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 A variety of nanostructured materials are produced through template-based synthesis methods, including zero-
dimensional, one-dimensional, and two-dimensional structures. These span different forms such as nanoparti-
cles, nanowires, nanotubes, nanoflakes, and nanosheets. Many physical characteristics of these materials such
as the shape and size can be finely controlled through template selection and as a result, their properties as
well. Reviewed here are several examples of these nanomaterials, with emphasis specifically on the templates
and synthesis routes used to produce the final nanostructures. In the first section, the templates have been
discussed while in the second section, their corresponding synthesis methods have been briefly reviewed, and
lastly in the third section, applications of the materials themselves are highlighted. Some examples of the tem-
plates frequently encountered are organic structure directing agents, surfactants, polymers, carbon frameworks,
colloidal sol–gels, inorganic frameworks, and nanoporousmembranes. Synthesis methods that adopt these tem-
plates include emulsion-based routes and template-filling approaches, such as self-assembly, electrodeposition,
electroless deposition, vapor deposition, and othermethods including layer-by-layer and lithography. Template-
based synthesized nanomaterials are frequently encountered in select fields such as solar energy, thermoelectric
materials, catalysis, biomedical applications, and magnetowetting of surfaces.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Nanostructured materials have attracted considerable attention in
recent years. Control over size, shape, and morphology of nanostruc-
tures is the most important advantage of template-based synthesis
and can produce chemical and physical properties that differ markedly
from those of the bulk materials. Many different template materials
are available, and depending on their type and structure, a wide range
of nanomaterials can be synthesized. The general mechanism for tem-
plate synthesis includes three principal stages, the template prepara-
tion, directed synthesis of the target material using the template, and
template removal [1].

Covered in this review are a variety of template-basedmethodologies
that govern the synthesis of some notable nanostructured materials, in-
cluding zeolites, mesoporous silica, semiconducting nanoparticles, nano-
wires, nanotubes, and thin films. Although template-based syntheses
encompass a tremendously broad range of methodologies, they share
striking similarities in regard to their underlying principle and mecha-
nism. The types of templates, ranging from organic molecules to
membranes, are discussed, alongwith their corresponding common syn-
thesis methods and applications.

Two classic examples of heavily template-controlled nanomaterials
aremesoporous silica and zeolites. Both owe their nanoporous structure
to the templates used to produce them. Characterized by their high sur-
face area and uniformporous structure,mesoporous silica nanoparticles
(MSNs) have an incredible degree of variability in their synthesis, and as
a result, final structure, due to themultitude of parameters in templates.
MSNs can be synthesized into a variety of shapes, including solid and
hollow spheres, rods, and irregular forms often named differently
from one source to another (e.g. “doughnut”). Likewise, the crystalline
structure, such as hexagonal, cubic, and irregular frameworks, intro-
duces a broad diversity into MSNs. The combinations of the physical
shape with variations in porous structure are astonishingly widespread
as documented in literature. The principle behind MSN formation is
very straightforward. The widely used surfactant-template method to
synthesize MSNs was discovered originally by scientists at Exxon
Mobil in 1992 [2]. Since its discovery, the sol–gel method for synthesiz-
ingMSNs, as it is named aptly due to the semi-solid and liquid state dur-
ing which the silica framework formed, became the basis for which
MSNs were produced. The sol–gel synthesis method in principle
requires two constituents, a silica source and a templating agent. The
former provides the silica, which forms the framework around the
pore-determining template. While the silica sources are typically
tetraorthosilicates such as tetraethyl orthosilicate (TEOS), other sources
including silica fume [3], ash [4], and electronic waste [5] have been
used successfully. The templating agent and its impact on the MSN
structure are discussed in greater depth in Section 3.1.

Zeolites are nanostructured, crystalline aluminosilicates containing
pores and cavities of molecular dimensions. Many occur as naturalmin-
erals, but it is the synthetic varieties, which are among the most widely
used sorbents, catalysts, and ion-exchange materials in the world. Zeo-
lite crystals are porous on amolecular scale with their structures reveal-
ing regular arrays of channels and cavities (3–15 Å), thus creating a
nanoscale labyrinth, which can be filled with water or other guest mol-
ecules. Zeolites are aluminosilicates with tetrahedrally connected
framework structures based on corner-sharing aluminate (AlO4) and
silicate (SiO4) tetrahedrons [6,7]. These tetrahedrons can arrange them-
selves in many unique ways, giving rise to the many different types of
zeolites. The aluminum exists in Al+3 oxidation state bonded to four ox-
ygen atoms, resulting in a net negative charge for each aluminum atom
to the framework. Silicon exists in Si+4 oxidation state bonded to four
oxygen anions, each shared between two silicon atoms, resulting in no
net charge. The overall charge of the framework depends on aluminum
content only. A high Si/Al ratio gives to the zeolites a high thermal sta-
bility [6,7]. The first zeolite was prepared in 1950s under hydrothermal
conditions in basic aqueous media and using inorganic cations as
charge-balancing species [8–10]. Since then, many approaches have
beenmadewhich have enabled the discovery a large number of new ze-
olite framework types. Detailed historical perspectives on the evolution
of zeolite synthesis have been written by Flanigen et al. [11] and some
years later by Cundy et al. [9,12]. Many zeolites can be made using
only inorganic reactants, and all the phases studied up to 1961, such
as the classical synthetic zeolites A, X, and Y, were synthesized in
this manner. However, in the 1960s the use of organic compounds,
particularly quaternary ammonium salts, to make zeolites increased.
These organic compounds are often referred to as templates since the
zeolite structure appears to form around them, in some cases encapsu-
lating them with a very close fit between the organic groups and the
pore walls. Currently, zeolites can be synthesized from small organic
structure directing agents (OSDAS), ionic surfactants and liquids, non-
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ionic and amphiphilic surfactants, carbon frameworks and natural
templates.

Metallic and semiconducting nanostructures including nanowires,
nanotubes, and unusual nanomushrooms have been subjects of intense
research across many applications including electronics [13], photonics
[14], magnetics [15], and biological sensing [16]. Their uniform and
large aspect ratio provides a range of intriguing quantum size effects,
while maintaining classical behavior in the axial direction. Template
methods for nanowire synthesis were first demonstrated in the 1970s
and achieved widespread popularity in the 1990s and onward, with
template materials ranging from porous bulk media [17] to self-
assembly of macromolecules [18] and biological species [19]. While
bulk, one-dimensional nanowires and nanotubes can be produced via
deposition techniques onto existing nanowires and nanofibers, it is
often advantageous to usewell-ordered templates to direct the synthesis
or fabrication of nanowire/nanotube two-dimensional arrays. In particu-
lar, templates such as anodic alumina oxide (AAO) and polycarbonate
track-etched (PCTE) membranes have widespread usage in producing
highly uniform arrays of nanowire and nanotubes as a result of deposi-
tion into theporous channels of themembrane. Control over thefinal ge-
ometry and size depends on the porous membrane, with AAO and PCTE
membranes ranging from 1 to 1000 nm in diameter and lengths up-
wards to 100 μm in length. In other instances, nanomushroommorphol-
ogies, usually a result of overgrowth on a porous template, provide a
convenient means for in situ or ex situ functionalization of individual
nanowires [20], useful in measuring their properties or creating single-
wire devices.

2. Nanostructures and their templates

In the following section, different nanostructured materials, classi-
fied under zero, one, or two-dimensional geometry and examples of
the templates used to produce such structures are outlined. One-
dimensional nanostructures here specifically describe nanoparticles on
the order of 10–1000 nm diameter while the one-dimensional
terminology addresses geometries such as nanowires, nanocables, and
nanotubes. Two-dimensional nanostructures include nanodisks,
nanoflakes, and nanosheets. Nanowire and nanotube arrays, although
two-dimensional in nature, are not specifically addressed in this section
and instead, are considered as part of their individual component, the
one-dimensional feature. However, in the Synthesis Methods section,
arrays are considered a unique nanostructure produced through its
own set of synthesis and fabrication protocols.

2.1. Zero-dimensional structures

2.1.1. Small organic structure directing agents (OSDAS)
The need for increasing the Si/Al ratio of the zeolites led Barrer and

Denny [21] to popularize the use of small OSDAs such as quaternary am-
monium compounds in zeolite synthesis, resulting in ZSM-5 type and
beta zeolites with high silica content. Zeolites produced by larger
OSDA templates have high framework Si/Al ratios exceeding 10. When
the OSDAs are removed from the structure, open pores are produced
in the material. The use of OSDAs has been decisive for the discovery
of zeolites with different topologies, especially for the synthesis of
AIPO-type zeolites, which contain high-silica content [6].

Themain characteristics of OSDAswhich determine its suitability for
the synthesis of a certain zeolite structure are its polarity (hydrophobic/
hydrophilic character), size, charge, shape, and rigidity [22]. Concerning
the polarity of theOSDA, a compromise has to be achieved, as the organ-
ic molecule must be soluble in water, but it should not form complexes
with the solvent, at least to a large extent. For example, in the case of
quaternary ammonium compounds used as OSDAs, an adequate C/N+

ratio ranges between 11 and 16. Thesemolecules have the right polarity
for being used as OSDAs in the synthesis of high-silica zeolites. The size
to charge ratio of the OSDA will determine the final framework charge
density.

One of themost important synthetic zeolites is ZSM-5 due to its pore
structure, as well as the high stability and high acid strength that
are derived from its high Si/Al ratio. This zeolite is synthesized using
tetrapropylammonium ion (TPA+) as the OSDA. The structure of ZSM-
5 is built up from 5 to 5-1 secondary building units (SBUs). These join
to form chains, which in turn link to form sheets. The ZSM-5 structure
results when these sheets are linked across a center of inversion, with
TPA+ cations at channel intersections. ZSM-5 has a pore system
consisting of interesting straight and undulatingmedium pore channels
of pore diameters between 5 and 5.5 Å [23]. A more complex di-
quaternary cation [(H3C)3N(CH2)nN(CH3)3]2+ was used to produce
the structures EU-1 [24] and NU-87 [25].

The influence of different templates to synthesize ZSM-5 zeolite has
been studied by Fouad et al. [26] The template sources employed were
tetramethylammonium hydroxide (TMAOH), tetraethylammonium hy-
droxide (TEAOH), tetrapropylammonium hydroxide (TPAOH), and
tetrabutylammonium hydroxide (TBAOH). The variation of template af-
fects the crystallinity of the ZSM-5. The crystallinity percentage of the
produced ZSM-5 increased in the following order TMAOH b TEAOH b

TBAOH b TPAOH and 0.537 b 0.43 b 0.333 b 0.215.
Most of the typical OSDA templates used for zeolite synthesis are

usually toxic and not environmentally friendly. Moreover, calcination
at high temperatures is necessary to remove the organic templates in
order to produce the porous structure in the zeolites. This combustion
required is accompanied by the release of polluting gases, mainly NOx

andCO2 [27]. The organic templates used for synthesizing crystallinemi-
croporous aluminophosphate zeolites, have relatively high toxicity in
comparisonwith the organic ammonium cations, which are used by alu-
minosilicate [28,29]. Wang et al. [30] reported a method for identifying
low-toxicity organic templates for the synthesis of aluminophosphate
zeolites, such as AIPO-5. The nontoxic and inexpensive organic com-
pounds containing nitrogen atoms such as tetramethylguanidine
(TMG), which can be found in the products of animal metabolism
could be suitable for templating microporous aluminophosphate
zeolites.

Another problem that OSDA templates have is that most of them are
costly, and the calcination for removing them would result increased
cost for the production of zeolites. In order to avoid this problem, new
low-cost OSDAs have been used in the synthesis of zeolites. Zones
et al. [31] have developed a new approach for preparation of zeolites
using multi-organic amines instead of expensive organic templates.
Typical MWW-type zeolite is produced from hexamethylenimine in
aluminosilicates gels but Zones et al. [31] used isobutylamine together
with a small amount of aminoadamantane to template SSZ-25
(MWW). Also, zeolites such as SSZ-13 (CHA), SSZ-33 (CON), SSZ-35
(STF), and SSZ-42 (IFR) have been prepared in the samemanner. Impor-
tant EMT-type zeolites that usually are templated by the toxic 18-
crown-6 [32], recently have been produced successfully using the
poly(diallyl dimethyl ammonium) chloride (polyquaternium-6),
which is a component of shampoo [33]. One of the most important ap-
plications of the zeolite Cu-SSZ-13 is as catalyst in the reaction of reduc-
tion of NOx by ammonia andwould benefit greatly from reduced cost in
its synthesis. Ren et al. [28] have synthesized units of SSZ-13 zeolite
with a series of inexpensive inorganic or organic compounds. They
also found that a low-cost copper complex (Cu2+ coordinated with
tetraethylenepentamine, Cu-TEPA) was successfully used to synthesize
the zeolite Cu-SSZ-13.

2.1.2. Ionic surfactants and liquids
The templates frequently used inMSN syntheses are surfactants due

to their innate tendency to form micelles. As a result, the silica source
tends to aggregate and form silica networks around these micelles. Se-
lection of the template dominates the final porous structure of the
MSN and as such, is the center of attention for many MSN syntheses



54 M. Pérez-Page et al. / Advances in Colloid and Interface Science 234 (2016) 51–79
studies. The two major crystalline structures observed in MSNs as a re-
sult of ordered pore formation are hexagonal and cubic. Disordered and
random structures are also possible. Surfactants typically used are either
ionic or non-ionic, but in more complex MSN systems, such as hollow
MSNs (HMSNs) mentioned in Section 2.1.4, a secondary or dual tem-
plate is needed.

Ionic surfactants directMSN templating through strong electrostatic
interactions between the surfactant micelles and the silicate source.
Both anionic and cationic surfactants can be used, although different re-
action conditions are required for each case. For silica, the isoelectric
point is approximately 2, where below this value; the surface is posi-
tively charged and above, negatively charged. The silicate precursor is
typically negatively charged at most experimental conditions and as a
result, cationic surfactants are much more widespread in order to pro-
mote the electrostatic bonding between the template and the silica
source (see Fig. 1). To abbreviate the different pathways possible, typi-
cally notations such as S− or S+ denote the anionic or cationic surfac-
tant, N− or N+ for any co-surfactant, and A− as the anionic silicate
source. An example of the S+–A− combination frequently found in liter-
ature is hexadecyltrimethylammonium bromide (CTAB) and tetraetil
ortosilicato (TEOS). Hexadecyltrimethylammonium chloride (CTAC) is
another commonly used cationic surfactant.

Due to the small hydrodynamic radii of ionic surfactants, pore size
control is limited by only changing the template. However, there are
multiple instances in literature that demonstrate differences in cationic
surfactant size will induce directly correlated pore sizes in mesoporous
silica. The classical examples are MSNs produced by CTAB and CTAC
with varying alkyl chain lengths. Defined alkyl chain lengths for these
surfactants have been used as studies have shown direct correlation be-
tween the length of the chain and the final pore size of theMSN [34]. In
addition to quarternary ammonium surfactants, additional cationic spe-
cies such as small organic amines (SOAs) can be used complementarily
to assist in formation of the porous structure [35]. While these do not
solely template the micellar framework for the pores, they disrupt and
promote cationic surfactant micelles to preferentially bind together,
resulting in a worm-like porous structure.

