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Light-induced charge transmission through a molecular junction (molecular diode) is studied in the
framework of a HOMO-LUMO model and in using a kinetic description. Expressions are presented
for the sequential (hopping) and direct (tunneling) transient current components together with
kinetic equations governing the time-dependent populations of the neutral and charged molecular
states which participate in the current formation. Resonant and off-resonant charge transmission
processes are analyzed in detail. It is demonstrated that the transient currents are associated with a
molecular charging process which is initiated by photo excitation of the molecule. If the coupling of
the molecule to the electrodes is strongly asymmetric the transient currents can significantly exceed
the steady state current.
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I. INTRODUCTION

The use of molecular nanostructures as
diodes, transistors, switches, etc. is considered
as one possible way towards a further minia-
turization of integrated circuits. Although pio-
neering ideas in this direction have been formu-
lated more than 30 years ago [1, 2] the detec-
tion of current-voltage characteristics of a sin-
gle molecule became only possible within the
last 15 years (for an overview see [3–10]). Up
to date research still mainly focuses on an un-
derstanding of charge transmission in the junc-
tion ”electrode1-molecule-electrode2” (1-M-2
system) where a single molecule exhibits itself
as an electron/hole transmitter. It has been
shown that at definite conditions the molecule
is able to operate as a molecular diode. For in-
stance, during a coherent (elastic) electron tun-
neling in the biased 1-M-2 system, diode prop-
erties of the molecule appear only in the pres-
ence of a voltage drop across the molecule. This
conclusion is valid even at different contacts of
the molecule with the electrodes [11]. But, if
an electron transmission is associated with in-
coherent electron transfer processes (inelastic
tunneling or/and hopping), the molecular diode
can originate from an unequal coupling of the
molecule to the electrodes. Just such a situ-
ation is considered in the present paper. We
show that a rectification effect can be observed
even in the unbiased 1-M-2 system where the
driving force of the electron transfer process is
caused by a photo excitation of the molecule.

Recent research addressed the use of or-
ganic molecules in molecular photo devices like

photo-diodes, photo-resistors, optical switches,
and photo-amplifiers [12, 13]. For example, a
light-controlled conductance switch based on a
photochromic molecule has been demonstrated
[14]. Moreover, single molecule luminescence
caused by the current through a molecular junc-
tion could be detected [15–18].

Theoretical estimates on the light-induced
current and current-induced light emission one
can find in [19–25]. It has been shown that a
dc-current can be induced by an external ac-
field either due to a considerable difference be-
tween the electronic charge distributions within
the molecular orbitals (MOs), or if the ampli-
tude of the electric field along one direction is
larger than in the opposite direction. The lat-
ter effect can be originated by a mixing of two
laser pulses with frequencies ω and 2ω [21, 26–
29]. The generation of a dc-current can be
also achieved by an asymmetric distribution of
molecular energy levels caused by environmen-
tal fluctuations (such an asymmetry may in-
duce a ratchet current [30]). Besides the for-
mation of a steady–state current due to an op-
tical excitation of the junction in the absence of
an applied voltage, a light-induced suppression
of a current in the presence of an applied volt-
age has been suggested as well [31, 32]. Note
also the work on a light-induced removal of the
Franck-Condon blockade in a single-electron in-
elastic charge transmission [33].

While the examples mentioned above focus
on steady–state properties of the junction, also
the formation of transient currents generated
just after an alteration of the applied voltage or
by changing optical excitation attracted recent
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interest. The computations demonstrated that
the transient current in a molecular diode ap-
pearing just after a sudden voltage switch-on or
switch-off can significantly exceed the steady–
state value [34, 38]. Such a behavior is caused
by electron transfer processes which are respon-
sible for charging or discharge of the molecule
and which are fast compared to the processes
that establish the steady state current.
It is the objective of the present work to

study the time-dependent behavior of the tran-
sient current across a molecular junction in the
absence of an applied voltage. In doing so we
focus on the transient current formed just after
a fast switch–on of a cw -optical excitation. Our
analysis allows to clarify the physical mecha-
nisms which are responsible for the fast and
the slow kinetic phases of charge transmission
through the molecular junctions.
The paper is organized as follows. General

expressions for the sequential (hopping) and di-
rect (tunnel) current components in a molecular
junction are given in the next section along with
the kinetic equations for the molecular state
populations and respective transfer rates. In
sec. III, a HOMO-LUMO description of the
molecule is introduced to derive concrete ex-
pressions for contact as well as inelastic tunnel
rates. Expressions for the transient photocur-
rent are presented in sec. IV. In sec. V, the
results related to the off-resonant and the reso-
nant regime of current formation are discussed
in details. Some concluding remarks are pre-
sented in Sec. VI.

II. BASIC EQUATIONS

A. Hamiltonian

We introduce a model of the 1-M-2molecular
junction formed by two nonmagnetic electrodes
which are weakly coupled to the (nonmagnetic)
molecule. The related Hamiltonian of the sys-
tem can be written as

H = He +Hm +H ′ +Hf (t) . (1)

The first term describes the Hamiltonian of the
ideal electrodes,

He =
∑

rkσ

Erk a
+
rkσarkσ , (2)

where Erk denotes the energy of a conduc-
tion band electron (with wave vector k) of the
r(= 1, 2)th electrode. For nonmagnetic elec-
trodes and in the absence of a magnetic field
this energy does not depend on the electron spin

σ. Electron creation and annihilation operators
are denoted by a+rkσ and arkσ, respectively. The
expression

Hm =
∑

M(N)

EM(N)|M(N)〉〈M(N)| (3)

defines the Hamiltonian of the molecule, where
EM(N) denotes the energy of the molecule in
state |M(N)〉. The quantum number M labels
the actual electronic, vibrational, and spin state
of the molecule; N denotes the number of elec-
trons in the molecule. The third term in eq.
(1) reads

H ′ =
∑

rkσ

∑

N,MM ′

[VM ′(N+1);rkσM(N)

× |M ′(N + 1)〉〈M(N)| arkσ + h.c.] . (4)

It describes the molecule–electrode interaction
with the matrix element VM ′(N+1);rkσM(N) =
〈M ′(N + 1)|Vtr|rkσM(N)〉 characterizing the
electron exchange (Vtr is the electron transfer
operator). The interaction of the molecule with
an external cw -field is written in the standard
form

Hf (t) = −E(t)
∑

MM ′N

dM ′M |M
′(N)〉〈M(N)|

(5)
where E(t) is the electric component of the pe-
riodic field and dM ′(N)M(N) is the transition
dipole matrix element between different states
of the molecule.

B. Sequential and direct components of

an electron current

The current across the electrode r is given by

Ir(t) = e (δr,1 − δr,2) Ṅr(t) (6)

where e = −|e| is the electron charge, Ṅr(t) =
∑

kσ Ṗ (rkσ; t) denotes the electron flow from
the rth electrode, and P (rkσ; t) is the popu-
lation of the single-electron band state. For
stationary charge transmission the number of
electrons leaving one of the electrodes is identi-
cal with the number of electrons arriving at the
other electrode, i.e. Ṅ1(t) = −Ṅ2(t) = const.

