was defined by the normalized differences between the two sets of 

distances. The error was minimized by a steepest gradient descent procedure [equation (1) and 

Appendix 1 in Sammon, 1969].   

 

After optimization the two sets of twenty 192x1 points representing frames were labeled by type 

of CS (+, -) and the six sets of twenty 64x1 points were labeled by CS type and sequential order 

(1, 2, 3). The center of gravity was calculated for each cluster (the centers of the two circles in 

Fig. 2, B). Classification of each point was by its Euclidean distance in the projection to the 

nearest center of gravity. The classification was correct when the type of the closest center in 2-

space corresponded to the same type of frame. For a set of 20 trials of each type the results were 

expressed as % correct classification [Viana Di Prisco and Freeman, 1985; Barrie, Holcman and 
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Freeman, 1999]. An example of the output of Sammon’s algorithm is shown in Fig. 2, B, where 

the circles indicate the SD of the radial coordinates within a cluster measured with respect to the 

center, and each point represents a 192x1 vector in 192-space for the itinerant trajectory formed 

by the first three post-stimulus frames in each trial (Fig. 3). Sammon’s method gave flexibility in 

choosing the number of groups to be classified and the latencies and durations of temporal 

windows. However, it distorted the apparent Euclidean distances in deriving the clusters, so that 

comparison of centers from test and training subsets was unreliable. The level of significance for 

correct classification was evaluated by applying the same test to the 192x1 vector of the first 

three frames starting after 1.0 s in the pre-stimulus control period. Classification in the test 

period was considered to be significant if it exceeded the maximum of “correct” classification in 

the control period from all subjects and sessions as an estimate of p < ,01. Both methods were 

applied to a representative session from every subject giving comparable levels of classification 

and significance, so only the results from Sammon’s method are presented here.  

 

 
 
Fig. 3. The first 3 frames in a set of trials are labeled by color: first, red; second; green; third, 

cyan. The alignment of the segments in multiple columns just after CS onset at 3 s was most 
prominent in data from visual cortex with full-field flash but was not found in 1 of 3 somatic 
subjects nor in 2 of 4 auditory subjects with topographically delimited CS.  
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2.4. Estimation of duration and diameter of optimized frames 

The durations of the 3 sequential frames were determined from the crossings of the trajectory, He 

over the threshold, te. An estimate of the diameters of these frames was obtained by fitting a cone 

to their analytic phase surfaces [Freeman, 2004b, Appendix 2, B]. The filtered EEG gave the real 

part of the time series on each channel; the Hilbert transform [Freeman, 2004a, Appendix 1, C] 

gave the imaginary part. The sum of squares of the real part and imaginary part at each point of 

maximal information, He, gave the 64x1 components of the feature vectors, A2(t); the arctangent 

of the ratio of the imaginary part to the real part gave the analytic phase in radians at each of the 

64 recording sites. The conic surface was fitted to the analytic phase; the slope of the cone gave 

the phase gradient in radians/mm. The reciprocal of the gradient gave the spatial wavelength in 

mm/cycle. Multiplying the wavelength by π/4 gave the diameter at half-power, which was 

adopted as a measure of the soft boundary condition for the interactive cortical domain that 

supported the spatially coherent carrier oscillation of the AM pattern in each frame.  
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3. Results 

3.1. Classification with respect to CS+/- using the 192x1 feature vectors  

Temporal pass bands of 20-80 Hz and 8-40 Hz with sets of optimized values for we and me were 

adopted for all trial sets (Table 1), and optimal values were found for te (Fig. 2, A). The two sets 

of correct classification values of CS+ vs. CS- for the 12 trial sets listed by cortex showed 

separation of 192x1 feature vectors for both pass bands in the three cortices, most strongly for 

visual cortex and least for auditory cortex. Minor adjustments in the parameters were made as 

noted in Table 1. Control segments were the first three frames in the pre-stimulus period starting 