Synthesis of zeolites also uses this type of template. Quaternary am-
monium polymers represent a special class of organic cations in that a
growing crystal must accommodate not just a single cation but also a
complete, linked chain of defined structure. It was with this thought in
mind that a series of polymers was prepared and studied for effects in
zeolite crystallization [36]. A controllable route for the synthesis of
hierarchical mesoporous zeolites template from a mixture of cationic
polymer and small organic ammonium salts has been developed. The
Fig. 1. Effect of pH on MSN formation in typical cationic surfactant template governed
syntheses [511].
route involves a one-step hydrothermal synthesis, and the template
mixture is homogeneously dispersed in the synthetic gel. Hierarchical
mesoporous beta zeolite was crystallized in the presence of TEAOH,
which is the general organic template for the synthesis of this zeolite,
and amesoscale cationic polymer, polydiallyldimethylammonium chlo-
ride (PDDAC). The molecular weight of the cationic polymer lies in the
range 1 × 105–1 × 106, and its sizes estimated at 5–40 nm, which is in
good agreement with the dimensions of the mesopores obtained [37].

Although not as common their cationic counterparts, anionic surfac-
tants are used aswell. Due to the anionic nature of silicate precursors, an
intermediate or co-silica source with cationic behavior is needed in
order to adapt the anionic surfactant templating method. In one
example by Yokoi et al. [38] a charge neutralization effect is achieved
when the negative anionic group of sodium dodecyl sulfate (SDS)
interacts with the positively charged ammonium site of (3-
aminopropyl)triethoxysilane APTES, in addition to TEOS present. An-
other similar example by Che et al. [38] utilizes a similar electrostatic
approach using a variety of anionic surfactants with APTES or N-
trimethoxysilylpropyl-N, N, N-trimethylammonium chloride (TMAPS).
The resulting structure is highly uniform, can be cubic or hexagonal,
and have pore sizes ranging from 2.3 to 5.2 nm.

Ionic liquids (IL) have also been used to template mesoporous silica
nanoparticles. Aswith ionic surfactants, ionic liquids behave similarly in
electrostatically interacting with the silicates to form porous networks.
In particular, 1-alkyl-3-methylimidazolium (CnMIM) has been used
multiple times in literature to produce MSNs under near identical alka-
line conditions with TEOS acting as the silicate precursor [39]. Even
short chain IL templates, which do not preferentially form micelles,
still generated mesoporous silica structures, although with random,
worm-like porosity [40].
2.1.3. Non-ionic and amphiphilic surfactants
Non-ionic and amphiphilic templates are just as abundantly used to

synthesizeMSNs as their ionic counterparts. Themostwidely used clas-
ses of these templates are tri-block polymers, specifically polyethylene
oxide-polypropylene oxide-polyethylene oxide (PEO–PPO–PEO) with
the BASF trademark name of Pluronic®. Due to the hydrophilic nature
of the PEO tails and thehydrophobic nature of the PPO, Pluronics behave
as amphiphilic surfactants, with varying strength in relation with the
polymer chain length and ratio of PEO:PPO components. Typically
Pluronics with high molecular weight, such as P123 or F127, are used
due to their greater stability and structure-directing ability. One of the
earliest MSN synthesis methods involving non-ionic surfactants was
done by Zhao et al. [41] at the University of California, Santa Barbara,
from which their SBA-15 (Santa Barbara Amorphous) was named.
Typical SBA-15 type MSNs since then have been produced using PEO–
PPO–PEO triblock polymers with both the original hexagonal and later
seen cubic crystalline structures. A tremendous range of non-ionic sur-
factants exist, with trade names such as Brij®, TWEEN®, Tergitol®,
Triton®, and Span®, in addition to the tri-block PEO–PPO–PEO
Pluronics. A comprehensive study [42] investigated mesoporous silica
structures synthesized with a range of non-ionic surfactants at acidic
conditions.

As observed with Pluronic syntheses in acidic conditions, the cubic
phase is predominately favored. The mechanisms through which non-
ionic surfactants direct MSN synthesis is similar to those found in
ionic surfactants, and can produce as equally uniformhexagonal crystal-
line structures. However, as noted by Zhao et al. [41], the formation of
uniform porous crystallinity is sensitive to all reaction parameters, in-
cluding the template concentration, pH, and temperature. At non-
optimal conditions, amorphous, disordered, or even no silica is formed.
The results indicate that both the electrostatics between the template
and silicate source, as well as the self-assembly of the template itself,
are crucial parameters that vary with the reaction environment and ul-
timately govern the porous crystallinity during the sol–gel formation.

Image of Fig. 1
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In addition to the predominantly found hexagonal mesoporous
structure, cubic structured MSNs were also synthesized shortly after
the former's discovery. When using PEO–PPO–PEO as the template, it
was noted that greater PEO content resulted in the cubic structure
[41]. MCM-48 (belonging to the same M41S family as MCM-41) also
shares the cubic structure as with other later developed varieties, SBA-
1, SBA-16, KIT-5, and KIT-6. The cubic porous network has advantages
over hexagonal networks as theorized by Monnier et al. [43] With the
intertwined porous structure, diffusion and transport within the meso-
porous network is not hindered with pore blockage as it is seen in the
well-ordered hexagonal crystalline structure. The synthesis of cubic
MCM-48 observed by Kim et al. [44] was produced with both pure
CTAB as a template, but only seen with higher stir speeds and low sur-
factant to silicon ratio. Presence of a co-solvent, ethanol, also drives
the conversion of hexagonal to cubic symmetry as well [45]. Excluding
the extremities of synthesis parameters possible in both ionic and
non-ionic methods, disordered mesoporous silica structures produced
from non-ionic templates also exist, as those observed in KIT-1 [46]
and MSU-X [47] type MSNs. Bagshaw et al. [47] attributed the irregular
and disordered porous network to the silicate formation around the sta-
ble worm-like micelles of longer amphiphilic templates.

2.1.4. Secondary templates
For dual-templated systems, such as those found in hollow MSNs

(HMSNs), hierarchal MSNs, and other hollow organic/inorganic
nanoparticles, a secondary template is used in addition to the pore-
governing one. Frequently this is a colloid of polymeric nanoparticles
that function as the core, such as polystyrene [48,49] or other
polymers including poly(methylacrylic acid) [50] and poly(methyl
methylacrylate) [51,52]. For dual-templating MSNs, polystyrene latex
has been a widespread choice due to its homogeneous synthesis, com-
mercial availability, nanoscale diameter, and thermal degradability dur-
ing calcination [53]. Negatively charged polystyrene beads provide
strong electrostatic interactions with cationic surfactants and thus
serve as highly stable templates for HMSNs [54]. Fig. 2 shows the versa-
tility of PS, performing both as a template for the larger, hollow core,
and smaller surface pores. The effect of the latex core on the porous
structure and orientation was also observed [55] but the relationship
between the two was not explicitly explained. The reverse is observed
as well, with inorganic materials such as solid silica [56–59] or ZnO
Fig. 2. One example of HMSN synthesis using polystyrene nanopartic
[60] having been used to template hollow polymeric nanoparticles. An
important criterion for the template is the ability to be selectively re-
moved, and as a result, polymeric templates are most commonly used
as they can be removed through calcination, leaving the silica structure
intact. With silica cores, solutions of hydrochloric or hydrofluoric acid
are used instead.

Besides HMSNs, a “yolk-shell” structure has also been frequently
studied in context of core–shell, dual template MSNs. Advantages of
this system allow for encapsulation of inorganic nanoparticles within
the permeable silica shell, allowing for targeted delivery, imaging, catal-
ysis, or nanoreactor applications. Wu et al. [61] used a dual-surfactant
template of lauryl sulfonate betaine (LSB) and sodium dodecyl
benzenesulfonate (SDBS) to form micelles around silica, gold, or iron
oxide cores. Afterwards, APTES and TEOS were used to form the meso-
porous silica shell as described earlier. Similar to the LSB/SDBS system,
fluorocarbon surfactants have also been used to form micelles around
inorganic cores, followed by normal mesoporous silica synthesis for
the shell [62].

2.1.5. Carbon frameworks
Themajor drawback of zeolites is the small size of channels and cav-

ities with diameters of 0.8 nm and between 0.3–1.5 nm respectively.
This fine microporosity also has disadvantages because diffusional lim-
itations impose high back pressure on the flow system. Tominimize dif-
fusion problems, efforts have explored the synthesis of zeolites with
controlled particle morphology and porosity. Although generally suc-
cessful in terms of improved diffusion, a reduction in pore-wall crystal-
linity is often observed, resulting in reduced catalytic activity [63,64].
One approach to overcome these limitations is to decrease the zeolite
crystal size to the nanometer scale, consequently increasing external
surface area while reducing the diffusion path length. Although various
strategies have beenproposed to design andproduce zeolites, template-
directed synthesis is currently the most widely used method.

Different carbon frameworks have been used for the synthesis of
mesoporous zeolites [63,64]. Jacobsen et al. [65] synthesized zeolites
on carbon nanoparticles as the porous matrix. They use an excess of a
zeolite gel in the system so that the zeolites fully encapsulate and
form around the carbon particles template. Subsequently, large zeolite
single crystals are formed. Removal of the carbonmatrix by combustion
leads to isolation of large zeolite single crystals with a mesoporous
les as templates for pore and hollow structure formation. [467].

Image of Fig. 2
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system. By the proper choice of carbon matrix it is possible to influence
the mesoporous system.

Multiwalled carbon nanotubes (MWCNT) were also used as a tem-
plate to form mesoporous zeolites [66,67]. Zeolites with mesoporous
were prepared by sequential impregnation of MWCNT with a 40 wt.%
aqueous solution of TPAOH and TEOS. The sample was crystallized at
175 °C for 24 h. After the hydrothermal crystallization, the MWCNT
were completely removed by calcination in air at 600 °C for 20 h. The di-
ameter of the carbon nanotubes varies closely around a 12 nm average
with walls consisting of 6–8 graphene layers. Zeolite crystal is grown
around the carbon nanotube. The individual zeolite crystal has partly
encapsulated the MWCNT material during growth. The uniform meso-
porous penetrate the zeolite crystal. The use ofMWCNT as templates of-
fers a high degree of control over the diameters and spatial arrangement
of mesoporous in zeolites crystals. Carbon nanofibers (CNFs) were also
employed as templates for the synthesis of the mesoporous zeolites.
This carbon material yields zeolite crystals whose pores vary widely in
diameter, some particles can have pore diameters similar to CNFs, 20–
40 nm, while others have much larger diameters [63].

Aluminosilicate molecular sieves (RMMs) synthesized using carbon
mesoporous molecular sieve (CMK) as a carbon template and ZSM-5 as
a precursor resulted in the formation of zeolite nanocrystals on the ex-
ternal surface of the carbon template. For this synthesis the carbon tem-
plate was treated first with TPAOH and then aluminosilicates were
introduced, followed by crystallization. If the materials were prepared
by CMK-1 templating possessed uniform pores with cubic patterns
and if they were prepared by CMK-3 hexagonal patterns were obtained
[63,68,69].

Carbon aerogels (CAs) [63,70–74] are obtained in monolithic form
and their structures and properties depend on the agglomerate struc-
tures of uniform spherical carbon particles [63,73,75]. CAs show an ad-
sorption isotherm type IV, which is typical from mesoporous materials
[63,76]. This type of isothermmeans that the adsorption in thismaterial
proceeded via multilayer adsorption, followed by capillary condensa-
tion taken place in mesopores, resulting in an increased amount of ad-
sorption at higher relative pressure. Capillary condensation is a
secondary process that requires the preformation of an adsorbed layer
on the porewalls formed bymultilayer adsorption [77]. Using shrinkage
of RF aerogels during the pyrolysis can control the pore size from CAs
and they have developed as templates for the preparation of
mesopore-modified zeolites [63,78,79]. The synthesis of zeolites with
mesopores consists of three different steps. In the first step, the zeolite
precursor was introduced into mesopores of carbon aerogel, then the
zeolite was synthesized in the inert mesopores, and finally, the zeolite
was separated from the aerogel [63].
2.1.6. Biological templates
Macroscopic bacterial threads produced from the mutant FJ7 strain

of Bacillus subtilis [80] have been used as template of zeolite fibers
with hierarchical structure by Baojian et al. [81]. TPA-Silicalite-1 nano-
particles, which were synthesized previously from clear solution by re-
flux and aqueous solution containing TEOS and TPAOH, can be
infiltrated into the ordered void spaces of a bacterial template where
they can be used as building blocks for the construction of macroporous
inorganic templates. Removal of both molecular (TPA+) and microme-
ter scale (multicellular filaments) templates by thermal degradations
gives the zeolite fiber hierarchical porosity that might have technologi-
cal advantages owing to the high surface area and uni-directionality of
the patterned architectures.

Mesoporous silica nanoparticles have also been templated by
B. subtilis [82]. As seen with zeolite fibers, mesoporous silica fibers
have been produced using bacterial threads dipped into a mesoporous
silica sol–gel. Due to the anionic surface charge of the Grampositive bac-
teria, the anionic silica readily phase separates from the bacterial strands
and forms a superstructure. Additionally, starch has been used as a
template for both zeolite and silicate nanostructures. Pores ranging be-
tween 0.5–50 μm were produced by varying the starch ratio in the
sol–gel [83].

2.2. One-dimensional structures

2.2.1. Nanowires
Nanowires (NWs) are a key building block of nanotechnology and,

are at the core of research efforts integrating them into novel devices.
Metallic nanostructures provide a broad range of functionalities in elec-
tronic applications [84,85], magnetism [86–88], catalysis [87,89,90], bi-
ological tagging [91], photonics and plasmonics [92,93], and controlled
self-assembly [94]. Integrating nanostructures into devices has many
advantages such as a better utilization of preciousmetals, better control
over the structure and thickness of adlayers, more effective electron
pathways, and improved mechanical support. Template synthesis has
proven useful in the controlled synthesis of highly uniform nanowires
and nanowire arrays. Nanostructure synthesis in a template offers the
possibility to grow nanostructures with complex compositions [95,96],
high aspect ratio and integrated junctions, such as nanocable structures
with integrated p-n junctions [97,98]. Numerous interesting properties
have been identified in relation to the nanoscopic dimension (the diam-
eter) of the materials with high aspect ratio [99]. More importantly,
template synthesis offers the direct integration of nanostructures into
electronic devices. Once the template is created, nanostructures can be
produced by either chemical (electroless deposition), electrochemical
or physical methods. After the nanostructures were synthesized, the
template may be removed to expose the nanostructure arrays.
Nanocables with radial junction can also be produced (e.g. Au/Te
[100–102]). Electrochemistry can be used in combination with electro-
less deposition, where slow electroless plating (nomass transfer limita-
tions) allows for a uniform metallic film. The metal deposition occurs
uniformly at the pore walls creating hollow metallic nanotubes inside
the pores [103–108]. For multiscale nanostructures such as nanotubes,
nanofibers, and nanocables, it is important to knowwhich characteristic
length scale, nmor μm, governs the deposition process [109]. For the μm
scale, diffusion limitations can be important if the surface deposition
processes are relatively fast.