In the nonstationary regime, however, Ṅ1(t)

and Ṅ2(t) may be quite different from each
other so that I1(t) 6= I2(t) (cf. refs. [34, 38]).
Nonequilibrium density matrix (NDM) the-

ory [35–37] is quite suitable to achieve a unified
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description of elastic (coherent) as well as in-
elastic (hopping and incoherent) charge trans-
mission in the molecular junctions. Such de-
scription allows one to express the transfer rates
characterizing the noted transmission via the
set of molecule-electrode couplings and trans-
mission gaps. In refs. [38–42], the NDM theory
has been used to derive kinetic equations for the
single electron populations P (rkσ; t) and the
molecular populations P (M(N); t). Just these
equations determine the evolution of the cur-
rent components in the molecular junctions.
In the presence of an external cw -field, the

derivation procedure becomes more compli-
cated. If, however, the interaction, eq. (5), acts
as a perturbation only, the calculation of elec-
tron transfer rates associated with the interac-
tion, eq. (4), can be carried out by ignoring the
molecule-field interaction. The condition that
permits one to consider the interaction (5) as a
perturbation, reduces to the inequality

ω2 ≫ |EdM ′M |
2/~2 (7)

where |E| is the amplitude of the cw -field. Ow-
ing to the condition (7), only single photon
transitions with frequency ω = (1/~)|EM(N) −
EM ′(N)| will support charge transfer processes
in the 1-M-2 device. The derivation of kinetic
equations for the populations P (rkσ; t) and
P (M(N); t) remains identical with that already
presented in [38–42]. Therefore, we do not re-
peat the derivation here. We only mention that
for the considered weak molecule-electrode cou-
pling a unified description of charge transmis-
sion is achieved by using the transition operator
T̂ = H ′ +H ′Ĝ(E)H ′ (note that the electrodes
stay in equilibrium). The matrix elements

〈a|T̂ |b〉 determine the transitions between the
states b and a on the energy shell E = Ea = Eb

[43], where the Ea and Eb are energies refer-
ring to the Hamiltonian H0 = He +Hm. The
Green’s operator Ĝ(E) = (H0 +H ′ + i0+)−1 is
defined by the Hamiltonian of the whole 1-M-2
system in the absence of molecule-field inter-
action. The first term of T̂ is responsible for
a single electron hopping between the molecule
and the attached electrodes while the second
term results in a direct one-step electron tran-
sition between the electrodes. Besides, the op-
erator H ′Ĝ(E)H ′ is responsible for a specific
electron–pair transition between the molecule
and the electrodes. Respective transfer rates
are presented in refs. [38, 42]. The mechanism
of electron–pair transitions has been applied
earlier to explain the nonlinear electron trans-
port through a single-level quantum dot [44].
For such a transport the repulsion between the
transferred electrons in the dot is compensated

by the voltage bias. In the present paper, a
light-induced charge transmission is considered
in an unbiased molecular junction. Therefore,
the energies of twofold charged molecular states
are arranged high enough to only give a neg-
ligible contribution to the current. It means
that the pair–electron transfer processes be-
come unimportant and, thus, our study is lim-
ited to single electron transmission processes.
As a result, the current through the rth elec-
trode has two components

Ir(t) = I(r)seq(t) + Idir(t) . (8)

The sequential component,

I(r)seq(t) = |e| (−1)
r+1

∑

N,MM ′

(χ
(r)
M(N)→M ′(N+1)

− χ
(r)
M(N)→M ′(N−1))P (M(N); t) (9)

is defined by single electron jumps through the
contact region between the electrode surface
and the molecule. Respective hopping trans-
fer rates can be referred to the contact for-
ward (electrode-molecule) and contact back-
ward (molecule-electrode) rates which read

χ
(r)
M(N)→M ′(N+1) =

2π

~

∑

kσ

|VM ′(N+1);rkσM(N)|
2

× fr(Erk) δ[Erk + EM(N) − EM ′(N+1)] (10)

and

χ
(r)
M(N)→M ′(N−1) =

2π

~

∑

kσ

|VM ′(N−1)rkσ;M(N)|
2

× [1− fr(Erk)] δ[Erk + EM ′(N−1) − EM(N)] .
(11)

[In eqs. (10) and (11), fr(Erk) =
{ exp [(Erk − µr)/kBT ]+1}−1 is the Fermi dis-
tribution function with µr being the chemical
potential for the rth electrode.] Contact for-
ward and backward rates are responsible, re-
spectively, for reduction and oxidation of the
molecule by the rth electrode. In mesoscopic
physics, a similar type of hopping processes is
classified as an electron tunneling between the
lead and the dot [45].
The current component

Idir(t) = |e|
∑

N,MM ′

S
(dir)
MM ′ (N)P (M(N); t)

(12)
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is formed by an interelectrode electron transfer
at which the molecule mediates a charge trans-
mission without alteration of its charge. Such
process is defined by the electron flows

S
(dir)
MM ′ (N) = Q1M(N)→2M ′(N)−Q2M(N)→1M ′(N)

(13)
where the transfer rates

QrM(N)→r′M ′(N)

=
2π

~

∑

kσ,

∑

k′σ′

fr(Erk) [1− fr′(Er′k′)]

×|〈M ′(N)r′k′σ′|H ′Ĝ(E)H ′|rkσM(N)〉|2

× δ[Erk + EM(N) − Er′k′ − EM ′(N)] (14)

characterize a distant electron transmission
from the kσ band states of the rth electrode
to the k

′σ′ band states of the r′th electrode.
Such transmission appears as a direct single-
step elastic (at M ′(N) = M(N)) or inelastic
(at M ′(N) 6= M(N)) interelectrode electron
tunneling. Since the operator H ′ is respon-
sible for transitions accompanied by an alter-
ation of molecular charge, the mediation of the
tunneling transmission occurs via the forma-
tion of intermediate molecular states M̃(N+1)

and M̃(N − 1) which differ from the initial,
M(N) and final, M ′(N) charge states. In the
contrast to the sequential (hopping) transmis-
sion where similar states are really populated,
the noted intermediate states are not populated
and only acts as virtual states. In mesoscopic
physics, such type of transmission refers to co-
tunneling [45]. In the respective terminology
the direct current component, eq. (13), results
as a contribution of partial currents associated
with different co-tunneling channels. The real-
ization of a particular channel is controlled by
the probability P (M(N); t) to find a molecule
in the M(N)th stay. [Examples of electron
transmission along the channel pathways that
include the empty and occupied MOs can be
found in [46, 47].] Thus, the direct tunneling
can be referred to as co-tunneling which is con-
trolled by kinetic charging and recharge of the
molecule (via electron jumps through the con-
tact region). This circumstance has been al-
ready noted in [48]. In the presence of the cw -
field, an additional control occurs through the
population of the excited molecular state.

C. Kinetic equations for the molecular

populations

It follows from eqs. (9) and (12) that each
charge transmission route (sequential or direct)
includes electron transfer channels related to
the molecular states M(N). The contribution
of the M(N)th channel to the route is weighted
by the molecular population P (M(N); t), which
satisfies the normalization condition

∑

NM

P (M(N); t) = 1 . (15)

Following the derivation procedure presented in
refs. [38, 42, 49] and bearing in mind the fact
that the interactions (4) and (5) are considered
as perturbations, we can see that evolution of
the P (M(N); t) is determined by the balance
like kinetic equation

Ṗ (M(N); t) = −
∑

M ′N ′

[KM(N)→M ′(N ′) P (M(N); t)

−KM ′(N ′)→M(N) P (M ′(N ′); t)] . (16)

The transfer rate

KM(N)→M ′(N ′) =
∑

r

(δN ′,N+1 + δN ′,N−1)

×χ
(r)
M(N)→M ′(N ′) + δN,N ′ [K

(f)
M(N)→M ′(N)

+
∑

r

(1− δr,r′)QrM(N)→r′M ′(N ′)] (17)

specifies the transition from the state M(N) to
the state M ′(N ′) in the molecule. Such transi-
tion is caused by the molecule-electrode interac-
tion (4) through the contact and distant trans-
fer rates (eqs. (10, (11), (14)) as well as by the
molecule-field interaction (5). Respective rates
of optical excitation and de-excitation are

K
(f)
M(N)M ′(N) =

2π

~
|EdM ′(N)M(N)|

2

× [LM ′(N)M(N)(ω) +LM ′(N)M(N)(−ω)] . (18)

We introduced LM ′(N)M(N)(ω) =
(1/2π) (κM(N) + κM ′(N)){[~ω − (EM ′(N) −

EM(N))]
2 + (κM(N) + κM ′(N))

2/4}−1, where
κM(N)/2 denotes the molecular level broaden-
ing caused by electron-phonon interaction as
well as interaction of the molecule with the
electrodes (for more details see [49]).
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FIG. 1: Possible position of the frontier MOs in
the molecule with two terminal sites I and II. In-
tersite coupling transforms the site MOs into ex-
tended HOMO, HOMO-1 and LUMO, LUMO+1.
Spots indicate the main location of electron density
within the extended MOs.