2 s before the CS onset. Statistical significance of the differences between control and test frames 

was evaluated by one-tailed t-test applied to the 12 group means.  
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Table 1. Correct classification of frames with optimized threshold 
 

Gamma     Beta 
Cortex  20-80 Hz, we = 128 ms, me = 20 ms  8-40 Hz, we = 160 ms, me = 30 
ms 

 
Visual  te #c/#tot   test control diff  te #c/#tot   test control diff 
F152x10  0.3  33/37   89.2 56.8 32.4  2 31/37 83.8   59.5 24.3# 
F152x12  0.5  31/39   79.5 53.8 25.7  7  30/39 76.9  59.0 17.9 
F9520x9 0.1 31/40   77.5 55.0  25.0^   3  29/40 72.5  57.5 15.0 
F9520x10 0.2 28/40   70.0 57.5 12.5”  1  29/40 72.5  52.5 20.0 
Avg  0.2  79.0 55.8 23.2  3  76.4 57.1 19.3 
 
Somatic  
F528x2  1 26/40   65.0   50.0 15.0  2   27/40 67.5   65.0   2.5 
L531x6  3 28/38 73.7  63.2 10.5  6   31/38 81.6  60.5 21.5 
F220x4  4 30/40 75.0   45.0 30.0           14   29/40  72.5   62.5 10.0 
F220x3  4 28/40 70.0   62.5   7.5  5   28/40 70.0   65.0   5.0 
Avg  3  70.1 55.2 14.9  7  72.9 63.2   9.8 
 
Auditory 
F553x3  0.1 24/40  60.0   57.5   2.5  3  31/40 77.5   67.5 10.0 
F587x1  0.3 25/40 62.5 55.0   7.5^  2   27/40 67.5   55.0 12.5 
L530x2  1 28/40 70.0  70.0   0.0  5   30/40 75.0  60.0 15.0 
L532x3  3 27/40  67.5  55.0 12.5  2   29/40 72.5  57.5 15.0 
Avg  1  65.0 59.4   6.6  3  73.1 60.0 13.1 
 
Average 1.5 28/39 71.7 56.8 14.9*  4.3 29/39 74.2 60.1 14.1** 
 

# 8-32 Hz  “ me = 3 ^gap = 40 ms  *p = 0.0002  **p = 0.000006 
 

Table 1. Comparison of correct classification of control vs. test frames after optimizing 

temporal pass bands, values of threshold, te, window duration, we, and frame duration, me.   

 

3.2 Classification of serial AM patterns with respect to CS+/-  

The hypotheses were proposed on the basis of results from the Euclidean distance method 

[Barrie, Freeman and Lenhart, 1996] that three distinctive spatial AM patterns followed onset of 
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either the CS+ or CS-, and that on every trial each class of AM pattern would occur once and 

only once (Fig. 3). The hypotheses were tested by nonlinear mapping of the 6 groups 

corresponding to the first three 64x1 feature vectors appearing after each type of CS (Fig. 4, 

control A, test B). The same parameters were used as those listed in Table 1.  The correct 

classification values of CS+ vs. CS- for each point with respect to the 6 centers of gravity were 

compared for the 3 test frames against the 3 control frames, from which differences were 

assessed as significant for the gamma range at p < .05 and for the beta range at p < .01 (Table 2, 

first column).  The 12 trial sets showed significant classification of feature vectors only for the 

first frame in the gamma range and not for the second and third frames. In the beta range 

significant correct classification was found only in the third frame and not in the first two frames. 