Electrochemical deposition, or electrodeposition, is a process in
which an external potential is applied to a sample substrate in a solution
of ions, along with a counter electrode to complete the circuit, usually a
noble metal such as Au or Pt, and a reference electrode to provide a ref-
erence potential at a known half-cell potential. In the case of metals, the
working electrode acts as a cathode, injecting electrons into the reac-
tion, which reduce cations in solution, causing them to deposit in or
on the attached template. The technique of growing very fine wires
into a porous template was first demonstrated like Possin [110], and
was popularized byMartin et al. [111] and Preston et al. [112] Common-
ly used templates include nanoporous anodic aluminum oxide (AAO)
and polycarbonate track etched (PCTE) membranes which have been
modified with a conductive back layer, such as sputtered gold. Walter
et al. [113] have also demonstrated the electrodeposition of metallic
nanowires at the step-edges of oriented graphite. Electrodeposition
may be used for the deposition of a wide array of metals, including
noble metals, iron-group metals, Pb, Zn, Sn, In and Bi [87,88,110].
Codeposition of metallic alloys is also possible (see Section 2.1), as is
the electrodeposition of many compound semiconductors, wherein
the anion is deposited from the reduction of a complex cation contain-
ing the anionic species [95]. The use of porous membranes facilitates
the inexpensive growth of large arrays of nanowires with tight control
over nanowire size and aspect ratio. Furthermore, the use of pulsed
electrodeposition allows for nanowire growth with excellent length
uniformity [87,114] and controllable crystallinity [115] allowing for
the growth of highly uniform segmented nanowires [87], or nanowires
containing monolayer molecular junctions [84]. Hurst et al. provide a
detailed review of segmented nanowire template growth [87].
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Templated nanostructuresmay also be grown via electroless deposi-
tion into or onto a template. Thismethod substitutes a reducing agent in
solution, such as a citrate, oleylamine or polyol, for the external poten-
tial used in electrodeposition [116]. This process is best understood for
metallic films, though chemical pathways for the electroless deposition
of compound semiconductors are also known [117]. A template is
surface-functionalized with a group that binds well to the depositing
cation, such as a thiol- or amine-terminated self-assembled monolayer
(SAM); the adsorption and galvanic reduction of cations on the tem-
plate surface then proceeds spontaneously, with the deposited film
conforming to the shape of the functionalized surface. The process has
been successfully demonstrated for a wide range of materials, including
Au, Ag, Pt, Cu, and Ni–P and Co–P alloys.

Many nanoporous materials and membrane templates may be used
as templates, including PCTE, AAO, mesoporous zeolites, nanochannel
array glass, polypeptide tubules, and surface relief grating (SRG) tem-
plates [118–121]. For example, SRG patterns can be used as a template
for colloid self-assembly and nanowire fabrication. Titania nanowires
have been fabricated using a spin-on process on one-dimensional
(1D) SRG patterned and flat substrates of epoxy-based azobenzene
functionalized polymer (AFP) templates [119–121]. The twomost com-
mon template materials used are AAO and PCTE (see Fig. 3). AAOmem-
branes consist of a highly regular array of uniform pores with pore
densities as high as 1011 cm−2 [87], diameters from 5 nm to 250 nm,
and lengths in the micrometer range. They may be produced electro-
chemically via a two-step anodization process established by Masuda
et al. [122] and described in detail by Kovtyukhova et al. [123] or pur-
chased commercially. AAO pores have the benefit of high pore density,
uniform and parallel pores, and durability; however, they are much
more difficult to dissolve than polymeric membranes, requiring NaOH
to fully remove the membrane [124]. PCTE membranes are produced
by bombarding a polycarbonate film with ionizing radiation followed
by UC sensitization and chemical etch to widen the damaged area into
a pore [125]. They are available commercially, and have uniform pores
ranging from 10 nm to 2 μm and a pore density of approximately
109 cm−2 [87]. The ion bombardment process results in randomly dis-
tributed and occasionally intersecting pores, which may lead to issues
in the processing of highly uniform or complex structures. However,
PCTE membranes are inexpensive, large-area, and readily dissolved in
solvents such as dichloromethane, easing handling and processing
procedures.

Multisegmented nanowires were developed to fill in need for
different chemical functions along a nanowire, which will allow them
to perform several tasks simultaneously [126]. Multifunctional/
multisegment magnetic nanowires with modulated electrocatalytic
and bioelectrocatalytic responses were adapted for on-demand opera-
tion/switch of microchip device, electrochemical sensors, magnetic
stimulus, whichwill lead to the ‘smart’ devices. Fig. 4 presents a few ex-
amples of multifunctional/multisegment nanowires including their fab-
rication by template- assisted electrochemical synthesis, which is the
Fig. 3. a) Track-etched PCTE membrane and b) AAO me
main technique used to create multi segment nanowires. Sequential
template- assisted electrochemical synthesis offers spatial control over
the segment composition. Therefore, a combination of different mate-
rials or compositions is possible to be achieved into a single nanowire.
Individual segments have different reactivity and can be functionalized
by molecular linkages that bind specifically to different segments along
the nanowires [126]. Having a high aspect ratio, nanowires exhibit
uniquemagnetic properties. Furthermore, multisegment ferromagnetic
nanowires bring additional size and compositional effect benefits to
their coercivity and remanence along the magnetic easy axis, parallel
to the wire axis [127]. Additional tuning can be achieved by controlling
the nanowire diameter since coercivity, remanence and Curie tempera-
ture depend on nanowire size.

2.2.2. Nanocables
Nanocables are core–shell type structures that combine interesting

properties induced by the difference in structural growth (longitudinal
vs axial) characteristic of the core and shell. Electrochemical template
synthesis is by far the technique of choice used to obtain arrays of
nanoelectrodes [95,96,128–131]. Both axial and longitudinal growth of
nanocables with p-n junctions can be produced. Starting with a
nanoporous polycarbonate tract-etching (PCTE) membrane as a tem-
plate, Au nanotubes were fabricated by electroless Au deposition inside
the nanopores of the PCTE membrane [128]. Using the Au nanotube
membrane as a second template, Te was deposited on the surfaces of
the Au nanotubes by slow electrochemical deposition, taking advantage
of underpotential deposition (UPD) [132]. The deposition rate was suf-
ficiently slow to radially grow Te nanotubes coaxially within the Au
nanotubes to form nanocables.

There are several advantages associated with nanoelectrode arrays.
They exhibit a small potential drop, which make the electrochemical
measurements possible when a low electrolyte concentration is used.
The small size of the nanoelectrodes arraymaintains a steady-state cur-
rent and has a high current per unit area (i.e. high ratio of signal to
noise). This property is mainly used in sensors, where the sensitivity
of the device could increase more than 100 times. Furthermore, one of
the many advantages for preparing multilayered nano-sized materials
is that the electrodeposition can be performed on flexible substrates
and at room temperature, which is very important for systems in
which undesirable interdiffusion occurs between the adjacent layers.

However,more recent developments have suggested that amore so-
phisticated architecture of the nanocable arrangement cannot be
achieved using commercial templates. More complex nanocable or
nanowire configurations for certain applications in can use other tech-
nologies to create particular design nanostructured array for
nanoelectrodes, such as nano-imprinting. Another way to create com-
plex structures is to use nanocable arrays as template for bimetallic
nanotubes [133]. An electrochemical template assisted method was de-
veloped for functional Pt nanostructures to improve their electrocatalyt-
ic activity by controlling the shape and the size of Pt. Nanowires of ZnO
mbrane. Figure reproduced from Hurst et al. [140].
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Fig. 4. a) Schematic description of themembrane-template electrochemical preparation ofmultisegment nanowires, and b) Selective functionalization of a multisegmentmetal nanowire
[126]; c) TEM image of a 140 nm diameter nanowire with 40 nm Ni layers and 5 nm Cu layers [127].
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were used as a template for growing porous Ni–Pt core–shell nanotube
arrays [133]. Uniform layers of Ni and Pt were electrodeposited on ZnO
nanorods (see Fig. 5). Then, dissolving the ZnO template, porous Ni–Pt
core–shell nanotube arrays were obtained.

2.2.3. Nanotubes
Due to the two-dimensional structure and their hollow interior,

nanotubes have specific properties such as one-dimensional electron
transport, light trapping, and novel photonic properties. There are two
types of templates that can be used for the synthesis of the nanotubes
and hollow fibers. The first method is based on the internal diameter
control. In this case wires or rods will be used as a template and the di-
ameter of the template will determine the internal diameter of the
nanotube. The second approach is based on the external diameter con-
trol. In this case cylindrical wells will be the substrate for the deposition
and the diameter of the cylindrical wells will determine the external di-
ameter of the resulting nanotube/fiber.

The most common method of synthesis of nanotubes is by
employing nanofiber or nanowire templates. The templates will be re-
moved after deposition of the interested materials and hence provides
with a hollow interior. The template removal can be performed by ther-
mal or chemical methods. The ideal template for nanotubes should be
Fig. 5. Schematic illustration for the synthesis of Ni@Pt core–shell nanotube arrays (lef
removed at fairly low temperatures and should not leave any residue
that would interfere with the final product or its application. The pyrol-
ysis of the template and the byproduct exhaust gas or expansion should
not disrupt the structure of any surface layer of the material as well.

Due to these factors, cellulosic fibers are one of the more attractive
thermally removable templates. Cellulose nanofibers have been used
for production of inorganic nanotube structures, including hollow TiO2

fibers [134,135], SnO2 nanotubes [136,137], Fe2O3 nanotubes [138], and
SiOx nanotubes [139]. The main advantage of cellulosic fibers is that
long fibers (in the range of 10 μm) can be produced with this method.
By controlling the diameter of the cellulosic fibers, the internal diameter
of the hollow fibers can be controlled. Solution-based techniques such as
sol–gel and layer-by-layer self-assembly (LbL) are commonly used to
synthesize nanotubes. The LbL techniques provide the ability to deposit
nanoparticles on the surface of the cellulosic fibers and hence, the nano-
structured hollow fibers will be produced. The nanostructured fibers are
important for application which high surface area and electrolyte diffu-
sion are important such as batteries and solar cells [134]. Ghadiri et al.
[140] used sol–gel process for deposition of TiO2 on the surface of the cel-
lulosic fibers. After removal of the template, the remaining hollow fibers
showed the electron collection efficiency of a dye-sensitized solar cell.
High surface area and the electron transportation are both important in
t) and Ni@Pt core–shell nanotube arrays after etching ZnO nanorods(right) [133].
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Fig. 6. SEMof Aumushroom caps showing a)monocrystalline faceting, b) large grains, and
c) fine grains. Reproduced from Karimi et al. [125].
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the gas sensors. Therefore, the nanotubes with mesoporous structures
are suitable candidates. Huang et al. [137] used cellulose fibers as tem-
plates and prepared tin oxide nanotubes by sol–gel method.

Cellulose fibers often require some treatment to improve their dis-
persion. However, in the many instances for templating nanotubes,
commercial cellulosic membranes and loose fibers are used, which are
random in structure and vary from micrometer [141] to nanometer
[142] to aerogel varietals [143]. Treatments done in order to improve
the dispersion of cellulosic fibers, but obtaining the nanofibers as sug-
gested is quite unpredictable and difficult to achieve in the sense of a
supported template membrane [144]. Instead, the treatment, typically
acidic/ultrasonication modification, are used to for nanofibers of cellu-
lose, which are either processed into membranes or aerogels, or at
times used directly for deposition of the matrix material [145].

Along with cellulosic nanofibers, carbon nanofibers are widely used
to template a variety of inorganic nanotubes as well, including ZrO2,
Al2O3, and SiO2 [146], and then removed through calcination at elevated
temperatures (1023 K) TiO2 [147] and SnO2 nanotubes [147] produced
using carbon nanofibers are highly similar to those produced from cel-
lulose templates. Polymeric fibers and other natural organic species
can also be used as thermally removable templates. Polymeric mem-
branes can be prepared with electrospinning which provides accurate
control on the diameter and porosity of the fibers [148]. Polypropylene
hollow fibers have been used for preparation of zirconia hollow fibers
[149]. The polypropylene was removed at 873 K for four hours. Peptide
amphiphiles, which self-assemble into long nanofibers, were used to
produce silica nanotubes [150,151]. Lastly, inorganic nanofibers can be
used to template nanotubes, although less commonly due to their diffi-
cult removal. Jun. et al. [152] used a sacrificial Mn3O4 nanofiber tem-
plate to produce conductive polyaniline nanotubes. Similarly, V2O5

nanofibers served as templates for polypyrrole nanotubes [153]. During
the polypyrrole polymerization process, the V2O5 nanofibers were con-
sumed and removed, eliminating any need for rigorous post-synthesis
template removal.

As noted in templates used for nanowire syntheses, formation of
nanotubes using porous membranes such as AAO or PCTE requires an
additional step to induce the hollow geometry of the final nanotube.
In some instances, this can be a simple methodology of simply absorb-
ing away the contents of the nanopores, as done using AAOmembranes
sandwiched between filter paper [154] to produce nanotubes of
Cu2ZnSnS4 after immersing the AAO membrane in the precursor
sol-gel. More elaborate methods such as controlled polymerization are
applicable for the synthesis of organic nanotubes. Nanotubes of
polyaniline and poly(2-methoxyaniline)were prepared inside the poly-
carbonate membranes by chemical in situ deposition, although poly(2-
methoxyaniline) was clearly more uniform in nature, and formed regu-
lar nanotubes, whereas polyaniline nanostructures were not clearly
nanotubes [155]. With a spin-casting technique and AAO as the tem-
plate, polymer nanotubes of either polystyrene or poly(methyl methac-
rylate) or both could be produced after removal of the AAO template
with 1 M NaOH [156]. Using AAO or PCTE membranes, several metal
oxide nanotubes can be produced, including TiO2 [157], ZnO, FeO(OH)
[158], WO3 [159] Co [160].

The important factor for formation of the desired nanotubes is
selection of a coating method with precise control over the thickness
of the deposited layer inside the pores. As with electrodeposition and
electroless deposition techniques discussed earlier, control of the
deposition rate and quantity can limit growth of the nanowires to
have hollow cores intact. Example methods include electroless gold de-
position [161] or a layer by layer method [162] which is based on the
alternative immersion of the AAO pores inside the precursors of α,ω-
diorganophosphonate/Zr.

2.2.4. Nanomushrooms
Mushroom cap morphologies result most commonly from the over-

growth of nanowires grown in porous templates by electrodeposition
[163] though similar morphologies have also been achieved through
reflux growth [164] or interference lithography [165]. While template
overgrowth is generally considered unfavorable when growing nano-
wires, mushroom cap morphologies have proven useful in increasing
electrical contact reliability in functionalized nanowires [166,167] as
well as inmonitoring and automating nanowire growth by usingmush-
room cap electrical contact to an electrode grid on the top side of the
growth substrate to detect the location of single nanowires or terminate
nanowire growth [20,168]. Single-crystal GaN nanowires templated on
catalyst seeds and grown via vapor–liquid–solid growth have also been
intentionally coalesced to form a low-defect semiconductor film on a
highly mismatched substrate [169], with the nanowire stems providing
strain relaxation. Similar structures have also proven useful for plas-
monic applications [165]; templated deposition might provide an inex-
pensive and scalable method for creating such structures.