III. CHARGE TRANSFER PROCESSES

IN THE HOMO-LUMO MODEL

Next, the hopping rates, eqs. (10) and (11)
as well as the distant transfer rate, eq. (14), all
determining the net electron flow through the
junction, are further specified along the rate,
eq. (18) characterizing the efficiency of exci-
tation and de-excitation of the molecule. We
use a model of the 1-M-2 system where only
the highest occupied and the lowest unoccupied
molecular orbitals (HOMO (H) and LUMO
(L), respectively) are considered. The HOMO-
LUMO model is suitable to study charge trans-
mission in the molecular junctions. As an ex-
ample, note the pioneer work of Aviram and
Ratner [50] where the mechanism of current for-
mation includes a participation of HOMO and
LUMO levels belonging to the donor and ac-
ceptor sites of the molecule. Recently, a similar
model (with chromophoric donor and acceptor
sites) has been used for the description of tran-
sient dynamics in a molecular junctions [51].
In this model, a transient electronic current is
formed due to an optical excitation associated
with the HOMO-LUMO transition in the donor
site.
In the present paper, we use a model where

extended HOMOs (LUMOs) are formed from
HOMOs (LUMOs) belonging to the terminal
molecular sites I and II coupled to one another
by interior bridging groups. Let the HOMO(n)
and the LUMO(n) refer to the terminal site
n(=I,II). Following from the coupling between
the sites, the extended HOMO and HOMO -1
(LUMO and LUMO +1) represent a mixture of

the HOMO(I) and HOMO(II) (LUMO(I) and
LUMO(II)). If the intersite coupling does not
strongly modify the electron distribution across
the molecule, the maxima of electron density
in the HOMO, HOMO -1, LUMO, and LUMO
+1 correspond to electron densities located in
the vicinity of the respective sites, cf. Fig.
1. Therefore, the coupling of the HOMO to
electrode 1 is assumed to be much stronger
than the similar coupling to electrode 2. The
opposite case is valid for the coupling of the
LUMO to the same electrodes. This configu-
ration as represented in Fig. 1 can be realized
if, for instance, the HOMO(I)/LUMO(I) and
HOMO(II)/LUMO(II) refer to the π-electrons
of aromatic groups coupled to each other by the
bridging σ-bonds (to avoid a noticeable mixture
between the π-electrons belonging the sites I
and II). If the energy ~ω of the external cw -
field coincides with the energy of the optical
HOMO-LUMO transition, then the formation
of the photocurrent can be mainly associated
with two frontier MOs (HOMO and LUMO).
In this case, the rates of optical excitation and
de-excitation are determined by eq. (5).

For the subsequent analysis we assume that
the Coulomb interaction between excess elec-
trons (or holes) occupying the molecule in the
course of charge transfer, is so large that the
molecule can only stay in its neutral ground (or
excited) state, in its oxidized state and in its re-
duced state. These states are denoted as M0 =
M(NG), M∗ = M ′(NG), M+ = M(NG − 1)
and M− = M(NG + 1). Here, NG is the num-
ber of electrons if the molecule is in its neutral
state. If the maxima of electron location at the
HOMO and LUMO are in the vicinity of the
spaced sites I and II, cf. Fig. 1, one can sup-
pose that the exchange interaction between the
unpaired electrons occupying the HOMO and
the LUMO becomes small. This allows one to
ignore the exchange splitting between the sin-
glet, M∗(S) and triplet, M∗(Tm), (m = 0,±1)
states of the excited molecule. Accordingly,
the electron spin projections can be taken as
good quantum numbers. Therefore, the four-
fold degenerated excited state M∗ can be char-
acterized either by molecular spin states (M∗ =
M∗(S),M∗(Tm)) or by spin projections σH and
σL of unpaired electrons occupying the frontier
MOs (M∗ = M∗(σH , σL)). At a negligible ex-
change interaction, both sets of spin quantum
numbers lead to identical results. Moreover,
the states M+ = M+(σH) and M− = M−(σL)
are twofold degenerated.

To specify the energies EM(N) entering the
molecular Hamiltonian (3) and the matrix ele-
ments in the interaction expression (4) we intro-
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duce the following notation of the Hamiltonian

Hm =
∑

j

∑

σ

(ǫj + Uj c
+
j−σcj−σ

+
1

2

∑

j′( 6=j)

∑

σ′

Ujj′ c
+
j′σ′cj′σ′) c+jσcjσ (19)

and of the electron transfer coupling (cf. [48,
52–54])

Vtr =
∑

j

∑

rkσ

(βjrk c
+
jσarkσ + β∗

jrk a
+
rkσcjσ) .

(20)
In eq. (19) the ǫj are the energies of an electron
occupying the j(= H,L)th MO. The strength of
the Coulomb interaction between two electrons
is defined by Uj if both electrons occupy the jth
MO. If the electrons belong to different MOs
Coulomb interaction is measured by Ujj′ . The
operators c+jσ and cjσ create or annihilate an
electron in the molecule, and βjrk characterizes
the coupling of the jth MO to the rkth band
state of the electrode.
According to the Hamiltonian, eq. (19),

the molecular energies EM(N) = Eα, (α =
0, ∗,+,−) follow as:

E0 = 2ǫH + UH , E∗ = ǫH + ǫL + ULH ,

E− = 2ǫH+ǫL+UH+2ULH , E+ = ǫH . (21)

Here, ǫH and ǫL are the energies of an
electron occupying the frontier MOs while
UH and UHL are the Coulomb parameters.
Concerning the matrix elements entering eq.
(4), all of them are expressed by the cou-
plings βHrk or βLrk. We have, for exam-
ple, 〈M0|Vtr |M+(σH)rkσ〉 = βHrkδ−σ,σH

and
〈M0rkσ|Vtr |M−(σL)〉 = β∗

Lrkδσ,σL
.