Comparisons between successive frames revealed significant differences between the first, 

second and third frames for the CS- only for the gamma band, whereas the only successive 

difference for the beta band was that between the second and third frames for the CS+.  
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Table 2. Classification by frames, Mean ± Standard Error of correct classification 
 
A. Frames  6 centroids CS-1 vs CS+1  CS-2 vs CS+2  CS-3 vs CS+3  
Gamma 
Control 27.1 ± 0.8 58.0 ± 2.0  60.5 ± 2.2  63.5 ± 1.4 
Test  30.2 ± 1.7 68.2 ± 3.2  60.6 ± 2.3  57.0 ± 2.2 
Test-Control   3.1  10.1     0.1   -6.5  
p    0.024    0.017     ns     ns 
Beta 
Control 22.4 ± 1.0 60.6 ± 1.1  58.0 ± 1.8  55.2 ± 1.2  
Test  27.1 ± 0.8 58.0 ± 2.0  60.9 ± 1.7  65.2 ± 55.2  
Test-Control   4.7   -2.6     2.9   10.0 
p    0.005    ns     ns     1.45E-05 
B. Frames  CS-1 vs CS-2 CS-2 vs CS-3  CS+1 vs CS+2 CS+2 vs CS+3 
Gamma  
Control 58.8 ± 2.1 59.5 ± 1.0  61.0 ± 2.2  58.3 ± 1.3  
Test  65.7 ± 2.4 69.1 ± 3.2  60.1 ± 2.2  56.6 ± 1.8  
Test-Control   6.9    9.6   -0.9   -1.7  
p     0.024    0.009     ns     ns 
Beta 
Control 56.4 ± 1.4 57.8 ± 2.3  59.2 ± 1.4  58.8 ± 1.4 
Test  58.8 ± 2/1 59.5 ± 1.0  63.5 ± 3.0  62.5 ± 2.2  
Test-Control   1.4    1.7     4.7     3.7  
p     ns    ns     ns     0.048  
N= 12, d.f. = 11 for one-tailed paired t-test  

Table 2, A. Comparison of correct classification of CS+ vs. CS- for the first three frames in the 

gamma band (first rows) and the beta band (second rows).  

B. Comparison of correct classification of sequential 2 pairs of frames for CS+ and for CS- in 

the gamma band (third rows) and the beta band (fourth rows).  
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Fig. 4, A. Display of all groups, control. B. Display of all groups, test. C. First frame, control. D. 

First frame, test.  
 

3.3. Measurement of the parameters of frames: control versus test  

Start latencies ranged from 20-550 ms. The mean start latencies of the first control frames, 32-39 

ms, averaged less than half the expected values, which were half the mean interval ranging from 

156-214 ms. The mean start latencies of the first test frames, 65-66 ms, were consistent with the 

known mean start latencies of neocortical evoked potentials. The latencies of the second and 

third test frames exceeded those in the control frames in the gamma range but not in the beta 

range. The recurrence rates from the reciprocals of the mean intervals were in the higher half of 

the theta range for the gamma band and in the lower half for the beta band. There were no 

differences between CS+ and CS- frames, so the data were pooled for these statistics.  
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Durations ranged from 30-90 ms. Durations of the first test frames in both pass bands exceeded 

those of the first control frames. The durations of successive test frames in both pass bands 

decreased with increasing latency but not so of control frames (ANOVA df = 2, F = 4.33, p = 

0.014). Diameters ranged from 10-36 mm, with frames in the beta range consistently exceeding 

those in the gamma range. There were no significant differences between successive frames or 

between CS+ and CS-. Peak power normalized with respect to the global mean of EEG from 

each trial set ranged from 0.07-0.60 SD. Normalized peak power in all test frames exceeded 2-

fold that in all control frames in both pass bands. For test frames but not for control frames in the 

gamma range there was a decrease in peak power from the first to the second frame (p < .05); in 

the beta range for both CS- and CS+ a comparable decrease in peak power occurred from the 

second to the third frame (p < 0.001), bringing peak power to the control level. The data are 

summarized in graphic form in Fig. 5.  