The growth regimes of the mushroom cap may differ from those
present in the nanowire growth, as the physics of adsorption, available
growth surface, and cation mass transfer differ on the mushroom cap
compared to within the nanopore. The shape and aspect ratio of the
mushroom cap depends strongly on the energy balance of adsorption
of metal cation complexes on the template surface compared to the de-
posited metal, as well as the relative interfacial energies of the template
andmushroom capwith the cation solvent (usuallywater). If adsorption
andwetting of themetal on the substrate surface is favorable, themush-
room capsmay grow in a layer by layer (Frank–van der Merwe) regime;
however, if adsorption is not favorable, the mushroom caps will exhibit
layer-island (Staranski–Krastanov) growth, not readily coalescing with

Image of Fig. 6
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each other but instead forming rough nanopillars [163]. When single-
crystalline wires are grown, the caps demonstrate strong faceting, as op-
posed to the rough surfaces seen in polycrystalline wires (Fig. 6) [125].

2.3. Two-dimensional structures

2.3.1. Nanodisks, nanoflakes, and nanosheets
Planar structureswith their thickness in the nanometer range can be

categorized to nanodisks, nanoflakes, and nanosheets. One simple ap-
proach for the synthesis of the nano-disks is by coating the surface of
large spherical particles such as polystyrene and then removing the sub-
strate. Polystyrene mesospheres have been used as the templating
structure for the synthesis of silver nanodisks [170]. In this research
aqueous colloidal polystyrene spheres functionalized with carboxylate
were used as the template. In this method proper selection of the pre-
cipitation or grow of the desired material on the surface of the polysty-
rene is very important.

The uniform cylindrical pores ofmembranes such as AAO can also be
used to produce polymeric curved nanodisks, such as polystyrene ones
produced by Chi et al. [171] By using polystyrene nanospheres and de-
positing them on the inner porewalls of AAO, during subsequent drying
and annealing steps, the nanodisk is formed. Similar results are seen
with poly(methyl methacrylate) and acrylonitrile-butadiene-styrene
polymers.

Biological templates are no exception to function as templates as
well. Ferritin, a uniform spherical protein, is often used due to its bio-
mineralization capability of iron. As a result, iron oxide is deposited
onto surfaces from the ferritin template. Uniform sub-10 nm silicon
nanodisks were produced using ferritin as the template [172]. By
using a smaller biological template, Listeria-Dps, siliconnanodisks of ap-
proximately 4.5 nm can be produced [173]. With stabilizers added to
the ferritin template, such as PEG, the spacing of ferritin on surfaces
can be controlled, and utilized to produce uniform nanodisk arrays, as
shown with InGaAs done by Yoshikawa et al. [174].

Similar to nanodisks, nanoflakes have near identical geometry but
are frequently observed in clusters or agglomerates. As such, nanoflakes
are usually produced to increase the surface area of their templates. Su-
pramolecular templates are candidate templates for the synthesis of
nanoflakes. Shen et al. [175] reported the synthesis of metal nanoflakes
by deposition on functionalized fullerene prepared as the template. Al-
though this method is simple, the method does not provide accurate
control over the size of the nanoflakes. Carbon nanotubes also are fre-
quently used as templates for nanoflake synthesis as well, as observed
by Chen et al. [176], where graphitic nanoflakes were grown onto car-
bon nanotubes.

Novel porous nanosheets can be produced with several templates.
Precursor chemicals, which can form lamellar complexes, can be used
as soft templates [177] while hard templates such as metal oxides or
graphene also are viable [178]. For solid nanosheets, narrow phase sep-
aration cadmium halide and diamine can form diamine bridges and hy-
drogen bonds in the form of an alternating layered structure. This
method has been used for large scale production of CdSe nanosheets
with less than 2 nm thickness [179]. In other instances, deposition and
growth onto templates such as graphene oxide, can produce ultrathin
nanosheets of silicon [180].

3. Synthesis methods

It has been established that there are a wide variety of templates ca-
pable of templating zero-dimensional, one-dimensional, and two-
dimensional nanostructures. In this section, we only briefly discuss
three categories of synthesis methods involving the templates and
their respective final nanostructured products. For a majority of nano-
particles, such asMSNs or semiconducting nanoparticles, emulsion syn-
thesis is a versatile and efficient method to produce homogeneous
nanoparticles. For one and two-dimensional nanostructures, such as
nanowires, nanotubes, and nanostructured arrays, template-filling
methods are used to form the final product around an appropriate tem-
plate through differing techniques including electrodeposition, vapor
deposition, and melt/sol–gel deposition. Due to the incredible variety
of templating methodologies, other techniques such as layer-by-layer
and lithographic syntheses are also discussed briefly, but potentially
many newer, novel methods have not been covered in-depth. The dif-
ferent synthesis methods are discussed here, with a focus on their capa-
bility, feasibility, and potential extension.

3.1. Hard and soft templating syntheses

The majority of nanoparticles are produced through hard and soft
templating methods, which can be categorized roughly into deposition
onto colloidal suspensions and emulsions respectively. In the former,
hard templates such as polystyrene nanoparticles are used as the core
for a target material deposition, while in the latter, emulsions are a
straightforward method to similarly deposit material onto micelles or
phases within a solution. The basic principle for emulsion systems is
the phase separation of two media from which preferential micelles or
nanoparticles will form. As the target material deposits onto the mi-
celles of one phase, typically either water or oil, the nanostructure de-
velops and is finalized once the template is removed. Due to this
mechanism, colloidal solutions can also be used as emulsion templates,
such as those comprised of polystyrene latex, a common template for
this method [181]. As described earlier, the majority of template re-
agents used for MSN syntheses, such as TEOS and trimethylbenzene
(TMB), are already candidates for oil-in-water emulsion methodologies
and as such, HMSNs are frequently produced through emulsion synthe-
ses. In this instance, the oil phase formsmicelles and functions as a tem-
plate in determining the shape and structure of the target material
deposited on it. The reverse micelle method, or water-in-oil, is another
suitable way for obtaining the uniform and size controllable particles
[182]. Reversemicelles are small, dynamic aggregates or surfactantmol-
ecules surrounding a polar, typically aqueous, core dispersed in a non-
polar continuous oil phase. Reverse micelle solutions are clear and
thermodynamically stable, as water is added to a reverse micelle solu-
tion, a microemulsion is formed that contains nanometer-sized water
droplets dispersed in continuous oil phase [183]. Several reversemicelle
systems, especially AOT ternarywater-in-oil system, have been used for
preparing nanoparticles. This surfactant can form reverse micelles in
nonpolar fluids without addition of a co-surfactant [183] however
there are studies that indicate that with the assistance of co-
surfactant, the size of nanoparticles prepared in quaternary reverse mi-
celle system is more controllable [182].

After nanoparticle formation, typically a stable complex is formed
but inmany cases, demicellization is an issue that will cause incomplete
formation of the porous or nanoparticle structure. Empirical studies
[184] have qualitatively demonstrated how adjustment in the tempera-
ture, reagent ratios, etc. will affect the structure of theMSN formed, but
a strictly kinetic investigation of the emulsion mechanism is not well
known. Yao et al. [185] interestingly demonstrated the inherent vari-
ability and instability in emulsion based syntheses involving TMB and
CTAB (TMB being the oil phase). Summarized in a phase diagram, it
can observed that dimicellization occurs upon the introduction of (3-
mercaptopropyl)trimethoxylsilane (MPTMS) resulting in a phase shift
from cylindrical pores to vesicular phase. Other MSN syntheses that se-
lect TMB as the oil phase template for hollow MSNs have noticeably
seen the effect of adsorption onto the template micelles and its effect
on theMSN structure [186]. Similar results can be seenwhere high con-
centrations of CTAB convert hollow MSNs to solid silica nanoparticles
with the collapse of the micelle oil phase [187]. In addition to altering
the oil–water surface, solvent selection is a critical factor in determining
emulsion stability. In the previous case, decreasing or increasing the
ethanol towater solvent beyond an optimum range resulted in unstable
droplets which form solid silica nanoparticles, likely due to the oil
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phase, TEOS, being unstable in either a completely miscible or immisci-
ble solvent, respectively. Using hexadecane as the oil-phase, Tsou et al.
[188] reaffirms the basis that solvent selection is a significant factor in
driving the collapse of hollow MSNs during synthesis.

The sensitivity of emulsion stability is also seen in the variation of
water and the alcohol content to synthesize of CdS nanoparticles as
seen by Curri et al. [189] They used a quaternary water-in-oil emulsion
formed by CTAB/n-pentanol/n-hexane/water. The alcohol has two ef-
fects on the interfacial properties of the microemulsion that can be de-
scribed as microstructural and dynamic issues. From a microstructural
standpoint, the alcohol modifies the surfactant packing parameters by
adsorbing to the interfacial film and thus influencing the radius of cur-
vature of microemulsion droplets. This effect is particularly relevant in
systems with use CTAB because it cannot form reverse micelles in n-
hexane without the assistance of pentanol, due to its unfavorable pack-
ing parameter. A dynamic role is also played by pentanol, since a droplet
formed in these conditions does not show the same interface rigidity
observed in ternary microemulsions, where the plain presence of the
surfactant makes the interfacial film more compact.

3.1.1. Inorganic nanoparticles
Hollow inorganic nanoparticles, ranging from metals such as gold

[190] and silver [191], to ceramics such as titania [192], silica [193],
and hydroxyapatite [194] can be produced through oil-in-water emul-
sion templates using commonly used oil phasemedia including alkanes
to less frequently seen ones such as beeswax. Typically hollow nano-
structures, with diameters ranging from 100 nm to 100 μm are pro-
duced as the oil phase naturally leads to uniform spherical cavities
once the material is deposited and formed around it. In some instances,
such as that with titania, microfluidic arrangements can be used in con-
junction with the emulsification to rapidly and uniformly produce hol-
low nanoparticles. In recent years, HMSNs have become increasingly
popular [195] as the empty core of the nanoparticle allows for greater
pore volume,more flexibility in the loading species, such as the possibil-
ity of dual-delivery [196], as well as the functionality as a nanoreactor
[197] within the nanoparticle itself. Emulsion techniques can also be
employed to produce HMSNs or materials with larger porous micro-
structure. Multiple co-surfactants are frequently used to mediate the
process. In the case of Schmidt-Winkel et al. [198], TMB was used as
an oil-phase in order to pore-expand MSNs with an existing template
done with Pluronic P123. Typically the pH adjustment and surfactant
are done prior to silicate addition, but when done in reverse, TEOS
acts as an oil phase with the surfactant assembling at the oil–water/eth-
anol phase boundary [187]. Fine adjustment of the ethanol: water ratio
and CTAB concentration is needed in order to control the shell thickness.
A more traditional method using kerosene as the oil-phase with Span®
80 as the surfactant template also yielded HMSNs [199].

Typical templatingmethods of producing hollow nanostructures use
either hard or soft templates, with both versions requiring multiple
steps or dual templating methodology where the core is selectively re-
moved, thus rendering the nanoparticle hollow. Several approaches in
recent years have demonstrated these synthesis methods. The hard
templating as seen in Yang et al. [200] utilized polystyrene spheres as
a foundation for the mesoporous silica growth onto its surface. Calcina-
tion done afterwards removed the polystyrene core, leaving behind a
hollowmesoporous silica shell. Modification to the polystyrene through
copolymerizing with poly(2-vinyl pyridine-b-ethylene oxide) allowed
for further electrostatic interaction with CTA+ ions [201]. The concept
of removing an interior core also is adopted by Fang et al. [202] where
a solid silica corewas selectively etched after formation of amesoporous
silica shell. A more uniform hollow MSN was developed by Chen et al.
[203] through a selective, secondary etching treatment with sodium
carbonate. A solid silica core was first synthesized, and then CTAC and
TEOS were used to form the mesoporous shell.

Soft templating methods involve emulsions where the oil-phase (or
reverse) or co-surfactant forms larger droplets within the solvent and
the silica framework forms around them. TMB is frequently seen for
this application, as seen in one study done by Botterhuis et al. [204]
The reverse water-in-oil emulsion method done by Yu et al. [205]
shows similar HMSNs produced aswell. Tailoring the hollow core diam-
eter depends on the oil phase in emulsion techniques. With kerosene
[199] or octane [206] as the oil phase, larger micrometer scale HMSNs
are produced, but with the same mechanism.

It is worth noting that TMB is also added after the sol–gel process in
order to expand the pores templated by the surfactant. Due to the hy-
drophobic nature of TMB, preferential diffusion into thehydrophobic in-
terior of the micelles allows for pore diameters up to 30 nm [41] when
used with SBA-15 MSNs, with preserved crystallinity. On the other
hand, Kim et al. demonstrated the effect of severely expanding the
porous structure with hydrothermal treatment and TMB [207]. The
resulting structure no longer retains the original uniform crystallinity
found in typical M41S based nanoparticles, as was originally used
prior to pore-expansion. Achieving large-pore mesoporous silica struc-
tures (9–12.1 nm) was also done using TMB combined with anionic so-
dium dioctyl sulfosuccinate (AOT) and Pluronic F127 systems [208].

Recently, the shift toward developing hierarchical MSNs has led to-
ward an influx of complex porous structures well documented by
Du et al. [209] To achieve the multi-level structures seen in hierarchical
MSNs, typically additional co-templating agents are involved in con-
junction to the primary pore determining agent.MSNswith hierarchical
porous networks include those with several, homogeneous pore distri-
butions or radially oriented pores, with a gradient of pore diameter.

To achieve distinctly multimodal pores in MSNs, nanoparticles, such
as silica or polystyrene are used during the MSN formation to produce
secondary or tertiary pores. Iskandar et al. [210] demonstrated the abil-
ity of various sized polystyrene latex spheres to introduce uniform large
pores into silica nanoparticle formation. Later, through simultaneous
polystyrene formation during silica formation, complex porous struc-
tures were formed [211]. Due to the polystyrene polymerization done
in situ with the silica condensation reaction, a more irregular and het-
erogeneous porosity is produced.

Radial hierarchical porous structure MSNs are obtainable through
co-templates as well. Through the addition of ethyl ether, which has a
low boiling point of 34 °C, MSNs with radial pores are generated as it
is continuously gasified and escapes during the silica condensation
around CTAB-stabilized ethyl ether nanodroplets [212]. This structure
is seen elsewhere with other synthesis methods, as seen by Moon
et al. [213] using cetylpyridinium bromide as the templating agent in
an oil-in-water emulsion synthesis. This “wrinkle” or “flower-like”
structure has been observed later [214] with similar oil-in-water emul-
sion systems.

3.1.2. Polymeric nanoparticles
As observed with inorganic hollow nanoparticles, polymeric nano-

particles are also templated through hard templates or emulsion syn-
thesis methodologies and produce either hollow, core–shell [215], or
other hierarchal, hollow nanostructures [216] due to the removal of
the core phase template. The varying hard templates used is seen with
the synthesis of hollow polyaniline, a conductive polymer, nanoparti-
cles which have used gold [217], silica [218], and polystyrene [219] as
cores. Other hollow polymeric nanoparticles are typically widely used
in the biomedical field, and include polypyrrole/chitosan [220–222],
chitosan/dextran [223], and carbohydrate-derived, carbonaceous nano-
particles [224].

For soft templatingmethods, in traditional emulsion, a self-assembly
of micelles comprised of a secondary phase produces the fluid template
upon which the target material deposits on. In the case of polyaniline
polymer hollow nanoparticles [225] the oil phase of the emulsion con-
tains the monomer and is removed during the process of polymeriza-
tion, resulting in a one-step process that requires no removal of the
template. Other emulsion-based methods to produce polymeric nano-
particles include microfluidic injection and membrane-injection
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systems. Microfluidic arrangements incorporating oil-in-water droplets
have been demonstrated to template hydrophobic nanoparticles-in-oil
[226] to produce hollow colloidosomes, or nanoparticles comprised of
smaller colloidal nanoparticles. Similarly, AAOmembranes can function
as the injectionmembrane to formnanoparticles as oil phase containing
the target material is passed through and enters an aqueous phase
[227].