A. Contact rate constants

Noting the structure of the transition ma-
trix elements, the so-called wide band approx-
imation [55] enables one to express the hop-
ping transfer rates (10) and (11) by contact

rate constants K
(r)
αα′ . For instance, we get

χ
(r)
M∗(σH ,σ′

L
)→M−(σL) = δσ′

L
,σL

K
(r)
∗− . According

to the used HOMO-LUMO model the forward
contact rate constants takes the form

K
(r)
0− ≃ (1/~) Γ

(r)
L N(∆E−0) ,

K
(r)
∗− ≃ (1/~) Γ

(r)
H N(∆E−∗) ,

K
(r)
+ 0 ≃ (1/~) Γ

(r)
H N(∆E0+) ,

K
(r)
+∗ ≃ (1/~) Γ

(r)
L N(∆E∗+) . (22)

The quantities

Γ
(r)
j ≃ 2π

∑

k

|βjrk|
2 δ(E − Erk) (23)

characterize electron hopping between the jth
MO and the rth electrode (cf. Fig. 2), whereas
the distribution function

N(∆Eα′α) = [exp (∆E
(r)
α′α/kBT ) + 1]−1 . (24)

determines the influence of temperature on the
hopping processes via the transmission gaps

∆E+0(∗) = (E+ + EF )− E0(∗) (25)

and

∆E−0(∗) = E− − (E0(∗) + EF ) . (26)

Backward contact rate constants which char-
acterize the transition of an electron from the
molecule to the rth electrode are connected
with the forward ones, eq. (22), by the rela-
tion

K
(r)
αα′ = K

(r)
α′ α exp (−∆Eα′α/kBT ) . (27)

The physical meaning of the transmission gaps
can be easily deduced from their definition.
Since E− − E0 and E+ − E0 are the elec-
tron charging and electron discharging ener-
gies (with respect to the molecule being in its
ground neutral state), respectively, the inequal-
ities E−−E0 > EF and E0−E+ < EF have to
be fulfilled in the unbiased 1-M-2 system with
identical electrodes (cf. the upper panel in Fig.
3 where µ1 = µ2 = EF ). Therefore, the gaps
∆E−0 and ∆E+0 are both positive. When the
molecule is in the excited state, then respec-
tive charging and discharging energies, E−−E∗

and E+ − E∗, can be higher or lower than the
Fermi level and, thus, transmission gaps ∆E−∗

and ∆E+∗ can become positive or negative.
[One possible case with E− − E∗ > EF and
E∗−E+ < EF , is presented at the upper panel
in Fig. 3.]
An additional interpretation of the transmis-

sion gaps follows from a comparison of elec-
tron energies belonging the whole 1-M-2 system
[38, 39]. Let Ee be the energy of electrons in the
electrodes. In the case of a neutral molecule the
energy of the whole system is E(1M0(∗)2) =
E0(∗) + Ee. During a charge transmission pro-
cess the number of electrons in the system is
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FIG. 2: HOMO-LUMO scheme related to the elec-
tron transfer through the 1-M-2 molecular junc-

tion. The width parameters Γ
(r)
j characterize the

efficiency of contact electron jumps as well as of the
direct (tunneling) electron transfer. The sequential

current components I
(1)
seq(t) and I

(2)
seq(t) can differ

from each other if the junction is transient regime.

conserved. Therefore, the energies of the sys-
tem with the oxidized and reduced molecule
are, respectively, E(1−M+2) = E(1M+2

−) =
E++Ee+EF and E(1+M−2) = E(1M−2

+) =
E− + Ee − EF . Therefore, the gaps (25)
and (26) correspond to the difference between
the above noted energies, i.e. ∆E+0(∗) =

E(1−M+2) − E(1M0(∗)2) = E(1M+2
−) −

E(1M0(∗)2) and ∆E−0(∗) = E(1+M−2) −

E(1M0(∗)2) = E(1M−2
+) − E(1M0(∗)2) (cf.

Fig. 3 lower panel). Such interpretation of the
transmission gaps is quite suitable for the anal-
ysis of the transmission processes in the molec-
ular junctions.
The sign of the transmission gap defines the

electron transfer along a given transmission
channel. For instance, if ∆E+∗ is positive, then
the transition M+ →M∗ caused by an electron
injected into the molecule, requires a thermal
activation i.e. it proceeds in an off-resonant
regime. If ∆E+∗ < 0, however, the M+ → M∗

transition does not require any thermal acti-
vation and, thus, becomes practically indepen-
dent on the absolute value of ∆E+∗. Conse-
quently, the electron hopping takes place in a
resonant regime.

B. Inelastic tunnel rate constant

Eq. (14) for the direct (tunnel) transfer rate
indicates that in the absence of an applied volt-
age any elastic electron tunneling between iden-
tical electrodes disappears. We study in the
following an inelastic tunneling event which is
accompanied by the intramolecular transition
M∗ → M0. To derive a respective rate expres-

FIG. 3: Charging energies E0−E+, E∗−E+, E−E0

and E− − E∗ (upper panel) and transmission gaps
related to the charged molecular statesM+ andM−

(lower panel).

sion we first consider the effect of the molecule-
electrode coupling. Since it is not too strong,
its presence may be accounted for by a shift
∆EM(N) of the molecular energies as well as by
a level broadening

ΓM(N)/2 = π
∑

r

∑

M ′

∑

kσ

{

|VM(N)rkσ;M ′(N+1)|
2

×δ[EM ′(N+1) − EM(N) − Erk]

+|VM(N);M ′(N−1)rkσ|
2δ[EM(N)−EM ′(N−1)−Erk]

}

.
(28)
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Accordingly, the Green’s operator, determin-
ing the general transition amplitude is defined
by these shifted and broadened molecular ener-
gies. Due to the weak molecule-electrode cou-
pling one can omit the energy shift ∆EM(N).
Taking the Hamiltonian, eq. (19), then, in the
framework of the HOMO-LUMO model, the
unperturbed molecular energies, eq. (21) are
expressed via the single-electron energies ǫH
and ǫL as well as via the Coulomb parameters
UH and ULH . The broadenings, eq. (28) are
defined by the single-electron level broadenings
Γj/2. The quantities

Γj =
∑

r

Γ
(r)
j , (j = H,L) , (29)

are obtained as the sum of the width param-

eters Γ
(r)
j , eq. (23). Thus, the described for-

mulation of the Green’s operator Ĝ(E) and the
introduction of the width parameters results in
the following rate expression

QrM∗(σL,σH)→r′M0
= Q

(rr′)
∗ 0

≃
1

π~

[Γ
(r′)
L Γ

(r)
H

Γ+

(

ϕ+→0 − ϕ+→∗

)

+
Γ
(r′)
L Γ

(r)
H

Γ−

(

ϕ−→0 − ϕ−→∗

)

]

. (30)

Here we used Γ+ =
∑

r (Γ
(r)
H + 2Γ

(r)
L ) and

Γ− =
∑

r (Γ
(r)
L + 2Γ

(r)
H ). According to eq. (30)

the regime of inelastic tunneling transfer is gov-
erned by the quantities

ϕα′→α = arc tn (2∆Eα′α/Γα′) . (31)

For the weak molecule-electrode coupling un-
der consideration the width parameters do
not exceed 10−3 eV. Accordingly, we have
|∆Eα′α/Γα′ | ≫ 1, and one can use the
asymptotic form ϕα′→α ≈ (π/2)(sign∆Eα′α)−
(Γα′/2∆Eα′α). It follows the particular rela-
tion ϕ+→0 − ϕ+→∗ ≈ (π/2)(1 − sign∆E+∗) +
[(Γ+/2∆E+∗) − (Γ+/2∆E+0)] ≈ (π/2)[(1 −
sign∆E+∗)+ (Γ+/π∆E+∗)]. Taking ∆E+∗ > 0
then ϕ+→0 − ϕ+→∗ ≈ (Γ+/π∆E+∗) ≪ 1. In
the contrary case ∆E+∗ < 0 we find ϕ+→0 −
ϕ+→∗ ≈ π what is much larger then the respec-
tive expression deduced for ∆E+∗ > 0. Note
also that at the resonant regime of tunnel elec-
tron transmission the ϕ+→0 − ϕ+→∗ is inde-
pendent of the actual value of the transmission
gap.