 

Table 3. Parameters of frames: mean ± Standard Error (SE) 
 
Pass band  Gamma 20-80 Hz     Beta 8-40 Hz 
Frame       first     second    third       first     second    third 
 
Latency, ms 
Control    32 ±   5 173 ± 21 316 ± 31   39 ± 8.6 271 ± 22 472 ± 37 
Test    66 ± 16 239 ± 31 406 ± 35   65 ± 8.8 268 ± 19 490 ± 47 
Difference   34    65    92    26     -3   -18 
p T > C   0.049    0.049    0.048    0.040     ns     ns 
 
Duration, ms 
Control  42.1 ± 2.8 38.6 ± 3.3 39.5 ± 2.9 71.8 ± 5.2 65.8 ± 4.2 67.8 ± 3.1 
Test  57.2 ± 5.7 48.2 ± 6.8 47.0 ± 8.0 80.6 ± 5.7 74.6 ± 7.2 64.7 ± 3.3 
Difference 15.1  9.6    7.5    9.8    8.8  -3.1 
p T > C 0.0002  0.024     ns    0.016     ns     ns 
 
Diameter, mm 
Control  16.7 ± 2.4 18.5 ± 3.1 18.9 ± 2.9 26.8 ± 4.5 22.4 ± 4.2 24.0 ± 4.5 
Test  18.3 ± 3.0 16.8 ± 3.0 18.6 ± 3.5 21.6 ± 4.1 25.9 ± 5.5 25.3 ± 4.7 
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Difference   1.6   -1.7     -.3   -5.2    3.5     1.3 
p T > C    ns     ns     ns     ns     ns     ns 
         
Peak power, A2, normalized with respect to global SD x1000   
Control    88 ± 18   80 ± 17   83 ± 17 273 ± 32 256 ± 32 275 ± 41 
Test  173 ± 32 137 ± 37 143 ± 37 401 ± 46 417 ± 95 288 ± 47 
Difference   85    57    60    28  161    13 
p T > C   0.0001   0.043    0.032    0.004  0.012     ns 
 
Intervals, ms   141 143 142 (7.0 Hz)  232 201 216 (4.6 Hz) 
  173 167 171 (5.8 Hz)  203 222 212 (4.7 Hz) 
    156 (6.4 Hz)    214 (4.65 Hz)  
  
 

Table 3. Pooled estimates are given of the latency, duration, diameter and peak power of the 

frames derived using the optimized values of the threshold, te, given in Table 1.  
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Fig. 5. The data in Table 3 are presented in graphic form.  
 

A further test was conducted to determine whether the information in the data that served for 

classification was concentrated in any smaller number than the set of 64 channels. As in prior 

studies [Freeman and Baird, 1987; Barrie, Freeman and Lenhart, 1996; Freeman and Burke, 

2003; Ohl, Deliano, Scheich and Freeman, 2003] the test was conducted by randomly deleting 

channels in varying numbers and repeating the classification test, while keeping an account of 

the contribution by each remaining channel. With one exception the results of prior studies were 

replicated in the present study; no channel was any more or less of value than any other, while 

the best classification rate was achieved by using all available channels. The exception was that 

in a study of the auditory cortex Ohl, Deliano, Scheich and Freeman [2003] found tonotopic 

specificity in the first classification peak.  
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4. Discussion 
 
4.1 The cinematographic hypothesis for study of AM patterns  
Sacks [2004] recently described reports by patients suffering migraines and Parkinson’s disease 
of rare episodes in which their slowed perceptions broke into freeze-frames. From these 
descriptions and from his review of books on consciousness he concluded: “The mechanism of 
our ordinary knowledge is of a cinematographical kind.” His findings were preceded by half a 
century of researches that were triggered by the discovery of the alpha rhythm, which led several 
psychophysiologists [e.g., Walter, 1963] to propose that it manifested a scanning or gating 
mechanism by which visual awareness was parsed into frames. Explorations over the years have 
remained inconclusive.  
 
Recent analyses of human scalp EEG using the Hilbert transform [Freeman, 2003; Freeman, 
Burke and Holmes, 2003] have provided electrophysiological evidence complementing previous 
analyses of animal data for repetitive phase transitions in neocortex at recurrence rates in the 
theta and alpha ranges. These phase transitions appear to segment the EEG into frames. If the 
cinematographic hypothesis is to be tested physiologically, some of the corollary questions 
should be: What are the properties of the frames? How many screens are there? How can the 
contents of frames be measured? What are the neural mechanisms by which frames are formed 
and by which their contents are transmitted and integrated?  
 