3.1.3. Semiconducting nanoparticles
Semiconductor nanoparticles are crystalline clusters of hundreds to

a few thousands atoms. The shape is somewhat spherical and the size
is in range of 1–10 nm in diameter [228]. Since the nanoparticle size
range is of the same order of magnitude as the Broglie wavelength of
electrons and holes at room temperature, the movement of the elec-
trons and holes in the nanoparticles are confined in all three dimensions
and thus quantum confinement effect can be observed. Semiconductor
nanoparticles, therefore, are often called quantum dots, QDs. Due to
the quantum confinement effect, the bandgap of the semiconductor
nanoparticles can be controlled simply by changing their sizes [229].

QDs can be synthesized from a variety of different materials and in
several different surroundings, most of which are carried out in aqueous
solutions and in organic solutions. The principle of this technique was
demonstrated by Murray et al. [230]. The process involves the decom-
position of molecular precursors, which are molecules that deliver the
monomers of the nanoparticles, at relatively high temperatures. The
proposed surfactants including tri-n-octylphosphine oxide (TOPO)
and tri-n-octylphosphine (TOP) are still extensively used. Since QDs
are expected to be the key component of nanoscale electronic devices
and also the electronic energy levels of QDs are radically affected by
their sizes, there is a large demand for reproduciblemethods formaking
and handling the same size quantum dots [231]. Besides widely used
emulsions and reversemicellesmethods, other template synthesis tech-
niques, such as bio-templates and electrodeposition in carbon frame-
works or mesoporous silica, have also been developed.

Emulsion techniques are one of the most important template
methods to synthesis of nanoparticles, as explained earlier. This synthe-
sis has been developed to make HgSe quantum dots by the application
of emulsion liquid membrane system, which use templates to control
the sizes of quantum dots in internal-aqueous phase solution [232]. To
improve the crystal phase of the products, it is necessary to use relative-
ly high temperatures and long reaction times [233]. The combination of
other techniques such as ultrasound [234] or microwave [235] with
microemulsion is suitable for the synthesis of CdS nanoparticles. This
combination could be useful for controlling of crystal phase, morpholo-
gy, and the size of nanoparticles. Entezari et al. [234] studied a combina-
tory method of ultrasound and microemulsion for the synthesis of CdS
nanoparticles. They obtained nanoparticles with a hexagonal structure
at a low temperatures (60 °C), short time, and fast transition phase.
The microemulsion was a quaternary oil-in-water formed by CTAB/1-
butanol/-xylene/water. Caponatti et al. [235] also reported that micro-
wave assisted synthesis in microemulsions can be a rapid andwell suit-
ed methodology for the production of materials for specialized
purposes. Reversemicelle is another template method used for the syn-
thesis of QDs. Zhang et al. [182] studied quaternary CTAB/n-hexanol/n-
heptane/water reverse micelles which they used as effective
microreactors to prepare uniform and size controllable CdS nanoparti-
cles. Since the cosurfactant affects the droplet microstructure and dy-
namic process during the reaction, the size of CdS nanoparticles can
be controlled more accurately than in any other ternary reverse
micelles.

3.2. Template filling syntheses

Template filling method provides a straightforward route to synthe-
size nanostructures of metals [236], oxides [237,238], semiconductors
[239,240], and polymers [241,242]. An important advantage of this
template filling method is that both the dimensions and compositions
of the nanostructures can be easily controlled by choosing proper tem-
plates and varying experimental conditions. The pioneering work of
Martin and co-workers has demonstrated the versatility of this method
in preparation of nanowires and nanotubes by complete filling and in-
complete filling the void spaceswithin the nanoporousmembrane tem-
plates, respectively [243]. Among all the templates that have been
explored, anodic aluminum oxide (AAO) membranes [244] as well as
track-etched polymermembranes [243] aremost common and success-
ful. Some other nanoporous materials, such as nanochannel array glass
[245], mesoporous zeolites/silica [41,246], proteins [247] and carbon
nanotubes [248,249] have also been used as templates.

3.2.1. Electrodeposition
The majority of template filling fabrication methods for nanostruc-

tures fall into two categories: electrochemical deposition andelectroless
deposition. These methods have been extensively used to prepare a va-
riety of metallic and semiconducting nanowires/nanotubes, QDs, poly-
mers, etc. [238,250] First, metallic nanostructures can be easily
synthesized using electrodeposition methods. Metallic nanowires and
nanotubes provide a broad range of functionalities in electronic applica-
tions [84,85], magnetism [86–88], catalysis [87,89,179], biological tag-
ging [91], photonics and plasmonics [92,93], and controlled self-
assembly [94]. Nanowires grownby electrodeposition often showa pro-
nounced crystalline texture often as a result of the crystalline orienta-
tion relative to the substrate reducing mismatch stress [115].
Crystallite size may also be controlled; growth at a lower overpotential
is generally slower, and favors the growth of existing grains rather than
the nucleation of new crystallites, resulting in a coarser grain sizewithin
the nanowires or even single-crystal growth. Higher temperatures may
also favor single-crystal growth or large grain size by accelerating the
diffusion kinetics of the deposited species [115]. The choice of electro-
lyte, as well as the addition of additives to the deposition solution also
affects the grain size [125].

Co-deposition of alloys in solution is also achievable, though a num-
ber of factors affect the composition of the nanowires grown, including
the deposition potential relative to the reduction potentials of each indi-
vidual cation species, the concentrations of each cation species in the
bath, the adsorption kinetics of each species at the depositing interface,
and the rate of mass transfer of each species within the solution, which
is in turn affected by pore diameter and length. Depositionmust occur at
an overpotential relative to both species, but more strongly favors the
deposition of the species with the larger relative overpotential. The
adsorptivity of each species plays a large role in the alloy composition,
with certain combinations of elements exhibiting anomalous deposition
wherein the material with the smaller overpotential deposits dispro-
portionately; this is most commonly seen in iron-group elements [88].
While themechanism differs by material, anomalous deposition is gen-
erally related to the formation of metal hydroxides in solution, which
may differ strongly in both adsorptivity and dissociation constant
from their elemental cationic forms [251]. Pore size and depth affects
solution mass transfer, with more slowly diffusing or less concentrated
cation species depositing more slowly as pore aspect ratio increases
[88]. In spite of these limitations a wide range of alloys was reported
with good control over composition [88,252–256].

A wide range of morphologies is achievable through the choice of
template shape and material. Hollow spheres and core–shell structures
may be grown via electroless deposition on a spherical template com-
posed of silica [257], polystyrene [89], or polymethyl methacrylate
(PMMA) [258]. The template may either be left in place in order to
form a metal-dielectric interface, or dissolved to form hollow metallic
shells. The process may be used with equal efficacy to form individual
nanoparticles or 2D and 3D colloidal crystals [257].

Biological templates provide an array of unique and tunable sub-
strate morphologies for templated deposition, as discussed in detail by
Dickerson et al. [259] Certain proteins contain charged or polar residues



Fig. 7. Schematic of EDOTelectropolymerization. Slow and sufficientmonomer supplywill
result in the synthesis of poly(3,4-ethylenedioxythiophene), PEDOT, nanowires (a) and
fast reaction rate with low concentration of monomers is required for the synthesis of
nanotubes (b) [272].

63M. Pérez-Page et al. / Advances in Colloid and Interface Science 234 (2016) 51–79
such as cysteine and tyrosine that readily adsorb metal complexes
[259], making them excellent candidates for electroless deposition tem-
plates. Bovine serumalbumin (BSA)makes an excellent template due to
its favorable surface chemistry. It may be used to form hollow Au nano-
spheres; when Au ions are incorporated into a BSA-based surfactant-
like foam, a disperse array of irregular Au nanoparticles may also be
grown. Highly linear biomolecules also make excellent templates for
the growth of metallic nanowires and nanotubes. Tobacco mosaic
virus (TMV), a linear helical virus consisting of repeating protein sub-
units, makes an excellent template for the electroless deposition of
highly organized Pt and Au colloidal clusters [259,260]. Similarly, colla-
gen fibrils, flagellin proteins, helical peptide microtubules, and DNA
have also been demonstrated as templates for the electroless deposition
of linear metallic nanoparticles [259,261,262].

Templating methods can also rely not on the initial shape of a tem-
plate but instead on the anisotropic surface energy of its facets. Feng
et al. showed that Pt, Pd, Ru and Ir grown on highly twinned Au seed
particles deposited preferentially in certain directions, leading to unique
dendritic nanoparticle shapes. Similarly, Habas et al. showed that Au de-
posited on Pt nanocubes did not grow conformally, instead favoring lin-
ear growth due to a combination of latticemismatchbetween the Pt and
Au and twinning within the nucleated Au sections [263].

Second, electrochemical deposition can also be used to synthesize
QDs. Kim et al. [264] reported the use of a nanoporousmask can be a vi-
able means to form a uniform nanostructured film of CdSe quantum
dots on the graphene basal plane. They applied a mesoporous silica
thin filmwhose pore structure is composed of about 8 nm sized vertical
channels in a hexagonal symmetry (SKU-1) on the graphene surface as
a nanoporous mask. The graphene electrodes were synthesized by
chemical vapor deposition of methane on thin Ni layers formed on
SiO2/Si substrates. A mesoporous silica film was formed on top of this
graphene/Ni bi-layer by spin-coating a precursor solution composed
of TEOS and a triblock non-ionic surfactant F-127 followed by aging at
800 °C, and calcination at 400 °C. Drbohlavova et al. [265] have devel-
oped a synthesis of QDs by electrochemical deposition through high-
ordered nanoporous alumina templates. They use a non-toxic titanium
dioxide to get quantum confinement of TiO2 QDs. Ordered arrays of tita-
nia QDs were fabricated by anodization of aluminum and titanium bi-
layers. The acid provided smaller pore diameter in alumina template
compared to other commonly used electrolytes.

Third, a variety of conductive polymers have also been synthesized
using electrochemical deposition since they show increased potential to
replace inorganic components in many applications, including electron-
ics, optoelectronics and energy storage devices [266–268]. Early studies
have demonstrated successful syntheses of polymeric nanostructures,
such as polypyrrole [269–271] and polyaniline [241], using electrochem-
ical deposition. Recently, Lee and co-workers investigated electrochemi-
cal synthetic mechanism using poly(3,4-ethylenedioxythiophene)
(PEDOT). By proper selection of the monomer concentration and the ap-
plied potential, both nanowires and nanotubes can be synthesized in a
porous alumina template [272]. This process is shown in Fig. 7. More re-
cently, Lee et al. [273]was able to coelectrodeposit MnO2 and PEDOT into
an AAO template. The coaxial nanowires with PEDOT as the shell and
MnO2 as the core showed excellent electrochemical properties for
supercapacitor applications.

Due to the versatile nature of electrodeposition technique, a wide
class of nanostructured templates can also be adapted to electrodeposi-
tion methods for the fabrication of two-dimensional metal oxide and
semiconducting materials. Such examples include the self-assembly of
colloidal nanoparticles onto substrate surfaces. As observedwith the sec-
ondary templating for mesoporous silica nanoparticles, polystyrene col-
loidal particles that have been precipitated and self-assembled on a
surface were then dipped in an electrolytic solution and then Ni or Pt
electrodeposited onto them [274]. Once the polystyrenewas removed af-
terwards, a highly ordered two-dimensional metallic nanostructure
remained. This methodology has been successfully reproduced using
other metals, metal oxides, and semiconducting materials such as Au
[275], Co3O4 [276], ZnO [277], MnO [278], CdSe [279], and V2O5 [280].
With other two-dimensional structure promoting templates, such as
graphene or carbon nanotubes, unusual two-dimensional nanostructures
such as Mn nanoflowers [281], ZnO nanoflowers [282], and Co3O4

nanoflakes [283] can also be produced through electrodeposition.

3.2.2. Electrophoretic deposition
Electrophoretic deposition (EPD) is another simple and effective

method to deposit material onto existing templates. In EPD, material
in a colloidal suspension is moved to the target template by means of
an applied potential. In principle, electrodeposition operates in a very
similar fashion, but typically only refers to the ions in an aqueous solu-
tion and charge transfer via ion reduction once deposited. EPD is more
versatile and general in that many of these particular requirements
are not needed.

For one-dimensional nanostructures such as nanowires or nano-
tubes, block polystyrene-polyvinylpyrrolidone (PS-b-PVP) templates
combined with EPD has been used to selectively deposit modified
CdSe into the pores [284]. This approach differs from standard electro-
deposition methods which originate with the metal ion in solution
and effectively reduce ions as they are deposited onto the target
electrode. Other metal oxides such as ZnO [285] and Fe2O3 can form
nanowires from a colloidal suspension when combined with electro-
phoretic deposition [286]. EPD more often is used to first deposit the
colloidal framework [287], such as polystyrene or latex nanoparticles,
on a substrate that is then used to template two-dimensional nano-
structures, nanoflakes, or nanodisks. In some instances, graphene or car-
bon networks are deposited via EPD, as seen with NiO nanoflakes that
were grown from a combinatory EPD and chemical bath deposition
[288]. Materials such as hydroxyapatite scaffolds can be deposited
with EPD as well [289] from which the surface functions as a template
for cellular growth or other biomaterial adhesion.

3.2.3. Sol–gel deposition
Sol–gel template filling deposition provides another pathway to

achieve desired nanostructures. Similar to the conventional sol–gel

Image of Fig. 7
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processing, a dispersion of colloidal particles (the sol) is prepared first.
The chosen templates are then immersed into the precursor sol for cer-
tain amount of time, followed by drying and thermal treatment for tem-
plates removal as well as structural densification. Compared with other
template filling methods, sol–gel fabrication routes also offer high con-
trol of the chemical composition through doping and modification of
the precursor sol–gel, in addition to the lower temperatures as opposed
to evaporation or deposition methods.

In the early stages, Martin and co-workers [237,238] performed ex-
tensive studies on synthesizing nanostructures of various oxides using
sol–gel template method, such as TiO2, WO3, ZnO, V2O5, MnO2, Co3O4,
and SiO2. It is worth pointing out that the shape of the nanostructures
can be easily controlled by varying the immersion time. TiO2 nanowires
and nanotubes, for instance, were obtained by simply altering the im-
mersion time from 60 s to 5 s [237]. However, this technique has its
own limitations. Since the colloidal content in the sols is very low
(~5 vol.%) and the capillary action is the only driving force to fill the
templates, the amount of solids packed in the pores is still significantly
less than the maximum possible loading, which leads to cracking and
defects on the nanostructures.