C. Rate equations for integral molecular

populations

The kinetics in the junction are dominated
by sequential processes which are character-

ized by contact rate constants K
(r)
αα′ . But, the

direct inelastic electron tunneling responsible
for the transitions between the excited and the
ground states of the neutral molecule, is also
important. For instance, the distant rate con-

stants Q
(rr′)
∗0 describe the nonradiative decay of

the excited molecule. The kinetic scheme de-
picted in Fig. 4 illustrates the possible tran-
sition processes in the junction including the
cw -optical excitation of the molecule. All rates
indicated in Fig. 4 characterize the transi-
tions with the participation of the degenerated
molecular states M∗, M+ and M−. Therefore,
it is convenient to introduce integral molecular
populations

P (∗; t) =
∑

σH ,σL

P (M∗(σH , σL); t) ,

P (+; t) =
∑

σH

P (M+(σH); t) ,

P (−; t) =
∑

σL

P (M−(σL); t) , . (32)

[Note also that P (∗; t) = P∗(S; t) +
∑

m=0,±1 P∗(Tm); t).] The quantities intro-

duced in eq. (32) along with the population
P (0; t) ≡ P (M0; t) obey the normalization con-
dition

∑

α=0,∗,+,−

P (α; t) = 1 (33)

which corresponds to eq. (15). Based on the in-
troduction of integral populations, the general
kinetic equations (16) reduce to the following
set of rate equations

Ṗ (0; t) = −kfP (0; t) +K+0P (+; t)

+K−0P (−; t) + kdP (∗; t) ,

Ṗ (+; t) = −(K+0+2K+∗)P (+; t)+K∗+P (∗; t) ,

Ṗ (−; t) = −(K−0 +2K−∗)P (−; t) +K∗−P∗(t) ,

Ṗ (∗; t) = −(K∗+ +K∗− + kd)P (∗; t)
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FIG. 4: (color online) Kinetic scheme of the trans-
fer processes occurring in the molecular junction in
the absence of an applied voltage (for further de-
tails see text).

+2K+∗P (+; t)+2K−∗P (−; t)+kfP0(t) . (34)

Here, we introduced the recharge transfer rates

Kαα′ = K
(1)
αα′ +K

(2)
αα′ (35)

which are expressed by the sum of contact

rate constants. The rate constant kf = K
(f)
0∗ ,

eq. (18) characterizes the optical transition be-
tween molecular singlet statesM(N) = M0 and
M ′(N) = M∗(S). Accordingly, the overall de-
cay rate from the four-fold degenerated excited
state follows as

kd = kf/4 +Q∗0 . (36)

We defined

Q∗0 = Q
(12)
∗0 +Q

(21)
∗0 (37)

as the component caused by the coupling of the
molecule to the electrodes. The concrete ex-
pression for Q∗0 can be deduced from eq. (30).
It reads

Q∗0 ≃
1

2~

(

Γ
(1)
H Γ

(2)
L + Γ

(2)
H Γ

(1)
L

)

R (38)

with

R = Γ−1
+ [(1− sign∆E+∗) + (Γ+/π∆E+∗)]

+Γ−1
− [(1− sign∆E−∗)+ (Γ−/π∆E−∗)] . (39)

IV. THE PHOTOCURRENT

Already in the absence of an applied voltage
a photocurrent, eq. (8) has to be expected. Ac-
cording to the used HOMO-LUMO model and
by noting the eqs. (10), (11), (22) and (27) for

the sequential current component, eq. (9), we
find

I(r)seq(t) = (δr,1 − δr,2) I0 π~ {[K
(r)
∗− P (∗; t)

+(K
(r)
+0 + 2K

(r)
+∗)P (+; t)]− [K

(r)
∗+ P (∗; t)

+ (K
(r)
−0 + 2K

(r)
−∗)P (−; t)]} , (40)

where I0 = |e|/π~× 1eV ≈ 77.6µA is the cur-
rent unit [56]. It follows from eq. (40) that the
charge transmission along the sequential route
is determined by hopping (contact) rate con-
stants (22) and (27). The time-dependent be-
havior of this current component is determined
by the molecular state populations P (+; t),
P (−; t) and P (∗; t). The direct component of
the current is formed by the inelastic tunnel
electron transmission along the channel related
to the excited molecule. The expression for the
direct component follows from eqs. (12), (13),
and (30) and takes the form

Idir(t) = I0 π~S∗0 P (∗; t) . (41)

Here, we introduced

S∗0 = Q
(12)
∗0 −Q

(21)
∗0

≃
1

2~

(

Γ
(1)
H Γ

(2)
L − Γ

(2)
H Γ

(1)
L

)

R (42)

what represents the net tunnel electron flow (R
has been introduced in eq. (39) ). Eqs. (41)
and (42) show that, the sign of the direct cur-
rent component (in the HOMO-LUMO model)

is determined by the sign of Γ
(1)
H Γ

(2)
L −Γ

(2)
H Γ

(1)
L .

Moreover, the time-dependent behavior of the
direct current component is determined by the
population P (∗; t).
The scheme of the electron transfer routes,

as displayed in Fig. 5, offers the opportunity
to analyze further details of the current for-
mation. Charge transitions are represented by
12 → 1

+
2
−. According to Fig. 5 a possi-

ble current formation results from the decay of
the excited molecular state. This is possible
via the sequential route (including the forma-
tion of the charged molecular states M+ and
M−) as well as via the direct route M∗ →M0.
Both routes include two (left and right) trans-
mission channels. The left sequential chan-
nel, 1M∗2 ⇄ 1M+2

− → 1
+M02

−, proceeds
across the charged molecular state M+. This
state is formed by an electron hopping from
the LUMO to the electrode 2 (with contact
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FIG. 5: Transfer routes of the light-induced in-
terelectrode 12 → 1+2− electron transmission in-
cluding the participation of the charged molecular
states M+ and M−. Within the transmission along
the sequential route, the charged states are popu-
lated while the same states participate in a virtual
form only if the transfer proceeds along the tunnel
route.

rate constant K
(2)
∗+ ) after which another elec-

tron hops from the electrode 1 to the HOMO

(with contact rate constant K
(1)
+0 ). In sum-

mary, we have the transition 12 → 1
+
2
−.

This transition is also achieved by an electron
transmission along the right sequential chan-
nel 1M∗2 ⇄ 1

+M−2 → 1
+M02

− which in-
cludes the charged molecular state M−. The
M− state is formed by an electron hopping from
electrode 1 to the HOMO. The transfer of an
electron from the LUMO to electrode 2 returns
the molecule to its neutral ground state M0.
The respective sequential charge transfer steps
are characterized by the contact hopping rates

K
(1)
∗− and K

(2)
−0 . It is important to underline

that during the electron transmission along the
sequential route, the current formation is ac-
companied by a molecular recharging, i.e by a
population of the intermediate charged molec-
ular states M+ and M−.

The second type of transfer route shown
Fig. 5, refers to the direct (distant) interelec-
trode electron transfer 12 → 1

+
2
− which is

accompanied by the M∗ → M0 transition in
the molecule. In contrast to the sequential
route, electron transmission along the direct
route 1M∗2 → 1

+M02
− does not result in a

FIG. 6: Feasible energy levels of the molecular
junctions in the absence of an applied voltage.
E0, E∗, E+ and E− are the molecular energies and
EF denotes the electrode Fermi energy.

change of the charged molecular states popu-
lations (these states only participate as virtual
states). Thus, a direct electron transfer consti-
tutes an inelastic tunneling event of an electron
between the electrodes. The related distant
transfer rate Q

(12)
∗0 is defined in eq. (30). Since

a reverse route 1M02← 1
−M∗2

+ is formed in
a similar way and is characterized by the rate

Q
(21)
∗0 , the direct current component is propor-

tional to the net electron flow S∗0, eq. (42).