The index for pragmatic information, He, appears well suited as a tool for locating frames in the 
EEG, because it selects segments in the filtered EEG that are characterized by intense 
multineuronal dendritic current that is likely to be accompanied by high density of neural firing. 
The segments defined by He also have high degrees of synchrony in beta or gamma oscillation; 
they cover spatial domains extending over several square cm; and they have stable spatial 
patterns of neural activity that persist for several tens of ms, typically 3-5 cycles of the peak 
carrier frequency [Freeman, 2004b]. By these criteria the He segments are likely to contain the 
organized neural activity that supports the stages of generalization, abstraction, and 
categorization in perception leading to recognition and recall. One form of requisite experimental 
proof is the demonstration of significant rates of correct classification of segments with respect 
to antecedent CS+/-, in order to infer that they are frames in the perceptual process invoked by 
conditioning. While the rates achieved in the present study are well above chance levels and 
indeed superior to prior results, they fall considerably short of the crispness that will be desired 
of a tool for analysis of the mechanisms of human perception. However, this first glimpse into 
the inner dynamics of perception at the level of the primary sensory cortices does offer some 
insights that may help substantially in devising further experimental exploration, as well as 
opening new avenues for theoretical explanation and modeling.  
 
These new data support the concept that perception has two main stages: initial destabilization of 
a primary receiving area by sensory input that leads to formation of a local AM pattern [‘wave 
packet’, Freeman, 1975/2004, 2003c] having a carrier frequency in the gamma range; and 
subsequent emergence by self-organization of a global AM pattern having a carrier frequency in 
the beta range. The first stage of this sequence was most clearly seen here in the visual cortical 
data. The second, global stage has been documented by simultaneously recording in multiple 
sensory areas and the entorhinal cortex, showing that the first stage was not manifest in those 
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data, but that 2-4 peaks of multicortical AM pattern classification recurred later in the CS-CR 
interval [Freeman, Gaál and Jornten, 2003; Freeman and Burke, 2003]. The goodness of 
classification was reduced by removal of the data from each contributing brain area, which 
demonstrated that the spatial patterns were indeed multicortical. Measurement of the phase 
relations among the 5 areas showed that the global patterns formed by abrupt, transient increases 
in phase locking among the 5 areas [Freeman and Rogers, 2003).  
 
The most notable deficiency of the present results was the poor level of classification in the 
auditory cortical data (Fig. 3). One explanation for the high failure rate for classification of early 
auditory AM patterns was the tonotopic restriction of the auditory CS to 500 and 5000 Hz tones, 
which stood in contrast to the full-field weak and stronger flashes in vision and the relatively 
broadly distributed air puffs to the face or back for somesthesis. The arrays were surgically 
placed over the sensory areas as described in the literature for the rabbit but without topographic 
testing with specific CS+/- prior to fixation [Barrie, Freeman and Lenhart, 1996]. The 
experiment was repeated in gerbils with meticulous location of an electrode array over the 
primary auditory area [Ohl, Scheich and Freeman, 2000], leading to clear identification of 
category learning [Ohl, Scheich and Freeman, 2001] that followed tonotopic spatial patterns.  
 
Another limitation in the present study was the lack of a specific test for the extent to which the 
hypothesis held that one and only one frame of a given category occurred and could be detected 
on every trial. This aspect is still under investigation.  
 