In order to overcome above-mentioned disadvantages, Cao and co-
workers combined conventional sol–gel template filling deposition
with electrophoretic deposition to synthesize nanostructures of a varie-
ty of oxides materials [290–292]. Fig. 8 shows a schematic of this pro-
cess. For example, lead zirconate titanate (PZT) nanowires of 70–
150 nm in diameter and ~10 μm in length were grown in PCTE mem-
branes [290]. Additionally, fabrication of uniform nanowires with a di-
ameter of 125–200 nm and a length of 10 μm over large areas were
also demonstrated using TiO2, BaTiO3, SiO2, Sr2Nb2O7, and PZT [291,
292]. To further reduce the diameters of the nanowires, e.g. down to
20nm, electrochemically induced sol–gel depositionwas introduced re-
cently. Miao et al. [293] fabricated highly ordered TiO2 single crystalline
nanowires with diameters of about 20 nm and 10 nm using AAO
Fig. 8. Schematic representation of the progression of the growth process [290,291].
templates. The growth mechanism of the TiO2 nanowires was also
proposed.

Two-dimensional structures can be produced in a similar fashion to
one-dimensional nanostructures but are heavily dependent on the ma-
terial itself. Due to preferential crystallographic orientation and growth
of the metal oxides, control of the nanostructure is often due to con-
trolled growth kinetics. Examples of this include mesoporous silica
sol–gel film [294] produced by dip-coating to yield uniform cubic and
hexagonal pores, or intentionally seeding the substrate to align crystal
growth, aswith ZnOon Si and Al substrates [295]. Throughmodification
of the sol–gel phase as well, structure-directing agents can be used to
further adjust the final structure of the material. Diblock copolymers
such as polystyrene-polyethylene oxide were added to a ZnO sol–gel,
resulting a range of different nanostructures, includingwormlike aggre-
gates to spherical granules [296].

3.2.4. Vapor deposition
In addition to solution based deposition methods for fabricating

solid nanostructured materials, vapor deposition can be used to form
nanostructured materials using a template as the target substrate as
well. As with solution based deposition, vapor deposition is highly ver-
satile and can accommodate a variety of species for both themobile and
target material. The primary types of vapor deposition are chemical
vapor deposition (CVD), atomic layer deposition (ALD), and plasma
vapor deposition (PVD). Inherent to all these methods is that the mate-
rial to be deposited onto the surface must be atomized and well-
dispersed so that uniform monolayer growth can be achieved. There is
a tremendous amount of organic and inorganic materials that can be
vapor deposited onto templates, primarily porous membranes such as
AAO and as seen with other methods to produce one-dimensional
nanostructured materials.

Nanowires and nanotubes of metals and semiconducting metal ox-
ides including Si [297], CrO2 [298], ZnO [299], and CdS [300] can be syn-
thesized using AAOmembranes. In thesemethods, the targetmaterial is
placed upstream in a reactor tube and deposited downstream onto the
templatematerial. Due to elevated temperatures duringmost vapor de-
position techniques, ranging from 260 to 650 °C [297,298], the template
material is dominantly AAO for thermal stability reasons. However com-
pared to electrodeposition or sol–gel processes, in some instances, the
membrane seems to be ineffective in controlling uniformity with
vapor depositionmethods, as seenwith ZnO [301]. Additionally, precise
control over the deposition is required in order to effectively introduce
the metal oxide into the pores. While some methods such as shadow
evaporation through electron beam vapor deposition [302] are specific
toward surface templating, ALD can also effectively deposit alumina
into the entire pore depth of the membrane [303].

In addition to carbon nanotubes [304,305] that can be formed
through vapor deposition into porous templates,monomers of polypyr-
role [306], poly(acrylonitrile) [307] and other polymers [308] have been
vapor deposited and then polymerized within the porous channels of
AAO. This approach allows for excellent control of the nanotube thick-
ness and uniformity through the monomer feed, as seen by Jang et al.
[306]. Other templates besides porous membranes have been used to
a lesser extent. Two-dimensional nanostructures such as graphitic
nanoribbons have been produced through CVD onto DNA as the tem-
plate [309]. Through templating with reverse micelles of PS-b-PVP
onto silicon substrates, ALD was done to achieve nanotemplated ZnO
onto the highly homogeneous and periodic surface [310].

3.2.5. Melt and solution filling
Metallic, semiconducting and polymeric nanowires/nanotubes can

also be synthesized by injection of the melt liquid into templates
[311]. Huber et al. [311] fabricated nanowires of various metals (In, Sn
and Al) and semiconductors (Se, Te, GaSb and Bi2Te3) using pressure
injection technique. Later, Zhang et al. demonstrated that relatively
low melting points metal bismuth (Bi) can also be applied using AAO

Image of Fig. 8


65M. Pérez-Page et al. / Advances in Colloid and Interface Science 234 (2016) 51–79
templates to prepare ultrafine nanowires (13 nm in diameter) with ex-
tremely high packing densities, up to 7×1010 cm−2 [312,313]. Recently,
Steinhart et al. [242] synthesized polymeric nanotubes by filling melt-
processible polymers, such as polytetrafluoroethylene (PTFE),
polymethyl methacrylate (PMMA) and polystyrene, into ordered po-
rous alumina and oxidizedmacroporous silicon templates. More recent-
ly, other novel templates, such as carbon nanotubes, were extensively
utilized for synthesizing nanowires using the same technique [249,
314]. Ajayan et al. [248] reported that themolten Pb could fill the carbon
nanotubes through strong capillary force, but only ~1% of which were
filled. In addition, Kiang et al. [315] used single-walled carbon nano-
tubes to produce molecular nanowires by filling Bi. It is reported that
the percentage of filled nanotubeswas increased to 30%. Besidesmetals,
molten oxides, such as PbOx [248], V2O5 [316], and MoO3 [317], were
also reported to be able to fill carbon nanotubes.

In addition to the melt, solution is another media that can be
employed to fill the both membrane and nanotube templates, along
with chemical reactions. As a typical example, Han et al. [318] success-
fully synthesized gold, platinum, and silver nanowires using mesopo-
rous silica SBA-15 as a template. To reach this, metal precursors
(HAuCl4, Pt(NH3)4(NO3)2, and AgNO3) were first incorporated into
mesoporous channels by immersing template into aqueous solutions
and subsequently treating with CH2Cl2. The metal precursors were
then reduced under a H2 flow to form nanowires.

Furthermore, it is alsoworthmentioning that a significant amount of
syntheses falling into this solution filling category are in situ polymeri-
zations. Similarly, templates such as AAO membranes are immersed
into a solution that contains monomer as well as initiator [111] [319,
320]. The polymer then nucleates and grows on the walls due to
solvophoic and electrostatic interaction between polymer and walls
[321]. Parthasarathy et al. [319] showed that the wall thickness of
polyaniline (PANI) tubes could be easily altered by controlling polymer-
ization timewith longer polymerization times resulting in thickerwalls.
Nanostructures of other polymers, such as polypyrrole [322–326],
poly(3-methylthiophene) (PMT) [323,327], polyacrylonitrile (PAN)
[328,329], and poly(3,4-ethylenedioxythiopene) (PEDOT) [330] have
also been reported using this in situ polymerizations template filling
method.

3.3. Other methods

While template-filling and emulsion/colloid approaches to
templating nanostructured materials cover a substantial amount of
syntheses, other methods such as layer-by-layer and lithographic tech-
niques also are used to template one-dimensional and two-dimensional
nanostructured materials. Both methods involve previously mentioned
precursors, such as sol–gel or polymer melts but presented here is an
emphasis on the usage of either a multilayer aspect or reproducible,
large scale methodology, respectively. It is worth noting that while
these two methods compliment template filling syntheses discussed
earlier, there are still many other unique methods that are rapidly-
evolving and as such, not mentioned here.

3.3.1. Layer-by-layer deposition
The layer-by-layer (LbL) templatingmethod is a simple and effective

deposition method for a variety of templates. Being highly popular and
versatile, the LbL deposition technique provides a facile to form nano-
structures onto an existing template. In principle, LbL encompasses a
large span of deposition techniques, often overlapping other very simi-
lar template-filling techniques such as electrodeposition and other
solution-basedmethods seen earlier [331,332]. As such, solely examples
of specific zero or one dimensional structures uniquely templated by
layer-by-layer approaches involving multilayer or hierarchal structures
are discussed here [333]. Due to the basic principle that the desired
material(s) simply take their final shape and structure from the target
template, material affinity and compatibility are the most important
factors in successful layer-by-layer depositions.

Multilayered hollow and core–shell nanoparticles are often pro-
duced by LbL deposition. In the case for polymeric layer-by-layer ap-
proaches, alternating layers of anionic/cationic species, such as such
polystyrene sodium salt (PSS) or poly(diallyldimethylammonium chlo-
ride) (PDDA) respectively are used. Often a precursor functional group
is required to improve adhesion or bonding between the template and
the first layer. However, strongly ionic polymers such as PDDA can be
used to establish a favorable charged surface to promote further electro-
static bonding without any precursor functionalization [334]. In a simi-
lar group of strongly cationic polymers, poly(allylamine hydrochloride)
(PAH) and poly(ethyleneimine) (PEI) are also frequently used to alter-
nate with an appropriate anionic polymer such as PSS or poly(acrylic
acid) (PAA). The PSS-PAH LbL systemhas been used in instances to tem-
plate 0D [335,336] and 1D [337] nanostructures.

The usage of PDDA, PSS, or PAH are frequently seen as precursor
modifiers for metal oxide deposition onto carbon nanotubes,
which themselves do not allow for facile deposition of inorganic
compounds on its surface. Nanotubes of indium-tin-oxide (ITO) [338]
Au [339], CdTe [339], TiO2 [340], Pt/CeO2 [341], WO3 [334], and Y2O3/
Yb/Er [342] have been produced using this method. For the
formation of hollow nanoparticles, PS nanoparticles as seen with
templating hollow MSNs, are also used in conjunction with LbL to pro-
duce hollow nanoparticles of titania, silica, or laponite (synthetic clay
[Na0.7(Si8Mg5.5Li0.3)O20(OH)4]) with PDDA/PAH/PSS polyelectrolytes
used as the alternating layers [343]. Silica nanoparticles also serve a sim-
ilar role to PS and can be used with polyelectrolyte/metal oxide LbL
techniques [344].

3.3.2. Lithography and stamping
Lithographic and stamp based methods are techniques that have

been employed recently to template nanostructured materials. Advan-
tages of this lithographic approach include a highly repeatable, uniform,
and high yield production of the desired nanostructured material.
Through stamping, nanoimprint, and interference lithography, a tre-
mendous range of nanostructures can be obtained, as the master
stamp or mask will dictate the final structure. However, several in-
stances throughout literature emphasize specifically novel and unique
methods involving lithography to produce nanostructured materials
and are outlined here.

With vigorous nanoimprint lithography, high resolution, uniform
nanostructures can be produced through selective masking and etching
processes. A representative procedure is that nanostructured Si mold
(template) was first fabricated through conversional etching process,
and then transferred into nanopatterned films [345,346]. Recently,
Aryal et al. [347] introduced a novel route to fabricate nanoporous Si
mold using freestanding nanoporous anodic alumina membrane as a
mask for etching. More recently, AAO membranes were directly used
as templates through a thermal imprinting step to synthesis freestand-
ing poly(3-hexylthiophene) (P3HT) nanopillars [348] and cross-linked
divinyltriphenylamine (DVTPA) nanorods [349].

Interference lithography involves generating wavefunctions that
cause an interference pattern onto a mask material which then trans-
formed the pattern into a visible feature. Interference lithography pro-
vides excellent resolution and uniformity for templating nanoporous
arrays but for higher dimensional and geometries, obtaining uniform
symmetry requires a greater number of beam interactions and their cor-
responding algorithms.While a physical template is not used, establish-
ing a method to produce three-dimensional nanostructures on planar
substrates has been developed to produce structures beyond pores
and pillars, and instead, unusual novel frameworks on the surface [350].

In addition to lithographic techniques, stamping allows for pat-
terned materials that are directly transferred into substrates, which
can be the final pattern or seeds fromwhich other growth mechanisms
can form the nanostructure. This approach allows for the elimination of
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faults, anomalies, or other non-desirable features to be transferring dur-
ing the process. Using direct stamping with a gold template produced
fromanAAOmembrane, gold seedswere transferred onto aGaN/Si sub-
strate, from which highly ordered and homogeneous ZnO nanowires of
90 nm diameter were grown through vapor deposition [351]. A combi-
nation of traditional lithography and stamping done by Park et al. [352]
produced PDMS stamps with sub 20 nm features from the original SiO2

nanostructures. As the nanostructure features approach these dimen-
sions, to prevent incorrect features from transferring, a novel modifica-
tion done by Huang et al. [353] incorporated a dual-stage stamping
method to transfer hydrophobic features to the non-essential surfaces,
thus preventing those non-patterned surfaces from transferring
features to the substrate. Although only done with micron spacing be-
tween features, the approach allows for potential stamping of nano-
structure with minimal flaws.

4. Applications

4.1. Solar cells

During the past decade, solar cells incorporating controlled nano-
structures have drawn increasing attention due to their superior perfor-
mance, processing flexibility, ease of tuning, etc. [354–357]. The most
direct strategies to improve the absorption of solar radiation and in-
crease efficiency are to enhance the optical path length and/or to in-
crease light reflecting and scattering area in the cell. These can be
achieved by engaging nanostructures e.g. spherical hollow nanoparti-
cles. It is well known that when the dimension of the hollow nanoparti-
cles is comparable to the wavelengths of UV and visible lights, multiple
reflections are enhancedwithin their interior cavities [358]. In addition,
spherical hollow nanoparticles can also provide a larger surface/volume
ratio for scattering incident light compared with solid nanoparticles.
Kondo et al. [359] used TiO2 hollow spheres as the electrode to fabricate
dye-sensitized solar cells (DSSC). The TiO2 hollow spheres were synthe-
sized by hydrolysis of titanium tetraisopropoxide (TTIP) in the presence
of PS-bead template, followed by removing the PS cores. They demon-
strated that the per-weight efficiency was 2.5 times higher than those
of the conventional DSSCs of TiO2. Similar and improved work has also
been reported in other literature [360–362]. Besides TiO2, ZnO was
also utilized for preparation of hollow spheres. Outstanding work has
been conducted by Dong et al. [363], where multi-shelled ZnO hollow
spheres were produced through different heating processes. The
DSSCs using these multi-shelled nanostructures as photoanodes show
high energy conversion efficiency of 5.6%.

In addition to the above-mentioned hollow spheres that are normal-
ly engaged into electrode, metallic nanoparticles can also be employed
in the cell architectures because of their plasmonic effects. The strong
scattering from surface plasmon resonance is known to effectively en-
hance light absorption, which also sensitively depends on the size and
shape of the nanoparticles [364–366]. Although various deposition
methods exist, template-based synthesis provides a facileway to depos-
it controlled plasmonic nanoparticles. Nakayama et al. [367] decorated
thin GaAs solar cells with Ag nanoparticles using AAO templates as de-
position mask. The height of the nanoparticles can be controlled by
varying the deposition thickness. They showed an 8% increase in the
short circuit current density and at least 10% increase in the fill factor
of the cells. Recently, Pryce et al. [368] used similar template masking
process to deposit 100 nm Ag nanoparticles into InGaN quantum well
solar cells, which leaded to enhancement of the external quantum effi-
ciency by up to 54%.