V. RESULTS AND DISCUSSION

The eqs. (8), (40), and (41) allow one to
describe the time-dependent evolution of the
photocurrent in the molecular junction start-
ing with the switch-on of a cw -optical excita-
tion (at t = 0) and extending up to the for-
mation of a steady-state current Ist = I1(t ≫
τst) = I2(t ≫ τst) where τst is the character-
istic time of the steady state formation. The
kinetic schemes drawn in the Figs. 4 and 5
show that a control of the light-induced electron
transfer is achieved via the transitions between
electronic states M0,M∗,M+ and M− of the
molecule. Here, the charged molecular states
M+ and M− are of particular importance since
those participate in the transmission channels
formation related to the sequential and the di-
rect electron transfer routes. As far as the
charged states population is determined by the
relation between forward and backward contact
rate constants, eqs. (22) and (27), the position
of the energy levels in the 1-M-2 system prede-
termines the specific form of the interelectrode
12 → 1

+
2
− and 1

−
2
+ ← 12 electron trans-

mission.
Possible arrangements of the molecular junc-

tions energy levels are depicted in Fig. 6. For
the sake of simplicity, the electron energy Ee
of the electrodes is omitted (cf. Fig. 3, lower
panel where this energy is presented). If the
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junction energy with the neutral molecule in
its excited state is below the energy valid if the
molecule is in a charged state, then only an off-
resonant regime of light-induced electron trans-
mission becomes possible (cases (a) and (b)).
The cases (c) and (d) correspond to charge
transmission with a single resonant channel (ei-
ther the oxidized or the reduced molecule is in-
volved). Two further transmission channels are
realized if the junction energy with the neu-
tral molecule in its excited state exceeds the
energies realized for the oxidized or the reduced
molecule (cases (e) and (f)).

The further analysis will be based on the eqs.
(8), (40), (41) for the current as well as the
eqs. (22) and (27) defining the contact rate
constants. Additionally, the expressions (37)
- (39) for the tunnel decay rate Q∗0 and eq.
(42) for net electron flow S∗0 are taken into
account. The time-dependent evolution of the
integral molecular populations P (α; t) are de-
termined by the rate equations (34) where the
recharge rate constants are given by eq. (35).
Initial conditions for the populations are found
from a solution of the rate equations (34) if one

sets Ṗ (α; t) = 0 and kf = 0. Since the rela-
tions K0− ≃ 0 and K0+ ≃ 0 are valid for the
case of a charge transmission in the absence
of an applied voltage, it follows P (∗; 0) ≃ 0,
P (+; 0) ≃ 0, P (−; 0) ≃ 0 and P (0; 0) ≃ 1. As
already indicated the hopping and the tunnel
transition processes can proceed in off-resonant
or a resonant regime depending on the sign of
the actual transmission gap, cf. eqs. (25) and
(26).

Although the calculations have been per-
formed on the basis of the general expressions
(34), and (40) - (42), including eqs. (30), (31)
and (36) - (39), most of the findings will be
discussed in terms of analytical expressions.
Those are derived for cases where an electron
transfer occurs preliminary along a separate
transmission channel. For the sake of definite-
ness, we consider a charge transmission pro-
cess where the energy E− − EF is larger than
E∗ and E+ + EF (see the cases (a) and (c) in
Fig. 6). We also suppose that ∆E−∗ is large
enough to neglect the population of the state
M−. This means that the off-resonant and reso-
nant regimes of light-induced current formation
involve an electron transfer process predomi-
nantly across the three molecular states, M0,
M∗ and M+ (the left route in Fig. 5). Thus,
charge transmission only occurs along the chan-
nel related to the charged molecular state M+.
To achieve an analytic description of this trans-
mission process one has to set K∗− ≃ 0. This

leads to the following solution of the eqs. (34):

P (0; t) ≃ P0 +
kf

k1k2(k1 − k2)

×
[

k2(k1−λ+−K∗+)e
−k1t−k1(k2−λ+−K∗+)e

−k2t
]

,

P (∗; t) ≃ P∗+
kf

k1k2(k1 − k2)

[

−k2(k1−λ+) e
−k1t

+k1(k2 − λ+) e
−k2t ,

P (+; t) ≃ P++
kfK∗+

k1k2(k1 − k2)

[

k2 e
−k1t−k1 e

−k2t
]

,

P (−; t) ≃ 0 . (43)

The quantities

P0 = (K∗+K+0 + kdλ+)/k1k2

P+ = kfK∗+/k1k2 , P− = 0 ,

P∗ = kfλ+/k1k2 (44)

are steady state populations and the overall
transfer rates take the form

k1,2 = (1/2)
[

a±
√

a2 − 4b2
]

. (45)

Note the abbreviations a = kf + λ+ + λ∗,
b2 = kf (λ+ + K∗+) + λ∗K+0 + 2kdK+∗, and
λ+ ≡ K+0 + 2K+∗, λ∗ ≡ K∗+ + kd Based on
the eqs. (40) - (43) one can derive analytic ex-
pressions for the sequential and direct current
components. The time evolution of these com-
ponents is determined by the overall transfer
rates k1 and k2. Obviously, the formation of a
finite photocurrent in the absence of an applied
voltage only becomes possible at an asymmet-
ric coupling of the molecule to the electrodes.
As it was already noted such asymmetry can
result from nonidentical electron density at the
HOMO and the LUMO (cf. Fig. 1). For the

following we assume Γ
(1)
H > Γ

(2)
H ,Γ

(2)
L > Γ

(1)
L .

Since the factor Γ
(1)
H Γ

(2)
L −Γ

(2)
H Γ

(1)
L becomes pos-

itive the steady state electron current is also
a positive (electrons move from electrode 1 to
electrode 2).
Next let us consider the current formation

at a weak molecule-electrode coupling (when
the width parameters are of the order (10−7 −
10−4) eV) and at a moderate optical excita-
tion (kf = 1010 s−1). The excitation energy is
~ω = E∗−E0 = 1.6 eV. The various parameters
are collected in Table 1.
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Table I

Parameters of the HOMO-LUMO model
(∆E±∗ and Γ

(i)
j are given in eV)

Figs ∆E+∗ ∆E−∗ Γ
(1)
L Γ

(2)
L Γ

(1)
H Γ

(2)
H T,o K

7 0.4 0.8 10−6 10−4 10−5 10−6 300

8 0.1 0.8 10−6 10−4 10−5 10−6 300

9 0.1 0.8 10−6 10−4 10−5 10−6 100

10 -0.1 0.8 10−7 10−5 10−6 10−7 300

11 0.8 -0.1 10−7 10−5 10−6 10−7 300

12 -0.1 -0.2 10−7 10−5 10−6 10−7 300

A. Off-resonant regime of charge

transmission

Figs. 7 - 9 demonstrate the transient behav-
ior of the direct and sequential current com-
ponents for a positive transmission gap ∆E+∗

(it determines the efficiency of the M∗ → M+

transition due to thermal activation).

1. Deep off-resonant regime

In the case represented in Fig. 7, the gap
∆E+∗ is assumed to be a rather large so that
the population of the charged molecular state
M+ is small. As a result, charge transmis-
sion mainly follows the tunneling route whereas
thermal activation of the molecular state M+

(as well as state M−) is suppressed (cases (a)
and (b) of Fig. 6). For such a transmission the
distant current component strongly exceeds the
sequential one (see the insert). Therefore, the
total current, eq. (8) is associated with the di-
rect component:

Ir(t) ≃ Idir(t) ≃ I
(st)
dir

(

1− e−t/τst
)

. (46)

Here, τst = k−1
st = (kf + kd)

−1 is the character-
istic time of the evolution of the current to its
steady state value

I
(st)
dir = I0π~S∗0 (kf/kst) (47)

The quantities S∗0 and Q∗0 (the latter enters
kd, cf. eq. (36)) have been defined in the eq.
(38) and eq. (42), respectively, additionally us-
ing R ≃ (1/π)[(∆E+∗)

−1 + (∆E−∗)
−1].