4.2. Interpretation of AM patterns in the perceptual process 
A salient problem in perception is how to characterize the pre-stimulus background in two 
aspects. One aspect concerns the repeated state transitions that generate patterns of phase 
modulation in the form of cones. These phase cones are found by measuring spatial phase 
gradients [Freeman, 2004b] and are associated with recurrent AM patterns, and they have 
parameters of size and duration that conform to power law distributions. They appear to provide 
for the meta-stability of neocortex in a state of self-organized criticality [Freeman, 2004a]. Yet 
most of their AM patterns have as yet no detectable relation to specific stimuli or overt 
behaviors. The other aspect is the on-going life of each subject, in which it is to be presumed 
that, prior to the CS arrival, each primary sensory cortex contributes to brain states of awareness 
that might have little relevance to accessible parameters of behavioral observation and control 
except in terms of focused attention and expectancy. These on-going patterns of coordinated 
analytic phase differences (CAPD) are found by measuring the temporal phase gradients 
[Freeman, 2004a]. The independence of the spatial and temporal gradients (frequencies) has been 
well documented [Freeman, 2004b].  
 
Expectancy might become apparent on comparing the AM pattern sequences following CS+ 
versus CS-. The present analysis contrasts the impact of an expected CS+ with that of a known 
CS-. Both induce early formation of an AM pattern that is focused in the pertinent primary 
sensory cortex and includes several or all its parts, with brief duration and a carrier frequency 
mainly in the low gamma range. Several hundred ms after the CS+ follows an AM pattern that is 
not well classified. A third AM pattern follows with definitely larger size, longer duration, and a 
carrier wave in the beta range. In contrast to the impact of the CS+, the first AM pattern after the 
CS- onset is followed by a second AM pattern still with a gamma carrier frequency and a pattern 
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that clearly differs from the first in texture but not in size or duration. This second AM pattern 
may be related to response suppression rather than selection in a go-no go paradigm. A third AM 
pattern with a beta carrier, long duration, and large diameter differs from that in CS+ trials in the 
late range but not from the second CS- AM pattern, perhaps again relating either to response 
suppression or to return to a prior state of expectancy.  
 
4.3. Significance for human studies 
The best and perhaps most compelling reason to develop these arcane techniques of background 
EEG pattern analysis is to provide a platform on which to base comparable analyses of human 
scalp EEG, in order to take advantage of the cognitive and phenomenological skills of normal 
healthy subjects and their verbal descriptions of mental states. The question arises, whether the 
textures of Gestalt-related AM patterns might be detected from scalp recordings. Animal studies 
with simultaneous EEG recording from multiple cortices suggest a positive answer, from the 
intermittent high rates of classification that have been found in multicortical AM patterns formed 
by EEGs from five mini-arrays fixed on the visual, auditory, somatic, entorhinal cortices and the 
olfactory bulb [Freeman, Gaál and Jornten, 2003; Freeman and Burke, 2003]. Distances of one to 
four cm separated these arrays.  
 
Estimates of the distances across which coherent states of beta and gamma activity form in 
human scalp EEG [Freeman, Holmes and Burke, 2003] show that multicortical AM patterns may 
be large enough to provide surface areas suitable for EEG pattern analysis from high-density 
scalp arrays. Repeated studies have shown that the classificatory information is distributed in the 
spatial frequency domain [Freeman and Baird, 1987; Ohl, Deliano, Scheich and Freeman, 2003; 
Freeman and Burke, 2003], so that the locations of electrodes in arrays need not be specified 
precisely, only that they not be moved during the course of a perceptual study. The minimum 
number of channels is about 16 [Barrie, Lenhart and Freeman, 1996; Ohl, Scheich and Freeman, 
2001] though more is better. The best location on which to place a high-density array is the left 
or right calvarium with reference to the vertex in order to minimize interference from EMG 
[Freeman, Holmes, Burke and Vanhatalo, 2003]. In the absence of access to restricted 
topographic areas of primary sensory cortex the more useful CS may be broad and ‘natural’, as 
distinct from those with the narrow boundaries of spatial and spectral location that are needed for 
sensory analysis. Suggested tasks would require multisensory discrimination with formation of 
pairs of chaotic itinerant trajectories through brain state space [Tsuda, 2001], each with 2 or 
more stable brain states along the way.  
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