On the same principle, enhanced light scattering and increased in-
terfacial areawere proven to be the simple and effectivemethods to im-
prove the performance of solar cells. One-dimensional and two-
dimensional nanostructures were introduced into device structures for
these purposes [369]. As a matter of fact, 1D/2D nanostructures were
more extensively studied for solar cell applications compared with
nanoparticles due to additional advantage of enhanced charge carrier
collection efficiency [370–372]. Normally, oriented one-dimensional
nanostructures, such as nanowires or nanotubes, are aligned perpendic-
ular to the substrates, which facilitates charge carrier transport as
well as reduces recombination. For example, Martinson et al. [373] em-
bedded ZnO nanotube arrays as working electrodes into the dye-
sensitized solar cells. The nanotubes were synthesized using AAO tem-
plates by atomic layer deposition, and the resulting devices showed ex-
ceptional open circuit voltage, fill factors, and power efficiency. More
recently, Kang et al. [374] synthesized highly ordered TiO2 nanotube ar-
rays using alumina templatingmethodwithmodified sol–gel route, and
then integrated into the DSSCs. The power conversion efficiencies of
their deviceswere able to reach up to 3.5%. Fig. 9 represents a schematic
of the architecture of this process and SEM-images of the TiO2 nano-
tubes obtained.

Aswementioned earlier, efficient charge separation and reduced re-
combination are two key design elements in solar cells, which is partic-
ularly true for developing organic solar cells. Unlike the case in inorganic
solar cells, organic solar cells generate excitons (electron–hole pairs
with high bonding energy) at the donor/acceptor interfaces when ab-
sorbing light. Since the exciton diffusion length is typically ~10 nm be-
fore recombination [375,376], it is critical to limit the morphology of
heterojunction to the nanoscale. An ideal bulk heterojunction solar
cell structure, therefore, was proposed afterwards, which consists of
vertically aligned conjugated polymer nanorods (donor) attached to
the anode and surrounded by acceptor materials connected to the cath-
ode [377,378]. Such well-organized nanostructures are extremely chal-
lenging to obtain due to disorder nature of polymers. Template-based
synthesismethod seems to be themost promising approach. Haberkorn
et al. [349] fabricated highly ordered nanorod arrays of a hole-
conducting cross-linked triphenylamine derivative using AAO tem-
plates, which can be potentially used in the solar cells due to their excel-
lent electrochemical properties and their organic solvent resistance. It is
alsoworth noting that the aspect ratio of the nanorodswas optimized in
order to prevent from aggregation and collapse. Recently, Kim et al.
[379] fabricated organic photovoltaic devices using P3HT nanorod ar-
rays obtained from similar AAO template-assisted method. The device
yielded around 1.12% power conversion efficiency. More recently,
Chen et al. [348] further increased the efficiency up to 2.4% by embed-
ding freestanding P3HT nanopillar arrays.

4.2. Thermoelectrics

There has been a renewed interest in thermoelectric materials for
small, scalable, and solid-state cooling and power generation applica-
tions. Thermoelectric materials and devices generate a potential gradi-
ent when a thermal gradient is applied, or vice-versa, allowing for the
direct conversion of waste heat into electricity, or solid-state, reversible
heating and cooling. The relationship between the thermal and poten-
tial gradients is given by the Seebeck coefficient, Eq. (1):

α ¼ −
ΔV
ΔT

ð1Þ

The performance of a thermoelectric material is quantified by its fig-
ure of merit zT, given by the Eq. (2)

zT ¼ σα2T
κ

ð2Þ

where σ is the electrical conductivity, α is the Seebeck coefficient, T is
the operating temperature, and κ is the thermal conductivity. At a
given operating temperature, the device efficiency approaches the
Carnot efficiency as zT approaches infinity [380]. Current-generation
materials have a zT around 1, though a zT of 4 or greater is desired for
materials to reach broad commercial acceptance in the energy sector
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Fig. 9. a) Schematic representation of the architecture used to fabricate dye-sensitized solar cells utilizing the TiO2 nanotube arrays. b) Field emission-SEM images of top-down of TiO2

nanotube arrays after removal of the anodized alumina template. c) Field emission-SEM images of the TiO2 nanotubes that have been transferred onto an adhesive carbon tape [374].
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[381]. The thermal conductivity κ may further be expressed as κ=
κe+κl where κe is the contribution from mobile charge carriers and κl
is the lattice thermal conductivity. TheWiedemann–Franz law indicates
that κe scales linearly with σ; therefore the figure of merit may be in-
creased by disproportionately scattering phonons in order to minimize
kl, while simultaneously allowing charge carriers in thematerial to flow
unimpeded. Such a combination of properties is described as “phonon
glass-electron crystal” behavior [382].

Nanostructures may be used to tune the properties of a thermoelec-
tric material via multiple pathways: the reduced size affects electronic
structure, leading to novel reduced-dimension regimes in carrier trans-
port; boundary scattering from structures smaller than the mean free
path of phonons selectively decreased lattice thermal conductivity;
and surface states which differ electronically from the bulkmay provide
beneficial properties as the ratio of surface to bulk increases with de-
creasing structure size.
Fig. 10. Hollow MSNs with single and dual porous structures capable o
Bismuth nanotube and nanowires [383] have been shown theoreti-
cally to undergo a semimetal-to-semiconductor transition below
a critical radius, due to energy band quantization from quantum con-
finement effects as well as classical scattering. This modification in the
electronic structure has been experimentally demonstrated, along
with the corresponding zT enhancement [384]. Similar improvements
in the zT of chalcogenides such as Bi2Te3 and BixSb2 − xTe3, some of
the best bulk thermoelectric materials, have also been modeled [385,
386] and demonstrated experimentally [387,388]. These materials
may be readily grown in nanowire morphology via templated electro-
deposition [387,389–393], with Bi2Te3 nanowires also having been
grown via galvanic displacement on DNA templates [394]. Increased
zT has also been demonstrated in superlattice structures, such as
PbTe/Te, PbTe/PbSe [395], and Bi2Te3 [396] superlattice structures may
be combinedwith nanowiremorphologies via templated electrodeposi-
tion for potentially even greater gains in zT.
f tuning the release of hydrophobic and hydrophilic species [468].

Image of Fig. 9
Image of Fig. 10
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Certain systemsmay utilize the difference inmean free path for elec-
trons and phonons to selectively reduce κl while leaving σ unaffected.
Hochbaum et al. demonstrated a 100-fold increase in the zT of Si nano-
wires for diameters under 50 nm [397]. Themean free path for phonons
is 300 nmwhile it is only 100 nm for electrons; surface scattering there-
fore disproportionately affects the phonons. They furthermore showed
that nanowires with rough surfaces, morphologically similar to those
achieved through templated deposition, provided an even larger
increase in zT, perhaps due to the multiple length scales on which
phonon scattering occurs or the modification of phonon modes
that do not contribute to thermal conductivity but improve the
thermopower [398]. Si nanowires may be grown via VLS growth
[399], where their growth diameter and location is templated on Au
nanoparticles deposited on a Si substrate, or via templated electrodepo-
sition [400]. Alloys and heterostructures of Si and Ge have also been
shown to increase zT. Such structures may take the form of axial
superlattice nanowires [401], core–shell nanowires [402,403], and
alloyed nanowires [404,405].

An additional promising class of thermoelectric materials are
skutterudites, most notably CoSb3, which provide a lead-free alternative
to PbTe-based thermoelectrics over the 200–600 °C temperature range
[380]. Skutterudites have a large interstitial void that can play host to
“rattler dopants” [406] which may be used to selectively scatter pho-
nons; thesematerials therefore provide the opportunity to combine rat-
tler scattering and confinement effects for a potentially significant
increase in zT above the bulk value. The growth of CoSb3 nanowires
via electrodeposition has beendemonstrated [163,407] and it is predict-
ed that similar enhancement of zT from confinement effects should be
observed [163,408], though this has yet to be experimentally verified.
In all of the above classes of material, careful control of feature size is
paramount to both understanding and controlling the size effects that
lead to enhanced thermoelectric performance, be it quantum confine-
ment and band structure modification, enhanced phonon scattering,
or other effects. Template-based syntheses provide a powerful and scal-
able platform for determining the size of the nanostructures grown. This
enhanced size control facilitates the systematic analysis of size effects in
these materials, and provides a platform for the large-scale growth of
such nanostructured materials for future device integration. Where
nanostructured thermoelectrics may prove expensive when fabricated
by other methods [409], templated growthmay provide an inexpensive
and easily scalable alternative for the production of next-generation
thermoelectric materials.

4.3. Catalysis

Catalysis is a key tool for chemical sustainability and improved cata-
lytic processes, whichwill make more efficient use of natural resources,
reduce the amount of byproducts formed, and eliminate contaminant
effluents, in addition to lowering energy requirements [6]. The high
chemical, thermal, and mechanical stability, combined with the highly
uniform pore distribution with tunable pore size gives MSNs high sur-
face area and adsorption capabilities, thus allowing it to be excellent
candidates for catalysis applications. Inorganic, organic and enzymatic
catalysis fields have been revolutionized by introduction of MSNs as
supports due to dramatic increase of contact area and thus contributing
to overall reaction yield [410–412]. Mesoporous materials with narrow
pore size distribution may replace zeolite catalysts in some commercial
applications, and in many research applications they already now have
a comparable or superior performance compared to conventional mi-
croporous zeolites or amorphous silica-alumina catalysts, although it
is not always clear that the right zeolite catalyst had been chosen as a
benchmark [413].

Mesoporous silica nanoparticles exhibit great potential in reactions,
which requiremilder acidity and involve bulky reactants products, such
as mild microcracking reactions. One of the most important features of
ordered mesoporous oxides, as it was mentioned previously, is their
exceptionally high surface area. This can be exploited to create highly
dispersed active species on interacting and non-interacting supportma-
terials. Ordered mesoporous oxide have been used as supports for
metals, metal oxides and as a host material for anchoring stereo- and
enantioselective species, such as certain molecular catalysts [413]. Cur-
rently, zeolites are one of themost importantmaterials used as catalyst.
Most of the current large-scale commercial processes using zeolite-
based catalyst are in the petroleum refining and petrochemical industry
[414] but their implementation in chemical industry, environmental ap-
plications, non-conventional conversion processes of gas [415], oil, and
coal, bio-mass transformation, and car exhaust treatment [416] is in-
creasing rapidly [411].

Although themolecular dimensions of the pores size or shape selec-
tivity of zeolites are beneficial for guest molecules in the reactions, it is
known that because zeolites present a configurational regimen of diffu-
sion, the micropores restrict the diffusion rates of reactant and product,
limiting the activity of zeolite catalysts for certain reaction [417]. The
diffusion rates of the reactants, products and intermediate can be re-
stricted or improve by pores which depend on shape selectivity. Using
templates such as carbon frameworks to obtain mesoporous zeolites
the diffusion coefficient can be increased more than 2 times due to the
diffusivity is proportional to the diameter. Since the point of view of
large reactant molecules, the presence of mesoporous in the zeolite
will increase the external surface and pore openings accessible to
the reactant [417,418]. Mesoporous zeolites can be used for a number
of industrial catalytic applications such as catalytic cracking, hydro-
cracking, aromatic alkylation and alkene hydroisomerization, as well
as fine chemical synthesis [417,419,420].

4.3.1. Cracking
MSNs have been extensively investigated with regard to their use in

cracking and hydrocracking reactions. Despite of the low acid strength
and low hydrothermal stability of MCM-41 catalysts, the advantage of
having larger pores improves the accessibility for larger molecules.
MCM-41 catalysts show substantial cracking activity for bulky sub-
stances such as palmoil [421,422]. FSM-16 structuredmesoporous silica
nanoparticles are active in the thermal degradation of polyethylene to
fuel oil [423].

In order to improve the activity of the silica or aluminosilicateMCM-
41 in acid catalyzed reaction, this material can be modified. For
example, Sun. et al. [424] sulfated ZrO2 supported on MCM-41 shows
similar activity with bulk sulfated ZrO2 catalyst in reactions such as
cumene, n-hexane or 1,3,5-triisopropylbenzene cracking, obtaining a
slower catalyst deactivation for the supported catalyst compared to
bulk sulfated ZrO2. Sulfated tetragonal ZrO2 supported on SBA-15,
which is another type of MSN, shows about two times higher yield of
methyl ter-butyl ether (MTBE) that bulk zirconia in agreement with
the study of Landay et al. [425] H3PW12O40 in the cracking of 1,3,5-
triisopropylbenzene initially increased with increasing heteropoly acid
loading, and reached a maximum at around 23 wt.% loading [426,427].

Zeolites are a typical catalysts used for the cracking of hydrocarbons.
Some of the most important commercial processes, such as FCC, hydro-
cracking, aromatic alkylation, isomerization of sort chain alkanes and C8
alkylaromatics, or disproportionation of toluene, are based on zeolite
catalyst [411]. ZSM-5 is one of the most important zeolites due to its
high Si/Al ratio and its porous structure. Because of its properties, in-
cluding large surface area, large selectivity and resistance to acidic con-
ditions, it is well suited for catalytic applications such cracking. These
properties are due to the use of OSDA template in the synthesis. ZSM-
5 is used as catalyst for cracking of n-hexane. Specifically, ZSM-5 zeolite
is one of the most efficient catalysts for the naphtha catalytic cracking
process at high temperatures (873 K–923 K) [428–433]. One of the
most important problems of the cracking process is the amount of
coke which is produced over the zeolite. This coke fouls the catalytic
surfaces and blocks the micropores. Therefore, the regeneration of
HZSM-5 by calcination in air is necessary. However, a small amount of
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steam generated in the hydrothermal atmosphere during the calcina-
tion results in permanent deactivation due to the introduction of alumi-
num in the zeolite framework. Zeolites withmesoporous structure have
a beneficial effect in reactions such as slurry-phase reactions where the
diffusion is much slower than for gas-phase reactions. Slurry-phase cat-
alytic cracking and isomerization of n-hexadecane exhibits pronounced
activity enhancement using mesoporous zeolite as catalyst than the
conventional zeolite [417,434]. Also, an enhancement of cumene crack-
ing was obtained using mesopororous ZSM-5 [435].

Cu-ZSM-5 and Ag-ZSM-5 were used as catalyst in the n-heptane
cracking with various cation exchange degrees and P/H-ZSM-5 before
and after steaming under various conditions. Whereas the P/H-ZSM-5
exhibited a lower n-heptane cracking activity that H-ZSM-5 due to a de-
crease in Bronsted acidity by phosphorous impregnation, the reduced
Cu-ZSM-5 andAg-ZSM-5 exhibited similar n-heptane cracking activities
as H-ZSM-5 due to generation of Bronsted acid sites by reduction of
metal cations [436].

Alkylation of benzene with ethylene is another example of the im-
portance of the mesoporous in zeolites. This reaction is one of the
most important industrial processes to produce ethylbenzene which
in turn is the rawmaterial for styrene manufacture. Mesoporous zeolite
single crystal showed significantly improved catalytic activities and se-
lectivity as compared to conventional zeolite [437]. The selectivity for
ethylbenzene increases by 5–10% depending on the benzene conver-
sion. The higher selectivity is due to improved mass transport in zeo-
lites. By modifying mass transport, it is possible to obtain higher
selectivity and higher product selectivity using mesoporous zeolite cat-
alysts that can be obtained by template synthesis.