In the off-resonant regime, the inequality
kf ≫ Q∗0 is valid with a good accuracy. As
a result, a dependence of the photocurrent on
the light intensity (i.e. on the rate kf ) is only
present within the transient behavior whereas

the steady state value, Ist = I
(st)
dir , becomes in-

dependent on kf (see Fig. 7). We also note

FIG. 7: Transient current components for an off-
resonant charge transmission process and at a dif-
ferent intensities of optical excitation. Solid lines:
kf = 1010 s−1, dashed lines: kf = 3 · 1010 s−1.

Insert: sequential current components I
(1)
seq(t) (up-

per curves) and I
(2)
seq(t) (lower curves) approach the

common steady state value.

FIG. 8: Off-resonant regime of current formation
at a small transmission gap ∆E+∗.

that the single-exponential kinetics correctly
describes the transfer process until the popu-
lation of the charged molecular state M+ (and
M−) becomes so small that the direct current
component strongly exceeds the sequential one.

2. Single-channel off-resonant regime

The Figs. 8-10 depict how the current com-
ponents approach their steady-state values for
the case of a large and positive gap ∆E−∗ and
a positive but not so large gap ∆E+∗. Here, an
activation of the hopping process M∗ → M+

is possible and the contribution of the sequen-
tial component to the total one becomes sig-
nificant. As a result, the transient behavior
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FIG. 9: Off-resonant current formation at low
temperature with the participation of the charged
molecular state M+.

of the current represents two-exponential kinet-
ics. For instance, a comparison of Fig. 7 and
Fig. 8 shows that at a small gap ∆E+∗ (but at
the same width parameters and temperature),
an electron transmission along the sequential
route becomes more effective than the trans-
mission along the tunnel route. Therefore, the
total current is not caused by the direct com-
ponent (as in Fig. 7) but by the sequential
one (cf. Fig. 8). As a result, the total cur-

rents I1(t) ≃ I
(1)
seq(t) and I2(t) ≃ I

(2)
seq(t) do not

coincide in the transient region. Such a behav-
ior is originated by an asymmetric hopping of
electrons between the molecule and the elec-
trodes. A temperature decrease does not pre-
dominantly impact the direct component but
strongly reduces the sequential one, as deduced
from a comparison of Fig. 9 and Fig. 8.
For a further inspection of the transient cur-

rent either in the off-resonant or the resonant
regime we use analytic expressions which fol-
low from the eqs. (40), (41) and (43). Let us
start with an analysis of the sequential current
components

I(r)seq(t) = I(st)seq

[

1−
1

k1 − k2

(

k1e
−k2t− k2e

−k1t
)]

+ (−1)r I0π
kfΓ

(r)
L

k1 − k2
N(∆E+∗)

(

e−k2t − e−k1t
)

(48)
where the quantity

I(st)seq = I0π
kf

~k1k2
(Γ

(1)
H Γ

(2)
L −Γ

(2)
H Γ

(1)
L )N(∆E+∗)

(49)
denotes the steady state sequential current en-

tering I
(1)
seq(t) and I

(2)
seq(t).

The results depicted in the Figs. 8 and 9
refer to an electrode-molecule coupling which

guarantees k1 ≫ k2 where k1 ≃ kf + kd and
k2 ≃ (1/~) [ΓL (2 − N(∆E+∗)) + ΓH ]. Due to
the inequality k1 ≫ k2 the fast and the slow
kinetic periods of the time evolution are well
determined. This allows one to distinguish be-

tween the currents I
(1)
seq(t) and I

(2)
seq(t). The fast

kinetic phase covers a time region of the order of
k−1
1 and starts just after the switching on of the

optical excitation. The phase ends at t & 5k−1
1

from which the time-dependent behavior of the
current is determined by the slow phase

I(r)seq(t) ≃ I(st)seq

(

1− e−t/τst
)

+ I(r,on)seq e−t/τst .
(50)

Here, τst = k−1
2 is the characteristic time the

current needs to achieve its steady state value.
The expression

I(r,on)seq = (−1)rI0πΓ
(r)
L N(∆E+∗) (51)

gives the current component valid at t ≪ τst.

The sign of the I
(r,on)
seq is determined by the di-

rection of electron motion from the photoex-
cited molecule to the rth electrode. Since in
the case under consideration, the transmission
channel is associated with the charged molecu-
lar state M+, the M∗ →M+ transition involves
an electron which leaves the LUMO and is cap-
tured by either the 1st or the 2nd electrode. In
the scheme depicted in Fig. 5 this transition is
accompanied by an electron hopping from the
LUMO to electrode 1 and is characterized by

the contact rate constant K
(1)
∗+ .

As a quantifier of the transient kinetics we
introduce the ratio

η(r)seq = |I(r,on)seq |/I(st)seq . (52)

It indicates how strongly the sequential compo-
nents differ from their steady state value if the
optical excitation is switched on. Our studies
show that the difference between these quan-
tities can become large if the difference be-
tween the width parameters is large. We illus-

trate this observation for the case Γ
(1)
H ≫ Γ

(2)
H

and Γ
(2)
L ≫ Γ

(1)
L so that Γ

(1)
H Γ

(2)
L − Γ

(2)
H Γ

(1)
L ≈

Γ
(1)
H Γ

(2)
L . Therefore, if, for instance, Γ

(1)
H =

0.1Γ
(2)
L then η(r) ≃ (Γ

(r)
L /Γ

(1)
H )

(

2 − N(∆E+∗)
)

and thus |I
(1,on)
seq | ≪ I

(st)
seq whereas I

(2,on)
seq ≫

I
(st)
seq , cf. Fig. 8.
During the slow kinetic phase the behavior

of the direct current component is described by
the expression

Idir(t) ≃ I
(st)
dir

(

1−e−t/τst
)

+I
(on)
dir e−t/τst . (53)

The two current components,

I
(st)
dir = I0π~S∗0

[

1−
ΓL

~k2
N(∆E+∗)

]

(54)
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and

I
(on)
dir = I0π~S∗0 , (55)

represent the steady state values, respectively.
The basic difference in the behavior of the di-
rect and sequential current components is as
follows: In the off-resonant regime of elec-
tron transfer (where N(∆E+∗)≪ 1) the maxi-
mal value of the direct switch-on current coin-
cides with its steady state value, I

(on)
dir ≃ I

(st)
dir .

Therefore, a slow kinetic phase is not observed
for the direct component. The respective time
evolution is determined by the fast single ex-
ponential kinetics (see Figs. 7 and 9). This
behavior is related to the small population of
the charged molecular states. The conclusion is
that at an off-resonant regime, the appearance
of a large switch-on current (in comparison to
its steady state value) could be only related to
one of the sequential components but not to the
direct component (compare Figs. 7 and 9 with
Fig. 8).

B. Resonant regime of charge

transmission

The resonant regime of charge transmission
is formed if the transmission gaps ∆E+∗ and
∆E−∗ become negative. The temporal evolu-
tion of the respective current components is
represented in the Figs. 10 - 12. The used light
intensity is identical with the one taken for the
study of the off-resonant regime.