4.3.2. Fine chemical synthesis
The large pore openings of mesoporous materials offer the advan-

tage of effective diffusion of bulky substances as they are often found
in fine chemicals synthesis. One of the first examples of that is a
Friedel-Crafts alkylation with mesoporous aluminosilicates. Friedel-
Crafts alkylation is a special class of electrophilic aromatic substitution
which uses a Lewis acid as catalyst. The reaction has wide applications
in the preparation of substituted aromatics [438]. The Al-MCM-41
with a pore diameter of 3 nm is active in Friedel-Crafts alkylation of
2,4-di-tert-butylphenol with cinnamyl alcohol. The yield over Al-
MCM-41 (35%) was higher than over HY zeolite (b1%) because of diffu-
sion restrictions of the bulky 2,4-di-tert-butylphenol that there are in
the zeolites [413,439]. Furthermore, Al-MCM-41 gave a much higher
yield of dihydrobenzopyran than conventional catalysts, such as H2SO4

(12%) and amorphous silica-alumina (6%) catalysts. Al-MCM-41 is also
used in the alkylation of unsubstituted phenol with methanol [413,
440]. Friedel-Crafts alkylation of benzene with benzyl chloride in liquid
phase uses Ga impregnated MCM-41 as well as Fe-impregnated MCM-
41, Al-MCM-41, and La-MCM-41 [413,441].

Acetalization is an important reaction for the protection of carbonyl
functional groups. This reaction does not require strong acidic condi-
tions, and therefore, mesoporous silica with weak to intermediate acid
tolerance is a suitable catalyst in this reaction [413,442,443]. Different
MCM-41 are used as catalysts in different acetalization with: Al
substituted MCM-41 being used in the acetalization of heptanal, 2-
phenylpropanal, and acetaldehyde with trimethyl orthoformate [413,
442]; Al-MCM-41 in the acetalization of jasminaldehyde [413,443];
and MCM-41 in the acetalization of cyclohexanone [413,444]. Alumi-
num substituted mesoporous silica exhibits better activity in Diels–
Alder reactions with large organic molecules compared to conventional
microporous zeolites or ion exchange resins. Mesoporous aluminosili-
cate, ion-exchanged with ZnCl2, was found to be effective in the Diels–
Alder reaction of cyclopentadiene and methylacrylate [413,445,446].

4.3.3. Reduction/oxidation reactions
Several liquid-phase oxidation processes are catalyzed by soluble

oxometallic compounds. Their substitution by zeolites based oxidation
catalyst presents several advantages, beyond the benefits of working
with a solid catalyst. The zeolite structure contributes with steric and
confinement effects, and the incorporation of the desired metal atom
in the framework (Ti, Fe, and Sn) results in well-dispersed active sites,
generally stable toward leaching [6,413].

Titanium-silicalite (TS-1) is presently the most employed zeolite-
based oxidation catalyst. This Al-freeMFI zeolite, which has the titanium
atoms in tetrahedral framework positions, is commercially used for ole-
fin epoxidation, hydroxylation of phenols and ammoxidation of ketones,
or oxidation of sulfur compounds and ethers, using hydrogen peroxide
as the oxidant [6,413,447,448]. Titanium modified MCM-41 was
researched on orderedmesoporousmaterials studied as selective oxida-
tion catalysts [413,449]. Such mesoporous materials present a clear ad-
vantage of a larger pore system than zeolites, enabling the oxidation of
much larger hydrocarbons. Leaching is a particular problem of solid cat-
alysts in liquid-phase processes, and especially in oxidation reactions
with peroxides, which is attributed to the strong complexing and solvo-
lytic properties of oxidant products [413,450]. Significant Ti-leaching
has been reported for the liquid phase oxidation of crotylalcohol using
Ti-β and Ti-MCM-41 served in all samples with the exception of TS-1,
and the order of leaching was Ti-Alβ N Cp2TiCl2-grafted MCM-41 N Ti-
MCM-41 N Ti-Al-MCM-41 ≫ TS-1, when hydrogen peroxide was used
as an oxidant. If hydrogen peroxide was replaced with tert-butyl hydro-
peroxide (TBHP) as an oxidant, Ti-leaching was minimized and the se-
lective epoxide formation was observed with Ti-β and Ti-MCM-41
[413,451].

4.4. Biomedical applications

Nanomaterials have been used forwide range of biomedical applica-
tions such as drug delivery, imaging and diagnostics, tissue engineering,
and therapeutic functions [452]. Of the nanomaterials investigated for
biological applications, MSNs and polymeric nanoparticles are the
most commonly researched due to their biocompatibility and in some
cases, biodegradability. Due to the abundance of thorough literature
on MSNs [453–456] and polymers [457–460] documenting this, only a
review of recent literature highlighting template-driven approaches
will be outlined here. AsMSNs serve primarily as the support for encap-
sulation, the surface modification through polymers, biomaterials, li-
gands, or other functional groups will not be touched upon here.

4.4.1. Drug delivery
When considering nanoparticles for drug delivery applications, the

loading species or cargo is one of the most important criterions for de-
signing the MSN. For smaller organic compounds, such as the widely
used doxorubicin (DOX) for anticancer applications, typical MSN pore
diameters on the order of 2–3 nm are capable of loading these or simi-
larly sized compounds [461]. With most MSNs that have been unmodi-
fied, the pore size constrains the delivery species by size and often the
loading capacity as well. Instead, a trend toward larger pore MSNs,
HMSNs, and other pore-expanded MSNs that are capable of delivering
larger compounds for genetic or peptide therapy applications have
been shown to be more effective in targeting cancer resistant cells
[462]. With pore expansion techniques, as those mentioned earlier
with TMB, delivery of larger proteins [383,463–465] and even genetic
material [207,391] are possible.

Due to the structure of HMSNs, they serve as excellent candidates for
dual stage drug release where two or more species can be sequentially
loaded and released due to the hollow interior and porous shell [466].
Advantages of such systems have been noted to increase circulation
time within the system, as the release of a drug can be prolonged
through steric or diffusion limitations of the second species within the
porous network or at its surface. The empty voids of HMSNs also offer
flexibility in encapsulating enzymes to interact with diffusing species,
thus forming biological nanoreactors. Ortac et al. [467] demonstrated
a polystyrene template approach to produce highly uniform HMSNs
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that were capable of being loaded with various enzymes and then
protected by additional, controlled silica formation around the porous
shell. The resulting nanoparticles boast a long circulation time due to
the preserved enzymatic activity and capability to still interact with its
target. Hierarchal structures such as those developed by Chen et al.
[468] and Fang et al. [469] have allowed for combinations of dual deliv-
ery featuring both hydrophobic and hydrophilic drugs, e.g. docetaxel/
irinotecan and paclitaxel/cisplatin respectively. The modification was
done through either structural variation in pore channel size or through
compositing the core/shell with a hydrophobic/hydrophilic material
(See Fig. 10).

4.4.2. Imaging and detection
Templating the MSNs or HMSNs with an inorganic core also allows

for simultaneous imaging with drug delivery [56]. In many examples
found throughout literature, simply precipitating mesoporous silica
growth onto nanoparticles such as gold, iron oxide, or other semicon-
ducting metals will yield core–shell structured MSNs with functional
cores. However, in order to differentiate uniquely templated MSN ex-
amples for imaging and detection applications, such as confocal micros-
copy or magnetic resonance imaging (MRI), specific recent examples
involving multi-templated, functional MSNs are presented here.

Cores such as iron oxide or gold have been incorporated as part of
multifunctional MSNs for many years now. Due to the magnetic behav-
ior, especially the superparamagnetic behavior, of Fe3O4, iron oxide is
frequently used as dual purpose hyperthermic and MRI agent [470]. In
one instance, Yang et al. [471] produces a gold scaffold from silver
nanocube templates due to galvanic replacement in order to produce
MSNs with a hollow gold cage-like structure as the core. This feature
combined with the thermoresponsive polymer coating combines both
a laser triggered release mechanism for the nanoparticle, in addition
to the possibility of imaging in situ due to the presence of the gold
cores. A similar conceptwith a Pd shellwas combinedwithHMSNs tem-
plate from solid SiO2 cores [472]. Through inclusion of such materials,
core–shell MSNs are capable of functioning both as drug delivery
media and providing diagnostic feedback to assess their mobility and
targeting capabilities.

4.4.3. Scaffolds and membranes
Besides MSNs and polymeric nanoparticles, planar nanostructures

such as scaffolds andmembranes also arewidely used in biomedical ap-
plications. For topical treatments, tissue engineering, and separation/
purification applications, a large porous matrix is desirable as opposed
to nanoparticles. In a recent study by Chung et al. [473] the scaffold sur-
face geometry and chemistry, as varied through material selection, was
revealed to play a significant impact on cellular regeneration and
growth. As such, optimal templates can be selected to address the di-
mensions and biocompatibility. Materials including poly(lactic-co-
glycolic acid) (PLGA) [474], polycaprolactone (PCL) [475], polyethylene
glycol (PEG)- poly(2-hydroxyethyl methacrylate) (pHEMA) [476],
chitosan [477], hydroxyapatite [478], and bioglasses [479] with low
content of SiO2 are designed and prepared through templating.

Template selection varies but relies on either removing the template
due to biocompatibility issues, or in the alternative instance that the
template is permanent; it should not only be biocompatible, but stable
with the scaffoldmaterial. Materials such as AAOmembranes are highly
effective, removable templates for many biocompatible polymer scaf-
folds, including PLGA [480] and PCL [152]. In the case of Wang et al.
[474] AAO membranes were used to produce PLGA porous membranes
but not incorporated into the scaffold whereas in Poinern et al. [481],
pHEMA was coated onto AAO membranes as-is and also demonstrated
strong biocompatibility with cellular adhesion. Hydroxyapatite scaf-
folds for regeneration and growth of bone can be produced from AAO
templates as well [482]. In other instances, commercial, porous poly-
meric foams and sponges such as polyurethane [483,484] can be used
to generate porous frameworks for hydroxyapatite precipitation and
growth. In Soft templating through emulsion systems utilizing poly(L-
lactic acid)-grafted hydroxyapatite (g-HAp) nanoparticle templates sta-
bilized in PLGA [485] and foamed surfactant solutions [486] have also
produced scaffolds with porosity on the order of micrometers in diam-
eter. Facile template removal is illustrated using ice crystals done by Ko
et al. [477] or PMMA microspheres [476] produced micrometer-sized,
porous chitosan or PEG-pHEMA scaffolds, respectively.

4.5. Wetting of Surfaces

Droplet contact angles depend sensitively on both surface energy and
surfacemorphology, and accordinglymany techniques have been devel-
oped to alter either the energetic or morphological characteristics of a
surface to obtain desired wetting behavior [487]. For example, precise
fabrication of nanoscale features on a surface allows surfaces to be
superhydrophobic [488] or even superoleophobic [489] by exploiting
Cassie and/or Wenzel states [490–492]. Similarly, asymmetric nano-
features guide spreading of droplets in preferred directions [493] or
in preferred shapes [494]. Even without precise control of the
nanoarchitecture, however, the surface energy and corresponding con-
tact angle can bemodified by application of a sufficiently strong external
field. The most well-known example involves applied electric fields,
which give rise to the electrowetting effect [495] that has found wide-
spread application in optical lens [496] and lab-on-a-chip devices
[497]. A key design constraint in electrowetting, however, is that there
must be direct electrical contact between the substrate and droplet. In
contrast, magnetic fields offer the possibility of non-intrusively modify-
ing droplet contact angles, and indeed ferrofluids have been widely
demonstrated to dramatically alter their contact angle and undergo a va-
riety of instabilities in response to sufficiently strong magnetic fields
[498,499].

Zhou et al. [500] used a porous template method in combination
with the LbL deposition technique. The LbL process typically involves
the sequential deposition of different species, such as polymers, nano-
particles, lipids, proteins, dyes or other small molecules into various po-
rous templates, which are subsequently removed to yield free-standing
nanotubeswith tailored properties [501]. Zhou et al. followed theproce-
dure similar to that used by Lee et al., who prepared freely suspended
nanotubes with embedded magnetite nanoparticles [502], into a LbL
structure of PAH and PSS using PCTE membrane as the template. Since
the nanotubes were directly attached to a substrate, the fabrication
yielded a nanostructured superparamagnetic surface.

Zhou et al. demonstrated that the contact angle of pure water drop-
lets deposited on the nanostructured film is highly sensitive to the ante
situm strength of an applied magnetic field, decreasing linearly from
117° at no applied field to 105° at an applied field of approximately
500 gauss. Importantly, this decrease in contact angle did not require
an inordinately strong magnetic field: a fifteen-degree decrease in con-
tact angle was observed even with a standard alnico bar magnet. Sur-
faces with improved wetting response have been devised by
Grigoryev et al. [503], Zhu et al. [504] and Lee et al. [505]. Bernardi
and Dietrich [506] have proposed a model to predict contact angle
change formagnetic, nanostructured surfaces that are exposed to exter-
nal magnetic fields.

5. Trends and conclusions

Templates are one of the effective strategies for better control on the
size and shape of the synthesized nanostructures. In order to synthesize
nanostructures with desired size and shape the first step is selection of
the proper template. The next step is the synthesis method which is
compatible with the selected template. Outlined in this review are sev-
eral templates used across literature for various types of nanostructured
materials, where template-based synthesis methods are typically cru-
cial and fundamental to achieve their structure. Finally, the importance
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of template synthesis in the properties of nanostructures for several ap-
plications has been reviewed.

As MSNs and zeolites in particular have been heavily researched for
over two decades now and have beenused as a platform formany appli-
cations, many of the template driven approaches for their syntheses
have been well studied and are standards in the preparation of struc-
tures such as M41S or ZSM-5. Most of the templates used in this field
are frequently used without much variation but in particular for
MSNs, recent trends have been toward improving the biocompatibility
and biodegradability ofMSNs. This is important specifically for biomate-
rial applications where the toxicity of MSNs has been debated. Litera-
ture supporting both highly biocompatible [507–509] and toxic sides
of the argument [510] has led toward recent attention toward to
HMSNs and particularly, their functionalization. As the frequently used
polystyrene core template is highly uniform and cleanly removed
from the final product, the resulting MSN shells are highly monodis-
perse and homogeneous [467], which improves their biocompatibility.
The hollow aspect of HMSNs has significant advantages over traditional
MSNs, in addition to less silica material being present, which is the
major concern about MSN toxicity.

Although zeolites have usually been synthesized in hydrothermal
conditions, in basic aqueous media as we reported previously, different
template synthesis methods have been approached in the last two de-
cades. One of themost important zeolite in catalysis because of its struc-
ture is ZSM-5. This structure and a high Si/Al ratio are obtained using an
OSDA such as template. Other types of templates such carbon frame-
works, CNTs, CMK, and CAs, have been used in order to obtain mesopo-
rous zeolites. This type of zeolites improve the diffusion through the
porous due to the larger pores give them less diffusional limitations.

Nanowires, nanotubes, and nanocaps have been demonstrated to
provide a wide range of unique functionalities, holding promise for ap-
plications in energy technologies, photonics, biological sensing, and
other fields. Good control has been demonstrated over composition,
size, andmorphology across awide range ofmaterials. Templated depo-
sition provides a powerful tool in controlling overall nanowire shape,
including external and internal diameter control for nanotubes, and is
compatible withwell-understood synthesis methods such as electrode-
position, electroless deposition, and physical deposition. However chal-
lenges still exist in functionalizing individual nanowires for use in
devices or interfacing with individual biological macromolecules; tem-
plated deposition shows promise in addressing these issues, both by
allowing nanowire growth directly onto a functionalized substrate, as
well as through the addressing of individual nanowires by utilizing
mushroom cap overgrowth.
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