1. Single-channel resonant regime

This regime is achieved if E∗ > E+ + EF or
E∗ +EF > E−, i.e. if ∆E+∗ < 0 or ∆E−∗ < 0,
respectively (cases (c) or (d) of Fig. 6). Phys-
ically, the cases ∆E+∗ < 0, ∆E−∗ > 0 and
∆E+∗ > 0, ∆E−∗ < 0 do not differ from each
other. Therefore, for the sake of definiteness,
let us analyze the case (c). As in the previous
subsection, a situation is considered where the
fast and the slow kinetic phases are clearly dif-
fer from each other. Accordingly, the relaxation
of the current components to their steady state
values is described by eqs. (50)-(55) where now
∆E+∗ < 0 and, thus,

S∗0 =
1

~ΓL

(

Γ
(1)
H Γ

(2)
L − Γ

(2)
H Γ

(1)
L

)

,

Q∗0 =
1

~ΓL

(

Γ
(1)
H Γ

(2)
L + Γ

(2)
H Γ

(1)
L

)

. (56)

FIG. 10: Single-channel resonant charge transmis-
sion with the participation of the charged molecular
state M+ (the energy gap ∆E+∗ is negative). The
total current is mainly determined by the sequen-
tial components.

A comparison of Fig. 10 and Fig. 8 shows
that the change of ∆E+∗ from positive values
(∆E+∗ = 0.1 eV) to negative ones (∆E+∗ =
−0.1 eV) results in a significant increase of the
sequential and distant current components (de-
spite the fact that the width parameters are
taken even less than those used in the Figs 8 -
10). At the same time, the ratio (52) between
the switch-on and the steady state sequential
current component is conserved. In the case of
the resonant regime, one can also introduce the
ratio defined by the direct current component:

ηdir = I
(on)
dir /I

(st)
dir . (57)

In line with the expressions (54) and (55) it
yields ηdir = ΓL/ΓH . If one takes the same re-
lation between the width parameters as it has

been used in Fig. 8, then ηdir ≃ Γ
(2)
L /Γ

(1)
H ∼ 10

in correspondence with the exact results de-
picted in Fig. 10. The above given results re-
fer to a current formation connected with the
transmission along the channel which is asso-
ciated with the charged molecular state M+.
The channel includes two types of transmission
routs depicted in Fig. 6, the left sequential
route (M∗ →M+ →M0) and the direct tunnel
route (M∗ → M0). Analogously, one can con-
sider the current formation if a charge transmis-
sion occurs preliminary along the channel re-
lated to the molecular charged state M− (right
sequential route M∗ → M− → M0 and direct
tunnel route M∗ → M0). Recall that the dis-

tant rate constants Q
(12)
∗0 as well as the Q

(21)
∗0

are defined by both charged molecular states
M+ and M−. To derive respective analytic ex-
pressions, one sets K+∗ = 0 in the eqs. (40),
(41), and (22). This results in an analytic
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FIG. 11: Single-channel resonant transmission with
the participation of the charged molecular state
M−.

form which follows from eqs. (43) and (55) if
one replaces K−∗(0) and K∗(0)− by K+∗(0) and
K∗(0)+, respectively. Our studies show that in
this case, the direct current component is com-
parable with the sequential components (see
Fig. 11). Since the fast regime of charge trans-
mission is associated now with the hopping of
an electron into the HOMO, the maximal value
of the sequential current component is less than

that of Fig. 10due to the condition Γ
(1)
H < Γ

(2)
L .

2. Two-channel resonant regime

This regime is realized if both transmission
channels associated with the molecular charged
states M+ and M− participate in the electron
transfer process and if the respective transmis-
sion gaps ∆E−∗ and ∆E+∗ are negative (cases
(d) and (e) in Fig. 6). In this two-channel
resonant regime, the left and the right electron
transfer channels represented in Fig. 5, give a
comparable contribution to the current. The
time-dependent evolution of the current com-
ponents is described by the general expressions
(40) and (41) and the set of kinetic equations
(34). Fig. 12 does not show any different be-
havior among the particular currents which be-
long to a particular channel. The insert of Fig.
12 demonstrates that the fast part of the time
evolution completely corresponds to the kinet-
ics of formation of the excited molecular state
M∗. The slow part reflects the kinetics at which
a population of the charged molecular states
M+ and M− varies due to a depopulation of
the light-induced state M∗. Such a depopula-
tion is negligible during an off-resonant regime
of charge transmission but becomes pronounced

FIG. 12: Two-channel resonant charge transmis-
sion. There is no basic difference between the
behavior of the current components formed by a
single-channel of charge transmission (except a cer-
tain increase of the direct component, cf. also Fig.
10). The evolution of the current components fol-
low the time-dependent behavior of the molecular
probabilities (see insert).

in the resonance regime.

VI. CONCLUSIONS

We put forward a detailed study on the time-
dependent behavior of light-induced transient
currents in molecular junctions, like in a molec-
ular diode 1-M-2. A nonequilibrium set of ki-
netic equations has been derived for the molec-
ular states which participate in the current for-
mation. Those are the neutral molecular states
M0 and M∗ and the two charged molecular
states M+ and M−. It could be shown that
an interelectrode electron transfer 12 ⇄ 1

+
2
−

takes place along the channels associated with
the charged molecular states M+ and M−, see
Fig. 5. These states participate in a light-
induced interelectrode electron transfer in the
absence of an applied voltage either as real in-
termediate states (forming the sequential trans-
mission route) or as virtual intermediate states
(forming the direct transmission route). The
sequential route includes the hopping of an elec-
tron between the molecule and the adjacent
electrodes, being thus responsible for a molec-
ular charging. The formation of the respec-
tive direct current component is accompanied
by the transition of the molecule from its pho-
toexcited state M∗ to its ground-state M0. The
time-dependent behavior of the total photocur-
rent is governed by the molecular populations
P (α; t), cf. eqs. (40) and (41). The latter
evolve in line with the kinetic rate equations
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(34).
The relative efficiency of each route is de-

termined by the actual value of the transmis-
sion gaps ∆Eα∗, (α = +,−): If ∆Eα∗ is pos-
itive, then an electron transmission along the
Mα-channel proceeds in an off-resonant regime
whereas for a negative ∆Eα∗ the current is
formed in the resonant regime. In this regime
the sequential and the distant current compo-
nents significantly exceed the same components
formed at the off-resonant charge transmission
(see in this context the Figs. 10 and 11 and
compare them with the Figs. 7 and 8). In
the framework of a HOMO-LUMO model, the
direction of the light-induced electron current

is determined by the factor Γ
(1)
H Γ

(2)
L − Γ

(2)
H Γ

(1)
L

which reflects the difference between interelec-
trode electron flow 12 → 1

+
2
− and 1

−
2
+ ←

12.
If the difference between the width param-

eters Γ
(r)
j becomes large, a characteristic ki-

netic effect appears for the transient photo cur-
rents. In this case, those currents do exceed
their steady state value to a large amount. The
physical origin of this effect is related to the
fact that the photoexcitation of the molecule
(M0 →M∗ process) initiates a molecular charg-
ing (see the schemes in Fig. 4 and Fig. 5).
Charging is caused by the transition of an
electron from the molecule to each electrode
(M∗ → M+ process) or from the electrodes to
the molecule (M∗ →M− process). Such a light-
induced electron motion forms the fast initial
part of the electron transmission which can be

seen in the time-dependent behavior of the se-

quential current components I
(1)
seq(t) and I

(2)
seq(t).

Molecular recharging is characterized by con-
tact (hopping) rate constants. If the character-
istic recharging time is much less than the char-
acteristic time τst of the steady state formation,
then the maximal value of the transient pho-
tocurrent may become rather large compared
to its steady state value (see, for instance, Fig.
10 and Fig. 12).

Experimental studies of transient photocur-
rents allow one to clarify the details of contact
(molecule-electrode) and distant (electrode-
electrode) electron transfer processes in molec-
ular junctions. We have shown that the ef-
fective formation of the photocurrent becomes
possible if the photon energy ~ω = E∗−E0 ex-
ceeds the energy gaps ∆E−0 or/and ∆E+0, cf.
Fig. 2). This corresponds to an energy level
arrangement as shown in the schemes (c)-(f) of
Fig. 5.
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